WO2008151959A1 - Magnetisches antriebssystem für eine schalteinrichtung - Google Patents

Magnetisches antriebssystem für eine schalteinrichtung Download PDF

Info

Publication number
WO2008151959A1
WO2008151959A1 PCT/EP2008/056751 EP2008056751W WO2008151959A1 WO 2008151959 A1 WO2008151959 A1 WO 2008151959A1 EP 2008056751 W EP2008056751 W EP 2008056751W WO 2008151959 A1 WO2008151959 A1 WO 2008151959A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
channels
drive system
magnetic drive
holes
Prior art date
Application number
PCT/EP2008/056751
Other languages
English (en)
French (fr)
Inventor
Ralf-Reiner Volkmar
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP08760338.7A priority Critical patent/EP2165347B1/de
Priority to CN200880101812.8A priority patent/CN101772820B/zh
Priority to US12/663,655 priority patent/US20100176902A1/en
Priority to MX2009013440A priority patent/MX2009013440A/es
Priority to ES08760338.7T priority patent/ES2569903T3/es
Publication of WO2008151959A1 publication Critical patent/WO2008151959A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2209Polarised relays with rectilinearly movable armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/086Structural details of the armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1669Armatures actuated by current pulse, e.g. bistable actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1676Means for avoiding or reducing eddy currents in the magnetic circuit, e.g. radial slots

Definitions

  • the invention relates to a magnetic drive ⁇ system for a switching device specified in the preamble of claim 1. Art.
  • Such a bipolar drive system is z. B. from DE 197 09 089 Al already known.
  • the anchor here consists of a solid magnetic iron material, which makes it cheaper to manufacture than an assembled from layered electrical sheets anchor and often will have a greater long-term stability.
  • For the massive anchor itself has the disadvantage that compared to anchors made of layered electrical steel more eddy current losses occur and a stronger remanence is present, which makes it difficult, inter alia, the release of the switching contacts when switching.
  • the armature is provided with elongated hollow channels, which consist of narrow slots and extend in the feed direction of the armature and thus in the direction of the magnetic field lines.
  • the slits provided on the narrow sides of the anchor weaken the parallelepiped-shaped armature over a third of its cross-sectional width and over its entire length. From the broad sides of the anchor next to each other several parallel slots are recessed, which do not extend over the entire length of the armature but end at a distance to the end faces of the armature.
  • the mechanical Stability is formality of the armature but through the slots significantly impressive ⁇ adversely. Therefore, it is provided to increase the stability of the armature after introducing the slots by filling them with insulating material again. Precisely because these slots should be as tight as possible for technical reasons, that is Filling the slots technically but correspondingly difficult and significantly increases the cost of making the anchor.
  • the transitions between the contact surface of the armature and the yoke laminations should be able to be adapted as needed.
  • a Vermin ⁇ alteration of the contact surface resulting in an improved response in terms of a shorter switching time must be selected according ⁇ but are connected to the disadvantage of a reduced adhesive power of the anchor. Since too low adhesive force of the armature, however, adversely affects the reliability of the magnetic drive system, the known drive system can not meet the design requirements in many applications.
  • the invention is therefore based on the object to further develop a magneti ⁇ ULTRASONIC drive system of the type specified in the preamble of claim 1 in that the Stabili ⁇ ty of the armature is not excessively reduced by the design of which to reduce the eddy current losses.
  • the magnetic drive system according to the invention for a switching device comprises a magnetic yoke, in which a solid armature of magnetic material is linearly slid between two opposite end positions, and at least one permanent magnet for generating a magnetic flux in the magnetic yoke and at least one coil, through which Anchor between its end positions back and forth is movable, the armature to avoid eddy current losses is provided with elongated channels and the channels are circumferentially closed in the anchor at its periphery.
  • circumferentially closed channels in the anchor is achieved in a simple manner that the stability of the armature is hardly affected.
  • the technically complex filling of the channels can be omitted.
  • the introduced into the anchor channels consist of holes with a relatively small hollow cross-section.
  • Such holes do not necessarily have to be circular, but can also z. B. have an oval cross-section. If possible, however, the hollow cross-section should be designed so that there are no sharp corners on the peripheral wall delimiting the hollow cross-section.
  • the holes are circular, because they can then be produced inexpensively with drill drills.
  • the holes in the anchor are straight through ⁇ holes.
  • the holes may be formed as blind holes, which are drilled from both side surfaces.
  • the technical effect of a gap with respect to the Redu ⁇ cation of the eddy current losses can be enough if a plurality of channels of the armature are lined with a small distance from a row of holes or a plurality of rows of holes approximately ER.
  • Several rows of holes are expediently aligned parallel to each other along a straight line. It is particularly effective if the penetrated by the Ankerch ⁇ approximately rod end sides of the armature block at least one row of holes or more, especially two, three or four parallel rows of holes are connected by through-holes extending parallel to the broad sides of the armature near the hole of the armature guide rod.
  • Zvi ⁇ center rule can be provided rows of holes that at least one further row of holes or more, especially two, three or four rows of holes extending along the center longitudinal plane of the armature between its narrow sides or extend.
  • a further technical improvement is achieved if the broad sides of the anchor block are perforated over a plurality of rows whge ⁇ term of through holes.
  • two fields with rows of holes can be arranged next to the transverse plane of the armature guide rod.
  • Two anchor guide ⁇ rods mounted in opposite blind holes of the anchor so a remaining between the blind hole ends anchor area can be used with Vollmate ⁇ al additionally for a central arrangement of a through bore.
  • the run up all three spatial directions of drilling anchor block provides not only the reduction of eddy current losses already for a significant reduction of the Rema ⁇ nenzne Trent.
  • the reduction of the remanence is again RESIZE ⁇ SSER, though the cooperating with the abutment surfaces of the armature mating surfaces of each one or each plurality of rows of holes are perforated.
  • the magnet system has the advantage over the known system with slots as hollow channels that the formation of eddy currents in all three axial directions obstructed and thus reduced.
  • the operational safety remains undiminished na ⁇ hezu obtained since the adhesive force only slightly reduced during flexible ⁇ cher total induction and equal ⁇ time, the residual induction of the magnetic circuit decreases.
  • the latter effect is essentially based on, is that the genetic like ⁇ induction only locally increased selectively in the armature in the saturation region and thereby lowered into the local Perme ⁇ ABILITY.
  • the anchor mass is lower also, so that overall a lower remanence associated with improved dynamic properties of the anchor or the entire magnetic ⁇ system gives INS.
  • FIG. 1 shows a support structure of a magnetic drive system in a perspective oblique view
  • 4 is a front view of a narrow side of the separate anchor block
  • 5 is a front view of a broad side of the separate An ⁇ notch block
  • FIG. 6 shows a section through the anchor block according to the section line VI-VI in Fig. 5 and
  • Fig. 7 is a front view of an end face of the separate An ⁇ notch block.
  • FIG. 1 a supporting structure 1 of a not shown in the whole permanent magnetic drive ⁇ system for actuating a switching device.
  • This structure 1 comprises a cuboidal frame, which is composed of two magnetic yokes 2 and 3 with the interposition of two bearing plates 4 and 5.
  • Both magnet yokes 2 and 3 are designed mirror symmetry and have at both ends in each case angled by 90 degrees yoke legs, so that they are designed approximately U-shaped with respect to their basic shape.
  • the flat end surfaces of the oppositely directed yoke legs of the magnetic yokes 2 and 3 lie flat against the facing side surface of the bearing plate 4 and at the bottom of the facing side surface of the bearing plate 5, wherein the corresponding yoke legs are connected to each other via the bearing plates 4 and 5 respectively.
  • the armature 8 also comprises two Ankerin ⁇ approximately rods 9 which project centrally from the top or the bottom of the anchor block and are arranged geometrically coaxial zuein ⁇ other.
  • the armature guide rods 9 pass through a bearing bore 10 in their associated bearing plate 4 and 5 with little circumferential clearance and stand out with an end portion of the bearing bore 10 of their bearing plate 4 and 5, so that the armature 8 is vertically linearly slidably guided by the guide rods 9.
  • the yoke frame would be in the assembly still provided with two coils Polschenkeln and yoke legs, by the magnetic field of the armature 8 would be shifted at corresponding ⁇ Polides after overcoming its adhesion to the bearing plate 5 in its upper end position in which its feed by striking the Bottom of the bearing plate 4 would be limited. After reversal of the polarity of the magnetic field he would be depressed after overcoming the adhesion by magnetic forces back down to the end position shown on the bearing plate 5 and held in the contact position.
  • the mode of action of such magnetic drives is known as such, so that no further explanation is provided here.
  • the magnetic yokes 2 and 3 consist here of a plurality of thin ⁇ ner yoke plates, which are joined to the shown thick Jochblechstapel.
  • the armature 8 and the bearing plates 4 and 5 consist of blocks of ferromagnetic material of known type, in particular of a corresponding Eisenle ⁇ government.
  • a plurality of channels (hollow channels) 11, 12 and 13 are integrated in the solid block of the armature 8, which here have a matching diameter of 2 mm to 3 mm , all as through are trained bores and differ only in their length, since they enforce the block of the armature 8 in different directions.
  • the channels 11, 12 and 13 may alternatively be formed as blind holes, which are drilled from both side surfaces.
  • the channels 11 extend from the upper end face of the armature 8, run parallel to the central longitudinal axis of the armature guide rods 9 and thus at right angles to the plan
  • blind holes Be formed blind holes and ends at a distance in front of the blind hole 14.
  • Such blind holes as channels 12 should then end as possible at the same distance from the blind hole 14 as the lateral distance of the channels 11 on the front side of the armature 8. This distance is clearly visible in the frontal plan view according to FIG. In this case, however, the channels 12 would have to be drilled from the opposite end sides, which would result in a corresponding additional expenditure in the production of the armature 8.
  • the channels 13 are introduced, all of which extend at right angles to the longitudinal center plane of the armature 8.
  • the channels 13 go from one broad side of the armature 8 and open into the opposite broad side.
  • the hole pattern on the broad side comprises two rectangular hole fields, which consist of three parallel rows, each with six hollow channels 13, wherein the hollow channels 13 in the row and laterally have a matching distance from each other on ⁇ . These fields are located on both sides of a hole Mitt same ⁇ realm of the armature 8, in which the armature guide rods 9 are attached ⁇ arranged.
  • a single channel 13 ' is additionally centrally disposed, which also forms a connecting the broad sides through hole.
  • suitable Siert the hollow channel 13 'in this case a Vollmate ⁇ al Scheme of the anchor block which has been left between the ends of the two stanchions Sacklochboh ⁇ fourteenth thus, the stability of the An ⁇ core 8 is not significantly affected by the channel 13 '.
  • the channels (hollow channels) 15 two rows, each with six channels 15 are present, the preferably congruent to the channels 11 in the armature 8 are arranged ⁇ .

Abstract

Die Erfindung betrifft ein magnetisches Antriebssystem für eine Schalteinrichtung mit einem Magnetjoch (2, 3), in dem ein massiver Anker (8) aus magnetischem Werkstoff zwischen zwei entgegengesetzten Endlagen linear schiebegeführt ist, mit wenigstens einem Permanentmagneten (6, 7) zur Erzeugung eines magnetischen Flusses in dem Magnetjoch (2, 3) und mit wenigstens einer Spule, durch die der Anker (8) zwischen seinen Endlagen hin- und her bewegbar ist, wobei der Anker (8) zur Vermeidung von Wirbelstromverlusten mit länglichen Hohlkanälen (11, 12, 13) versehen ist. Damit die Stabilität des Ankers (8) durch die eingebrachten Kanäle (11, 12, 13, 13') nicht übermäßig reduziert wird, ist vorgesehen, die Kanäle (11, 12, 13, 13') im Anker (8) an ihrem Umfang geschlossen auszubilden.

Description

Beschreibung
Magnetisches Antriebssystem für eine Schalteinrichtung
Die Erfindung bezieht sich auf ein magnetisches Antriebs¬ system für eine Schalteinrichtung der im Oberbegriff von Patentanspruch 1 angegebenen Art.
Eine derartiges bipolares Antriebssystem ist z. B. aus der DE 197 09 089 Al bereits bekannt. Der Anker besteht hierbei aus einem massiven magnetischen Eisenwerkstoff, wodurch er sich kostengünstiger fertigen lässt als ein aus geschichteten Elektroblechen zusammengesetzter Anker und häufig auch eine größere Langzeitstabilität aufweisen wird. Dafür hat der mas- sive Anker an sich den Nachteil, dass gegenüber Ankern aus geschichtetem Elektroblech mehr Wirbelstromverluste auftreten und eine stärkere Remanenz vorhanden ist, die u. a. das Lösen der Schaltkontakte beim Umschalten erschwert. Um die Wirbel¬ stromverluste zu reduzieren, ist der Anker mit länglichen Hohlkanälen versehen, die aus schmalen Schlitzen bestehen und sich in Vorschubrichtung des Ankers und somit in Richtung der magnetischen Feldlinien erstrecken. Die vorgesehenen Schlitze an den Schmalseiten des Ankers schwächen den quaderförmigen Anker dabei über jeweils ein Drittel seiner Querschnitts- breite und über seine gesamte Länge. Aus den Breitseiten des Ankers sind zudem nebeneinander mehrere parallele Schlitze ausgespart, die sich allerdings nicht über die gesamte Länge des Ankers erstrecken sondern in einem Abstand zu den Stirnseiten des Ankers enden. Insgesamt ist die mechanische Stabi- lität des Ankers aber durch die Schlitze erheblich beein¬ trächtigt. Deshalb ist vorgesehen, die Stabilität des Ankers nach Einbringen der Schlitze durch Füllen derselben mit Iso- liermateπal wieder zu erhöhen. Gerade weil diese Schlitze aus technischen Gründen möglichst eng sein sollen, ist das Auffüllen der Schlitze technisch aber entsprechend schwierig und verteuert die Herstellung des Ankers erheblich. Um der stärkeren Remanenz des Ankers zu begegnen, sollen die Übergänge zwischen der Kontaktfläche des Ankers und den Joch- blechen bedarfsgerecht angepasst werden können. Eine Vermin¬ derung der Kontaktfläche führt zwar zu einem verbesserten Ansprechverhalten im Sinne einer kürzeren Schaltzeit, muss je¬ doch mit dem Nachteil einer reduzierten Haftkraft des Ankers erkauft werden. Da eine zu geringe Haftkraft des Ankers sich jedoch nachteilig auf die Betriebssicherheit des magnetischen Antriebssystems auswirkt, wird das bekannte Antriebssystem den konstruktiven Anforderungen bei vielen Anwendungsfällen nicht gerecht werden können.
Der Erfindung liegt daher die Aufgabe zugrunde, ein magneti¬ sches Antriebssystem der im Oberbegriff von Anspruch 1 angegebenen Art dahingehend weiterzuentwickeln, dass die Stabili¬ tät des Ankers durch dessen Gestaltung zur Reduzierung der Wirbelstromverluste nicht übermäßig reduziert ist.
Diese Aufgabe wird durch die Merkmale von Patentanspruch 1 gelöst .
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
Das erfindungsgemäße magnetische Antriebssystem für eine Schalteinrichtung umfasst ein Magnetjoch, in dem ein massiver Anker aus magnetischem Werkstoff zwischen zwei entgegen ge- setzten Endlagen linear schiebegeführt ist, und wenigstens einen Permanentmagneten zur Erzeugung eines magnetischen Flusses in dem Magnetjoch und wenigstens eine Spule, durch die der Anker zwischen seinen Endlagen hin- und her bewegbar ist, wobei der Anker zur Vermeidung von Wirbelstromverlusten mit länglichen Kanälen versehen ist und die Kanäle im Anker an ihrem Umfang umlaufend geschlossen sind.
Durch die Anordnung von umlaufend geschlossenen Kanälen (Hohlkanälen) im Anker wird auf einfache Weise erreicht, dass die Stabilität des Ankers kaum beeinträchtigt wird. Somit kann das technisch aufwändige Füllen der Kanäle entfallen.
Vorzugsweise bestehen die in den Anker eingebrachten Kanäle aus Bohrungen mit relativ geringem Hohlquerschnitt. Solche Bohrungen müssen nicht zwingend kreisrund sein, sondern können auch z. B. einen ovalen Querschnitt aufweisen. Möglichst sollte der Hohlquerschnitt aber so gestaltet sein, dass an der den Hohlquerschnitt begrenzende Umfangswand keine scharfen Ecken vorhanden sind.
Bei nachträglich in den Ankerblock eingebrachten Bohrungen ist es aber vorteilhaft, wenn die Bohrungen kreisrund sind, weil sie sich dann kostengünstig mit Drillbohrern erzeugen lassen.
Vor der technischen Wirkung her und auch fertigungstechnisch ist es günstig, wenn die Bohrungen im Anker gerade Durch¬ gangsbohrungen sind. Alternativ können die Bohrungen als Sacklochbohrungen ausgebildet sein, die von beiden Seitenflächen aus gebohrt werden.
Die technische Wirkung eines Spalts im Hinblick auf die Redu¬ zierung der Wirbelstromverluste lässt sich näherungsweise er- reichen, wenn mehrere Kanäle des Ankers mit geringem Abstand zu einer Lochreihe oder zu mehreren Lochreihen aneinandergereiht sind. Mehrere Lochreihen werden dabei zweckmäßig parallel zueinander jeweils entlang einer geraden Linie ausgerichtet . Besonders wirkungsvoll ist es, wenn die von den Ankerfüh¬ rungsstangen durchdrungenen Stirnseiten des Ankerblocks über mindestens eine Lochreihe oder mehrere, insbesondere zwei, drei oder vier parallele Lochreihen von Durchgangslöchern verbunden sind, die parallel zu den Breitseiten des Ankers nahe dem Loch der Ankerführungsstange verlaufen. Mittig zwi¬ schen diesen Lochreihen kann mindestens eine weitere Lochreihe oder mehrere, insbesondere zwei, drei oder vier Loch- reihen vorgesehen werden, die sich entlang der Mittellängsebene des Ankers zwischen dessen Schmalseiten erstreckt bzw. erstrecken .
Eine weitere technische Verbesserung wird erzielt, wenn auch die Breitseiten des Ankerblocks über mehrere Reihen weitge¬ hend von Durchgangsbohrungen perforiert sind. Hier können neben der Querebene der Ankerführungsstange zwei Felder mit Bohrungsreihen angeordnet werden. Sind zwei Ankerführungs¬ stangen in entgegen gesetzten Sacklochbohrungen des Ankers befestigt, so kann ein zwischen den Sacklochenden verbleibender Ankerbereich mit Vollmateπal zusätzlich noch für eine zentrale Anordnung einer Durchgangsbohrung genutzt werden.
Der in allen drei Raumrichtungen von Bohrungen durchsetzte Ankerblock sorgt neben der Reduzierung der Wirbelstromverluste auch bereits für eine deutliche Herabsetzung der Rema¬ nenzneigung. Die Verminderung der Remanenz wird nochmals grö¬ ßer, wenn auch die mit den Anschlagflächen des Ankers zusammenwirkenden Gegenflächen von jeweils einer oder von jeweils mehreren Lochreihen perforiert sind.
Das Magnetsystem hat insgesamt gegenüber dem bekannten System mit Schlitzen als Hohlkanäle den Vorteil, dass die Ausbildung von Wirbelströmen in allen drei Achsrichtungen behindert und somit reduziert wird. Die Betriebssicherheit bleibt dabei na¬ hezu ungeschmälert erhalten, da sich die Haftkraft bei glei¬ cher Gesamtinduktion nur unwesentlich reduziert und gleich¬ zeitig die Remanenzinduktion des Magnetkreises absinkt. Letzterer Effekt beruht im Wesentlichen darauf, dass die mag¬ netische Induktion im Anker lediglich lokal gezielt in den Sättigungsbereich hinein erhöht und dadurch die lokale Perme¬ abilität abgesenkt wird. Infolge der zahlreichen Kanäle im Anker ist zudem die Ankermasse geringer, so dass sich ins- gesamt eine geringere Remanenz verbunden mit verbesserten dynamischen Eigenschaften des Ankers bzw. des gesamten Magnet¬ systems ergibt.
Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfin- düng sind der nachfolgenden Beschreibung eines Ausführungs- beispiels unter Bezug auf die Figuren der Zeichnung zu ent¬ nehmen, wobei einander entsprechende Bauteile mit gleichen Bezugszeichen versehen sind.
In den Zeichnungen zeigen:
Fig. 1 eine Tragstruktur eines magnetischen Antriebssystems in perspektivischer Schrägansicht,
Fig. 2 einen Anker der Tragstruktur in perspektivischer Einzelansicht schräg von links,
Fig. 3 den Anker der Tragstruktur in perspektivischer Einzelansicht schräg von rechts,
Fig. 4 eine Frontalansicht einer Schmalseite des separaten Ankerblocks, Fig. 5 eine Frontalansicht einer Breitseite des separaten An¬ kerblocks,
Fig. 6 einen Schnitt durch den Ankerblock gemäß der Schnitt- linie VI-VI in Fig. 5 und
Fig. 7 eine Frontalansicht einer Stirnseite des separaten An¬ kerblocks .
In Figur 1 ist eine tragende Struktur 1 eines nicht in der Gesamtheit dargestellten permanentmagnetischen Antriebs¬ systems zur Betätigung einer Schalteinrichtung zu sehen. Diese Struktur 1 umfasst einen quaderförmigen Rahmen, der aus zwei Magnetjochen 2 und 3 unter Zwischenfügung von zwei La- gerplatten 4 und 5 zusammengesetzt ist. Beide Magnet joche 2 und 3 sind spiegelsymmetπsch gestaltet und besitzen an den beiden Enden jeweils um 90 Grad abgewinkelte Jochschenkel, so dass sie hinsichtlich ihrer Grundform etwa U-förmig gestaltet sind. Die planen Endflächen der gegeneinander gerichteten Jochschenkel der Magnetjoche 2 und 3 liegen oben flächig an der zugewandten Seitenfläche der Lagerplatte 4 und unten an der zugewandten Seitenfläche der Lagerplatte 5 an, wobei die korrespondierenden Jochschenkel über die Lagerplatten 4 bzw. 5 miteinander verbunden sind. Im Mittelbereich zwischen den Jochschenkeln ragt von den Magnetjochen 2 und 3 jeweils ein vorspringender Polschenkel ab, wobei die einander gegenüber¬ liegenden Polschenkel entsprechend den Jochschenkeln gegen¬ einander gerichtet sind. Auf den einander mit Abstand ge¬ genüberliegenden Enden der Polschenkel sind plattenförmige Permanentmagnete 6 bzw. 7 befestigt.
Zwischen den planparallelen Permanentmagneten 6 und 7 liegt mit geringem Abstand zu diesen ein quaderförmiger Anker 8 im Jochrahmen, der in der gezeichneten Position an der Lager- platte 5 aufliegt. Der Anker 8 umfasst auch zwei Ankerfüh¬ rungsstangen 9 die mittig von der Oberseite bzw. der Unterseite des Ankerblocks abstehen und geometrisch koaxial zuein¬ ander angeordnet sind. Die Ankerführungsstangen 9 durchsetzen eine Lagerbohrung 10 in der ihnen zugeordneten Lagerplatte 4 bzw. 5 mit wenig Umfangsspiel und stehen mit einem Endbereich aus der Lagerbohrung 10 ihrer Lagerplatte 4 bzw. 5 heraus, so dass der Anker 8 mittels der Führungsstangen 9 vertikal linear schiebegeführt ist. Der Jochrahmen wäre im Zusammenbau noch mit zwei Spulen den Polschenkeln und den Jochschenkeln versehen, durch deren Magnetfeld der Anker 8 bei entsprechen¬ der Polrichtung nach Überwindung seiner Anhaftung an der Lagerplatte 5 in seine obere Endlage verschoben würde, in der sein Vorschub durch Anschlagen an der Unterseite der Lager- platte 4 begrenzt würde. Nach Umkehrung der Polrichtung des Magnetfeldes würde er nach Überwindung der Anhaftung durch Magnetkräfte wieder nach unten in die gezeigte Endlage auf die Lagerplatte 5 niedergedrückt und in der Anlagestellung gehalten. Die Wirkungsweise solcher Magnetantriebe ist als solche bekannt, so dass hier auf weitergehende Erläuterungen verzichtet wird.
Die Magnetjoche 2 und 3 bestehen hier aus einer Vielzahl dün¬ ner Jochbleche, die zu dem gezeigten, dicken Jochblechstapel gefügt sind. Demgegenüber bestehen der Anker 8 sowie die Lagerplatten 4 und 5 aus Blöcken ferromagnetischen Materials bekannter Art, insbesondere aus einer entsprechenden Eisenle¬ gierung .
Zur Reduzierung der Wirbelstromverluste und der Remanenz des Ankers 8 sowie der Lagerplatten 4 und 5 sind in den massiven Block des Ankers 8 eine Vielzahl von Kanälen (Hohlkanälen) 11, 12 und 13 integriert, die hier einen übereinstimmenden Durchmesser von 2 mm bis 3 mm aufweisen, alle als Durch- gangsbohrungen ausgebildet sind und sich nur hinsichtlich ihrer Länge unterscheiden, da sie den Block des Ankers 8 in unterschiedlichen Richtungen durchsetzen. Die Kanäle 11, 12 und 13 können alternativ auch als Sacklochbohrungen ausge- bildet sein, die von beiden Seitenflächen aus gebohrt werden.
Wie in Verbindung mit den Figuren 2 und 3 deutlicher zu er¬ kennen ist, gehen die Kanäle 11 von der oberen Stirnseite des Ankers 8 aus, verlaufen parallel zur Mittellängsachse der Ankerführungstangen 9 und somit rechtwinklig zur planen
Stirnseite bis sie auf der gegenüberliegenden Stirnseite mün¬ den. Dabei sind zwei Reihen mit jeweils sechs Kanälen 11 vorhanden, wobei die Kanäle 11 in jeder der beiden Reihen jeweils einen Abstand von ca. 4 mm zum benachbarten Kanal 11 aufweisen. Diese Reihen verlaufen parallel zu den langen Seitenkanten der Stirnseiten und auf entgegen gesetzten Seiten einer mittig in auf der Stirnseite angeordnete Sacklochbohrung 14 mit Innengewinde, in welche die Ankerführungsstange 9 hineingedreht ist. Quer zu diesen Kanälen 11 sind die Kanäle 12 angeordnet, die von einer Schmalseite des Ankers 8 ausgehen und auf der gegenüberliegenden Schmalseite des Ankers 8 münden. Diese insgesamt fünf Kanäle 12 bilden eine gerade Reihe, die mittig zwischen den langen Seitenkanten der Schmalseite angeordnet ist, wie in Verbindung mit Figur 4 zweifelsfrei zu sehen ist. Diese Kanäle 12 verlaufen dadurch aber auch mittig zwischen den beiden Reihen mit den Kanälen 11 und durchdringen auch die Anordnungsebene der Ankerführungsstangen 9. Falls keine Schwächung der Bohrungswand der Sacklochbohrungen 14 erfolgen soll, können die Kanäle 12 deshalb alternativ auch als
Sacklochbohrungen ausgebildet sein und in einem Abstand vor der Sacklochbohrung 14 enden. Solche Sacklochbohrungen als Kanäle 12 sollten dann möglichst im gleichen Abstand von der Sacklochbohrung 14 enden wie der seitliche Abstand der Kanäle 11 auf der Stirnseite des Ankers 8. Dieser Abstand ist in der frontalen Draufsicht gemäß Figur 7 gut zu erkennen. In diesem Fall müssten die Kanäle 12 aber von den entgegen gesetzten Stirnseiten aus gebohrt werden, was einen entsprechenden Mehraufwand bei der Herstellung des Ankers 8 zur Folge hätte.
Ebenfalls quer zu den Kanälen 11 und in erheblich größerer Anzahl sind die Kanäle 13 eingebracht, die sich alle rechtwinklig zur Längsmittelebene des Ankers 8 erstrecken. Dabei gehen die Kanäle 13 von einer Breitseite des Ankers 8 aus und münden in die gegenüberliegende Breitseite ein. Das Lochbild auf der Breitseite umfasst dabei zwei rechteckige Lochfelder, die aus drei parallelen Reihen mit jeweils sechs Hohlkanälen 13 bestehen, wobei die Hohlkanäle 13 in der Reihe und seitlich einen übereinstimmenden Abstand voneinander auf¬ weisen. Diese Lochfelder liegen beidseitig eines Mittelbe¬ reichs des Ankers 8, in dem die Ankerführungsstangen 9 ange¬ ordnet sind.
Zwischen den beiden Lochfeldern aus Hohlkanälen 13 ist zusätzlich zentral ein einzelner Kanal 13' angeordnet, der ebenfalls eine die Breitseiten verbindende Durchgangsbohrung bildet. Wie aus der Frontalansicht nach Figur 5 in Verbindung mit der Schnittdarstellung nach Figur 6 zu ersehen ist, pas- siert der Hohlkanal 13' hierbei einen Vollmateπalbereich des Ankerblocks, der zwischen den Enden der beiden Sacklochboh¬ rungen 14 verblieben ist. Somit wird die Stabilität des An¬ kers 8 durch den Kanal 13' nicht nennenswert beeinträchtigt.
Neben den Kanälen im Anker 8 befinden sich auch in den
Lagerplatten 4 und 5 Kanäle 15, die sich achsparallel zu den Kanälen 11 erstrecken. Von den Kanälen (Hohlkanälen) 15 sind zwei Reihen mit jeweils sechs Kanälen 15 vorhanden, die vorzugsweise kongruent zu den Kanälen 11 im Anker 8 ange¬ ordnet sind.
Be zugs ze ichenl i ste
1 Struktur
2 Magnet j och
3 Magnet j och
4 Lagerplatte
5 Lagerplatte
6 Permanentmagnet
7 Permanentmagnet
8 Anker
9 AnkerführungsStangen
10 Lagerbohrung
11 Kanal (Hohlkanal) Anker
12 Kanal (Hohlkanal) Anker
13 Kanal (Hohlkanal) Anker
13' Kanal (Hohlkanal) Anker
14 Sacklochbohrung
15 Kanal (Hohlkanal) Lagerplatte

Claims

Patentansprüche
1. Magnetisches Antriebssystem für eine Schalteinrichtung mit einem Magnet joch (2, 3), in dem ein massiver Anker (8) aus magnetischem Werkstoff zwischen zwei entgegengesetzten
Endlagen linear schiebegeführt ist, mit wenigstens einem Per¬ manentmagneten (6, 7) zur Erzeugung eines magnetischen Flusses in dem Magnetjoch (2, 3) und mit wenigstens einer Spule, durch die der Anker (8) zwischen seinen Endlagen hin- und her bewegbar ist, wobei der Anker (8) zur Vermeidung von Wirbelstromverlusten mit länglichen Kanälen (11, 12, 13, 13') versehen ist, d a d u r c h g e k e n n z e i c h n e t, dass die Kanäle (11, 12, 13, 13') im Anker (8) an ihrem Umfang umlaufend geschlossen sind.
2. Magnetisches Antriebssystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die Kanäle (11, 12, 13, 13') des Ankers (8) aus Bohrungen bestehen.
3. Magnetisches Antriebssystem nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, dass die Kanäle (11, 12, 13, 13') des Ankers (8) Durchgangsbohrungen oder Sacklochbohrungen sind.
4. Magnetisches Antriebssystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass mehrere umlaufend geschlossene Kanäle (11, 12, 13, 15) des Antriebssystems zu einer Lochreihe aneinandergereiht sind.
5. Magnetisches Antriebssystem nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, dass mehrere von Kanälen (11, 12, 13, 15) gebildete Lochreihen parallel zueinander verlaufen.
6. Magnetisches Antriebssystem nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, dass die von Ankerführungsstangen (9) durchsetzten Stirnseiten des quaderförmigen Ankers (8) mit mindestens einer Lochreihe von Kanälen (11) versehen sind.
7. Magnetisches Antriebssystem nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, dass der Anker (8) quer zu seiner Vorschubrichtung von einer Kanalanordnung durchsetzt ist.
8. Magnetisches Antriebssystem nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, dass die Kanalanordnung mindestens eine mittig entlang den Schmalseiten des Ankers (8) verlaufende Reihe von Kanälen (12) aufweist.
9. Magnetisches Antriebssystem nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, dass die Kanalanordnung zwei seitlich auf den Breitseiten des Ankers (8) in einem Abstand voneinander angeordnete Lochfelder umfasst, die jeweils aus mehreren von Kanälen (13) gebildeten Lochreihen zusammengesetzt sind.
10. Magnetisches Antriebssystem nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, dass die Breitseiten des Ankers (8) mittig über einen zentralen Kanal (13') miteinander verbunden sind, der zwischen Sacklochbohrungen (14) zur Aufnahme der Ankerführungsstangen (9) im Vollmaterial des Ankers (8) verläuft.
11. Magnetisches Antriebssystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die mit den Anschlagflächen des Ankers (8) zusammenwirkenden Gegenflächen am Jochkreis mindestens eine Lochreihe mit Kanälen (15) aufweisen.
PCT/EP2008/056751 2007-06-15 2008-06-02 Magnetisches antriebssystem für eine schalteinrichtung WO2008151959A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08760338.7A EP2165347B1 (de) 2007-06-15 2008-06-02 Magnetisches antriebssystem für eine schalteinrichtung
CN200880101812.8A CN101772820B (zh) 2007-06-15 2008-06-02 用于断路设备的磁性驱动系统
US12/663,655 US20100176902A1 (en) 2007-06-15 2008-06-02 Magnetic Drive System for a Switching Device
MX2009013440A MX2009013440A (es) 2007-06-15 2008-06-02 Sistema de accionamiento magnetico para una unidad de comnutacion.
ES08760338.7T ES2569903T3 (es) 2007-06-15 2008-06-02 Sistema de accionamiento magnético para un dispositivo de conmutación

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007028203A DE102007028203B3 (de) 2007-06-15 2007-06-15 Magnetisches Antriebssystem für eine Schalteinrichtung
DE102007028203.8 2007-06-15

Publications (1)

Publication Number Publication Date
WO2008151959A1 true WO2008151959A1 (de) 2008-12-18

Family

ID=39718525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/056751 WO2008151959A1 (de) 2007-06-15 2008-06-02 Magnetisches antriebssystem für eine schalteinrichtung

Country Status (7)

Country Link
US (1) US20100176902A1 (de)
EP (1) EP2165347B1 (de)
CN (1) CN101772820B (de)
DE (1) DE102007028203B3 (de)
ES (1) ES2569903T3 (de)
MX (1) MX2009013440A (de)
WO (1) WO2008151959A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2704173A1 (de) * 2012-08-27 2014-03-05 ABB Technology AG Elektromagnetischer Aktuator für einen Mittelspannungs-Vakuum-Schutzschalter
CN111033669B (zh) * 2017-08-21 2021-11-09 三菱电机株式会社 电磁操作机构及断路器
US10297376B2 (en) * 2017-09-25 2019-05-21 The United States Of America As Represented By The Administrator Of Nasa Bi-stable pin actuator
WO2019117649A1 (ko) * 2017-12-14 2019-06-20 최태광 자기력 제어 장치 및 이를 이용한 자성체 홀딩 장치
FR3084772B1 (fr) * 2018-08-01 2021-06-18 Schneider Electric Ind Sas Actionneur electromagnetique et appareil de commutation electrique comportant cet actionneur

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624576A (en) * 1970-05-02 1971-11-30 Siemens Ag Laminated magnet core
DE3332093A1 (de) * 1983-09-02 1985-03-21 Siemens AG, 1000 Berlin und 8000 München Schaltstueck fuer eine vakuumschaltroehre
DE19709089A1 (de) * 1997-03-06 1998-09-10 Abb Patent Gmbh Permanentmagnetischer Antrieb für einen Schalter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164456A (ja) * 1985-01-11 1986-07-25 Diesel Kiki Co Ltd 電磁アクチユエ−タ
US5207410A (en) * 1992-06-03 1993-05-04 Siemens Automotive L.P. Means for improving the opening response of a solenoid operated fuel valve
DE29706491U1 (de) * 1997-04-11 1998-08-06 Fev Motorentech Gmbh & Co Kg Elektromagnetischer Aktuator mit wirbelstromarmem Anker
US6550745B2 (en) * 1999-12-21 2003-04-22 Gary E. Bergstrom Flat lamination solenoid
DE10319285B3 (de) * 2003-04-29 2004-09-23 Compact Dynamics Gmbh Brennstoff-Einspritzventil für Brennkraftmaschinen
DE102005026415A1 (de) * 2005-06-03 2006-12-07 Siemens Ag Elektromagnetische Antriebseinrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624576A (en) * 1970-05-02 1971-11-30 Siemens Ag Laminated magnet core
DE3332093A1 (de) * 1983-09-02 1985-03-21 Siemens AG, 1000 Berlin und 8000 München Schaltstueck fuer eine vakuumschaltroehre
DE19709089A1 (de) * 1997-03-06 1998-09-10 Abb Patent Gmbh Permanentmagnetischer Antrieb für einen Schalter

Also Published As

Publication number Publication date
US20100176902A1 (en) 2010-07-15
EP2165347B1 (de) 2016-03-16
EP2165347A1 (de) 2010-03-24
MX2009013440A (es) 2010-01-27
DE102007028203B3 (de) 2008-12-04
ES2569903T3 (es) 2016-05-13
CN101772820B (zh) 2013-07-10
CN101772820A (zh) 2010-07-07

Similar Documents

Publication Publication Date Title
DE3334160C2 (de) Magnetventil
WO2005066982A1 (de) Elektromagnetischer linearantrieb
DE10146899A1 (de) Elektromagnetischer Aktuator, insbesondere elektromagnetischer Antrieb für ein Schaltgerät
EP0078324A1 (de) Polarisiertes elektromagnetisches relais
DE3527174C2 (de)
EP2165347B1 (de) Magnetisches antriebssystem für eine schalteinrichtung
EP2686854B1 (de) Elektromagnetische aktuatorvorrichtung
EP0686989B1 (de) Bistabile Schaltvorrichtung
EP0883146B1 (de) Permanentmagnetischer Antrieb für einen Schalter
DE2056364A1 (de) Elektromagnetsystem für Mosaik-Druckwerke
EP0251075B1 (de) Magnetventil für flüssige und gasförmige Medien
DE3338602C2 (de)
DE19714413A1 (de) Elektromagnetischer Antrieb
DE102017211257B4 (de) Elektromagnetischer Antrieb und damit ausgestattetes Ventil
EP0216943A1 (de) Elektromagnetische Betätigungsvorrichtung, insbesondere für Druckhammerantriebe
DE3502469C2 (de)
DE3528090C1 (de) Elektromagnetisches Relais
DE3018407A1 (de) Elektromagnetisch betaetigbarer stoesselantrieb, insbesondere fuer anschlagdrucker
DE4224470A1 (de) Magnetventil für flüssige und gasförmige Medien
DE4417142C2 (de) Gleichstrom-Hubmagnet und Verfahren zu dessen Herstellung
EP0108159A1 (de) Elektromagnetischer Drehantrieb mit Nickbewegung, insbesondere für Anschlagdrucker
DE102004039985A1 (de) Relais
DE10035173C1 (de) Magnetsystem für ein elektromagnetisches Relais
EP0176618B1 (de) Elektromagnetischer Stösselantrieb, insbesondere für Anschlagdrucker
DE8205174U1 (de) Magnetventil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880101812.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08760338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008760338

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12663655

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 4276/KOLNP/2009

Country of ref document: IN

Ref document number: MX/A/2009/013440

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE