JP2010531388A - Structural material of Al alloy containing Mg and high Si and method for producing the same - Google Patents

Structural material of Al alloy containing Mg and high Si and method for producing the same Download PDF

Info

Publication number
JP2010531388A
JP2010531388A JP2010513624A JP2010513624A JP2010531388A JP 2010531388 A JP2010531388 A JP 2010531388A JP 2010513624 A JP2010513624 A JP 2010513624A JP 2010513624 A JP2010513624 A JP 2010513624A JP 2010531388 A JP2010531388 A JP 2010531388A
Authority
JP
Japan
Prior art keywords
structural material
alloy
alloy containing
temperature
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010513624A
Other languages
Japanese (ja)
Inventor
良 左
福暁 于
剛 趙
驤 趙
永亮 楊
艷 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Publication of JP2010531388A publication Critical patent/JP2010531388A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Abstract

【課題】鋳造過程において、如何なる変質剤も添加しない前提の下、加熱塑性加工および熱処理を通じ、良好な塑性を有し、高強度である、Mgおよび高Siを含むAl合金の構造材料を低コストに製造する。
【解決手段】型材、棒材、板材および鍛造材を含む、Mgおよび高Siを含むAl合金の構造材料である。構造材料は、半連続鋳造法によりインゴットが製造され、前熱処理により、共晶Si相の粒子が拡散化され、次に、加熱塑性加工および熱処理を通じ、最終形状およびミクロ組織が形成される。構造材料中のMgの含有量は、0.2〜2.0重量%であり、Siの含有量は、8〜18重量%であり、均一に細分化されたミクロ組織構造を有する。Alマトリクス組織は、等軸晶であり、平均粒径は、<6μmである。Si粒子および他の第2相粒子は、拡散分布し、平均粒径は、<5μmである。
【選択図】図1
A low-cost Al alloy structural material containing Mg and high Si that has good plasticity and high strength through heat plastic working and heat treatment under the premise that no modifier is added in the casting process. To manufacture.
A structural material of an Al alloy containing Mg and high Si, including a mold, a bar, a plate, and a forged material. As the structural material, an ingot is manufactured by a semi-continuous casting method, particles of the eutectic Si phase are diffused by a pre-heat treatment, and then a final shape and a microstructure are formed through heat plastic working and heat treatment. The content of Mg in the structural material is 0.2 to 2.0% by weight, the content of Si is 8 to 18% by weight, and it has a finely divided microstructure. The Al matrix structure is equiaxed and the average particle size is <6 μm. Si particles and other second phase particles are diffusely distributed and the average particle size is <5 μm.
[Selection] Figure 1

Description

本発明は、Al合金およびその製造技術に関し、特に、Mgおよび高Siを含むAl合金の構造材料およびその製造方法に関する。   The present invention relates to an Al alloy and a manufacturing technique thereof, and more particularly to a structural material of an Al alloy containing Mg and high Si and a manufacturing method thereof.

Al−Si合金の中で、特に、Siの含有量が多いAl−Si合金は、低密度、高耐摩耗性、高耐腐食性および低熱膨張係数であることから、自動車工業および航空宇宙技術の領域において、広く応用されている。しかし、AS CASTのAl−Si合金のインゴット中には、粗大な塊状の析出Si粒子および板状の共晶組織が存在するため、合金の脆性が極めて高く、塑性加工により、凝固組織を改善することや、各種の断面形状の高性能材料を製造するのが難しい。このため、合金の応用範囲が限定されてしまう。一般に、Al−Si合金は、鋳造Al合金に分類される。AS CASTのAl−Si合金が変形能力に劣る問題を解決するために、高速凝固させる方法が模索された。しかし、高速凝固させた場合、寸法の小さい(<10mm)塊体のみしか製造されない。仮に、大きな寸法の部材を製造する場合、更なる工程が必要である。典型的な例として、粉末冶金法を通じて製造することができるが、生産コストおよび加工技術が非常に複雑である。   Among the Al-Si alloys, particularly, an Al-Si alloy having a high Si content has low density, high wear resistance, high corrosion resistance, and a low coefficient of thermal expansion. Widely applied in the area. However, in the ingot of the AS CAST Al-Si alloy, there are coarse massive precipitated Si particles and a plate-like eutectic structure, so the brittleness of the alloy is extremely high, and the solidification structure is improved by plastic working. In addition, it is difficult to manufacture high-performance materials having various cross-sectional shapes. For this reason, the application range of an alloy will be limited. In general, Al—Si alloys are classified as cast Al alloys. In order to solve the problem that the AS-CAST Al-Si alloy is inferior in deformability, a method for rapid solidification has been sought. However, when solidified at high speed, only small lumps (<10 mm) are produced. If a member having a large size is to be manufactured, an additional process is required. As a typical example, it can be manufactured through powder metallurgy, but the production costs and processing techniques are very complex.

純Alおよび変形Al合金を生産する上で、半連続鋳造法(Direct Chill Casting:DC鋳造とも称す)が広く応用されている。この技術で重視されている事項は、如何にして、合金成分の分離を低減し、結晶粒径を小さくし、表面質量を高めるかである。半連続鋳造方法を利用し、変質剤(例えば、P、Na、Sr)を含まない大きな寸法の高Si−Al合金インゴットを製造する特許文献1の技術が本発明の発明者により特許申請され、特許権を取得した。   In producing pure Al and deformed Al alloy, a semi-continuous casting method (also referred to as direct chill casting: DC casting) has been widely applied. What is important in this technology is how to reduce the separation of alloy components, reduce the crystal grain size, and increase the surface mass. The inventor of the present invention has applied for a patent for the technology of Patent Document 1 that uses a semi-continuous casting method to produce a large Si-Al alloy ingot having a large size that does not contain alteration agents (eg, P, Na, Sr). Obtained patent rights.

本発明の発明者は、更なる研究を通じ、上述の発明技術を利用することにより、Siの下限含有量(8%重量まで)を緩和し、Siの上限含有量(18%重量まで)を低減し、Mgの含有量および他の合金元素の含有量を調整し、加熱塑性加工およびその後の熱処理を通じ、良好な塑性を有し、高強度である、Mgおよび高Siを含むAl合金の構造材料を製造することができることを発見した。   Through further research, the inventor of the present invention relaxed the lower limit content of Si (up to 8% weight) and reduced the upper limit content of Si (up to 18% weight) by utilizing the above-described inventive technique. And adjusting the content of Mg and the content of other alloy elements, and through heat plastic processing and subsequent heat treatment, it has good plasticity and high strength, and is a structural material of Al alloy containing Mg and high Si Discovered that it can be manufactured.

中国特許号ZL200510119550.6Chinese Patent No. ZL2005101195550.6

本発明の目的は、Mgおよび高Siを含むAl合金の構造材料およびその方法を提供することにあり、鋳造過程において、如何なる変質剤も添加しない前提の下、加熱塑性加工および熱処理を通じ、良好な塑性を有し、高強度である、Mgおよび高Siを含むAl合金の構造材料を低コストに製造することができる。   An object of the present invention is to provide a structural material of Al alloy containing Mg and high Si and a method thereof, and in the casting process, under the premise that no altering agent is added, it is preferable to perform heat plastic working and heat treatment. A structural material of Al alloy containing Mg and high Si that has plasticity and high strength can be manufactured at low cost.

上記課題を解決するために、請求項1の発明は、
型材、棒材、板材および鍛造材を含むMgおよび高Siを含むAl合金の構造材料であり、
構造材料は、先ず、半連続鋳造法によりインゴットが製造され、その後、前熱処理により、共晶Si相の粒子が拡散化され、次に、加熱塑性加工および熱処理を通じ、最終形状およびミクロ組織が形成されるAl合金であり、強化メカニズムは、Alマトリクスの微細粒強化、Si粒子の粒子強化および第2相粒子の沈殿強化であり、
構造材料中のMgの含有量は、0.2〜2.0重量%であり、Siの含有量は、8〜18重量%であり、均一に細分化されたミクロ組織構造を有し、Alマトリクス組織は、等軸晶であり、平均粒径は、<6μmであり、Si粒子および他の第2相粒子は、拡散分布し、平均粒径は、<5μmであることを特徴とするMgおよび高Siを含むAl合金の構造材料である。
In order to solve the above problems, the invention of claim 1
It is a structural material of Al alloy containing Mg and high Si including mold material, bar material, plate material and forging material,
As for the structural material, an ingot is first manufactured by a semi-continuous casting method, and then eutectic Si phase particles are diffused by pre-heat treatment, and then a final shape and microstructure are formed through heat plastic processing and heat treatment. The strengthening mechanism is Al matrix fine grain strengthening, Si particle grain strengthening and second phase particle precipitation strengthening,
The content of Mg in the structural material is 0.2 to 2.0% by weight, the content of Si is 8 to 18% by weight, and has a finely divided microstructure. Mg is characterized in that the matrix structure is equiaxed, the average particle size is <6 μm, the Si particles and the other second phase particles are diffusely distributed, and the average particle size is <5 μm. And a structural material of Al alloy containing high Si.

請求項2の発明は、Cu、Zn、Ni、TiおよびFeの中の少なくとも1つ以上を含み、総含有量が2重量%未満であることを特徴とする請求項1記載のMgおよび高Siを含むAl合金の構造材料である。   The invention according to claim 2 includes at least one of Cu, Zn, Ni, Ti and Fe, and has a total content of less than 2% by weight. Mg and high Si according to claim 1 A structural material of an Al alloy containing

請求項3の発明は、半連続鋳造法により、インゴットを製造するステップと、
ここで、加工パラメータは、
鋳造温度:対応する合金液相線温度以上の150〜300℃、
鋳造速度:100〜200mm/min、
インゴットの外周を凝固させる冷却水量:5〜15g/mm・s、
であり、如何なる変質剤も添加しない、
インゴットに対し、前熱処理を行うことにより、共晶Si相の粒子を拡散化するステップと、
ここで、加工パラメータは、
加熱速度:10〜30℃/min、
加熱温度:450〜520℃、
保温時間:1〜3hr、
であり、
前熱処理されたインゴットに対し、加熱塑性加工を行うステップと、
ここで、加工パラメータは、
変形温度:400〜520℃
冷却方式:自然冷却または強制冷却、
であり、
加熱塑性加工がされた後の構造材料に対し、熱処理を行うステップと、を含むことを特徴とするMgおよび高Siを含むAl合金の構造材料の製造方法である。
The invention of claim 3 is a step of producing an ingot by a semi-continuous casting method,
Here, the processing parameters are
Casting temperature: 150 to 300 ° C. above the corresponding alloy liquidus temperature,
Casting speed: 100 to 200 mm / min,
Cooling water amount for solidifying the outer periphery of the ingot: 5 to 15 g / mm · s,
And no modifiers are added,
A step of pre-heat-treating the ingot to diffuse the particles of the eutectic Si phase;
Here, the processing parameters are
Heating rate: 10-30 ° C./min,
Heating temperature: 450-520 ° C.
Insulation time: 1-3 hr
And
A step of performing heat plastic processing on the preheated ingot;
Here, the processing parameters are
Deformation temperature: 400-520 ° C
Cooling method: natural cooling or forced cooling,
And
A method for producing a structural material of an Al alloy containing Mg and high Si, comprising the step of performing a heat treatment on the structural material after being subjected to heat plastic working.

請求項4の発明は、加熱塑性加工がされた後、自然冷却された構造材料に対し、固溶化処理および人工時効の熱処理加工を行うステップを含み、
ここで、固溶化処理のパラメータは、
加熱速度:10〜30℃/min、
固溶化処理温度:500〜540℃、
固溶化処理時間:0.5〜3hr、であり、
人工時効パラメータは、
時効温度:160〜200℃、
時効温度:1〜10hr、であることを特徴とする請求項3記載のMgおよび高Siを含むAl合金の構造材料の製造方法である。
The invention of claim 4 includes a step of performing a solution treatment and a heat treatment of artificial aging on the naturally cooled structural material after the heat plastic working,
Here, the solution treatment parameters are:
Heating rate: 10-30 ° C./min,
Solution treatment temperature: 500-540 ° C.,
Solution treatment time: 0.5-3 hr,
The artificial aging parameter is
Aging temperature: 160-200 ° C.
4. The method for producing a structural material of Al alloy containing Mg and high Si according to claim 3, wherein the aging temperature is 1 to 10 hours.

請求項5の発明は、加熱塑性加工がされた後、強制冷却された構造材料に対し、固溶化処理または人工時効の熱処理加工を行うステップを含み、
ここで、
人工時効パラメータは、
時効温度:160〜200℃、
時効温度:1〜10hr、であることを特徴とする請求項3記載のMgおよび高Siを含むAl合金の構造材料の製造方法である。
The invention of claim 5 includes a step of performing a solution treatment or artificial aging heat treatment on the structural material that has been forcibly cooled after the heat plastic working,
here,
The artificial aging parameter is
Aging temperature: 160-200 ° C.
4. The method for producing a structural material of Al alloy containing Mg and high Si according to claim 3, wherein the aging temperature is 1 to 10 hours.

請求項6の発明は、加熱塑性加工として圧延加工がされるとき、圧延総圧下量は、40%を超えることを特徴とする請求項3記載のMgおよび高Siを含むAl合金の構造材料の製造方法である。   The invention of claim 6 is characterized in that the total rolling reduction exceeds 40% when the rolling process is carried out as thermoplastic processing. The structural material of the Al alloy containing Mg and high Si according to claim 3 It is a manufacturing method.

請求項7の発明は、加熱塑性加工として押出加工がされるとき、押出比は、15を超えることを特徴とする請求項3記載のMgおよび高Siを含むAl合金の構造材料の製造方法である。   The invention according to claim 7 is the method for producing a structural material of an Al alloy containing Mg and high Si according to claim 3, wherein the extrusion ratio exceeds 15 when extrusion is performed as thermoplastic processing. is there.

請求項8の発明は、加熱塑性加工として鍛造加工がされるとき、鍛造比は、40%を超えることを特徴とする請求項3記載のMgおよび高Siを含むAl合金の構造材料の製造方法である。   The invention according to claim 8 is a method for producing a structural material of an Al alloy containing Mg and high Si according to claim 3, wherein the forging ratio exceeds 40% when forging is performed as thermoplastic processing. It is.

本発明は、従来技術の欠点を克服し、如何なる変質剤も添加しない前提の下、従来技術である半連続鋳造法により、Mgおよび高Siを含むAl合金を製造し、加熱塑性加工および熱処理を行うことにより、Si粒子を細かく拡散させ、第2相を等軸晶のAlマトリクス上に分布させることができ、良好な塑性を有し、高強度である、Al合金の加工材料を製造することができる。   The present invention overcomes the drawbacks of the prior art and, under the premise that no modifier is added, produces an Al alloy containing Mg and high Si by the conventional semi-continuous casting method, and performs heat plastic working and heat treatment. By doing this, the Si particles can be finely diffused, the second phase can be distributed on the equiaxed Al matrix, and the processed material of the Al alloy having good plasticity and high strength can be produced. Can do.

表1は、本発明により製造される押出Si−Al合金(Al−8.5Si−1.8Mg−0.27Fe、Al−12.7Si−0.7Mg−1.5Cu−0.3Ni−0.3Ti−0.3FeおよびAl−15.5Si−0.7Mg−0.27Fe)の押出および熱処理状態の下での力学性能を示し、中国国家基準中の押出6063合金のT5およびT6状態の下の力学性能と比較する。

Figure 2010531388
Table 1 shows the extruded Si-Al alloys produced according to the present invention (Al-8.5Si-1.8Mg-0.27Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0. 3Ti-0.3Fe and Al-15.5Si-0.7Mg-0.27Fe) showing the mechanical performance under extrusion and heat treatment conditions, under the T5 and T6 states of extruded 6063 alloy in Chinese national standards Compare with mechanical performance.
Figure 2010531388

表1から、Al−15.5Si−0.7Mg−0.27Fe、Al−12.7Si−0.7Mg−1.5Cu−0.3Ni−0.3Ti−0.3FeおよびAl−8.5Si−1.8Mg−0.27Feの合金は、T6状態の下の降伏強度および引張強度が6063合金のT6状態の国家基準よりも高いことが分かる。合金の押出状態(T1)の力学性能の中で、特に、延伸率が6060合金のT5状態の国家基準よりも高い。6063合金は、最も汎用性の高い押出型材合金であり、国内外の建築、車両、装飾などの領域において大量に応用されており、大きな需要がある。従って、6063合金に代わり、本発明のMgおよび高Siを含むAl合金が使用された場合、大きな経済効果をもたらす。また、Siの添加により、Al資源を大量に節約することができる。   From Table 1, Al-15.5Si-0.7Mg-0.27Fe, Al-12.7Si-0.7Mg-1.5Cu-0.3Ni-0.3Ti-0.3Fe, and Al-8.5Si- It can be seen that the 1.8 Mg-0.27 Fe alloy has higher yield strength and tensile strength under the T6 state than the national standard of the T63 state of the 6063 alloy. Among the mechanical performance of the extruded state (T1) of the alloy, in particular, the stretch ratio is higher than the national standard of the T5 state of 6060 alloy. The 6063 alloy is the most versatile extruded material alloy and is applied in large quantities in the fields of architecture, vehicles, decorations, etc. in Japan and abroad, and has a great demand. Therefore, when the Al alloy containing Mg and high Si of the present invention is used instead of the 6063 alloy, a great economic effect is brought about. Further, by adding Si, a large amount of Al resources can be saved.

半連続鋳造設備の構造を示す模式図である。It is a schematic diagram which shows the structure of a semi-continuous casting installation. 本発明の実施例1のAl−12.7Si−0.7Mg−0.3Fe合金(♯3)の半連続鋳造(鋳造温度730℃、鋳造速度180mm/min、冷却水流量8g/mm・s)インゴットの鋳造状態のミクロ組織を示す顕微鏡写真である。Semi-continuous casting of Al-12.7Si-0.7Mg-0.3Fe alloy (# 3) of Example 1 of the present invention (casting temperature 730 ° C., casting speed 180 mm / min, cooling water flow rate 8 g / mm · s) It is a microscope picture which shows the microstructure of the casting state of an ingot. 本発明の実施例1のAl−12.7Si−0.7Mg−0.3Fe合金(♯3)の半連続鋳造(鋳造温度730℃、鋳造速度180mm/min、冷却水流量8g/mm・s)インゴットの鋳造状態のミクロ組織を示す高倍率顕微鏡写真である。Semi-continuous casting of Al-12.7Si-0.7Mg-0.3Fe alloy (# 3) of Example 1 of the present invention (casting temperature 730 ° C., casting speed 180 mm / min, cooling water flow rate 8 g / mm · s) It is a high magnification photomicrograph which shows the microstructure of the casting state of an ingot. 本発明の実施例2の半連続鋳造されたAl−12.7Si−0.7Mg−0.3Fe合金(♯3)に500℃の前熱処理を2hr行い、470℃の加熱押出(押出比15)を行った後のミクロ組織を示す顕微鏡写真である。The semi-continuous cast Al-12.7Si-0.7Mg-0.3Fe alloy (# 3) of Example 2 of the present invention was subjected to pre-heat treatment at 500 ° C. for 2 hours, and heated extrusion at 470 ° C. (extrusion ratio 15). It is a microscope picture which shows the micro structure after performing. 本発明の実施例3の半連続鋳造されたAl−12.7Si−0.7Mg−0.3Fe合金(♯3)に500℃の前熱処理を2hr行い、470℃の加熱押出(押出比15)を行った後、T6状態(固溶温度540℃、時間1hr、人工時効温度200℃、時間3hr)のミクロ組織を示す顕微鏡写真である。The semi-continuous cast Al-12.7Si-0.7Mg-0.3Fe alloy (# 3) of Example 3 of the present invention was subjected to a preheat treatment at 500 ° C. for 2 hours and heated extrusion at 470 ° C. (extrusion ratio 15). Is a photomicrograph showing the microstructure of the T6 state (solid solution temperature 540 ° C., time 1 hr, artificial aging temperature 200 ° C., time 3 hr). 本発明の実施例1のAl−15.5Si−0.7Mg−0.27Fe合金(♯5)の半連続鋳造(鋳造温度800℃、鋳造速度140mm/min、冷却水流量10g/mm・s)インゴットの鋳造状態のミクロ組織を示す顕微鏡写真である。Semi-continuous casting of Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) of Example 1 of the present invention (casting temperature 800 ° C., casting speed 140 mm / min, cooling water flow rate 10 g / mm · s) It is a microscope picture which shows the microstructure of the casting state of an ingot. 本発明の実施例1のAl−15.5Si−0.7Mg−0.27Fe合金(♯5)の半連続鋳造(鋳造温度800℃、鋳造速度140mm/min、冷却水流量10g/mm・s)インゴットの鋳造状態のミクロ組織を示す高倍率顕微鏡写真である。Semi-continuous casting of Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) of Example 1 of the present invention (casting temperature 800 ° C., casting speed 140 mm / min, cooling water flow rate 10 g / mm · s) It is a high magnification photomicrograph which shows the microstructure of the casting state of an ingot. 本発明の実施例2の半連続鋳造されたAl−15.5Si−0.7Mg−0.27Fe合金(♯5)に500℃の前熱処理を2hr行い、470℃の加熱押出(押出比45)を行った後のミクロ組織を示す顕微鏡写真である。The semi-continuous cast Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) of Example 2 of the present invention was subjected to pre-heat treatment at 500 ° C. for 2 hours and heated extrusion at 470 ° C. (extrusion ratio 45). It is a microscope picture which shows the micro structure after performing. 本発明の実施例2の半連続鋳造されたAl−15.5Si−0.7Mg−0.27Fe合金(♯5)の矩形インゴットに500℃の前熱処理を1hr行い、500℃の加熱圧延(圧下量60%)を行った後のミクロ組織を示す顕微鏡写真である。The pre-heat treatment at 500 ° C. was performed for 1 hr on the rectangular ingot of the Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) semi-continuously casted in Example 2 of the present invention for 1 hour, followed by 500 ° C. hot rolling (reduction) It is a microscope picture which shows the microstructure after performing 60% of quantity. 本発明の実施例3の半連続鋳造されたAl−15.5Si−0.7Mg−0.27Fe合金(♯5)に500℃の前熱処理を2hr行い、470℃の加熱押出(押出比15)を行った後、T6状態(固溶温度520℃、時間2hr、人工時効温度180℃、時間4hr)のミクロ組織を示す顕微鏡写真である。The semi-continuous cast Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) of Example 3 of the present invention was subjected to a preheat treatment at 500 ° C. for 2 hours and heated extrusion at 470 ° C. (extrusion ratio 15). Is a photomicrograph showing the microstructure of the T6 state (solid solution temperature 520 ° C., time 2 hr, artificial aging temperature 180 ° C., time 4 hr). 本発明の実施例3の半連続鋳造されたAl−15.5Si−0.7Mg−0.27Fe合金(♯5)の矩形インゴットに500℃の前熱処理を1hr行い、500℃の加熱圧延(圧下量60%)を行った後、T6状態(固溶温度520℃、時間3hr、人工時効温度200℃、時間4hr)のミクロ組織を示す顕微鏡写真である。A semi-continuous cast Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) rectangular ingot of Example 3 of the present invention was subjected to preheating treatment at 500 ° C. for 1 hr, followed by heating and rolling at 500 ° C. (reduction) It is a photomicrograph showing the microstructure of the T6 state (solid solution temperature 520 ° C., time 3 hr, artificial aging temperature 200 ° C., time 4 hr) after performing the amount 60%. 本発明の実施例3の半連続鋳造されたAl−15.5Si−0.7Mg−0.27Fe合金(♯5)に500℃の前熱処理を2hr行い、470℃の加熱押出(押出比45)を行った後、T6状態(固溶温度520℃、時間2hr、人工時効温度180℃、時間4hr)のミクロ組織を示す高倍率顕微鏡写真である。The semi-continuous cast Al-15.5Si-0.7Mg-0.27Fe alloy (# 5) of Example 3 of the present invention was preheated at 500 ° C. for 2 hours, and heated extrusion at 470 ° C. (extrusion ratio 45). Is a high-power micrograph showing the microstructure of the T6 state (solid solution temperature 520 ° C., time 2 hr, artificial aging temperature 180 ° C., time 4 hr). 本発明の実施例1のAl−17.5Si−0.7Mg−1.0Cu−0.27Fe合金(♯7)の半連続鋳造(鋳造温度850℃、鋳造速度120mm/min、冷却水流量10g/mm・s)インゴットの鋳造状態のミクロ組織を示す顕微鏡写真である。Semi-continuous casting of Al-17.5Si-0.7Mg-1.0Cu-0.27Fe alloy (# 7) of Example 1 of the present invention (casting temperature 850 ° C., casting speed 120 mm / min, cooling water flow rate 10 g / It is a microscope picture which shows the microstructure of the casting state of a mm * s) ingot.

(実施例1)
半連続鋳造により、インゴットを製造した。
Example 1
Ingots were produced by semi-continuous casting.

設備は自作の設備である。構造原理を図1に示す。図中、1−冷却水、2−晶析装置、3―ブランク材、4−ホットトップ、5−黒鉛リング、6−金属液である。合金の化学成分を表2に示す。鋳造加工パラメータを表3に示す。

Figure 2010531388
Figure 2010531388
The equipment is self-made. The structural principle is shown in FIG. In the figure, 1-cooling water, 2-crystallizer, 3-blank material, 4-hot top, 5-graphite ring, 6-metal liquid. The chemical composition of the alloy is shown in Table 2. Table 3 shows the casting parameters.
Figure 2010531388
Figure 2010531388

(実施例2)
鋳造した合金インゴットの前熱処理、押出、圧延および鍛造を行った。
(Example 2)
The cast alloy ingot was preheated, extruded, rolled and forged.

前熱処理は、熱処理炉中において所定の加熱速度で加熱し、所定の温度に達した後、所定の時間保温した。その後、押出機、加熱圧延機および鍛造機により、塑性変形を完了させた。具体的な加工パラメータを表4、表5および表6中に記す。

Figure 2010531388
Figure 2010531388
Figure 2010531388
In the pre-heat treatment, heating was performed in a heat treatment furnace at a predetermined heating rate, and after reaching a predetermined temperature, the temperature was kept for a predetermined time. Thereafter, plastic deformation was completed by an extruder, a hot rolling mill, and a forging machine. Specific processing parameters are shown in Table 4, Table 5, and Table 6.
Figure 2010531388
Figure 2010531388
Figure 2010531388

(実施例3)
合金変形(押出、圧延、鍛造)後、熱処理を行った。
(Example 3)
After alloy deformation (extrusion, rolling, forging), heat treatment was performed.

所定の熱処理パラメータの下、押出、圧延、鍛造を行った材料の熱処理を行った。具体的な熱処理加工パラメータは、表7、表8および表9中に記す。一部合金の変形および熱処理後の力学性能を表10に記す。

Figure 2010531388
Figure 2010531388
Figure 2010531388
Figure 2010531388
Under predetermined heat treatment parameters, heat treatment was performed on the extruded, rolled, and forged materials. Specific heat treatment parameters are shown in Table 7, Table 8, and Table 9. Table 10 shows the mechanical performance after deformation and heat treatment of some alloys.
Figure 2010531388
Figure 2010531388
Figure 2010531388
Figure 2010531388

本発明のMgおよび高Siを含むAl合金の構造材料およびその製造方法により、鋳造過程において、如何なる変質剤も添加しない前提の下、加熱塑性加工および熱処理を通じ、良好な塑性を有し、高強度である、Mgおよび高Siを含むAl合金の構造材料を低コストに製造することができた。   With the structural material of Al alloy containing Mg and high Si of the present invention and its manufacturing method, it has good plasticity and high strength through heat plastic working and heat treatment under the premise that no alteration agent is added in the casting process. The structural material of Al alloy containing Mg and high Si was able to be manufactured at low cost.

1 冷却水
2 晶析装置
3 ブランク材
4 ホットトップ
5 黒鉛リング
6 金属液
DESCRIPTION OF SYMBOLS 1 Cooling water 2 Crystallizer 3 Blank material 4 Hot top 5 Graphite ring 6 Metal liquid

Claims (8)

型材、棒材、板材および鍛造材を含むMgおよび高Siを含むAl合金の構造材料であり、
前記構造材料は、先ず、半連続鋳造法によりインゴットが製造され、その後、前熱処理により、共晶Si相の粒子が拡散化され、次に、加熱塑性加工および熱処理を通じ、最終形状およびミクロ組織が形成されるAl合金であり、強化メカニズムは、Alマトリクスの微細粒強化、Si粒子の粒子強化および第2相粒子の沈殿強化であり、
前記構造材料中のMgの含有量は、0.2〜2.0重量%であり、Siの含有量は、8〜18重量%であり、均一に細分化されたミクロ組織構造を有し、前記Alマトリクス組織は、等軸晶であり、平均粒径は、<6μmであり、Si粒子および他の第2相粒子は、拡散分布し、平均粒径は、<5μmであることを特徴とするMgおよび高Siを含むAl合金の構造材料。
It is a structural material of Al alloy containing Mg and high Si including mold material, bar material, plate material and forging material,
As for the structural material, first, an ingot is manufactured by a semi-continuous casting method, and then particles of the eutectic Si phase are diffused by pre-heat treatment, and then the final shape and microstructure are obtained through heat plastic working and heat treatment. The formed Al alloy, the strengthening mechanism is the fine strengthening of Al matrix, strengthening of Si particles, and precipitation strengthening of second phase particles,
The content of Mg in the structural material is 0.2 to 2.0% by weight, the content of Si is 8 to 18% by weight, and has a finely divided microstructure. The Al matrix structure is equiaxed, the average particle size is <6 μm, the Si particles and other second phase particles are diffusely distributed, and the average particle size is <5 μm. Al alloy structural material containing Mg and high Si.
Cu、Zn、Ni、TiおよびFeの中の少なくとも1つ以上を含み、総含有量が2重量%未満であることを特徴とする請求項1記載のMgおよび高Siを含むAl合金の構造材料。   The structural material of Al alloy containing Mg and high Si according to claim 1, characterized in that it contains at least one of Cu, Zn, Ni, Ti and Fe, and the total content is less than 2% by weight. . 半連続鋳造法により、インゴットを製造するステップと、
ここで、加工パラメータは、
鋳造温度:対応する合金液相線温度以上の150〜300℃、
鋳造速度:100〜200mm/min、
インゴットの外周を凝固させる冷却水量:5〜15g/mm・s、
であり、如何なる変質剤も添加しない、
前記インゴットに対し、前熱処理を行うことにより、共晶Si相の粒子を拡散化するステップと、
ここで、加工パラメータは、
加熱速度:10〜30℃/min、
加熱温度:450〜520℃、
保温時間:1〜3hr、
であり、
前記前熱処理されたインゴットに対し、加熱塑性加工を行うステップと、
ここで、加工パラメータは、
変形温度:400〜520℃
冷却方式:自然冷却または強制冷却、
であり、
前記加熱塑性加工がされた後の構造材料に対し、熱処理を行うステップと、を含むことを特徴とするMgおよび高Siを含むAl合金の構造材料の製造方法。
Producing an ingot by a semi-continuous casting method;
Here, the processing parameters are
Casting temperature: 150 to 300 ° C. above the corresponding alloy liquidus temperature,
Casting speed: 100 to 200 mm / min,
Cooling water amount for solidifying the outer periphery of the ingot: 5 to 15 g / mm · s,
And no modifiers are added,
Performing pre-heat treatment on the ingot to diffuse eutectic Si phase particles;
Here, the processing parameters are
Heating rate: 10-30 ° C./min,
Heating temperature: 450-520 ° C.
Insulation time: 1-3 hr
And
Performing a heat plastic working on the preheated ingot;
Here, the processing parameters are
Deformation temperature: 400-520 ° C
Cooling method: natural cooling or forced cooling,
And
A method for producing a structural material of an Al alloy containing Mg and high Si, comprising the step of heat-treating the structural material after the heat plastic working.
加熱塑性加工がされた後、自然冷却された構造材料に対し、固溶化処理および人工時効の熱処理加工を行うステップを含み、
ここで、固溶化処理のパラメータは、
加熱速度:10〜30℃/min、
固溶化処理温度:500〜540℃、
固溶化処理時間:0.5〜3hr、であり、
人工時効パラメータは、
時効温度:160〜200℃、
時効温度:1〜10hr、であることを特徴とする請求項3記載のMgおよび高Siを含むAl合金の構造材料の製造方法。
After the heat plastic processing is performed, the structure material that is naturally cooled includes a step of performing a solution treatment and a heat treatment of artificial aging,
Here, the solution treatment parameters are:
Heating rate: 10-30 ° C./min,
Solution treatment temperature: 500-540 ° C.,
Solution treatment time: 0.5-3 hr,
The artificial aging parameter is
Aging temperature: 160-200 ° C.
4. The method for producing a structural material of Al alloy containing Mg and high Si according to claim 3, wherein the aging temperature is 1 to 10 hours.
加熱塑性加工がされた後、強制冷却された構造材料に対し、固溶化処理または人工時効の熱処理加工を行うステップを含み、
ここで、
人工時効パラメータは、
時効温度:160〜200℃、
時効温度:1〜10hr、であることを特徴とする請求項3記載のMgおよび高Siを含むAl合金の構造材料の製造方法。
After the heat plastic processing, forcibly cooled structural material includes a step of performing a solution treatment or heat treatment of artificial aging,
here,
The artificial aging parameter is
Aging temperature: 160-200 ° C.
4. The method for producing a structural material of Al alloy containing Mg and high Si according to claim 3, wherein the aging temperature is 1 to 10 hours.
前記加熱塑性加工として圧延加工がされるとき、圧延総圧下量は、40%を超えることを特徴とする請求項3記載のMgおよび高Siを含むAl合金の構造材料の製造方法。   The method for producing a structural material of an Al alloy containing Mg and high Si according to claim 3, wherein the total rolling reduction exceeds 40% when rolling is performed as the thermoplastic processing. 前記加熱塑性加工として押出加工がされるとき、押出比は、15を超えることを特徴とする請求項3記載のMgおよび高Siを含むAl合金の構造材料の製造方法。   The method for producing a structural material of an Al alloy containing Mg and high Si according to claim 3, wherein when the extrusion is performed as the heat plastic working, the extrusion ratio exceeds 15. 前記加熱塑性加工として鍛造加工がされるとき、鍛造比は、40%を超えることを特徴とする請求項3記載のMgおよび高Siを含むAl合金の構造材料の製造方法。   The method for producing a structural material of an Al alloy containing Mg and high Si according to claim 3, wherein when the forging is performed as the thermoplastic processing, the forging ratio exceeds 40%.
JP2010513624A 2007-06-29 2008-06-30 Structural material of Al alloy containing Mg and high Si and method for producing the same Pending JP2010531388A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710011919 2007-06-29
PCT/CN2008/001246 WO2009003365A1 (en) 2007-06-29 2008-06-30 A structural material part of a high-si mg-containing al alloy and the manufacture method thereof

Publications (1)

Publication Number Publication Date
JP2010531388A true JP2010531388A (en) 2010-09-24

Family

ID=40196494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010513624A Pending JP2010531388A (en) 2007-06-29 2008-06-30 Structural material of Al alloy containing Mg and high Si and method for producing the same

Country Status (8)

Country Link
US (1) US20100126639A1 (en)
EP (1) EP2172572B1 (en)
JP (1) JP2010531388A (en)
KR (1) KR20100018048A (en)
CN (1) CN101333614B (en)
CA (1) CA2689332A1 (en)
RU (1) RU2463371C2 (en)
WO (1) WO2009003365A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121385A (en) * 2014-12-25 2016-07-07 株式会社Uacj Aluminum alloy sheet for case and case
US10113218B2 (en) 2014-03-31 2018-10-30 Hitachi Metals, Ltd. Cast Al—Si—Mg-based aluminum alloy having excellent specific rigidity, strength and ductility, and cast member and automobile road wheel made thereof
JP2019501287A (en) * 2015-12-01 2019-01-17 コンステリウム ヌフ ブリザックConstellium Neuf Brisach High rigidity thin plate for automobile body

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230114A (en) * 2011-06-29 2011-11-02 北京科技大学 High-silicon aluminum alloy optimized based on Fe-rich phase and preparation method thereof
CN102747256A (en) * 2012-06-19 2012-10-24 东南大学 Aluminum-silicon based aluminum section and preparation technology thereof
RU2525872C1 (en) * 2013-04-23 2014-08-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" FORMATION OF MICROSTRUCTURE OF EUTECTIC Al-Si ALLOY
CN103769551B (en) * 2014-01-17 2016-03-30 新疆众和股份有限公司 The production technology of a kind of aluminium silicon magnesium system Birmasil
CN104651763A (en) * 2014-05-15 2015-05-27 巩向鹏 Performance optimization method for 6063 aluminum alloy
CN104087880B (en) * 2014-07-08 2016-05-04 江苏佳铝实业股份有限公司 A kind of production technology of high damping alusil alloy sheet material
EP3228719B1 (en) * 2014-12-05 2021-03-03 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, aluminum alloy stranded wire, covered wire, wire harness, and method for producing the aluminum alloy wire rod
CN105112744A (en) * 2015-10-08 2015-12-02 江苏佳铝实业股份有限公司 Manufacturing process of high-silicon aluminum alloy plate
TWI565808B (en) * 2015-10-13 2017-01-11 財團法人工業技術研究院 Aluminum alloy composition and manufacturing method of aluminum alloy object
CN105695810B (en) * 2015-12-15 2017-12-05 东北大学 One kind can ageing strengthening silumin and its deformation material preparation method containing Mn
CN105695811A (en) * 2015-12-15 2016-06-22 东北大学 Ti-containing high-silicon aluminum alloy capable of achieving aging strengthening and preparation method for deformation material of Ti-containing high-silicon aluminum alloy
CN106544606B (en) * 2015-12-29 2018-05-01 徐工集团工程机械股份有限公司 A kind of preparation method of wear-resistant aluminum alloy axis pin
CN106929781B (en) * 2015-12-29 2019-01-08 徐工集团工程机械股份有限公司 A kind of preparation method of high-strength aluminum alloy pin shaft
CN105671376B (en) * 2016-01-26 2017-04-26 北京航空航天大学 High-strength and high-plasticity hypoeutectic aluminium-silicon alloy material manufactured through gravity casting and room-temperature cold rolling, and manufacturing method thereof
CN106399765B (en) * 2016-10-11 2019-02-26 湖南理工学院 Al-Si-Mg aluminium alloy and its preparation process
EP3728665A1 (en) * 2017-12-21 2020-10-28 Novelis, Inc. Aluminum alloy products exhibiting improved bond durability and/or having phosphorus-containing surfaces and methods of making the same
US11498839B2 (en) * 2019-06-01 2022-11-15 GM Global Technology Operations LLC Systems and methods for producing high-purity fine powders
CN112941433A (en) * 2019-12-11 2021-06-11 中国科学院金属研究所 Aging process for improving 6082 aluminum alloy parking effect
CN113881907A (en) * 2021-08-26 2022-01-04 山东创新金属科技有限公司 Aging treatment process for extrusion casting aluminum alloy
CN113862534B (en) * 2021-10-08 2022-07-29 上海交通大学 Method for regulating and controlling tissue inheritance of aluminum alloy material and method for preparing 7085 aluminum alloy thick plate
CN115305391B (en) * 2022-08-10 2023-06-06 中南大学 Low-energy-consumption aluminum-silicon-magnesium alloy and preparation method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192709A (en) * 1975-02-12 1976-08-14 KAKYOSHOARUMINIUMUUKEISOKEIGOKINNO SHOSHOKEISOBISAIKAHO
JPS52129607A (en) * 1976-04-23 1977-10-31 Hitachi Ltd Production of a1-si alloy having fine structure
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
JPH0741920A (en) * 1993-07-29 1995-02-10 Nippon Light Metal Co Ltd Heat treatment of hypereutectic al-si alloy for improving wear resistance
JPH07197164A (en) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The Aluminum alloy having high strength and high workability and its production
JPH07224340A (en) * 1994-02-14 1995-08-22 Nippon Light Metal Co Ltd Hypereutectic al-si alloy excellent in machinability and its production
JPH083674A (en) * 1994-06-17 1996-01-09 Nissan Motor Co Ltd Hypereutectic aluminum-silicon alloy and hypereutectic aluminum-silicon alloy casting
JPH08176768A (en) * 1994-12-22 1996-07-09 Nissan Motor Co Ltd Wear resistant aluminum member and production thereof
JPH10204566A (en) * 1997-01-14 1998-08-04 Sumitomo Light Metal Ind Ltd Aluminum alloy material excellent in anodic oxidation treatment property and having high strength and wear resistance, and its production
JP2001020047A (en) * 1999-07-05 2001-01-23 Toyota Autom Loom Works Ltd Stock for aluminum alloy forging and its production
JP2002206132A (en) * 2001-11-27 2002-07-26 Kobe Steel Ltd Aluminum alloy extrusion material having excellent machinability and production method therefor
WO2003010349A1 (en) * 2001-07-25 2003-02-06 Showa Denko K. K. Aluminum alloy excellent in machinability, and aluminum alloy material and method for production thereof
JP2006124820A (en) * 2004-11-01 2006-05-18 National Institute Of Advanced Industrial & Technology FORGEABLE HYPEREUTECTIC Al-Si ALLOY MATERIAL HAVING HIGH TOUGHNESS

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB582732A (en) * 1944-03-10 1946-11-26 Horace Campbell Hall Aluminium alloy having low coefficient of expansion
US4068645A (en) * 1973-04-16 1978-01-17 Comalco Aluminium (Bell Bay) Limited Aluminum-silicon alloys, cylinder blocks and bores, and method of making same
JPS5320243B2 (en) * 1974-04-20 1978-06-26
JPS6283453A (en) * 1985-10-07 1987-04-16 Sumitomo Alum Smelt Co Ltd Manufacture of aluminum alloy ingot for extrusion
JP2506115B2 (en) * 1987-07-11 1996-06-12 株式会社豊田自動織機製作所 High-strength, wear-resistant aluminum alloy with good shear cutability and its manufacturing method
US5009844A (en) * 1989-12-01 1991-04-23 General Motors Corporation Process for manufacturing spheroidal hypoeutectic aluminum alloy
JP3318966B2 (en) * 1992-05-29 2002-08-26 日本軽金属株式会社 Manufacturing method of aluminum scroll
JPH06279904A (en) * 1993-03-30 1994-10-04 Nippon Light Metal Co Ltd Production of hyper-eutectic al-si alloy for forging and forging stock
JPH083701A (en) * 1994-06-15 1996-01-09 Mitsubishi Alum Co Ltd Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JP3835629B2 (en) * 1996-09-24 2006-10-18 住友軽金属工業株式会社 Wear-resistant aluminum alloy material with excellent machinability and corrosion resistance
KR100291560B1 (en) * 1998-12-23 2001-06-01 박호군 Hypo-eutectic al-si wrought alloy having excellent wear-resistance and low thermal expansion coefficient, its production method, and its use
US20030143102A1 (en) * 2001-07-25 2003-07-31 Showa Denko K.K. Aluminum alloy excellent in cutting ability, aluminum alloy materials and manufacturing method thereof
RU2221891C1 (en) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Aluminum-based alloy, article made from such alloy and method of manufacture of such article
CN1298878C (en) * 2003-12-03 2007-02-07 东华大学 Aluminum silicon alloy series possessing granulated silicon phase and its process
CN100392129C (en) * 2004-11-18 2008-06-04 东北大学 Large-sized hypereutectic high-seleium aluminium alloy billet and preparation method thereof
JP4773796B2 (en) * 2005-10-28 2011-09-14 昭和電工株式会社 Aluminum alloy continuous casting rod, continuous casting rod casting method, continuous casting equipment

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192709A (en) * 1975-02-12 1976-08-14 KAKYOSHOARUMINIUMUUKEISOKEIGOKINNO SHOSHOKEISOBISAIKAHO
JPS52129607A (en) * 1976-04-23 1977-10-31 Hitachi Ltd Production of a1-si alloy having fine structure
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
JPH0741920A (en) * 1993-07-29 1995-02-10 Nippon Light Metal Co Ltd Heat treatment of hypereutectic al-si alloy for improving wear resistance
JPH07197164A (en) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The Aluminum alloy having high strength and high workability and its production
JPH07224340A (en) * 1994-02-14 1995-08-22 Nippon Light Metal Co Ltd Hypereutectic al-si alloy excellent in machinability and its production
JPH083674A (en) * 1994-06-17 1996-01-09 Nissan Motor Co Ltd Hypereutectic aluminum-silicon alloy and hypereutectic aluminum-silicon alloy casting
JPH08176768A (en) * 1994-12-22 1996-07-09 Nissan Motor Co Ltd Wear resistant aluminum member and production thereof
JPH10204566A (en) * 1997-01-14 1998-08-04 Sumitomo Light Metal Ind Ltd Aluminum alloy material excellent in anodic oxidation treatment property and having high strength and wear resistance, and its production
JP2001020047A (en) * 1999-07-05 2001-01-23 Toyota Autom Loom Works Ltd Stock for aluminum alloy forging and its production
WO2003010349A1 (en) * 2001-07-25 2003-02-06 Showa Denko K. K. Aluminum alloy excellent in machinability, and aluminum alloy material and method for production thereof
JP2002206132A (en) * 2001-11-27 2002-07-26 Kobe Steel Ltd Aluminum alloy extrusion material having excellent machinability and production method therefor
JP2006124820A (en) * 2004-11-01 2006-05-18 National Institute Of Advanced Industrial & Technology FORGEABLE HYPEREUTECTIC Al-Si ALLOY MATERIAL HAVING HIGH TOUGHNESS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012028636; 40周年記念事業実行委員会記念出版部会編集: アルミニウムの組織と性質 , 19911130, p.235-242, 軽金属学会 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113218B2 (en) 2014-03-31 2018-10-30 Hitachi Metals, Ltd. Cast Al—Si—Mg-based aluminum alloy having excellent specific rigidity, strength and ductility, and cast member and automobile road wheel made thereof
JP2016121385A (en) * 2014-12-25 2016-07-07 株式会社Uacj Aluminum alloy sheet for case and case
JP2019501287A (en) * 2015-12-01 2019-01-17 コンステリウム ヌフ ブリザックConstellium Neuf Brisach High rigidity thin plate for automobile body

Also Published As

Publication number Publication date
RU2463371C2 (en) 2012-10-10
CA2689332A1 (en) 2009-01-08
KR20100018048A (en) 2010-02-16
RU2009149092A (en) 2011-08-10
US20100126639A1 (en) 2010-05-27
WO2009003365A1 (en) 2009-01-08
CN101333614B (en) 2010-09-01
CN101333614A (en) 2008-12-31
EP2172572A1 (en) 2010-04-07
EP2172572A4 (en) 2010-12-15
EP2172572B1 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP2010531388A (en) Structural material of Al alloy containing Mg and high Si and method for producing the same
GB2590288A (en) In-situ nano-reinforced aluminum alloy extruded material for lighweight vehicle bodies and isothermal variable-speed extrusion preparation method
CN109385542B (en) Preparation method of aluminum-niobium-boron alloy rod for grain refinement
JPS6340852B2 (en)
Bolzoni et al. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei
CN100588733C (en) A kind of magnesium alloy for semi-solid forming and preparation method of semi-solid blank thereof
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
Qin et al. Microstructure evolution of in situ Mg2Si/Al–Si–Cu composite in semisolid remelting processing
JP2007092117A (en) Aluminum alloy with high strength and low specific gravity
Zhang et al. Effects of isothermal process parameters on the microstructure of semisolid AZ91D alloy produced by SIMA
CN109628812A (en) A kind of low-alloy high-performance superplasticity magnesium alloy and preparation method thereof
CN102002617B (en) Cast aluminum alloy for automobile and preparation method thereof
CN110983128A (en) High-strength heat-resistant wrought aluminum alloy and preparation method thereof
CN113444903A (en) High-gadolinium rare earth magnesium alloy bar and preparation method thereof
CN105154729A (en) Cast aluminum-zinc-magnesium-copper-tantalum alloy and manufacturing method thereof
JP3548709B2 (en) Method for producing semi-solid billet of Al alloy for transportation equipment
Guobing et al. Structure heredity effect of Mg-10Y master alloy in AZ31 magnesium alloy
JP2009144215A (en) Heat resistant magnesium alloy material and its manufacturing method
CN111705249A (en) High-strength heat-resistant rare earth magnesium alloy and preparation method thereof
CN103469039B (en) The magnesium-aluminum-zinc wrought magnesium alloys of a kind of calcic and rare earth samarium
CN112725651A (en) Semi-solid forming technology for aluminum-based composite material electronic packaging shell
JP3829164B2 (en) Semi-melt molding material manufacturing method
JP3840400B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
Wang et al. Effect of rolling-remelting SIMA process on semi-solid microstructure of ZCuSn10 alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029