WO2008113626A1 - Hochdruckpumpe zur förderung von kraftstoff mit einem torsionsentkoppelten druckfederelement in der stösseleinrichtung - Google Patents

Hochdruckpumpe zur förderung von kraftstoff mit einem torsionsentkoppelten druckfederelement in der stösseleinrichtung Download PDF

Info

Publication number
WO2008113626A1
WO2008113626A1 PCT/EP2008/050915 EP2008050915W WO2008113626A1 WO 2008113626 A1 WO2008113626 A1 WO 2008113626A1 EP 2008050915 W EP2008050915 W EP 2008050915W WO 2008113626 A1 WO2008113626 A1 WO 2008113626A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression spring
contact surface
spring element
friction
pressure pump
Prior art date
Application number
PCT/EP2008/050915
Other languages
English (en)
French (fr)
Inventor
Gerhard Meier
Bernd Haeusser
Andreas Dutt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE502008001897T priority Critical patent/DE502008001897D1/de
Priority to CN2008800085036A priority patent/CN101636579B/zh
Priority to US12/531,642 priority patent/US20100101539A1/en
Priority to AT08708238T priority patent/ATE489554T1/de
Priority to JP2009553984A priority patent/JP2010521620A/ja
Priority to EP08708238A priority patent/EP2137402B1/de
Publication of WO2008113626A1 publication Critical patent/WO2008113626A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/445Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/26Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston

Definitions

  • High-pressure pump for conveying fuel with a torsion-decoupled compression spring element in the plunger device
  • the present invention relates to a high pressure pump, in particular for conveying fuel for a common rail fuel injection system according to the preamble of
  • Claim 1 further defined type.
  • High-pressure pumps for conveying fuel which are suitable for common
  • the high-pressure pumps are used to provide a high-pressure fuel within the common rail, which are acted upon by service bridges up to 2 Kbar and more. Therefore, special requirements are placed on the high-pressure pumps in order to promote the fuel in an efficient manner to the said pressures.
  • the high-pressure pumps are usually driven via a coupling with the crankshaft of the internal combustion engine, wherein the high-pressure pump can be designed according to the principle of a cam drive. These include a camshaft having a cam geometry which displaces a picking element into a lifting movement in the direction of a lifting axis, and thus a pump piston connected to the picking element is set in a lifting movement.
  • a introduced in a cylinder head valve gear can the
  • the pump piston cooperate with this to promote the fuel.
  • the pump piston is guided in a liftable manner in the pump body or in the cylinder head, and communicates with the tapping element at least via a roller shoe.
  • the tapping element is usually designed as a roller, which rolls over the cam geometry. The arrangement of the roller in operative connection with the cam geometry is advantageous because between the roller and the
  • Cam geometry forms a line contact, which has a high load capacity.
  • only rolling movements take place, which are wear-minimized compared to sliding movements.
  • the tapping element in the form of the roller is pressed to guide it on the cam geometry by means of a compression spring element against this, whereby at the same time the return stroke of the pump piston is ensured.
  • Such compression spring elements are as
  • linear guides Although this against rotation between the plunger device and the pump body in the form of linear guides are known, however, a sufficient accuracy is often not achievable. Also, linear guides have minimal play, which is comparatively large, and the line contact between the pick-off element and the cam geometry also remains unaffected. This circumstance leads to premature wear of the high pressure pump, which is undesirable in view of the required operating time and reliability of the high pressure pump.
  • the invention includes the technical teaching that the at least one contact surface between the compression spring element and the plunger device and / or the adjoining surface of the compression spring element comprises a frictional force minimized surface coating to provide a Torsionsentkopplung the compression spring element.
  • the advantage of the solution according to the invention lies in a decoupling of the torsional movement of the compression spring element from the plunger device.
  • the accompanying during the compression of the compression spring element rotation of the same can not be transmitted to the plunger device at a contact surface with a friction-minimized surface coating, so that a rotation of the plunger device, and thus a rotation of the
  • the Anyakinnelement is annular and has two opposing planar surfaces, so that a flat surface to the contact surface in the ram guide and the other flat surface to the end of the
  • either the first plane surface, the opposite plane surface or both plane surfaces of the pressure disk element can be provided with a friction-minimized surface coating.
  • the Anyakinnelement can also be connected on one side rotationally fixed to the compression spring element, so that a defined sliding movement of the opposite plane surface of the Anyakinnides can take place relative to the plunger guide. If the compression spring element is compressed, then a torsion in the compression spring element can be caused, which is compensated between the An réellelationnelement and the tappet guide.
  • the tapping element is designed as a roller element and the tappet device further comprises a tappet guide with a roller shoe inserted into it, on which the contact surface is formed with the friction-minimized surface coating itself.
  • the contact surface with the friction-minimized surface coating can be formed both on the pressure disk element and on the tappet guide itself, whereby a combination of the respective contact surfaces with a respective friction-minimized surface coating is possible.
  • the advantage can be used to select different surface coatings, which slide on each other, so that a tribologically optimized friction pairing is formed.
  • a spring disk element is arranged rotationally fixed thereto, which is flush with the contact surface of the tappet guide.
  • the spring disk element can cohesively, positively or by means
  • Connecting elements may be attached to the compression spring element, so that the spring disk element is also formed as a planar ring contour, and forms an annular contact surface.
  • the adjacent to the contact surface of the tappet guide contact surface of the spring disk element comprises the frictional force minimized surface coating.
  • the invention comprises both a spring disk element arranged at the end side on the pressure spring element and a pressure disk element, so that the pressure disk element is arranged between the spring disk element and the tappet guide, and the contact surface of the pressure spring element adjoins the contact surface of the spring disk element.
  • four contact surfaces with a respective friction-minimized surface coating in a stack arrangement can adjoin one another, wherein the pressure-disk element is located between the spring-disk element and the tappet guide.
  • the friction-minimized surface coating comprises a bonded coating and / or a dry lubricant applied to the contact surface.
  • the friction-minimized Surface coating may also be a hard coating, such as a titanium oxide coating, a zirconium oxide coating, a silicon oxide coating, a titanium carbide coating or a titanium nitrite B coat. It is also possible to provide innovative PVD hard coatings such as TiMgN coatings. A combination of friction-minimized surface coatings and a surface-layer treatment of the respective contact surface should also be provided as an advantageous possibility within the scope of the present invention.
  • Titanium carbide coatings which are characterized by a very high hardness, coupled with a low coefficient of friction and highest adhesion.
  • Titanium nitrite coatings are characterized by high hardness, high toughness and a very low tendency
  • the plunger device which comprises the compression spring element, is located inside the pump body, which is filled with fuel. Therefore, the fuel may act as a lubricant, so that the surface coating cooperates with the lubricating effect of the fuel. Therefore, the surface coating should have a corresponding resistance to the fuel, which is particularly a diesel fuel.
  • a further surface coating may be called a titanium-aluminum nitride coating, wherein a chromium nitride coating is also a possible
  • Hard material coating represents. These coatings are characterized in particular by a very high chemical and thermal stability, in which case the chromium nitrite coating has a low tendency to adhesion, since the arrangement of the compression spring element can have locally high surface pressures in operative connection with the pressure disk element or the spring disk element Adhesion tendency is advantageous.
  • a frictional force-minimized surface coating in the form of a monolayer, wherein also binary layers (Ti (C, N)), multilayer coatings (TiC / TiN) or graded coatings (TiC / Ti (C, N) / TiN) represent a possible variant.
  • the friction-minimized surface coating according to the invention is not limited to a specific layer system, but comprises several different layer systems.
  • Fig. 1 is a cross-sectional view of a high-pressure pump with a plunger device and a compression spring element, a plunger guide with a roller shoe inserted and arranged between the compression spring element and the plunger guide
  • FIG. 2 shows a cross-sectional view of the pressure-disk element according to the invention with a first and a second contact surface
  • Fig. 3 is a cross-sectional view of the arrangement of the plunger device with respective contact surfaces according to the invention, wherein the compression spring element, the
  • An horrinnelement and a spring washer element is shown in each case in a disassembled arrangement.
  • Fig. 1 shows a cross-sectional side view of a high pressure pump 1, as used in common rail fuel injection systems for diesel engines.
  • the high pressure pump
  • the high-pressure pump 1 comprises a tapping element 2, which rolls over a cam geometry 3 arranged on a camshaft 3.
  • the camshaft 3 is driven on the engine side, and comprises at least one cam geometry 4, wherein these includes one or more evenly distributed on the circumference arranged cams.
  • the tapping element 2 exerts a lifting movement in the direction of a lifting axis 5, wherein the lifting movement of the tapping element 2 is transmitted to a tappet device 6.
  • the tappet device 6 comprises a compression spring element 7 and a pump piston 12, wherein the tapping element 2 is received within a tappet guide 10, which together with the roller shoe 15 is also part of the tappet device 6.
  • a An horrinnelement 9 is arranged, which is shown cross-cut and executed in the form of a face plate.
  • the pump piston 12 which is guided within a cylinder head 13, and with a valve device in the cylinder head 13 extends to
  • the high-pressure pump 1 essentially comprises a pump body 14, wherein the cylinder head 13 is placed sealingly on the pump body 14. Therefore, both the pump body 14 and the cylinder head 13, the guide means of the lifting movement of the plunger means 6 in the direction of the lifting axis 5, wherein a rotation of the plunger means 6 to prevent rotation about the
  • Hubachse 5 is not shown in detail.
  • Fig. 2 shows an enlarged view of the An réellelicniatas 9, which is - with regard to Fig. 1 - between the compression spring element and the tappet guide.
  • the An réelleusionnelement 9 comprises a contact surface 8a according to the invention and an opposite further contact surface 8b, which has a frictional force-minimized surface coating.
  • the An réelleusionnelement 9 extends annularly around the lifting axis 5, so that can extend through the An réelleludenelement 9 of the pump piston.
  • the friction-minimized contact surfaces 8a and 8b respectively adjoin the compression spring element and the tappet guide, so that either the first contact surface 8a or the second contact surface 8b or both contact surfaces have the friction-minimized surface coating according to the invention.
  • Fig. 3 shows a possible arrangement of a plunger device 6 according to the invention with a An horrinnelement 9, which between the plunger guide 10 and a
  • Spring disk element 11 is arranged, wherein in the tappet guide 10 of the roller shoe 15 is used to receive the tapping element 2.
  • the spring disk element 11 is brought into connection with the compression spring element 7, wherein the connection either cohesively (welding, soldering, gluing) or form-fitting (pressing, wedging or caulking) with is connected to the compression spring element.
  • the spring disk element 11 may comprise a further contact surface 8d according to the invention, which likewise has a friction-minimized surface coating.
  • a contact surface 8c located on the tappet guide 10, a contact surface 8c, which may also have a frictional force minimized surface coating.
  • Fig. 3 is a An horrinnelement 9 between the
  • the sliding movement comprises an oscillating rotational movement in small angular ranges, since at each stroke of the roller shoe 15, a torsion of the compression spring element 7 relative to the tappet guide 10 takes place.
  • This rotation of the compression spring element 7 is thus compensated between the contact surfaces 8a, 8b, 8c and 8d, since the contact surfaces are minimized friction and allow a sliding movement to each other, the sliding causes minimal or even in connection with the lubricating effect of the fuel no significant frictional force.
  • the Vercardne Trent of the compression spring element 7 is not transmitted to the tappet guide 10 so that it does not transmit the rotary motion further to the tapping element 2, and the line contact between the tapping element 2 and the cam geometry 4 is maintained on the camshaft 3.
  • the invention is not limited in its execution to the above-mentioned preferred embodiment. Rather, a number of variants is conceivable which makes use of the illustrated solution even with fundamentally different types.

Abstract

Die vorliegende Erfindung betrifft eine Hochdruckpumpe (1), insbesondere zur Förderung von Kraftstoff für ein Common-Rail-Kraftstoffeinspritzsystem, umfassend wenigstens einen Nockentrieb mit einem Abgriffselement (2), welches durch eine ineiner Nockenwelle (3) eingebrachte Nockengeometrie (4) in eine Hubbewegung in Richtung einer Hubachse (5) versetzbar ist, wobei die Hubbewegung auf eine Stößeleinrichtung (6) übertragbar ist, wobei die Stößeleinrichtung (6) und das Abgriffselement (2) mittels eines Druckfederelementes (7) in Richtung der Nockengeometrie (4) kraftbeaufschlagt ist, und die Stößeleinrichtung (6) wenigstens eine Kontaktfläche (8a, 8b, 8c, 8d) aufweist, an die das Druckfederelement (7) angrenzt, wobei die wenigstens eine Kontaktfläche (8a, 8b, 8c, 8d) und/oder die an diese angrenzende Oberfläche des Druckfederelements (7) eine reibkraftminimierte Oberflächenbeschichtung umfasst, um eine Torsionsentkopplung des Druckfederelementes (7) zu schaffen.

Description

Hochdruckpumpe zur Förderung von Kraftstoff mit einem torsionsentkoppelten Druckfederelement in der Stößeleinrichtung
Die vorliegende Erfindung betrifft eine Hochdruckpumpe, insbesondere zur Förderung von Kraftstoff für ein Common- Rail- Kraftstoffeinspritzsystem gemäß der im Oberbegriff des
Anspruchs 1 näher definierten Art.
Stand der Technik
Allgemein bekannt sind Hochdruckpumpen zur Förderung von Kraftstoff, welche für Common-
Rail- Kraftstoffeinspritzsysteme Anwendung finden. Die Hochdruckpumpen dienen zur Bereitstellung eines unter Hochdruck stehenden Kraftstoffs innerhalb des Common- Rail, welche mit Betriebsbrücken bis zu 2 Kbar und mehr beaufschlagt sind. Daher sind an die Hochdruckpumpen besondere Anforderungen gestellt, um auf effiziente Weise den Kraftstoff auf die genannten Drücke zu fördern. Angetrieben werden die Hochdruckpumpen üblicherweise über eine Kopplung mit der Kurbelwelle der Brennkraftmaschine, wobei die Hochdruckpumpe nach dem Prinzip eines Nockentriebs ausgelegt sein kann. Diese umfassen eine Nockenwelle mit einer Nockengeometrie, die ein Abgriffselement in eine Hubbewegung in Richtung einer Hubachse versetzt, und somit ein mit dem Abgriffselement verbundener Pumpenkolben in Hubbewegung versetzt wird. Über ein in einem Zylinderkopf eingebrachten Ventiltrieb kann der
Pumpenkolben mit diesem zusammenwirken, um den Kraftstoff zu fördern. Der Pumpenkolben ist im Pumpenkörper oder im Zylinderkopf hubbeweglich geführt, und steht wenigstens über einen Rollenschuh mit dem Abgriffselement in Verbindung. Das Abgriffselement ist meist als eine Rolle ausgeführt, welche über der Nockengeometrie abwälzt. Die Anordnung der Rolle in Wirkverbindung mit der Nockengeometrie ist von Vorteil, da sich zwischen der Rolle und der
Nockengeometrie eine Linienberührung bildet, welche eine hohe Tragfähigkeit aufweist. Zudem finden nur Wälzbewegungen statt, welche gegenüber Gleitbewegungen verschleißminimiert sind. Das Abgriffselement in Gestalt der Rolle wird zur Führung desselben auf der Nockengeometrie mittels eines Druckfederelementes gegen diese gedrückt, womit zugleich der Rückhub des Pumpenkolbens sichergestellt wird. Derartige Druckfederelemente sind als
Spiralfedern ausgeführt und erstrecken sich zwischen einem Bund innerhalb des Zylinderkopfes und dem so genannten Rollenschuh, in dem die Rolle aufgenommen ist. Bei einer derartigen Anordnung einer Hochdruckpumpe zur Förderung von Kraftstoff nach dem Prinzip des Nockentriebs ergibt sich jedoch das Problem, dass bei Anwendung eines Druckfederelementes in Gestalt einer Spiralfeder durch die Kompression des Druckfederelementes eine Torsion auf den Verbund des Rollenschuhs, der Stößelführung, den Pumpenkolben und damit auch auf das Abgriffselement, d.h. die Rolle ausgeübt wird. Daher ergibt sich eine Verdrehneigung des Rollenschuhs sowie des Abgriffselementes, so dass die Linienberührung zwischen dem Abgriffselement und der Nockengeometrie nicht näher sichergestellt ist. Hierfür sind zwar Verdrehsicherungen zwischen der Stößeleinrichtung und dem Pumpenkörper in Form von Linearführungen bekannt, jedoch ist eine hinreichende Genauigkeit häufig nicht erreichbar. Auch Linearführungen weisen ein minimales Spiel auf, welches vergleichsweise groß ist, und der Linienkontakt zwischen dem Abgriffselement und der Nockengeometrie auch damit nicht gewährleistet bleibt. Dieser Umstand führt zu einem verfrühten Verschleiß der Hochdruckpumpe, was in Anbetracht der erforderlichen Betriebsdauer und der Zuverlässigkeit der Hochdruckpumpe nicht wünschenswert ist.
Ferner ist es erforderlich, derartige Hubeinrichtungen aus wenigen Bauteilen aufzubauen und eine einfache Konstruktion zu gewährleisten. Anordnungen von torsionsminimierten Druckfederelementen, welche von der Bauart einer einfachen Spiralfeder abweichen, sind häufig sehr aufwendig ausgestaltet und bewirken dennoch nicht die torsionsfreie Kompression des Federbereiches.
Es ist daher die Aufgabe der vorliegenden Erfindung, eine Hochdruckpumpe zur Förderung von Kraftstoff für eine Brennkraftmaschine zu schaffen, welche zum Erhalt der Linienberührung zwischen dem Abgriffselement und der Nockengeometrie eine verdrehfreie Führung der Stößeleinrichtung ermöglicht.
Offenbarung der Erfindung
Diese Aufgabe wird ausgehend von einer Hochdruckpumpe zur Förderung von Kraftstoff für eine Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1 in Verbindung mit dessen kennzeichnenden Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben. Die Erfindung schließt die technische Lehre ein, dass die wenigstens eine Kontaktfläche zwischen dem Druckfederelement und der Stößeleinrichtung und/oder die an diese angrenzende Oberfläche des Druckfederelementes eine reibkraftminimierte Oberflächenbeschichtung umfasst, um eine Torsionsentkopplung des Druckfederelements zu schaffen.
Der Vorteil der erfindungsgemäßen Lösung liegt in einer Entkopplung der Torsionsbewegung des Druckfederelementes von der Stößeleinrichtung. Die bei der Kompression des Druckfederelementes einhergehende Verdrehung derselben kann sich bei einer Kontaktfläche mit einer reibkraftminimierten Oberflächenbeschichtung nicht weiter auf die Stößeleinrichtung übertragen, so dass eine Verdrehung der Stößeleinrichtung, und damit eine Verdrehung des
Abgriffselementes auf der Nockengeometrie nicht mehr durch die Torsion des Druckfederelementes hervorgerufen werden kann. Das Druckfederelement ist zwischen dem Zylinderkopf und der Stößelführung aufgenommen, so dass sich ein Ende des Druckfederelementes gegen eine Aufnahmekontur in der Stößelführung abstützt. Diese Aufnahmestruktur innerhalb der Stößelführung bildet die Kontaktfläche, welche die reibkraftminimierte Oberflächenbeschichtung umfasst. Diese kann jedoch auch seitens des Druckfederelementes ausgebildet sein, so dass die Oberfläche des Druckfederelementes, die gegen die Stößelführung angrenzt, die reibkraftminimierte Oberflächenbeschichtung aufweist.
Gemäß einer vorteilhaften Weiterbildung der Anordnung der Stößeleinrichtung umfasst ein
Andruckscheibenelement, gegen dass das Druckfederelement zur Anlage gebracht ist, wobei wenigstens eine Planfläche des Andruckscheibenelementes die Kontaktfläche mit der reibkraftminimierten Oberflächenbeschichtung bildet. Das Andruckscheibenelement ist ringförmig ausgebildet und weist zwei sich gegenüberliegende Planflächen auf, so dass eine Planfläche an die Kontaktfläche in der Stößelführung und die andere Planfläche an das Ende des
Druckfederelementes angrenzt. Zur Minimierung der Reibkraft und damit zur Entkopplung der Torsion zwischen dem Druckfederelement und der Stößelführung kann entweder die erste Planfläche, die gegenüberliegende Planfläche oder beide Planflächen des Andruckscheibenelementes mit einer reibkraftminimierten Oberflächenbeschichtung versehen sein. Jedoch kann das Andruckscheibenelement auch mit dem Druckfederelement einseitig verdrehfest verbunden sein, so dass eine definierte Gleitbewegung der gegenüberliegenden Planfläche des Andruckscheibenelementes relativ zur Stößelführung stattfinden kann. Wird das Druckfederelement komprimiert, so kann eine Torsion im Druckfederelement hervorgerufen werden, die zwischen dem Andruckscheibenelement und der Stößelführung ausgeglichen wird. - A -
Es ist von Vorteil, dass das Abgriffselement als Rollenelement ausgebildet ist und die Stößeleinrichtung ferner eine Stößelführung mit einem in diese eingesetzten Rollenschuh umfasst, an welchem die Kontaktfläche mit der reibkraftminimierten Oberflächenbeschichtung selbst ausgebildet ist. Damit wird eine weitere Möglichkeit aufgezeigt, dass die Kontaktfläche mit der reibkraftminimierten Oberflächenbeschichtung sowohl am Andruckscheibenelement als auch an der Stößelführung selbst ausgebildet sein kann, wobei auch eine Kombination der jeweiligen Kontaktflächen mit einer jeweiligen reibkraftminimierten Oberflächenbeschichtung möglich ist. Hier kann insbesondere der Vorteil genutzt werden, verschiedene Oberflächenbeschichtungen zu wählen, welche aufeinander abgleiten, so dass eine tribologisch optimierte Reibpaarung gebildet wird.
Es ist ferner von Vorteil, dass endseitig am Druckfederelement ein Federscheibenelement verdrehfest an diesem angeordnet ist, welches plan an die Kontaktfläche der Stößelführung angrenzt. Das Federscheibenelement kann stoffschlüssig, formschlüssig oder mittels
Verbindungselementen am Druckfederelement angebracht sein, so dass das Federscheibenelement ebenfalls als plane Ringkontur ausgebildet ist, und eine ringförmige Kontaktfläche bildet. Vorteilhafterweise umfasst die an die Kontaktfläche der Stößelführung angrenzende Kontaktfläche des Federscheibenelementes die reibkraftminimierte Oberflächenbeschichtung. Eine noch vorteilhaftere Ausführungsform der vorliegenden
Erfindung umfasst sowohl ein endseitig an das Druckfederelement angeordnetes Federscheibenelement und ein Andruckscheibenelement, so dass das Andruckscheibenelement zwischen dem Federscheibenelement und der Stößelführung angeordnet ist, und die Kontaktfläche des Druckfederelementes an die Kontaktfläche des Federscheibenelementes angrenzt. Gemäß der letztgenannten Anordnung können vier Kontaktflächen mit einer jeweiligen reibkraftminimierten Oberflächenbeschichtung in einer Stapelanordnung aneinander angrenzen, wobei sich das Andruckscheibenelement zwischen dem Federscheibenelement und der Stößelführung befindet.
Vorteilhafterweise ist die reibkraftminimierte Oberflächenbeschichtung mittels eines PVD-
Verfahrens, eines CVD-Verfahrens, eines galvanischen Verfahrens oder eines chemischen Verfahrens auf die wenigstens eine Kontaktfläche aufgebracht. Ferner besteht die Möglichkeit, dass die reibkraftminimierte Oberflächenbeschichtung einen Gleitlack und/oder einen auf die Kontaktfläche aufgebrachten Trockenschmierstoff umfasst. Die reibkraftminimierte Oberflächenbeschichtung kann auch eine Hartstoffbeschichtung sein, wie beispielsweise eine Titan-Oxid-Beschichtung, eine Zirkon-Oxid-Beschichtung, eine Silizium-Oxid-Beschichtung, eine Titankarbid-B eschichtung oder eine Titannitrit-B eschichtung. Weiterhin besteht die Möglichkeit, innovative PVD- Hartstoff- Beschichtungen wie TiMgN- Beschichtungen vorzusehen. Auch eine Kombination von reibkraftminimierten Oberflächenbeschichtungen und einer Randschichtbehandlung der jeweiligen Kontaktoberfläche ist als vorteilhafte Möglichkeit im Rahmen der vorliegenden Erfindung vorzusehen. Besonders vorteilhaft sind Titankarbid- Beschichtungen, welche sich durch eine sehr hohe Härte, gepaart mit einem niedrigen Reibkoeffizient und höchster Haftfestigkeit, auszeichnen. Titannitrit-B eschichtungen zeichnen sich hingegen durch eine hohe Härte, eine hohe Zähigkeit und eine sehr geringe Neigung zu
Aufschweißungen aus, so dass ein Fressen und eine Belagbildung vermieden werden kann. Ferner sind gute Korrosions- und Oxidationseigenschaften vorteilhaft.
Die Stößeleinrichtung, welche das Druckfederelement umfasst, befindet sich innerhalb des Pumpenkörpers, welcher mit Kraftstoff gefüllt ist. Daher kann der Kraftstoff als Schmiermittel zur Wirkung kommen, so dass die Oberflächenbeschichtung mit der Schmierwirkung des Kraftstoffs zusammenwirkt. Daher sollte die Oberflächenbeschichtung eine entsprechende Beständigkeit gegenüber dem Kraftstoff, welcher insbesondere ein Dieselkraftstoff ist, aufweisen. Als eine weitere Oberflächenbeschichtung kann eine Titan-Aluminiumnitrit- Beschichtung genannt werden, wobei ferner eine Chromnitrit-Beschichtung eine mögliche
Hartstoff-Beschichtung darstellt. Diese Beschichtungen zeichnen sich insbesondere durch eine sehr hohe chemische und thermische Stabilität aus, wobei gerade die Chromnitrit-Beschichtung eine geringe Adhäsionstendenz aufweist, da die Anordnung des Druckfederelementes in Wirkverbindung mit dem Andruckscheibenelement bzw. dem Federscheibenelement lokal hohe Flächenpressungen aufweisen kann, so dass eine geringe Adhäsionstendenz vorteilhaft ist.
Es kann auch eine reibkraftminimierte Oberflächenbeschichtung in Gestalt einer Mono-Schicht zur Anwendung kommen, wobei auch binäre Schichten (Ti(C,N)), Mehrlagenschichten (TiC/TiN) oder gradierte Schichten (TiC/Ti(C,N)/TiN) eine mögliche Variante darstellen. Damit ist die erfindungsgemäße reibkraftminimierte Oberflächenbeschichtung nicht auf ein bestimmtes Schichtsystem begrenzt, sondern umfasst mehrere verschiedene Schichtsysteme.
Um die Vorteile der erfindungsgemäßen Lösung der reibkraftminimierten Oberflächenbeschichtung auch für andere beanspruchte Oberflächen zu nutzen, kann im Rahmen der vorliegenden Erfindung vorgesehen sein, das gesamte Druckfederelement sowie die gesamte Stößelführung und auch das gesamte Andruckscheibenelement sowie das Federscheibenelement vollständig mit einer Oberflächenbeschichtung zu versehen. Gerade die Stößelführung gleitet innerhalb des Pumpenkörpers oder des Zylinderkopfes in einer Führungsbohrung, so dass eine ganzheitliche Beschichtung der Bauteile ebenfalls von Vorteil ist.
Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher dargestellt.
Ausführungsbeispiele
Es zeigt:
Fig. 1 eine quergeschnittene Ansicht einer Hochdruckpumpe mit einer Stößeleinrichtung sowie einem Druckfederelement, einer Stößelführung mit einem eingesetzten Rollenschuh und einem zwischen dem Druckfederelement und der Stößelführung angeordneten
Andruckscheibenelement;
Fig. 2 eine quergeschnittene Ansicht des erfindungsgemäßen Andruckscheibenelementes mit einer ersten sowie einer zweiten Kontaktfläche; und
Fig. 3 eine quergeschnittene Ansicht der Anordnung der Stößeleinrichtung mit jeweiligen erfindungsgemäßen Kontaktflächen, wobei das Druckfederelement, das
Andruckscheibenelement sowie ein Federscheibenelement jeweils in einer voneinander gelösten Anordnung dargestellt ist.
Fig. 1 zeigt eine quergeschnittene Seitenansicht einer Hochdruckpumpe 1 , wie sie bei Common- Rail- Kraftstoffeinspritzsystemen für Dieselmotoren zum Einsatz kommt. Die Hochdruckpumpe
1 dient zur Förderung von Dieselkraftstoff, um diesen mit einem hohen Druck einem Common- Rail zur Verfügung zu stellen. Die Hochdruckpumpe 1 umfasst ein Abgriffselement 2, welches über einer auf einer Nockenwelle 3 angeordneten Nockengeometrie 4 abwälzt. Die Nockenwelle 3 wird motorseitig angetrieben, und umfasst wenigstens eine Nockengeometrie 4, wobei diese eine oder mehrere auf den Umfang gleichverteilt angeordnete Nocken umfasst. Dadurch übt das Abgriffselement 2 eine Hubbewegung in Richtung einer Hubachse 5 aus, wobei die Hubbewegung des Abgriffselementes 2 auf eine Stößeleinrichtung 6 übertragen wird. Die Stößeleinrichtung 6 umfasst ein Druckfederelement 7 sowie einen Pumpenkolben 12, wobei das Abgriffselement 2 innerhalb einer Stößelführung 10 aufgenommen ist, welche gemeinsam mit dem Rollenschuh 15 ebenfalls Bestandteil der Stößeleinrichtung 6 ist. Zwischen dem Druckfederelement 7 und der Stößelführung 10 ist ein Andruckscheibenelement 9 angeordnet, welches quergeschnitten dargestellt und in Gestalt einer Planscheibe ausgeführt ist. Mittig aus dem Rollenschuh 10 erstreckt sich der Pumpenkolben 12, welcher innerhalb eines Zylinderkopfes 13 geführt ist, und mit einer Ventileinrichtung im Zylinderkopf 13 zur
Förderung des Kraftstoffes zusammenwirkt. Die Hochdruckpumpe 1 umfasst im Wesentlichen einen Pumpenkörper 14, wobei der Zylinderkopf 13 auf den Pumpenkörper 14 dichtend aufgesetzt ist. Daher bildet sowohl der Pumpenkörper 14 als auch der Zylinderkopf 13 die Führungseinrichtung der Hubbewegung der Stößeleinrichtung 6 in Richtung der Hubachse 5, wobei eine Verdrehsicherung der Stößeleinrichtung 6 zur Vermeidung einer Verdrehung um die
Hubachse 5 nicht näher dargestellt ist.
Fig. 2 zeigt eine vergrößerte Darstellung der Andruckscheibenelementes 9, welche sich - mit Blick auf Fig. 1 - zwischen dem Druckfederelement und der Stößelführung befindet. Das Andruckscheibenelement 9 umfasst eine erfindungsgemäße Kontaktfläche 8a sowie eine gegenüberliegende weitere Kontaktfläche 8b, welche eine reibkraftminimierte Oberflächenbeschichtung aufweist. Das Andruckscheibenelement 9 erstreckt sich ringförmig um die Hubachse 5, so dass sich durch das Andruckscheibenelement 9 der Pumpenkolben erstrecken kann. Die reibkraftminimierten Kontaktflächen 8a und 8b grenzen jeweils an das Druckfederelement sowie an die Stößelführung an, so dass entweder die erste Kontaktfläche 8a oder die zweite Kontaktfläche 8b oder beide Kontaktflächen die erfindungsgemäße reibkraftminimierte Oberflächenbeschichtung aufweisen.
Fig. 3 zeigt eine mögliche Anordnung einer erfindungsgemäßen Stößeleinrichtung 6 mit einem Andruckscheibenelement 9, welches zwischen der Stößelführung 10 sowie einem
Federscheibenelement 11 angeordnet ist, wobei in der Stößelführung 10 der Rollenschuh 15 zur Aufnahme des Abgriffselementes 2 eingesetzt ist. Das Federscheibenelement 11 ist mit dem Druckfederelement 7 in Verbindung gebracht, wobei die Verbindung entweder stoffschlüssig (Schweißen, Löten, Kleben) oder formschlüssig (Verpressen, Verkeilen oder Verstemmen) mit dem Druckfederelement verbunden ist. Das Federscheibenelement 11 kann eine weitere erfindungsgemäße Kontaktfläche 8d umfassen, welche ebenfalls eine reibkraftminimierte Oberflächenbeschichtung aufweist. Ferner befindet sich auf der Stößelführung 10 eine Kontaktfläche 8c, welche ebenfalls eine reibkraftminimierte Oberflächenbeschichtung aufweisen kann. Gemäß Fig. 3 ist ein Andruckscheibenelement 9 zwischen dem
Federscheibenelement 11 und der Stößelführung 10 eingebracht, wobei das Andruckscheibenelement 9 auch entfallen kann, so dass die Kontaktfläche 8d des Federscheibenelementes 11 direkt auf der Kontaktfläche 8c der Stößelführung 10 angrenzt, und auf dieser abgleiten kann.
Die Gleitbewegung umfasst dabei eine oszillierende Rotationsbewegung in kleinen Winkelbereichen, da bei jedem Hub des Rollenschuhs 15 eine Torsion des Druckfederelementes 7 gegenüber der Stößelführung 10 erfolgt. Diese Verdrehung des Druckfederelementes 7 wird damit zwischen den Kontaktflächen 8a, 8b, 8c sowie 8d ausgeglichen, da die Kontaktflächen reibkraftminimiert sind und eine Gleitbewegung zueinander zulassen, wobei die Gleitbewegung minimale oder sogar in Verbindung mit der Schmierwirkung des Kraftstoffes keine nennenswerte Reibkraft hervorruft. Damit wird die Verdrehneigung des Druckfederelementes 7 nicht auf die Stößelführung 10 übertragen, so dass dieser die Drehbewegung ferner nicht auf das Abgriffselement 2 überträgt, und die Linienberührung zwischen dem Abgriffselement 2 und der Nockengeometrie 4 auf der Nockenwelle 3 beibehalten wird.
Die Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene bevorzugte Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebraucht macht.

Claims

Ansprüche
1. Hochdruckpumpe (1), insbesondere zur Förderung von Kraftstoff für ein Common- Rail- Kraftstoffeinspritzsystem, umfassend wenigstens einen Nockentrieb mit einem Abgriffselement (2), welches durch eine in einer Nockenwelle (3) eingebrachte
Nockengeometrie (4) in eine Hubbewegung in Richtung einer Hubachse (5) versetzbar ist, wobei die Hubbewegung auf eine Stößeleinrichtung (6) übertragbar ist, wobei die Stößeleinrichtung (6) und das Abgriffselement (2) mittels eines Druckfederelementes (7) in Richtung der Nockengeometrie (4) kraftbeaufschlagt ist, und die Stößeleinrichtung (6) wenigstens eine Kontaktfläche (8a, 8b, 8c, 8d) aufweist, an die das Druckfederelement (7) angrenzt, dadurch gekennzeichnet, dass die wenigstens eine Kontaktfläche (8a, 8b, 8c, 8d) und/oder die an diese angrenzende Oberfläche des Druckfederelements (7) eine reibkraftminimierte Oberflächenbeschichtung umfasst, um eine Torsionsentkopplung des Druckfederelementes (7) zu schaffen.
2. Hochdruckpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Stößeleinrichtung (6) ein Andruckscheibenelement (9) umfasst, gegen das das Druckfederelement (7) zur Anlage gebracht ist, und wenigstens eine Planfläche des Andruckscheibenelements (9) die Kontaktfläche (8a, 8b) mit der reibkraftminimierten Oberflächenbeschichtung bildet.
3. Hochdruckpumpe (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Abgriffselement (2) als Rollenelement ausgebildet ist und die Stößeleinrichtung (6) ferner eine Stößelführung (10) umfasst, an welcher die Kontaktfläche
(8c) mit der reibkraftminimierten Oberflächenbeschichtung ausgebildet ist.
4. Hochdruckpumpe (1) nach Anspruch 3, dadurch gekennzeichnet, dass endseitig am Druckfederelement (7) ein Federscheibenelement (11) verdrehfest an diesem angeordnet ist, welches plan an die Kontaktfläche (8c) der
Stößelführung (10) angrenzt.
5. Hochdruckpumpe (1) nach Ansprach 3 oder 4, dadurch gekennzeichnet, dass die an die Kontaktfläche (8c) der Stößelführung (10) angrenzende Kontaktfläche (8d) des Federscheibenelements (11) eine reibkraftminimierte Oberflächenbeschichtung umfasst.
6. Hochdrackpumpe (1) nach Ansprach 4 oder 5, dadurch gekennzeichnet, dass zwischen dem Federscheibenelement (11) und der Stößelführung (10) das Andrackscheibenelement (9) angeordnet ist, sodass die Kontaktfläche (8a, 8b) des Druckfederelementes (7) an die Kontaktfläche (8d) angrenzt.
7. Hochdrackpumpe (1) nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die reibkraftminimierte Oberflächenbeschichtung mittels eines PVD- Verfahrens, eines CVD- Verfahrens, eines galvanischen Verfahrens oder eines chemischen Verfahrens auf die wenigstens eine Kontaktfläche (8a, 8b, 8c, 8d) aufgebracht ist.
8. Hochdrackpumpe (1) nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die reibkraftminimierte Oberflächenbeschichtung einen Gleitlack und/oder einen auf die Kontaktfläche (8a, 8b, 8c, 8d) aufgebrachten Trockenschmierstoff umfasst.
PCT/EP2008/050915 2007-03-16 2008-01-28 Hochdruckpumpe zur förderung von kraftstoff mit einem torsionsentkoppelten druckfederelement in der stösseleinrichtung WO2008113626A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE502008001897T DE502008001897D1 (de) 2007-03-16 2008-01-28 Hochdruckpumpe zur förderung von kraftstoff mit einem torsionsentkoppelten druckfederelement in der stösseleinrichtung
CN2008800085036A CN101636579B (zh) 2007-03-16 2008-01-28 带有在推杆装置中的扭转脱耦的压簧元件的用于输送燃料的高压泵
US12/531,642 US20100101539A1 (en) 2007-03-16 2008-01-28 High-pressure pump for delivering fuel comprising a torsion-decoupled compression spring element in the plunger unit
AT08708238T ATE489554T1 (de) 2007-03-16 2008-01-28 Hochdruckpumpe zur förderung von kraftstoff mit einem torsionsentkoppelten druckfederelement in der stösseleinrichtung
JP2009553984A JP2010521620A (ja) 2007-03-16 2008-01-28 タペット装置に設けられたねじり遮断された圧縮ばねエレメントを備えた、燃料を圧送するための高圧ポンプ
EP08708238A EP2137402B1 (de) 2007-03-16 2008-01-28 Hochdruckpumpe zur förderung von kraftstoff mit einem torsionsentkoppelten druckfederelement in der stösseleinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007012705A DE102007012705A1 (de) 2007-03-16 2007-03-16 Hochdruckpumpe zur Förderung von Kraftstoff mit einem torsionsentkoppelten Druckfederelement in der Stößeleinrichtung
DE102007012705.9 2007-03-16

Publications (1)

Publication Number Publication Date
WO2008113626A1 true WO2008113626A1 (de) 2008-09-25

Family

ID=39434276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050915 WO2008113626A1 (de) 2007-03-16 2008-01-28 Hochdruckpumpe zur förderung von kraftstoff mit einem torsionsentkoppelten druckfederelement in der stösseleinrichtung

Country Status (8)

Country Link
US (1) US20100101539A1 (de)
EP (1) EP2137402B1 (de)
JP (1) JP2010521620A (de)
KR (1) KR20090119977A (de)
CN (1) CN101636579B (de)
AT (1) ATE489554T1 (de)
DE (2) DE102007012705A1 (de)
WO (1) WO2008113626A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001882A1 (de) * 2010-02-12 2011-08-18 Robert Bosch GmbH, 70469 Kraftstoffhochdruckpumpe
DE102010003886A1 (de) * 2010-04-13 2011-10-13 Robert Bosch Gmbh Hochdruckpumpe
DE102010020578A1 (de) * 2010-05-14 2011-11-17 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zum Antrieb eines Nebenaggregates
DE102010038468A1 (de) * 2010-07-27 2012-02-02 Robert Bosch Gmbh Hochdruckpumpe
DE102011077766A1 (de) * 2011-06-17 2012-12-20 Elringklinger Ag Betätigungseinrichtung für ein Abgasstrom-Steuerelement eines Abgasturboladers
DE102011086703A1 (de) * 2011-11-21 2013-05-23 Robert Bosch Gmbh Hochdruckpumpe
CN102539056A (zh) * 2011-12-31 2012-07-04 北京理工大学 一种滑动轴承油膜压力测量装置
NL2010455C2 (en) * 2013-03-14 2014-09-16 Glind Metrology B V Hydraulic pressure calibrator and calibration method.
JP2018031333A (ja) * 2016-08-26 2018-03-01 日立オートモティブシステムズ株式会社 高圧燃料ポンプ
JP7058505B2 (ja) * 2018-01-09 2022-04-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 燃料供給ポンプ
KR102228818B1 (ko) 2019-09-17 2021-03-18 (주)모토닉 고압연료펌프 및 그가 적용된 직접분사식 엘피아이 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624134A1 (de) * 1986-07-17 1988-01-21 Bosch Gmbh Robert Einspritzpumpe
DE4227853A1 (de) * 1992-08-22 1994-02-24 Bosch Gmbh Robert Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE19829547A1 (de) * 1998-07-02 2000-01-13 Bosch Gmbh Robert Radialkolbenpumpe
WO2005031151A1 (de) * 2003-09-26 2005-04-07 Robert Bosch Gmbh Stössel für eine hochdruckpumpe und hochdruckpumpe mit wenigstens einem stössel
WO2005052356A2 (de) * 2003-11-25 2005-06-09 Robert Bosch Gmbh Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3143073A1 (de) * 1981-10-30 1983-05-11 Robert Bosch Gmbh, 7000 Stuttgart Einspritzpumpe mit einstellbarem spritzzeitpunkt
DE4227854B4 (de) * 1992-08-22 2005-12-15 Robert Bosch Gmbh Kraftstoffeinspritzpumpe für Brennkraftmaschinen
US5239951A (en) * 1992-11-12 1993-08-31 Ford Motor Company Valve lifter
DE10106983A1 (de) * 2001-02-15 2002-08-29 Ina Schaeffler Kg Stößel
CN2627233Y (zh) * 2003-05-21 2004-07-21 上海东维燃油喷射有限公司 带定位槽无套圈挺柱体部件
DE102004048711B4 (de) * 2004-10-06 2006-09-14 Siemens Ag Radialkolbenpumpe mit Rollenstößel
US7311087B2 (en) * 2004-11-23 2007-12-25 Cummins Inc. Fuel pump with a guided tappet assembly and methods for guiding and assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624134A1 (de) * 1986-07-17 1988-01-21 Bosch Gmbh Robert Einspritzpumpe
DE4227853A1 (de) * 1992-08-22 1994-02-24 Bosch Gmbh Robert Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE19829547A1 (de) * 1998-07-02 2000-01-13 Bosch Gmbh Robert Radialkolbenpumpe
WO2005031151A1 (de) * 2003-09-26 2005-04-07 Robert Bosch Gmbh Stössel für eine hochdruckpumpe und hochdruckpumpe mit wenigstens einem stössel
WO2005052356A2 (de) * 2003-11-25 2005-06-09 Robert Bosch Gmbh Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine

Also Published As

Publication number Publication date
EP2137402A1 (de) 2009-12-30
EP2137402B1 (de) 2010-11-24
CN101636579B (zh) 2011-10-05
JP2010521620A (ja) 2010-06-24
KR20090119977A (ko) 2009-11-23
US20100101539A1 (en) 2010-04-29
DE502008001897D1 (de) 2011-01-05
CN101636579A (zh) 2010-01-27
DE102007012705A1 (de) 2008-09-18
ATE489554T1 (de) 2010-12-15

Similar Documents

Publication Publication Date Title
EP2137402B1 (de) Hochdruckpumpe zur förderung von kraftstoff mit einem torsionsentkoppelten druckfederelement in der stösseleinrichtung
EP2032850A1 (de) Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
DE102012208809B4 (de) Steuerventil eines Nockenwellenverstellers
DE10010945A1 (de) Pumpe zur Versorgung eines Kraftstoffeinspritzsystems und einer hydraulischen Ventilsteuerung für Brennkraftmaschinen
DE102008001960A1 (de) Pumpe, insbesondere Kraftstoffhochdruckpumpe
DE102017120884A1 (de) Rollenstößel für eine Brennkraftmaschine
DE102009002520A1 (de) Hochdruckpumpe
DE102006051204B4 (de) Nockenwellentrieb mit einem geometrischen Toleranzausgleich
WO2008101749A1 (de) Hochdruckpumpe zur förderung von kraftstoff mit einer verbesserten führung des pumpenkolbens
EP2052132B1 (de) Kraftstoffeinspritzpumpe mit einer verbesserten antriebskupplung
WO2012080340A1 (de) Hochdruckpumpe
DE102009028392A1 (de) Hochdruckpumpe
DE102010062159A1 (de) Hochdruckpumpe
EP2510235B1 (de) Pumpenanordnung
WO1997024525A1 (de) Brennkraftmaschine
DE102009003097B4 (de) Hochdruckpumpe, insbesondere Radialkolbenpumpe, mit zumindest einem Stößelkörper, einem verdrehbaren Rollenschuh, einer Laufrolle und einer axialen Anlagestelle für die Laufrolle, die beabstandet zur Drehachse der Laufrolle angeordnet ist
DE102018112815A1 (de) Variabler Ventiltrieb einer Hubkolbenbrennkraftmaschine
WO2010057889A1 (de) Common-rail-hochdruckpumpe
DE102008043430A1 (de) Kolbenpumpe mit optiertem axialem Anlaufverhalten einer Nockenwelle
DE102013210950A1 (de) Optimierte Stößelbaugruppe
WO2009013224A1 (de) Kraftstoffpumpe für ein einspritzsystem einer brennkraftmaschine
DE102010001882A1 (de) Kraftstoffhochdruckpumpe
DE102009046761A1 (de) Kupplung
DE102018220668A1 (de) Pumpe, insbesondere Kraftstoffhochdruckpumpe
DE102009045325A1 (de) Kupplung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880008503.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008708238

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08708238

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097019255

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2009553984

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 5701/CHENP/2009

Country of ref document: IN