JPH07224340A - Hypereutectic al-si alloy excellent in machinability and its production - Google Patents

Hypereutectic al-si alloy excellent in machinability and its production

Info

Publication number
JPH07224340A
JPH07224340A JP1758494A JP1758494A JPH07224340A JP H07224340 A JPH07224340 A JP H07224340A JP 1758494 A JP1758494 A JP 1758494A JP 1758494 A JP1758494 A JP 1758494A JP H07224340 A JPH07224340 A JP H07224340A
Authority
JP
Japan
Prior art keywords
alloy
hypereutectic
casting
content
primary crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1758494A
Other languages
Japanese (ja)
Inventor
Susumu Nawata
進 名和田
Hiroshi Horikawa
宏 堀川
Eikichi Sagisaka
栄吉 鷺坂
Yamaji Kitaoka
山治 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Techno Research Co Ltd, Nippon Light Metal Co Ltd filed Critical Nikkei Techno Research Co Ltd
Priority to JP1758494A priority Critical patent/JPH07224340A/en
Publication of JPH07224340A publication Critical patent/JPH07224340A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the machinability of a hypereutectic Al-Si alloy used as internal combustion engine parts or the like. CONSTITUTION:This hypereutectic Al-Si alloy has a compsn. contg. 13 to 21% Si, 0.5 to 5% Cu, 0.3 to 2.0% Mg, 0.2 to l.5% Pb or Bi, 6 to 120ppm Ca and 40 to 130ppm P, and in which the weight ratio of P/Ca is regulated to the range of 0.6 to 6. Both Pb and Bi may be incorporated therein by the total content of 0.2 to l.5%. It is subjected to DC casting or die casting at a temp. of (the liquidus temp. +70 deg.C) or above. Preferably, the diameter or thickness of the cast ingot is regulated to <=150mm as for the DC casting material, and the diameter or thickness of the cast ingot is regulated to <=30mm as for the die casting material. The obtd. cast ingot is formed into the stock for a piston or the like having a cast structure in which the average grain size of primary crystal Si is regulated to <=20mum. By the addition of the Pb and Bi, its machinability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、切削性を改善した過共
晶Al−Si合金及び製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hypereutectic Al-Si alloy having improved machinability and a manufacturing method.

【0002】[0002]

【従来の技術】Siを12.6重量%以上含有する過共
晶Al−Si合金は、熱膨張係数が小さく、耐熱性にも
優れている。また、溶湯が凝固する際に高硬度の初晶シ
リコンが晶出するため、耐摩耗性が要求されるピスト
ン,クランクケース,ブレーキドラム,シリンダーライ
ナー等の内燃機関用部品として使用されている。過共晶
Al−Si合金は、硬質の初晶Siが晶出することに起
因して優れた耐摩耗性を呈するが、初晶Siが大きく成
長した鋳造組織になり易い。大きな初晶Siが晶出した
鋳塊を切削加工すると、硬質の初晶Siによって切削工
具が短期間に摩耗し、工具寿命を短くする。その結果、
切削コストが上昇する。また、機械的性質も十分でな
く、切削加工による仕上り寸法も高精度にコントロール
できなくなる。
2. Description of the Related Art A hypereutectic Al-Si alloy containing 12.6% by weight or more of Si has a small thermal expansion coefficient and excellent heat resistance. In addition, since high-hardness primary silicon crystallizes when the molten metal solidifies, it is used as a component for internal combustion engines such as pistons, crankcases, brake drums, and cylinder liners that require wear resistance. The hypereutectic Al-Si alloy exhibits excellent wear resistance due to the crystallization of hard primary Si, but tends to have a cast structure in which primary Si is largely grown. When cutting an ingot in which large primary crystal Si is crystallized, the hard primary crystal Si causes the cutting tool to wear in a short period of time, shortening the tool life. as a result,
Cutting cost increases. In addition, the mechanical properties are not sufficient, and the finished dimensions due to cutting cannot be controlled with high precision.

【0003】初晶Siは、急冷凝固によって微細化され
る。たとえば、粉末法を採用したり、特開昭52−12
9607号公報にみられるように溶湯圧延法によってア
ルミニウム合金溶湯を急冷凝固し、鋳造組織の微細化を
図っている。また、アルミニウム合金溶湯をAl−Cu
−P,Cu−P,Ni−P等でP処理することによって
も、初晶Siを微細化することができる。P添加によっ
て初晶Siを微細化し、加工性及び機械的性質が改善さ
れる。添加されたPは、金属間化合物AlPを形成し、
この金属間化合物AlPが初晶Siの微細化に作用する
ものと考えられている。しかし、急冷凝固法等の特殊な
ものを除いた金型鋳造やDC鋳造のようにインゴットを
経る方法では、P添加のみで初晶Siを十分に微細化で
きない場合が多い。
Primary crystal Si is refined by rapid solidification. For example, a powder method is adopted, or Japanese Patent Laid-Open No. 52-12
As disclosed in Japanese Patent No. 9607, the molten aluminum alloy is rapidly solidified by the molten metal rolling method to refine the cast structure. In addition, molten aluminum alloy is Al-Cu.
The primary crystal Si can also be made fine by P treatment with -P, Cu-P, Ni-P, or the like. By adding P, the primary crystal Si is refined and the workability and mechanical properties are improved. The added P forms an intermetallic compound AlP,
It is considered that this intermetallic compound AlP acts on the refinement of primary crystal Si. However, in a method of passing through an ingot such as a die casting or a DC casting excluding a special one such as a rapid solidification method, the primary crystal Si cannot be sufficiently refined only by adding P in many cases.

【0004】Caを含む過共晶Al−Si合金溶湯を鋳
造する際、初晶Siを微細化するPの作用がCaによっ
て阻害されることが数多く報告されている。本発明者等
は、Caにより初晶Siの微細化が抑制されるメカニズ
ムを調査・研究する過程で、適性量のP及びCaを含有
させるとき、Pのみの場合に比較して初晶Siがより微
細化されることを見い出し、特願平4−244259号
として出願した。すなわち、P/Ca重量比:0.6〜
6の条件下でP:40〜130ppm及びCa:6〜1
20ppmを含ませた過共晶Al−Si合金溶湯にあっ
ては、Pによる初晶Si微細化作用が顕著となり、微細
な鋳造組織を持った製品が得られる。初晶Siの微細化
に伴って切削性も向上することを見い出し、特願平5−
71804号及び特願平5−100626号で提案し
た。
It has been reported that when casting a hypereutectic Al-Si alloy melt containing Ca, Ca inhibits the action of P for refining primary crystal Si. The present inventors, in the process of investigating and studying the mechanism by which Ca suppresses the refinement of the primary crystal Si, when the appropriate amounts of P and Ca are contained, the primary crystal Si is compared with the case of only P. It was found that the device was made finer, and the application was filed as Japanese Patent Application No. 4-244259. That is, P / Ca weight ratio: 0.6-
Under the conditions of 6, P: 40 to 130 ppm and Ca: 6-1
In the hypereutectic Al-Si alloy melt containing 20 ppm, the primary crystal Si refining effect of P becomes remarkable, and a product having a fine cast structure can be obtained. It was found that the machinability is improved with the refinement of the primary crystal Si, and Japanese Patent Application No. 5-
No. 71804 and Japanese Patent Application No. 5-100626.

【0005】[0005]

【発明が解決しようとする課題】過共晶Al−Si合金
は、初晶Siの微細化によって加工性が改善されるもの
の、切削に際し工具の摩耗が依然として無視できない。
特に高度の切削加工を施すとき、硬質の初晶Siによっ
て切削工具が摩耗し易い。本発明は、このような問題を
解消すべく案出されたものであり、Pb及び/又はBi
の添加により、初晶Siを微細化した過共晶Al−Si
合金の切削性を改善することを目的とする。
The hypereutectic Al-Si alloy has improved workability due to the refinement of the primary crystal Si, but the wear of the tool during cutting is still not negligible.
Especially when a high-level cutting process is performed, the cutting tool is easily worn by hard primary crystal Si. The present invention has been devised to solve such a problem, and Pb and / or Bi
Hypereutectic Al-Si in which primary crystal Si is refined by addition of
The purpose is to improve the machinability of the alloy.

【0006】[0006]

【課題を解決するための手段】本発明の過共晶Al−S
i合金は、その目的を達成するため、Si:13〜21
重量%,Cu:0.5〜5重量%,Mg:0.3〜2.
0重量%,Pb又はBi:0.2〜1.5重量%,C
a:6〜120ppm及びP:40〜130ppmを含
有し、P/Caが重量比で0.6〜6の範囲にあること
を特徴とする。この過共晶Al−Si合金は、合計量
0.2〜1.5重量%でPb及びBiの両者を含むこと
もできる。この組成を持つ過共晶Al−Si合金は、
(液相線+70℃)以上の温度でDC鋳造又は金型鋳造
される。DC鋳造材は、鋳塊の直径又は厚みが150m
m以下であることが好ましい。金型鋳造材は、鋳塊の直
径又は厚みが30mm以下であることが好ましい。得ら
れた鋳塊は、初晶Siの平均粒径(以下、単に粒径とい
う)が20μm以下の鋳造組織を持ったピストン等の素
材となる。
Hypereutectic Al-S of the present invention
In order to achieve the purpose, the i alloy has Si: 13-21.
% By weight, Cu: 0.5-5% by weight, Mg: 0.3-2.
0% by weight, Pb or Bi: 0.2 to 1.5% by weight, C
It contains a: 6 to 120 ppm and P: 40 to 130 ppm, and is characterized in that P / Ca is in the range of 0.6 to 6 in weight ratio. The hypereutectic Al-Si alloy may also contain both Pb and Bi in a total amount of 0.2 to 1.5% by weight. A hypereutectic Al-Si alloy having this composition is
DC casting or die casting is performed at a temperature of (liquidus line + 70 ° C.) or higher. DC casting material has ingot diameter or thickness of 150 m
It is preferably m or less. The die casting material preferably has a diameter or thickness of the ingot of 30 mm or less. The obtained ingot becomes a material such as a piston having a casting structure in which the average grain size of primary crystal Si (hereinafter, simply referred to as grain size) is 20 μm or less.

【0007】[0007]

【作用】過共晶Al−Si系合金にPを添加すると、A
lP化合物が形成される。AlP化合物が初晶Siの核
として働き、鋳造組織の微細化が行われる。このとき、
Caが共存すると、AlPの他に多数のCa−P化合物
が形成され、Ca−P化合物が好ましい状態にあると
き、初晶Siの有効な核として働く。Ca−P化合物
は、AlPに比較して、初晶Siが晶出するときにより
有効な結晶核として働き、初晶Siを一層微細化するも
のと推察される。Ca−P化合物を初晶Siの核として
働かせるためには、鋳造直前のアルミニウム合金溶湯に
おける重量比P/Caを0.6〜6の範囲に調整するこ
とが必要である。鋳造直前の重量比P/Caを0.6〜
6に維持する限り、たとえば次に掲げる何れの方法を採
用しても、或いはこれらの方法を組合せて採用しても、
従来のP処理に比較して一層微細化した鋳造組織が得ら
れる。
When P is added to the hypereutectic Al-Si alloy, A
An IP compound is formed. The AlP compound acts as a nucleus of primary crystal Si, and the cast structure is refined. At this time,
When Ca coexists, a large number of Ca-P compounds are formed in addition to AlP, and when the Ca-P compound is in a preferable state, it acts as an effective nucleus of primary crystal Si. It is speculated that the Ca-P compound acts as a more effective crystal nucleus when the primary crystal Si crystallizes, and further refines the primary crystal Si, as compared with AlP. In order for the Ca-P compound to act as the nucleus of primary crystal Si, it is necessary to adjust the weight ratio P / Ca in the molten aluminum alloy immediately before casting to a range of 0.6 to 6. The weight ratio P / Ca immediately before casting is 0.6 to
As long as it is maintained at 6, even if any of the following methods is adopted or these methods are combined,
A finer cast structure can be obtained as compared with the conventional P treatment.

【0008】 溶解開始から鋳造までの過程における
Ca及びPの消耗を考慮し、所定量のCa及びPを予め
溶解原料に配合する方法。 所定量のPを含有する過共晶Al−Si系合金を溶
解,鋳造して鋳塊を得る工程で、過共晶Al−Si系合
金を溶解した後でCaを添加する方法。 Ca及びPを含まない過共晶Al−Si系合金を溶
解した後で、所定量のCa及びPを同時に又は相前後し
て添加する方法。 前掲〜の何れかでCa及びPを含有させた過共
晶Al−Si系合金を鋳造直前に成分分析し、Ca及び
Pが不足する場合には、不足分を追加添加する方法。 前掲〜の何れかでCa及びPを含有させた過共
晶Al−Si系合金を鋳造直前に成分分析し、Ca含有
量が過剰な場合には、溶湯温度を高くするか或いは保持
時間を長くすることによってCa含有量を低下させる方
法。
A method of preliminarily blending a predetermined amount of Ca and P with a melting raw material in consideration of consumption of Ca and P in the process from the start of melting to casting. A method of adding Ca after melting a hypereutectic Al-Si alloy in a step of melting and casting a hypereutectic Al-Si alloy containing a predetermined amount of P to obtain an ingot. A method in which a hypereutectic Al-Si-based alloy containing no Ca and P is melted, and then predetermined amounts of Ca and P are added simultaneously or in tandem. A method of analyzing the composition of a hypereutectic Al-Si alloy containing Ca and P according to any one of the above items immediately before casting, and adding Ca and P when the Ca and P are insufficient. The composition of a hypereutectic Al-Si alloy containing Ca and P in any of the above-mentioned items is analyzed immediately before casting. If the Ca content is excessive, either raise the melt temperature or increase the holding time. The method of reducing Ca content by doing.

【0009】これまで、Caは、P処理による微細化効
果を阻害し、初晶Siの微細化に有害であるとされてい
た理由は、P/Ca比,Si含有量に対するCa及びP
の含有量(添加量と異なる),溶解から鋳造するまでの
時間,鋳造温度,初晶Si晶出温度域での冷却速度等に
関する検討が不十分であったことに起因するものと考え
られる。すなわち、何れかの条件が適当でなく、Ca−
P化合物が有効な核として働かない状態にあったことが
原因として掲げられる。そこで、本発明者等は、特願平
4−244259号でも紹介したように、これら条件に
関して詳細な検討を行った。以下の条件は、Cu及びM
gを含む過共晶Al−Si系合金においても成立する。
Up to now, the reason why Ca has been considered to be detrimental to the refining effect of P treatment and harmful to the refining of primary crystal Si is that P / Ca ratio and Ca and P relative to Si content.
It is considered that this was due to insufficient studies on the content (different from the amount added), the time from melting to casting, the casting temperature, the cooling rate in the primary Si crystallization temperature range, and the like. That is, either condition is not appropriate, and Ca-
The reason is that the P compound did not work as an effective nucleus. Therefore, the present inventors conducted a detailed study on these conditions, as introduced in Japanese Patent Application No. 4-244259. The following conditions are Cu and M
The same holds true for a hypereutectic Al-Si alloy containing g.

【0010】Caの添加 Caは、溶解原料に予め含ませておくこと、或いは溶解
した過共晶Al−Si系合金に添加する方法の何れによ
っても、過共晶Al−Si系合金に含ませることができ
る。何れの場合においても、Caは、溶解や保持過程に
おける損耗が激しいので、添加量ではなく含有量で把握
することが必要である。なお、Caは、Caを含有する
Al−Ca系等の母合金,化合物,混合物等として塊
状,棒状,線状,粉末状,顆粒状,溶融状等の形態で添
加される。Ca含有量を高精度にコントロールする上か
らは、溶解後の過共晶Al−Si系合金に所定量のCa
を添加することが好ましい。すなわち、溶解前にCaを
配合すると、溶解,高温保持,脱ガス処理等の工程でC
aが損耗し、鋳塊中のCa含有量を正確にコントロール
することが難しくなる。特に、連続鋳造のように大量の
メタルを取り扱う場合、目標とするCa含有量が得られ
ず、不良となる確率が高くなる。また、鋳塊に移行する
Caの歩留りが低いため、損耗分を見込んだより多量の
Caを添加することも必要になる。
Addition of Ca Ca is contained in the hypereutectic Al-Si alloy by either preliminarily containing it in the molten raw material or by adding it to the melted hypereutectic Al-Si alloy. be able to. In any case, since Ca is highly worn in the melting and holding processes, it is necessary to grasp the content not by the amount added but by the content. It should be noted that Ca is added in the form of lumps, rods, wires, powders, granules, melts, etc. as a Ca-containing Al-Ca-based mother alloy, compound, mixture, and the like. In order to control the Ca content with high accuracy, a predetermined amount of Ca should be added to the hypereutectic Al-Si alloy after melting.
Is preferably added. That is, if Ca is blended before melting, C is added in the steps such as melting, holding at high temperature, and degassing.
a is worn, and it becomes difficult to accurately control the Ca content in the ingot. In particular, when handling a large amount of metal such as continuous casting, the target Ca content cannot be obtained, and the probability of failure increases. Further, since the yield of Ca transferred to the ingot is low, it is necessary to add a larger amount of Ca in consideration of the amount of wear.

【0011】溶解後の過共晶Al−Si系合金にCaを
添加するとき、鋳塊におけるCa含有量を比較的正確に
コントロールすることができ、初晶Siの微細化も目標
通り行われる。たとえば、溶解原料にCaを冷材として
配合し、溶解直後に鋳造したとき、Caの歩留りは45
〜85%の範囲で大きくばらついた。これに対し、溶解
後の過共晶Al−Si系合金にCaを添加し、直ちに鋳
造したとき、Caの歩留りが76〜94%に向上すると
共に、鋳塊のCa含有量に大きなバラツキがなくなっ
た。Ca含有量は、他の製造条件によっても変化する。
特に、脱ガス処理によってCa含有量は大きく低下す
る。このときのCa含有量の低下は、脱ガスに使用する
ガスの種類や脱ガス時間等によって異なった傾向を示
す。そこで、予め脱ガス条件に対応したCa含有量の変
化率を求めておき、この変化率に基づいてCa含有量を
コントロールすることが好ましい。
When Ca is added to the hypereutectic Al-Si alloy after melting, the Ca content in the ingot can be controlled relatively accurately, and the primary crystal Si can be refined as desired. For example, when Ca is mixed as a cold material into a melting raw material and cast immediately after melting, the yield of Ca is 45
There was a large variation in the range of ~ 85%. On the other hand, when Ca is added to the hypereutectic Al-Si alloy after melting and immediately cast, the yield of Ca is improved to 76 to 94%, and the Ca content of the ingot does not vary greatly. It was The Ca content also changes depending on other manufacturing conditions.
In particular, the Ca content is greatly reduced by the degassing treatment. The decrease in the Ca content at this time shows different tendencies depending on the type of gas used for degassing, the degassing time, and the like. Therefore, it is preferable to previously obtain the change rate of the Ca content corresponding to the degassing condition and control the Ca content based on this change rate.

【0012】鋳造直前の過共晶Al−Si系合金におけ
る重量比P/Caが0.6〜6.0の範囲にあるとき、
Ca−P化合物の微細化作用が効果的に発揮される。し
かし、Ca含有量は、過共晶Al−Si系合金を溶湯の
状態で保持すると次第に減少し、それに伴ってP/Ca
が増加する。また、Ca含有量の減少率は、過共晶Al
−Si系合金溶湯が高温になるほど大きくなる。そこ
で、鋳造に先立ってCa含有量を所定範囲に調整した
後、長い保持時間をおかずに鋳造することが好ましい。
なお、Ca含有量が減少し、重量比P/Caが6.0を
超えると、Ca−P化合物の微細化作用が不十分であ
る。また、重量比P/Caが0.6未満でも、微細化効
果が得られなくなる。Ca含有量が更に増加しP/Ca
が低くなると、初晶Siは、Ca無添加の場合よりもむ
しろ粗くなる。重量比P/Caが0.6未満になると、
Ca−P化合物中のCa濃度も上がり、これが初晶Si
の結晶核として働かない好ましくない状態になるものと
考えられる。その結果、従来報告されているようにP処
理による微細化作用が阻害される。また、Ca含有量が
120ppmを超えると、重量比P/Caが0.6未満
であれば初晶Siが微細化するが、溶湯の流動性が著し
く低下し、湯境い等の鋳造欠陥が発生し易くなる。この
点から、Ca含有量の上限は、120ppmに設定され
る。他方、Ca含有量の下限は、Caの作用を確保する
ため6ppmに設定する。
When the weight ratio P / Ca in the hypereutectic Al-Si alloy just before casting is in the range of 0.6 to 6.0,
The refinement effect of the Ca-P compound is effectively exhibited. However, the Ca content gradually decreases when the hypereutectic Al-Si alloy is held in the molten state, and the P / Ca content increases accordingly.
Will increase. In addition, the decrease rate of Ca content is
The larger the temperature of the molten Si-based alloy, the larger it becomes. Therefore, it is preferable to adjust the Ca content to a predetermined range prior to casting and then perform casting without a long holding time.
When the Ca content decreases and the weight ratio P / Ca exceeds 6.0, the Ca-P compound has an insufficient refining effect. Also, if the weight ratio P / Ca is less than 0.6, the miniaturization effect cannot be obtained. Ca content further increases and P / Ca
The lower the value, the more the primary crystal Si becomes coarser than in the case where no Ca is added. When the weight ratio P / Ca becomes less than 0.6,
The Ca concentration in the Ca-P compound also rises, which is the primary crystal Si.
It is considered that an unfavorable state where it does not work as a crystal nucleus of As a result, the miniaturization effect of P treatment is impaired, as reported previously. Further, when the Ca content exceeds 120 ppm, if the weight ratio P / Ca is less than 0.6, the primary crystal Si is refined, but the fluidity of the molten metal is remarkably reduced, and casting defects such as a molten metal boundary occur. It tends to occur. From this point, the upper limit of the Ca content is set to 120 ppm. On the other hand, the lower limit of the Ca content is set to 6 ppm in order to secure the action of Ca.

【0013】Pの添加 Pは、Caに比較して反応性が低い。そのため、溶解原
料に予めPを配合させておいても、或いは溶解後にPを
添加しても、P添加による効果は実質的に変わらない。
したがって、Pの添加時期は、次の〜の何れであっ
ても良い。また、予め所定量のPを含有する過共晶Al
−Si系合金又は溶解原料を溶解した後、Ca添加に相
前後して残りのPを添加することもできる。Pは、P含
有母合金,化合物,混合物等を塊状,棒状,線状,粉末
状,顆粒状,溶融状等の形態で添加される。
Addition of P, P is less reactive than Ca. Therefore, even if P is added to the dissolution raw material in advance, or if P is added after the dissolution, the effect of P addition does not substantially change.
Therefore, the addition timing of P may be any of the following. Further, a hypereutectic Al containing a predetermined amount of P in advance
After melting the -Si alloy or the melting raw material, the remaining P can be added before or after the addition of Ca. P is added to the P-containing mother alloy, compound, mixture, etc. in the form of a lump, rod, wire, powder, granule, melt or the like.

【0014】 Pを含む過共晶Al−Si系合金又は
溶解原料の調整 →溶解→ Ca添加 → 鋳
造 Pを含まない過共晶Al−Si系合金又は溶解原料
の調整 →溶解→ Ca及びPの同時添加 →
鋳造 Pを含まない過共晶Al−Si系合金又は溶解原料
の調整 →溶解P添加 → Ca添加 →
鋳造 Pを含まない過共晶Al−Si系合金又は溶解原料
の調整 →溶解→ Ca添加 → P添加
→ 鋳造
Preparation of hypereutectic Al-Si alloy containing P or melting raw material → melting → Ca addition → casting Preparation of hypereutectic Al-Si alloy containing P-free or melting raw material → melting → Ca and P Simultaneous addition →
Casting Preparation of hypereutectic Al-Si alloy containing no P or molten raw material → Addition of molten P → Addition of Ca →
Casting Preparation of hypereutectic Al-Si-based alloy or P-free P-containing alloy → Melting → Ca addition → P addition
→ casting

【0015】P含有量は、Ca−P化合物による初晶S
iの微細化を促進させる上で、40〜130ppmの範
囲に維持することが必要である。P含有量は、Ca含有
量と異なり、過共晶Al−Si系合金を溶湯状態のまま
で保持しても、保持時間による大きな影響を受けること
なく、減少量は小さい。なお、P含有量が40ppm未
満では、初晶Siを微細化する作用が不十分である。し
かし、130ppmを超えるP含有量では、初晶Siを
微細化する効果があるものの、合金溶湯の流動性が低下
し、湯境い等の鋳造欠陥が発生し易くなる。また、Pの
濃度が高くなると溶解歩留りが極端に低下するので、1
30ppm以上のPを含有させることは非常に困難であ
る。
The P content is the primary crystal S due to the Ca-P compound.
In order to promote the miniaturization of i, it is necessary to maintain it in the range of 40 to 130 ppm. Unlike the Ca content, the P content is not significantly affected by the holding time even when the hypereutectic Al-Si alloy is held in the molten state, and the decrease amount is small. If the P content is less than 40 ppm, the effect of refining the primary crystal Si is insufficient. However, if the P content exceeds 130 ppm, although there is an effect of refining the primary crystal Si, the fluidity of the molten alloy is reduced, and casting defects such as a molten metal boundary are likely to occur. Further, when the concentration of P is high, the melting yield is extremely reduced.
It is very difficult to contain P of 30 ppm or more.

【0016】P/Ca比 P/Ca比は、微細化効果に大きな影響をもつ因子であ
る。P/Caを重量比で0.6〜6の範囲に維持するこ
とにより、初晶Siの微細化に有効なCa−P化合物が
生成されるものと推察される。すなわち、生成したCa
−P化合物が微細な核として合金中に均一分散し、この
核を起点として初晶Siが晶出する。その結果、微細な
鋳造組織が得られる。P/Ca重量比が0.6未満で
は、初晶Siの結晶核として働く作用をもたないCa濃
度の高いCa−Pが形成され、長時間溶湯保持等によっ
てCa−P化合物中のCaが減少すると好ましい状態に
なり、結晶核としての作用を呈するものと考えられる。
逆に、P/Ca重量比が6を超えると、Caが不足し、
形成されるCa−P化合物の個数が不足する。
P / Ca ratio The P / Ca ratio is a factor that has a great influence on the miniaturization effect. It is presumed that by maintaining P / Ca in the range of 0.6 to 6 by weight, a Ca-P compound effective for refining primary crystal Si is produced. That is, the generated Ca
The -P compound is uniformly dispersed in the alloy as fine nuclei, and primary crystals of Si crystallize from these nuclei. As a result, a fine cast structure can be obtained. If the P / Ca weight ratio is less than 0.6, Ca-P having a high Ca concentration that does not act as a crystal nucleus of primary Si is formed, and Ca in the Ca-P compound is retained by the molten metal for a long time. It is considered that when the amount decreases, it becomes a preferable state and exhibits an action as a crystal nucleus.
On the other hand, if the P / Ca weight ratio exceeds 6, Ca will run short,
The number of Ca-P compounds formed is insufficient.

【0017】Si含有量 Ca及びPにより初晶Siが微細化する現象は、Si含
有量が13〜21重量%の範囲にある過共晶Al−Si
系合金にみられる。Si含有量が大きくなるほど、より
多量のCa及びPを含有させることが必要になることは
勿論、鋳造条件を厳格にコントロールすることが要求さ
れる。しかも、Si含有量に応じて微細化効果が低くな
る。そこで、Si含有量の上限を21重量%に設定し
た。また、過共晶Al−Si系合金の特性を得るため、
Si含有量の下限を13重量%に設定した。
The phenomenon that primary crystal Si is refined by the Si contents Ca and P is a hypereutectic Al—Si having a Si content in the range of 13 to 21% by weight.
Found in alloys. As the Si content increases, it is necessary to contain a larger amount of Ca and P, and it is also necessary to strictly control the casting conditions. Moreover, the miniaturization effect decreases depending on the Si content. Therefore, the upper limit of the Si content is set to 21% by weight. In addition, in order to obtain the characteristics of the hypereutectic Al-Si alloy,
The lower limit of Si content was set to 13% by weight.

【0018】Cu含有量 Cuは、金属間化合物CuAl2 を形成し、過共晶Al
−Si系合金の強度及び高度を向上させる重要な合金元
素である。この作用を得るために、0.5重量%以上の
Cu含有が必要である。しかし、5重量%を超える多量
のCuを含有させても、Cuの作用が飽和し、増量に見
合った強度の向上が図られない。したがって、本発明に
おいては、Cu含有量を0.5〜5重量%の範囲に設定
した。Mg含有量 Mgは、Siとの共存下で強度を向上することに寄与す
る合金元素であり、0.3重量%以上の含有でMgの作
用が顕著に現れる。しかし、2.0重量%を超えて多量
のMgを含有させるとき、Mg含有量の増加に応じ伸び
率が低下する。また、多量のMg含有量は、酸化を進行
させることから溶湯管理が難しくなり、鋳造欠陥を発生
させる原因となる。したがって、本発明においては、M
g含有量を0.3〜2.0重量%の範囲に設定した。
Cu content Cu forms an intermetallic compound CuAl 2 and forms a hypereutectic Al
-It is an important alloying element that improves the strength and altitude of the Si-based alloy. In order to obtain this effect, Cu content of 0.5% by weight or more is required. However, even if a large amount of Cu exceeding 5% by weight is contained, the action of Cu is saturated and the strength cannot be improved in proportion to the increase in the amount. Therefore, in the present invention, the Cu content is set in the range of 0.5 to 5% by weight. Mg content Mg is an alloying element that contributes to the improvement of strength in the coexistence with Si, and the effect of Mg appears remarkably when the content is 0.3% by weight or more. However, when a large amount of Mg is contained in excess of 2.0% by weight, the elongation decreases as the Mg content increases. Further, a large amount of Mg content makes it difficult to control the molten metal because of the progress of oxidation, and causes a casting defect. Therefore, in the present invention, M
The g content was set in the range of 0.3 to 2.0% by weight.

【0019】Pb及びBi Pb及びBiは、単独添加又は複合添加の何れでも切削
性の向上に有効である。単独添加量又は複合添加量が
0.2重量%未満では、Pb及び/又はBiの添加効果
が十分でない。しかし、1.5重量%を超える多量のP
b及び/又はBiを含有させると、増量に見合った切削
性の向上はみられるが、PbやBiの重力偏析が顕著に
なる。その結果、得られた合金鋳物の特性が不均一にな
る。溶解温度 Ca及びPの微細化作用を有効に発揮させる上で、Si
が十分に溶解するように過共晶Al−Si合金溶湯を7
60〜850℃の温度範囲で溶解することが好ましい。
溶湯温度は、Si含有量に比例して高く設定される。し
かし、過度の高温で溶解することは、溶解のためのエネ
ルギー損失を招くばかりでなく、鋳造までの工程におけ
る条件に変動を来し易い。そこで、溶解温度の上限を、
850℃に設定する。
Pb and Bi Pb and Bi are effective in improving the machinability, either alone or in combination. If the single addition amount or the combined addition amount is less than 0.2% by weight, the effect of adding Pb and / or Bi is not sufficient. However, a large amount of P exceeding 1.5% by weight
When b and / or Bi is contained, the machinability is improved in proportion to the increase in the amount, but the gravity segregation of Pb and Bi becomes remarkable. As a result, the properties of the obtained alloy casting become non-uniform. In order to effectively exert the refining effect of the melting temperatures Ca and P, Si
Of the hypereutectic Al-Si alloy so that
It is preferable to dissolve in a temperature range of 60 to 850 ° C.
The molten metal temperature is set high in proportion to the Si content. However, melting at an excessively high temperature not only causes energy loss for melting, but also tends to change conditions in the process up to casting. Therefore, the upper limit of the melting temperature is
Set to 850 ° C.

【0020】溶湯保持時間 Caによる微細化作用は、重量比P/Caが0.6を超
えるCaを含有させた過共晶Al−Si合金ではCa添
加直後に現れる。この微細化作用は、合金溶湯を長時間
保持すると消失する。Caの作用が消失する時間は、C
a含有量や保持温度にもよるが、おおよそ60〜600
分である。この点で、Ca含有量を重量比P/Caが
0.6〜6.0となる設定範囲に調整した後、長時間の
保持工程をおくことなく鋳造工程に入ることが好まし
い。他方、重量比P/Caが0.6を下回るように過剰
のCaを含有させた過共晶Al−Si合金では、Caに
よる微細化作用は、Caの添加直後には現れず、合金溶
湯をある時間保持した後に現れる。いわゆる潜伏期間が
存在する。潜伏期間は、添加直後のCa含有量が大きく
なるほど長くなる。たとえば、61ppmのP及び18
0ppmのCaを含有させた過共晶Al−Si合金を7
60℃に保持したとき、約100分後にCaによる微細
化作用が発現する。
The refining action by the molten metal holding time Ca appears immediately after Ca addition in the hypereutectic Al-Si alloy containing Ca whose weight ratio P / Ca exceeds 0.6. This refinement action disappears when the molten alloy is held for a long time. The time when the action of Ca disappears is C
a Depending on the content and holding temperature, it is approximately 60-600
Minutes. In this respect, it is preferable to adjust the Ca content to a setting range in which the weight ratio P / Ca is 0.6 to 6.0 and then enter the casting process without the holding process for a long time. On the other hand, in the hypereutectic Al-Si alloy containing excess Ca such that the weight ratio P / Ca is less than 0.6, the refining effect of Ca does not appear immediately after the addition of Ca, and the molten alloy is Appears after holding for a period of time. There is a so-called incubation period. The incubation period becomes longer as the Ca content immediately after addition increases. For example, 61 ppm P and 18
A hypereutectic Al-Si alloy containing 0 ppm of Ca
When kept at 60 ° C., after about 100 minutes, the refining effect of Ca appears.

【0021】多量のCaを含有させた場合にみられる潜
伏期間は、合金溶湯を保持する間にCaが減少し、その
結果重量比P/Caが0.6以上に増加することに由来
するものと考えられる。すなわち、重量比P/Caが
0.6以上になったとき、初めてCaによる微細化作用
が発揮される。更に合金溶湯を長時間保持すると、Ca
含有量の減少に伴って重量比P/Caが0.6を超える
とき、微細化作用が消失する。このことは、Caの減少
に伴って、初晶Siの晶出に有効な核として働くCa−
P化合物の個数が不足することを示唆している。Ca含
有量が多い場合、重量比P/Caが0.6以上になるま
での溶湯保持時間が長くなるので、一般に設定範囲にC
a含有量をコントロールすることが難しくなる。しか
し、大型の溶解炉を使用して多量の合金を生産する場
合、準備や鋳造に長時間を要する。このような場合に
は、この潜伏期間及び潜伏期間後にCaが減少して重量
比P/Caが6.0を超えるまでの長い微細化に有効な
期間を利用することもできる。すなわち、鋳造を行うま
での時間が長い場合、Caを過剰に添加しておき、鋳造
時点で重量比P/Caが0.6〜6.0の範囲に入るよ
うに調整する。
The latent period observed when a large amount of Ca is contained is derived from the fact that Ca is reduced while holding the molten alloy, and as a result, the weight ratio P / Ca is increased to 0.6 or more. it is conceivable that. That is, when the weight ratio P / Ca becomes 0.6 or more, the refining effect of Ca is exhibited for the first time. If the molten alloy is held for a long time, Ca
When the weight ratio P / Ca exceeds 0.6 as the content decreases, the refining effect disappears. This means that as the amount of Ca decreases, Ca- that acts as an effective nucleus for crystallization of primary Si
It suggests that the number of P compounds is insufficient. When the Ca content is high, the molten metal holding time becomes long until the weight ratio P / Ca becomes 0.6 or more.
It becomes difficult to control the a content. However, when a large amount of alloy is produced using a large melting furnace, preparation and casting take a long time. In such a case, the latent period and the period during which the Ca decreases and the weight ratio P / Ca exceeds 6.0 after the latent period is effective can be used for a long miniaturization. That is, when the time until casting is long, Ca is excessively added and the weight ratio P / Ca is adjusted to fall within the range of 0.6 to 6.0 at the time of casting.

【0022】鋳造温度 高い冷却速度によって初晶Siを微細化する点では、鋳
造温度をなるべく高く設定することが好ましい。しか
し、合金溶湯が高温になるほどCaの損耗が激しくな
り、鋳造時にCa含有量を制御することが難しくなる。
そこで、鋳造温度は、高い冷却速度による微細化効果が
得られる範囲で、可能な限り低くすることが好ましい。
具体的には、Si含有量等の過共晶Al−Si系合金の
成分及び含有量にもよるが、Al−Si二元系状態図の
(液相線+70℃)以上,好ましくは(液相線+70〜
170)℃の温度範囲に鋳造温度を設定する。たとえ
ば、Siを15重量%含有する過共晶Al−Si系合金
では鋳造温度を680℃以上に、Siを17重量%含有
する過共晶Al−Si系合金では鋳造温度を710℃以
上に、Siを20重量%含有する過共晶Al−Si系合
金では鋳造温度を760℃以上に設定する。
[0022] In terms of refining the primary Si by casting temperatures higher cooling rate, it is preferable to set the casting temperature as high as possible. However, as the molten alloy temperature becomes higher, the wear of Ca becomes more severe, and it becomes difficult to control the Ca content during casting.
Therefore, it is preferable that the casting temperature is as low as possible within a range in which the refining effect can be obtained by the high cooling rate.
Specifically, it depends on the composition and content of the hypereutectic Al-Si alloy such as Si content, but it is (liquidus line + 70 ° C) or more, preferably (liquid phase) in the Al-Si binary system phase diagram. Phase line + 70 ~
The casting temperature is set in the temperature range of 170) ° C. For example, a hypereutectic Al-Si alloy containing 15% by weight of Si has a casting temperature of 680 ° C or higher, and a hypereutectic Al-Si alloy containing 17% by weight of Si has a casting temperature of 710 ° C or more. For a hypereutectic Al-Si alloy containing 20% by weight of Si, the casting temperature is set to 760 ° C or higher.

【0023】鋳塊のサイズ 初晶Siを粒径20μm以下に微細化するため、DC鋳
造では鋳塊の直径又は厚みを150mm以下に規制し、
金型鋳造では鋳塊の直径又は厚みを30mm以下に規制
し、鋳塊中央部の冷却速度を確保することが必要であ
る。これにより、初晶Siの微細化が進行する。初晶Siの粒径 初晶Siは、P含有量,Ca含有量及びP/Ca比を調
整することによって、平均粒径20μm以下に微細化さ
れる。初晶Siの粒径が20μmを超えると、切削加工
性が劣化する。また、大きな初晶Siが晶出している鋳
造組織は、靭性や機械的性質を低下させる。そこで、本
発明においては、切削加工性,機械的性質等を考慮して
初晶Siの粒径を20μm以下に規制した。
Size of ingot In order to refine primary crystal Si to a grain size of 20 μm or less, the diameter or thickness of the ingot is restricted to 150 mm or less in DC casting.
In die casting, it is necessary to regulate the diameter or thickness of the ingot to 30 mm or less and to secure the cooling rate of the central portion of the ingot. As a result, the refinement of the primary crystal Si proceeds. Particle size primary crystal Si primary crystal Si is, P content, by adjusting the Ca content and P / Ca ratio, being finely divided in the following average particle size 20 [mu] m. If the grain size of the primary crystal Si exceeds 20 μm, the machinability deteriorates. Further, the cast structure in which large primary Si crystallizes reduces the toughness and mechanical properties. Therefore, in the present invention, the grain size of primary crystal Si is limited to 20 μm or less in consideration of machinability, mechanical properties, and the like.

【0024】[0024]

【実施例】過共晶Al−Si合金を50kgのルツボに
溶解し、P及びCaをそれぞれ100ppm及び50p
pmを目標に添加した。使用した過共晶Al−Si合金
は、Si:17重量%,Cu:4.5重量%及びMg:
0.5重量%を含むA390合金であり、それ以外の成
分を表1に示す。
EXAMPLE A hypereutectic Al-Si alloy was dissolved in a 50 kg crucible, and P and Ca were 100 ppm and 50 p, respectively.
pm was added to the target. The hypereutectic Al-Si alloy used was Si: 17 wt%, Cu: 4.5 wt% and Mg:
It is an A390 alloy containing 0.5% by weight, and the other components are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】各合金溶湯を、鋳造温度780℃,鋳造速
度150mm/分,冷却水量110リットル/分,1本
注ぎの条件下で、ホットトップ鋳造により直径84mm
及び長さ1500mmの鋳塊にDC鋳造した。P源とし
てAl−19%Cu−1.4%P母合金を炉中添加し、
Ca源としてAl−5%Ca母合金を鋳造時に樋に連続
投入した。Pb源及びBi源としては、金属Pb及び金
属Biを炉中添加した。得られた鋳塊を直径79mmま
で面削して表皮を除去した後、切削試験に供した。切削
工具にはダイアモンド焼結体を使用し、切れ刃傾き角0
度,垂直掬い角5度,横切り角15度,切削速度600
m/分,送り速度0.1mm/rev,切込み深さ0.
5mm,切削距離36000mまで,潤滑剤使用せずの
条件下で切削試験した。そして、工具逃げ面の摩耗量を
測定することによって、切削性を評価した。切削時間6
0分経過(切削距離36000m)後の試験結果を、初
晶Siの粒径と共に表2に示す。切削工具の摩耗量が
0.17mm以上になるとき、切削性不良と判定した。
また、合金番号1,5,10,14については、切削工
具の摩耗量を定期的に測定し、その経時変化を調査し
た。図1は、このときの摩耗量変化を示す。
Each molten alloy was hot-top casted under the conditions of a casting temperature of 780 ° C., a casting speed of 150 mm / min, a cooling water amount of 110 liters / min and a diameter of 84 mm.
And DC casting into a 1500 mm long ingot. As a P source, Al-19% Cu-1.4% P mother alloy was added in the furnace,
An Al-5% Ca mother alloy as a Ca source was continuously put into the gutter during casting. As the Pb source and the Bi source, metal Pb and metal Bi were added in the furnace. The obtained ingot was chamfered to a diameter of 79 mm to remove the skin, and then subjected to a cutting test. A diamond sintered body is used as the cutting tool, and the cutting edge tilt angle is 0
Degree, vertical scooping angle 5 degrees, crossing angle 15 degrees, cutting speed 600
m / min, feed rate 0.1 mm / rev, cutting depth 0.
A cutting test was performed under a condition of 5 mm and a cutting distance of 36000 m without using a lubricant. Then, the machinability was evaluated by measuring the wear amount of the tool flank. Cutting time 6
The test results after the lapse of 0 minutes (cutting distance 36000 m) are shown in Table 2 together with the grain size of primary crystal Si. When the wear amount of the cutting tool was 0.17 mm or more, it was determined that the cutting property was poor.
With respect to Alloy Nos. 1, 5, 10, and 14, the wear amount of the cutting tool was regularly measured, and its change with time was investigated. FIG. 1 shows the change in wear amount at this time.

【0027】[0027]

【表2】 [Table 2]

【0028】合金番号6,11,15の比較例では、逃
げ面の摩耗量が少なくなっている。これは、多量のPb
及びBiが含まれることにより、切削性が改善されてい
ることを示す。しかし、鋳塊のミクロ組織を観察する
と、鋳塊の中心部でPbやBiが10μm以上、大きい
もので数十μmもの粒子となって偏析していた。また、
Pb及びBiを含まない合金番号1,Pb又はBiの含
有量が少ない合金番号2,7,12の比較例では、逃げ
面の摩耗量が大きく、切削工具の寿命が短くなってい
た。これに対し、本発明に従った合金番号3〜5,8〜
10,13,14の実施例では、結晶粒界やデンドライ
トのセル境界にPbやBiが1〜5μmの大きさで微細
に分散しており、良好な切削性を呈した。しかも、切削
チップの長さが約10mmで、チップ分断性にも優れて
いた。
In the comparative examples of alloy numbers 6, 11, and 15, the amount of wear on the flanks is small. This is a large amount of Pb
It shows that the machinability is improved by the inclusion of Bi and Bi. However, when the microstructure of the ingot was observed, Pb and Bi were segregated at the center of the ingot into particles of 10 μm or more, and large particles of several tens of μm. Also,
In the comparative examples of Alloy Nos. 1 containing no Pb and Bi and alloys Nos. 2, 7 and 12 having a small content of Pb or Bi, the wear amount of the flank was large and the life of the cutting tool was short. On the other hand, alloy numbers 3 to 5 and 8 to according to the present invention
In Examples 10, 13 and 14, Pb and Bi were finely dispersed in a size of 1 to 5 μm at the crystal grain boundaries and the cell boundaries of dendrites, and good machinability was exhibited. Moreover, the length of the cutting tip was about 10 mm, and the tip cutting property was excellent.

【0029】[0029]

【発明の効果】以上に説明したように、本発明の過共晶
Al−Si合金は、P及びCaの量的制御により初晶S
iを微細に分散させた系にPb及び/又はBiを添加す
ることにより切削性を改良している。所定量で添加され
たPb及び/又はBiは、大きな偏析粒子となることな
く、結晶粒界やデンドライトのセル境界に微細に分散す
る。そのため、切削性及び加工性の双方に優れた過共晶
Al−Si合金鋳物が得られ、各種内燃機関用部品等と
して優れた特性を発揮する。
As described above, the hypereutectic Al-Si alloy of the present invention is a primary S alloy due to the quantitative control of P and Ca.
The machinability is improved by adding Pb and / or Bi to a system in which i is finely dispersed. Pb and / or Bi added in a predetermined amount finely disperse at the grain boundaries and cell boundaries of dendrites without becoming large segregated particles. Therefore, a hypereutectic Al-Si alloy casting excellent in both machinability and workability is obtained, and exhibits excellent characteristics as various internal combustion engine parts and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 各種過共晶Al−Si合金の切削性を工具逃
げ面の経時的な摩耗量として表したグラフ
FIG. 1 is a graph showing the machinability of various hypereutectic Al—Si alloys as the amount of wear of the tool flank over time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鷺坂 栄吉 静岡県庵原郡蒲原町蒲原1丁目34番1号 株式会社日軽技研内 (72)発明者 北岡 山治 東京都港区三田3丁目13番12号 日本軽金 属株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Eikichi Sagisaka 1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Nipparu Giken Co., Ltd. (72) Inventor Yamaji Kitaoka 3-13 Mita, Minato-ku, Tokyo No. 12 Nippon Light Metal Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Si:13〜21重量%,Cu:0.5
〜5重量%,Mg:0.3〜2.0重量%,Pb又はB
i:0.2〜1.5重量%,Ca:6〜120ppm及
びP:40〜130ppmを含有し、P/Caが重量比
で0.6〜6の範囲にあることを特徴とする切削性に優
れた過共晶Al−Si合金。
1. Si: 13 to 21% by weight, Cu: 0.5
~ 5 wt%, Mg: 0.3-2.0 wt%, Pb or B
i: 0.2 to 1.5% by weight, Ca: 6 to 120 ppm and P: 40 to 130 ppm, and P / Ca is in the range of 0.6 to 6 by weight ratio. Excellent hypereutectic Al-Si alloy.
【請求項2】 Pb及びBiの両者を含み、その合計量
が0.2〜1.5重量%である請求項1記載の切削性に
優れた過共晶Al−Si合金。
2. A hypereutectic Al—Si alloy excellent in machinability according to claim 1, which contains both Pb and Bi, and the total amount thereof is 0.2 to 1.5% by weight.
【請求項3】 初晶Siの粒径が20μm以下である請
求項1又は2記載の過共晶Al−Si合金。
3. The hypereutectic Al—Si alloy according to claim 1, wherein the grain size of the primary crystal Si is 20 μm or less.
【請求項4】 請求項1又は2記載の合金を(液相線+
70℃)以上の温度で鋳造することを特徴とする鋳造材
の製造方法。
4. The alloy according to claim 1 or 2 (liquidus line +
70 ° C.) or more, and a method for producing a cast material, the method comprising casting.
【請求項5】 請求項1又は2記載の過共晶Al−Si
合金からなり、鋳塊の直径又は厚みが150mm以下の
DC鋳造材。
5. The hypereutectic Al—Si according to claim 1 or 2.
A DC casting material made of an alloy and having an ingot diameter or thickness of 150 mm or less.
【請求項6】 請求項1又は2記載の過共晶Al−Si
合金からなり、鋳塊の直径又は厚みが30mm以下の金
型鋳造材。
6. The hypereutectic Al—Si according to claim 1 or 2.
A mold casting material made of an alloy and having an ingot diameter or thickness of 30 mm or less.
JP1758494A 1994-02-14 1994-02-14 Hypereutectic al-si alloy excellent in machinability and its production Pending JPH07224340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1758494A JPH07224340A (en) 1994-02-14 1994-02-14 Hypereutectic al-si alloy excellent in machinability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1758494A JPH07224340A (en) 1994-02-14 1994-02-14 Hypereutectic al-si alloy excellent in machinability and its production

Publications (1)

Publication Number Publication Date
JPH07224340A true JPH07224340A (en) 1995-08-22

Family

ID=11947962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1758494A Pending JPH07224340A (en) 1994-02-14 1994-02-14 Hypereutectic al-si alloy excellent in machinability and its production

Country Status (1)

Country Link
JP (1) JPH07224340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392129C (en) * 2004-11-18 2008-06-04 东北大学 Large-sized hypereutectic high-seleium aluminium alloy billet and preparation method thereof
JP2010531388A (en) * 2007-06-29 2010-09-24 東北大学 Structural material of Al alloy containing Mg and high Si and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392129C (en) * 2004-11-18 2008-06-04 东北大学 Large-sized hypereutectic high-seleium aluminium alloy billet and preparation method thereof
JP2010531388A (en) * 2007-06-29 2010-09-24 東北大学 Structural material of Al alloy containing Mg and high Si and method for producing the same

Similar Documents

Publication Publication Date Title
CA1060684A (en) Aluminum alloy and method of production
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
EP2534273B1 (en) Aluminium-copper alloy for casting
US20110116966A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
CZ293797B6 (en) Cylinder head casting or engine block casting of aluminium alloy and process for producing thereof
JP2010528187A (en) Aluminum alloy formulations for reducing hot cracking susceptibility
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JP2002535488A (en) Hypereutectic aluminum-silicon alloy products for forming in the semi-solid state
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
JP2000265232A (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance, and its manufacture
JP2004256873A (en) Aluminum alloy for casting having excellent high temperature strength
JPH06306521A (en) Hyper-eutectic al-si series alloy for casting and casting method
JPH0762200B2 (en) Abrasion resistant aluminum alloy casting rod for forging and its manufacturing method
JP3430684B2 (en) Die-cast internal combustion engine parts excellent in high-temperature strength, wear resistance and vibration damping properties, and a method for manufacturing the same
JPH08104937A (en) Aluminum alloy for internal combustion engine piston excellent in high temperature strength and its production
JP2730423B2 (en) Hypereutectic Al-Si alloy excellent in workability and manufacturing method
JPH06279904A (en) Production of hyper-eutectic al-si alloy for forging and forging stock
JPH07145440A (en) Aluminum alloy forging stock
JPH07224340A (en) Hypereutectic al-si alloy excellent in machinability and its production
JPH06145865A (en) Method for making primary crystal si fine by using together ca-series assist agent
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
JP3416503B2 (en) Hypereutectic Al-Si alloy die casting member and method of manufacturing the same
CN111893354A (en) Al-Si-Cu-Mg wrought aluminum alloy and preparation method thereof
JP2000001731A (en) Hypereutectic aluminum-silicon alloy diecast member and its production