WO2008111656A1 - 温水容器およびその製造法 - Google Patents

温水容器およびその製造法 Download PDF

Info

Publication number
WO2008111656A1
WO2008111656A1 PCT/JP2008/054678 JP2008054678W WO2008111656A1 WO 2008111656 A1 WO2008111656 A1 WO 2008111656A1 JP 2008054678 W JP2008054678 W JP 2008054678W WO 2008111656 A1 WO2008111656 A1 WO 2008111656A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
hot water
less
mass
concentration
Prior art date
Application number
PCT/JP2008/054678
Other languages
English (en)
French (fr)
Inventor
Toshiro Adachi
Akihiro Nonomura
Osamu Yamamoto
Kouki Tomimura
Original Assignee
Nisshin Steel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co., Ltd. filed Critical Nisshin Steel Co., Ltd.
Priority to EP08738660.3A priority Critical patent/EP2135699B1/en
Priority to US12/530,294 priority patent/US20100096291A1/en
Publication of WO2008111656A1 publication Critical patent/WO2008111656A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/032Seam welding; Backing means; Inserts for three-dimensional seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/181Construction of the tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/12Vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a welded stainless steel hot water container suitable for electric water heaters and hot water storage tanks, and a method for manufacturing the same.
  • Conventional technology is a welded stainless steel hot water container suitable for electric water heaters and hot water storage tanks, and a method for manufacturing the same.
  • SUS 4 4 4 (Low C, Low N, 1 8 C r-2 Mo-N b, T i) of ferritic stainless steel is mainly used for hot water containers such as electric water heaters and hot water storage tanks. It is used. Since a hot water container is required to have a pressure resistance equivalent to the upper water pressure, a structure in which curved plate-like members called mirrors are welded to both ends of a cylindrical plate-like member called a trunk is the mainstream.
  • the corrosion resistance of stainless steel is hindered by welding, and corrosion occurs in the weld zone (mainly the heat affected zone) even in the warm water environment of dilute chloride aqueous solution.
  • the cause of the decrease in corrosion resistance is thought to be related to the formation of oxide scale during welding. In terms of corrosion, pitting corrosion tends to repassivate and hardly grow, but crevice corrosion is generally difficult to repassivate, and corrosion may penetrate the plate thickness and lead to water leakage.
  • hot water containers have a structure in which an upper mirror and a lower mirror are attached to the body by TIG welding.
  • welding is usually performed with the outer surface of the mirror fitted into the inner surface of the barrel.
  • a weld gap is formed at the portion of the inner surface of the container that contacts the hot water.
  • the torch side of TIG welding is sealed with Ar gas, the generation of oxide scale is suppressed, and the corrosion resistance of the hot water container is at a level that causes almost no problems.
  • the surface opposite the torch If there is no special measure to seal with Ar gas, etc., the corrosion resistance will decrease with the formation of oxidized scale.
  • this back gas seal is a time-consuming work for manufacturing a hot water container.
  • the hot water container is provided with a socket for inserting a socket that serves as a water flow path, and in some cases, a heater, a sensor, or a power supply component such as a cord connected to the heater.
  • a back gas seal jig and gas hose from the narrow hole of these socket flanges.
  • a separate flange may be provided just for backing gas sealing.
  • a large amount of inert gas such as Ar needs to be consumed. For this reason, the back gas seal is a factor that increases the manufacturing cost of hot water containers.
  • Patent Document 1 discloses a structure of a hot water container that avoids the occurrence of crevice corrosion by making the insertion depth of the lid (mirror) into the cylinder (trunk) up to 2 O mm.
  • Patent Document 2 discloses a ferritic stainless steel that has excellent corrosion resistance of the welded part by suppressing the oxidation loss of Cr during welding by adding Ti and A1.
  • Patent Document 3 when a flange is welded to a can body of a hot water container, a sealing gas is supplied to the welded portion including the weld bead and the weld heat affected zone until the temperature of the welded portion is 400 ° C or lower. It is described to continue.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5 4-7 7 7 1 1
  • Patent Document 2 Japanese Patent Laid-Open No. 5-7 0 8 9 9
  • Patent Document 3 Japanese Patent Laid-Open No. 2 096-9 7 90 8 Problems to be solved by the invention
  • Patent Document 1 discloses a method in which a seal gas is carefully used in welding joining of a can body and a flange. In this case as well, the back gas seal is still necessary to ensure high corrosion resistance at the welded part of the mirror and the barrel, and the hot water container is still expensive.
  • an object of the present invention is to provide a hot water container exhibiting excellent corrosion resistance in a welded portion without an increase in cost due to a back gas seal.
  • the purpose is to have a back bead formed on the inner surface of the vessel by TIG welding of steels with a Cr content of more than 21 to 25% by mass without a back gas seal.
  • the Cr concentration in the steel substrate where the oxide scale soluble in the chloride aqueous solution is formed is 16 mass% or more in the depth region of 10 nm or more from the steel substrate oxide scale interface. This is accomplished with a hot water container.
  • the Cr concentration in the steel substrate where the oxide scale soluble in the chloride aqueous solution is formed is 10 0 from the steel substrate oxide scale interface. It is 16 mass% or more in the depth region of nm or more.
  • the steel surface near the back bead has an oxide scale with a Cr concentration of 30% by mass or more.
  • the “back bead” is the surface of the weld bead that appears where the arc from the torch does not hit.
  • Such a hot water container which is not a flow path for water (including hot water) and does not have a flange that is not an insertion part for a current-carrying part, is a particularly suitable target.
  • flange includes a socket.
  • the present invention also provides a method for manufacturing a hot water container having a step of joining steel materials having the above composition by TIG welding without a back gas seal so that a back bead is formed on the inner surface of the container.
  • the present invention it is possible to provide a low-cost hot water container having excellent corrosion resistance and omitting the back gas seal on the inner surface of the container.
  • This hot water container can have a simple structure without a flange that is not required for use.
  • the corrosion resistance of the weld is improved compared to conventional hot water containers using SUS4 4 4. Therefore, the present invention provides a hot water container with extremely high cost performance.
  • FIG. 1 is a schematic drawing of a drawing-substituting photograph showing the appearance of the back surface of a TIG weld without a back gas seal, and a cross-section of the corresponding positional relationship.
  • Figure 2 is a graph showing the relationship between the maximum temperature reached and the maximum erosion depth on the back of the TIG weld without back gas seal for the weld specimen after the immersion test.
  • Fig. 3 is a diagram schematically showing the analysis position by EDX in the cross-sectional analysis sample of weld heat affected zone of steel X and steel Y.
  • Fig. 4 is a graph illustrating the relationship between the distance from the steel substrate-oxidation scale interface and the Cr concentration at the site corresponding to the maximum temperature of steel X and steel plate at 500 ° C.
  • FIG. 5 is a diagram schematically showing the structure of a TIG welding gap test piece.
  • FIG. 6 is a diagram schematically showing the immersion test method of Example 2.
  • FIG. 7 is a view schematically showing the structure of the test can body used in Example 3.
  • Fig. 8 is a diagram schematically showing the corrosion resistance test method using an actual machine. Preferred embodiments of the invention
  • the corrosion resistance degradation at the heat affected zone of stainless steel is generally due to the consumption of Cr in the steel substrate due to oxidation (oxidation loss), and a Cr-deficient layer is formed on the surface of the steel substrate. It is thought to be caused by However, as a result of detailed investigations of the composition of the stainless steel substrate directly under the weld oxidation scale by the inventors, the Cr concentration tends to decrease as it is closer to the steel substrate no-oxidation scale interface (ie, at a shallower position). If the Cr concentration is 16 mass% or more at least at a depth of 10 nm or more from the oxide scale interface of the steel substrate, crevice corrosion that can be a problem in the warm water environment of clean water can be avoided. It was revealed.
  • steel X with a Cr content of about 22% and steel Y with about 18% are taken as examples, and the relationship between the maximum temperature reached and the corrosion resistance at the weld heat affected zone on the back of the TIG weld zone, and the surface of the steel substrate And Cr concentration analysis of oxide scale will be explained.
  • Steel X is a ferritic stainless steel having the composition specified in the present invention, and Steel Y has a lower Cr content.
  • FIG. 1 shows a photograph of the appearance of the weld back surface of Steel X and a cross-sectional view of the corresponding positional relationship.
  • the scale of the maximum temperature reached in the weld heat affected zone is also shown on the photo. This maximum temperature indicates the temperature distribution measured by attaching thermocouples at various positions on the stainless steel surface.
  • the maximum temperature reached at the weld heat affected zone decreases as the distance from the weld metal part (bead) increases. It was 1000 ° C at a position 2 mm away and 500 ° C at 5 mm.
  • the relationship between the distance from the weld bond and the maximum temperature reached varies depending on the welding conditions, but the TIG welding condition range of ferritic stainless steel is relatively narrow, so if the plate thickness is the same, the temperature distribution in the weld heat affected zone Are almost the same. In other words, once the plate thickness is determined, the maximum temperature reached is almost determined by the distance from the weld bond.
  • dissolution or peeling of the oxide scale in the liquid was observed at a maximum temperature of around 800 and at a position of 400 to 60, and the film dissolved or peeled at a temperature slightly higher than 800 ° C. was not recognized.
  • the steel substrate was observed with an optical microscope, there was almost no erosion due to pitting corrosion at position 80.
  • FIG. 2 shows the relationship between the maximum temperature reached and the maximum erosion depth.
  • the maximum erosion depth is obtained by measuring the pit depth by the depth of focus method using an optical microscope and displaying the deepest pit depth at the same temperature.
  • steel X had a shallower maximum erosion depth and was superior in corrosion resistance in the heat affected zone. In this way, it was found that pitting corrosion occurred in TIG welds at a position where it was heated to 400-600 ° C in the weld heat affected zone, and that the progress of pitting corrosion was different between steel types. .
  • Fig. 3 schematically shows the analysis position in the steel base analysis sample.
  • Figure 4 shows an example of the analysis results at the site where the maximum temperature reached 500 ° C.
  • the Cr concentration in the surface part of the steel substrate at the part corresponding to the maximum temperature of 50 0 is 1 nm deep from the steel substrate oxide scale interface (ie, the oxide scale) for both Steel X and Steel Y.
  • the rate of change in Cr concentration is smaller in the region with a depth of 10 to 100 nm than in the extreme surface layer region with a depth of 10 to 10 nm.
  • the Cr concentration at the depth of 1 nm was about 19% by mass for steel X and less than 14% by mass for steel Y.
  • the Cr concentration at 10 nm depth is maintained at about 20% by mass in Steel X, but is below 16% by mass in Steel Y.
  • the difference in Cr concentration between steel X and steel Y in the steel base layer is thought to be due to the difference in the Cr content in the steel (that is, the difference in steel type). It should be noted that the Cr concentration in the surface layer of the steel substrate at the part corresponding to the highest temperature of 100 ° C is almost the same as that of the part corresponding to the above 500 ° C for both steel X and steel Y. there were.
  • the oxide scale was analyzed by TEM-EDX, an oxide scale mainly composed of Fe 2 O 3 was formed in both the steel X and the steel Y at the part corresponding to the maximum temperature of 500 ° C. I found out.
  • the Cr concentration in the oxide scale was as low as 1 to 23% by mass.
  • the Cr concentration in the oxidation scale referred to here is the ratio of Cr to the metal element, and the analytical values of C and O were excluded from the calculation of the Cr concentration. Since this oxide containing mainly Fe 2 O 3 having a low Cr concentration is easily dissolved in an aqueous chloride solution, in the case of a hot water container, the above-mentioned steel substrate surface layer is applied at the portion corresponding to the maximum temperature of 500 ° C. Part (It can be seen that the Cr concentration dominates the corrosion resistance.
  • the Cr concentration of both steel X and steel Y is as high as 30 to 84 mass%.
  • An oxide scale mainly composed of materials was formed. Even if the Cr content level in the steel was different, there was no particular difference in the Cr concentration in the oxide scale.
  • the Cr concentration in the oxide scale here is also the proportion of Cr in the metal element, and the analytical values of C and O were excluded in the calculation of the Cr concentration.
  • This oxide with a high Cr concentration is chemically stable in aqueous chloride solutions such as tap water. The reason that no pitting corrosion was observed in this part in both steel X and steel Y is thought to be because the oxide scale with a high Cr concentration functions as a protective coating.
  • the inventors have also analyzed the oxide scale for various steel types other than Steel X and Steel Y.
  • the steel surface near the back bead (the surface of the steel substrate where the maximum temperature reached more than 80 °). It was concluded that having an oxide scale with a Cr concentration of 30% by mass or more is advantageous in maintaining high corrosion resistance against hot water in the vicinity of the back bead. Slight enrichment of Si was observed in this oxide scale, but no enrichment of A1, Ti, Nb, etc. was observed.
  • C and N are elements inevitably contained in steel. Reducing the C and N content makes the steel softer and improves workability, and reduces the formation of carbides and nitrides and improves weldability and corrosion resistance of welds. For this reason, it is preferable that the C content and the N content are low, and both C and N are limited to contents of 0.025% or less. In addition, both C and N are ⁇ . 0 15 mass. / It is more preferable that it is 0 or less.
  • Si is an element useful for refinement as a deoxidizer, but if added in a large amount, the steel becomes hard, hot cracking of the weld is promoted, the toughness of the weld decreases, and the weld
  • the Si content is limited to 1% or less. Promotes corrosion progression Therefore, the upper limit is 1%.
  • M n combines with S present as an impurity in the steel to form chemically unstable M n S, reducing the corrosion resistance.
  • Solid solution Mn is also a factor that inhibits corrosion resistance. For this reason, a lower Mn content is preferable, and it is limited to 1% or less.
  • the Mn content is more preferably 0.5% by mass or less, and still more preferably 0.3% by mass or less.
  • P is preferable to be low because it impairs the toughness of the base metal and the welded portion, but it is acceptable up to 0.045% by mass.
  • S forms M n S and becomes the starting point of pitting corrosion and inhibits corrosion resistance, it has no effect of promoting pitting corrosion growth. However, a lower value is preferred because it adversely affects hot cracking of the weld. Therefore, the S content is 0.01 mass. / Limited to 0 or less.
  • Ni has the effect of increasing the Cr concentration in the oxide scale and the Cr concentration immediately below the oxide scale by adding an appropriate amount to the steel whose Cr content exceeds 21 mass%. Ni also acts to suppress the progress of corrosion. When the oxidized scale of the weld zone elutes and the newly formed metal surface is exposed (the state where no passive film is formed), Ni exerts an action to suppress metal dissolution and forms a passive film by Cr. Expected to contribute. Other Ni is an element effective in improving the toughness of ferritic stainless steel. In order to obtain these effects effectively, it is necessary to contain 0.1% or more of Ni. However, since a large amount of Ni content impairs the mechanical properties of steel and impairs workability, the upper limit of the Ni content is 1%.
  • Cr is a constituent element of the passive film and generally improves local corrosion resistance such as pitting corrosion resistance and crevice corrosion resistance, and the effect of improving corrosion resistance increases with the Cr content.
  • Cr In order to maintain the corrosion resistance in the hot water environment at the back of the TIG welded part without back gas seal at a level that does not cause any problems, as described above, in the region of the steel substrate surface layer part of the weld heat-affected zone at a depth of 10 nm or more, Cr It is important that the concentration is 16% by mass or more. As a result of various investigations, the Cr concentration in the above region was stably reduced to 16% by mass or less. In order to maintain the above, it was found that it is extremely effective to make the Cr content in the steel more than 21 mass%.
  • the Cr content may be in the range of more than 21 to 25% by mass, and more preferably 23 to 25% by mass.
  • Mo is an effective element that increases corrosion resistance together with Cr. If the Cr content is low, the corrosion resistance improvement effect of Mo will not be fully demonstrated, but the growth of corrosion occurring in the heat affected zone on the back of the TIG weld will progress away from the steel substrate / oxide scale interface. At the growth point, there is a Cr concentration that is almost equal to the amount of Cr added, and the Cr concentration is sufficient to exhibit the effect of improving the corrosion resistance inherent in Mo. Considering the warm water environment of clean water, the effect of improving the corrosion resistance is small when the Mo content is less than 0.1% by mass. On the other hand, if the Mo content exceeds 2% by mass, the workability and cost will increase. Therefore, the Mo content is 0.1-2% by mass.
  • Cu improves the pitting corrosion potential of the fluorescent stainless steel and suppresses the progress of corrosion. That is, when the oxide scale elutes and the new surface is exposed, Cu suppresses metal elution and contributes to the formation of a passive film by Cr as in Ni. Cu can be added. In order to sufficiently obtain the above effect of Cu, it is more effective to set the Cu content to 0.1 mass% or more. However, excessive Cu content is rather a factor that promotes the progress of corrosion, so when Cu is added, it should be within 1% by mass.
  • Ti and Nb have strong affinity for C and N, and are effective elements for preventing intergranular corrosion, which is a problem with fluorescent stainless steel.
  • T i 0.05% by mass or more
  • Nb 0.05% by mass.
  • the Ding 1 content is 0.4 mass% or less
  • the Nb content is 0.5 mass% or less.
  • a 1 oxide film is formed on the weld gas surface of the weld torch surface where the Ar gas is sealed, and the corrosion resistance is reduced by preventing the oxidation loss of Cr. Make it smaller. If the A 1 content is less than 0.02% by mass, an effective A 1 oxide film cannot be formed. On the other hand, if the A1 content exceeds 0.3% by mass, the surface quality and weldability of the material deteriorate. Therefore, the A1 content is set to 0.02 to 0.3% by mass.
  • a stainless steel plate having the above composition is manufactured by a general stainless steel plate manufacturing process, and a cold-rolled annealed steel plate having a thickness of about 0.6 to 1.5 mm is obtained.
  • the surface finish may be pickled.
  • the hot water container of the present invention can be constructed using a technique in which a can body member (for example, a mirror or a trunk) of a hot water container is produced by forming this steel plate and these members are joined together by TIG welding. However, at the time of welding, at least the final welding process for joining the can members is performed at least the process of TIG welding without back gas seal so that the back bead is formed on the inner surface of the container.
  • the final welding that seals the container except for the flange portion can be performed without placing a torch on the outer surface of the container and performing back gas sealing on the inner surface of the container.
  • Ar for back gas sealing is not required, and further, a flange that is required only for back gas sealing is not required.
  • the hot water container of the present invention thus obtained has a higher cost performance than the conventional one.
  • the hot water container of the present invention is not a water (including hot water) flow path, and can have a simple structure without a flange that is not a place where current-carrying parts are inserted. In this case, the corrosion resistance of unnecessary flanges is reduced. There is no need to worry about it, and it will become more reliable.
  • Stainless steel with the chemical composition shown in Table 2 was melted, and hot-rolled sheets with a thickness of 3 mm were produced by hot rolling. It was. After that, it was cold-rolled to a plate thickness of 1 ⁇ Omm, subjected to finish annealing at 980 to 1050 ° C, pickled, and used as a sample material.
  • steels 1 to 3 are hot water container materials having a composition range specified in the present invention.
  • Steel 4 is 18C r—2Mo SUS444, and Steel 5 is 22C r—IMo SUS445 J 1. Both of these manufacturing histories are common.
  • the steel sheets of each specimen were subjected to TIG: tanning welding under the condition without back gas seal, and TIG welding samples were obtained.
  • TIG welded sample a cross-sectional observation sample was prepared at a position 5 mm from the weld bond in the weld heat-affected zone on the back side of the weld (a position corresponding to a maximum temperature of about 500 ° C), and the Cr concentration in the steel surface was analyzed.
  • the analysis method used was the TEM-EDX method described above. However, when the distance from the steel substrate / oxide scale interface is in the range of 1 nm (directly below the oxide scale) to 20 nm, the measurement points in the depth direction are further increased compared to the examples of Steel X and Steel Y described above.
  • a cross-sectional observation sample was prepared at a position 2 mm from the weld bond on the weld heat affected zone on the back side of the weld (position corresponding to the maximum temperature reached about 1000 ° C), and the Cr concentration of the oxide scale was determined. analyzed.
  • the analysis method used was the TEM-EDX method described above.
  • the analysis position is a location where the distance from the interface of the steel substrate and the oxide scale is about 10 nm.
  • the value with the lowest Cr concentration among 10 points was adopted as the Cr concentration in the oxide scale. As a result, it was confirmed that all steel types had a Cr concentration of 30% by mass or more.
  • the example of the present invention is a part corresponding to the maximum temperature of 500 ° C where the decrease in corrosion resistance is greatest, and the Cr concentration is less than 16% by mass in the steel surface layer. The depth became smaller than 10 nm.
  • steel 4 and steel 5 of the comparative example both have a low Cr concentration just below the oxide scale, and 16 mass at a depth of 10 nm. /. The above Cr concentration was not maintained. The reason for this is that in Steel 4, the Cr content of the steel is 18.3 mass. It is thought that the Ni content is low in Steel 5 because it is low as / 0 .
  • Example 1 Cold rolled annealed pickled steel sheet with l mm thickness
  • Large member of 15 mm x 40 mm, and small member of 15 mm x 25 mm was cut out, and a TIG weld gap test piece having the structure schematically shown in FIG. 5 was produced. That is, after bending near one short side of the small member, the small member is arranged so that the short side of the small member is positioned at the center of the plate surface of the large member. These were joined by TIG welding in a state where a gap was formed in the overlapping part of the two members.
  • FIG. 7 schematically shows the structure of the hot water container.
  • Figure 7 (a) shows the appearance of the test can body.
  • This test can body has a structure in which an upper mirror 11, a barrel 12 and a lower mirror 13 are joined by TIG welding, and is a saddle type having a height of 143 Omm, a width of 52 Omm, and a capacity of 300 L.
  • the barrel 12 is formed by TIG welding the ends of steel plates bent into a cylindrical shape, and has a weld joint 14.
  • a base 17 is joined to the upper mirror 1 1 and the lower mirror 1 3.
  • Fig. 7 (b) schematically shows the cross-sectional structure of the welded part of the upper mirror 11 and the barrel 12.
  • Fig. 7 (c) schematically shows the cross-sectional structure of the welded part of the lower mirror 13 and the barrel 12. In these welded joints 15 and 16, the end of the mirror member enters the inside of the container to form a welding gap.
  • Fig. 8 schematically shows the corrosion resistance test method using an actual machine.
  • the test liquid is heated to 8 O by heater 21 in test liquid tank 22, and the test liquid is always fed from the lower cap of test can 24 at a flow rate of 10 L / min by liquid feed pump 23, for a total of 2 months A test to circulate between was carried out.
  • Each welded portion of the test can body 24 is left in an unclean state, and the welded joints 14, 15 and 16 are formed on the back bead side welded portion formed by welding without back gas seal. Being exposed to the test solution.
  • the test solution was a 2000 p pmC 1 — aqueous solution prepared in Shunan City, Yamaguchi Prefecture, with Cu + added as an oxidizing agent at 2 p pm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

質量%で、C:0.025%以下、Si:1%以下、Mn:1%以下、P:0.045%以下、S:0.01%以下、Ni:0.1~1%、Cr:21超え~25%、Mo:0.1~2%、Al:0.02~0.3%、N:0.025%以下、Cu:0~1%であり、Ti:0.05~0.4%およびNb:0.05~0.5%の1種以上を含有し、残部Feおよび不可避的不純物である組成の鋼材どうしをバックガスシールなしでTIG溶接することにより形成された裏ビードを容器内面に有し、その溶接裏面の熱影響部において塩化物水溶液に可溶の酸化スケールが形成された部位の鋼素地におけるCr濃度が、鋼素地/酸化スケール界面から10nm以上の深さ領域で16質量%以上である温水容器である。

Description

明細書 温水容器およびその製造法 技術分野 本発明は、 電気温水器ゃ貯湯槽などに適した、 溶接構造のステンレス鋼製温水容器、 および その製造法に関する。 従来技術
電気温水器ゃ貯湯槽などの温水容器の材料には主にフェライト系ステンレス鋼の S U S 4 4 4 ( L o w C、 L o w N、 1 8 C r - 2 M o - N b , T i ) が用いられている。 温水容器は上 水圧程度の耐圧性が要求されることから、 胴と呼ばれる円筒状の板状部材の両端に、 鏡と呼ば れる曲面状の板状部材を溶接接合する構造が主流である。 しかし、 ステンレス鋼の耐食性は溶 接によって阻害され、 希薄塩化物水溶液である上水の温水環境においても、 溶接部 (主として 溶接熱影響部) で腐食が生じる。 耐食性低下の原因は溶接時の酸化スケールの生成に関連して いると考えられている。 腐食形態でみると孔食は再不動態化しやすく成長するケースはほとん どないが、 隙間腐食は一般的に再不動態化しにくく、 腐食が板厚を貫通し漏水に至ることがあ る。
一般に温水容器は胴に上部の鏡と下部の鏡を T I G溶接で取り付けた構造のものが多い。 胴 と鏡の接合箇所では、 通常、 鏡の外面を胴の内面にはめ込んだ状態で溶接される。 この溶接部 には、 容器内面の温水に接触する部分において溶接隙間の形成が不可避である。 T I G溶接の トーチ側は A rガスによりシールされるので酸化スケールの生成が抑制され、 温水容器として の耐食性低下はほとんど問題ないレベルである。 一方、 トーチと反対側の面 (以下 「溶接裏 面」 ということがある) は、 特別に A rガス等でシールする措置をとらない限り、 酸化スケー ルの生成に伴って耐食性が低下してしまう。 そのため温水容器を組み立てる際には原則として 容器内面がトーチ側となるように溶接施工されるが、 密閉構造とするために、 鏡を取り付ける 溶接施工のうち最後の施工では容器外面をトーチ側にして溶接せざるを得ない。 したがって、 この場合には容器内面が溶接裏面となるので、 溶接裏面の不活性ガスによるシール、 すなわち バックガスシールが不可欠となっている。
ところが、 このバックガスシールは温水容器を製造するうえで大変手間のかかる作業とな る。 すなわち、 温水容器には水の流路となるソケッ ト (口金) や、 場合によってはヒーター、 センサー等、 あるいはそれらに接続されるコード等の通電部品を挿入するためのフランジが設 けられているが、 これらのソケッ トゃフランジの狭い孔から容器内部にバックガスシール用の 治具およびガスホースを挿入して操作することは意外と難しく、 手間がかかる。 このため、 バ ックガスシールを行うためだけに、 別途フランジを設ける場合もある。 また、 A r等の不活性 ガスを多量に消費する必要が生じる。 このようなことから、 バックガスシールは温水容器の製 造コストを押し上げる要因となっている。
特許文献 1には蓋体 (鏡) の筒体 (胴) への挿入深さを 2 O mmまでとすることにより隙間 腐食の発生を回避した温水容器の構造が開示されている。 特許文献 2には T i と A 1を添加す ることにより溶接時の C rの酸化ロスを抑制した、 溶接部の耐食性に優れるフェライ ト系ステ ンレス鋼が開示されている。 特許文献 3には温水容器の缶体にフランジを溶接接合する際に、 溶接部の温度が 4 0 0 °C以下になるまで溶接ビード及び溶接熱影響部を含めた溶接部にシール ガスを供給し続けることが記載されている。
特許文献 1 :特開昭 5 4— 7 2 7 1 1号公報
特許文献 2 :特開平 5— 7 0 8 9 9号公報
特許文献 3 :特開 2 0 0 6— 9 7 9 0 8号公報 発明が解決しようとする課題
上述のように、 温水容器を組み立てる際の溶接施工においては、 耐食性を確保するために容 器内面側についてバックシールを行う作業が不可欠となっており、 これに伴って温水容器の製 造コス卜が上昇している。 特許文献 1のように溶接隙間の面積を少なくすることは耐隙間腐食 性の向上には有利であるが、 この文献に開示の鋼を用いた場合、 温水容器内面を溶接裏面にす るには、 耐食性低下防止のためにバックガスシールが必要であり、 製造コストの高い温水容器 となることは否めない。 特許文献 2の技術も Arガスバックシールを前提としたものである。 特許文献 3には缶体とフランジの溶接接合でシールガスを入念に使用する手法が開示されてい る。 この場合も鏡と胴の溶接部で高耐食性を確保するためにバックガスシールが必要であるこ とに変わりはなく、 やはりコス トの高い温水容器となってしまう。
本発明はこのような現状に鑑み、 バックガスシールによるコスト上昇を伴わずに溶接部で優 れた耐食性を呈する温水容器を提供することを目的とする。 課題を解決するための手段
上記目的は、 C r含有量が 21超え〜 25質量%の鋼材どうしをバックガスシールなしで T I G溶接することにより形成された裏ビードを容器内面に有し、 その T I G溶接部裏面の熱影 響部 (HAZ) において、 塩化物水溶液に可溶の酸化スケールが形成された部位の鋼素地にお ける C r濃度が、 鋼素地 酸化スケール界面から 10 nm以上の深さ領域で 16質量%以上で ある温水容器によって達成される。
特に本発明では、 質量%で、 C : 0. 025%以下、 S i : 1%以下、 Mn : 1 %以下、 P : 0. 045 %以下、 S : 0. 01 %以下、 N i : 0. 1〜: I %、 C r : 21超え〜 2 5%、 Mo : 0. 1〜2%、 A 1 : 0. 02〜0. 3%、 N: 0. 025。/0以下であり、 T i : 0. 05〜0. 4%および Nb : 0. 05〜0. 5%の 1種以上を含有し、 必要に応じて Cu : 1%以下を含有し、 残部 F eおよび不可避的不純物である組成の鋼材どうしをバックガ スシールなしで T I G溶接することにより形成された裏ビードを、 容器内面に有する温水容器 が提供される。 この温水容器は、 前記 T I G溶接部裏面の熱影響部 (H A Z ) において、 塩化 物水溶液に可溶の酸化スケールが形成された部位の鋼素地における C r濃度が、 鋼素地 酸化 スケール界面から 1 0 n m以上の深さ領域で 1 6質量%以上である。 また、 裏ビード近傍の鋼 材表面に C r濃度 3 0質量%以上の酸化スケールを有する。 ここで 「裏ビード」 はトーチから のアークが当たらない箇所に現れる溶接ビード表面である。
このような温水容器であって、 水 (温水を含む) の流路ではなく、 かつ通電部品の挿入箇所 ではないフランジを持たない構造の温水容器が特に好適な対象となる。 ここで、 「フランジ」 にはソケット (口金) が含まれる。
また本発明では、 上記の組成を有する鋼材どうしを、 容器内面に裏ビ一ドが形成されるよう にバックガスシールなしで T I G溶接することにより接合する工程を有する温水容器の製造法 が提供される。
本発明によれば、 耐食性に優れ、 かつ容器内面のバックガスシールを省略した低コス トの温 水容器が提供可能になった。 この温水容器は、 使用に際して不要となるフランジを持たないシ ンプルな構造とすることができる。 また、 溶接後に焼け取り (酸化スケールの除去) を行う必 要もなく溶接ままの状態で使用できる。 溶接部の耐食性は S U S 4 4 4を用いた従来の温水容 器よりも改善されている。 したがって、 本発明は極めてコス トパフォーマンスの高い温水容器 を提供するものである。 図面の簡単な説明
図 1は、 バックガスシールなしの T I G溶接部裏面の外観を示した図面代用写真およびそ れに対応する位置関係の断面を模式的に示した図である。
図 2は、 浸漬試験後の溶接試験片について、 バックガスシールなしの T I G溶接部裏面に おける最高到達温度と最大侵食深さの関係を示したグラフである。 図 3は、 鋼 Xと鋼 Yの溶接熱影響部断面分析試料における Τ Ε Μ— E D Xによる分析位置 を模式的に示した図である。
図 4は、 鋼 Xと鋼 Υの最高到達温度 5 0 0 °Cに相当する部位について鋼素地 Ζ酸化スケ一 ル界面からの距離と C r濃度の関係を例示したグラフである。
図 5は、 T I G溶接隙間試験片の構造を模式的に示した図である。
図 6は、 実施例 2の浸漬試験方法を模式的に示した図である。
図 7は、 実施例 3に用いた試験缶体の構造を模式的に示した図である。
図 8は、 実機による耐食性試験方法を模式的に示した図である。 発明の好ましい態様
従来、 フェライト系ステンレス鋼におけるバックガスシールなしの T I G溶接部裏面では、 溶接熱影響部 (H A Z ) の酸化スケールが生じた箇所で耐食性が低下し、 隙間腐食等のトラブ ルが生じることが知られている。 ところが発明者らの詳細な研究によれば、 C r含有量が比較 的高い高耐食性のフェライト系ステンレス鋼では、 バックガスシールなしの T I G溶接部裏面 の、 酸化スケールの生じた全ての部位で腐食が生じるのではなく、 溶接熱影響部の一定の部位 で腐食が生じることがわかった。 また、 従来一般的に、 ステンレス鋼の溶接熱影響部での耐食 性低下は、 鋼素地の C rが酸化により消費され (酸化ロス) 、 鋼素地の表面に C r欠乏層が形 成されることによって引き起こされると考えられている。 しかし、 発明者らが溶接酸化スケー ル直下のステンレス鋼素地の組成を詳細に調べた結果、 鋼素地ノ酸化スケール界面に近いほど (すなわち浅い位置ほど) C r濃度が低下する傾向が見られるが、 少なくとも鋼素地 酸化ス ケール界面から 1 0 n m以上の深さ領域において C r濃度が 1 6質量%以上になっていれば、 上水の温水環境において問題となりうる隙間腐食は回避されることが明らかになった。 つま り、 ナノメートルオーダ一という極めて微小領域の観察によれば、 鋼素地の表層に、 いわゆる C r欠乏層が生じることが直ちに耐食性低下の問題に直結するのではなく、 仮に C r欠乏層が 生じても、 鋼素地/酸化スケール界面から 10 nmに満たないような極表層部を除いて、 1 6 質量%以上の C r濃度が確保されていれば、 温水環境での耐隙間腐食性は維持されることが判 明した。 .
以下、 C r含有量が約 22%の鋼 Xと、 約 1 8%の鋼 Yを例に挙げて、 T I G溶接部裏面の 溶接熱影響部における最高到達温度と耐食性の関係、 および鋼素地表層部と酸化スケールの C r濃度分析について説明する。
〔溶接熱影響部の最高到達温度と耐食性の関係〕
表 1に示す鋼からなる板厚 lmmの冷延焼鈍鋼板 (酸洗仕上げ材) を用意した。 鋼 Xは本発 明で規定する組成を有するフェライト系ステンレス鋼、 鋼 Yはそれより C r含有量が低いもの
(SUS 444相当材) である。 これらについて、 バックガスシールなしの条件で T I Gなめ 付け溶接 (部材どうしの接合を摸して 1枚の板上に溶接ビードを形成する操作) を行い、 溶接 ビードを中央に有する 30 X 40mm角の試験片を作製した。 この場合、 溶接ビ一ドは試験片 の短辺に平行であり、 その両側には溶接熱影響部 (HAZ) がある。 この試験片を 1 000 p pmC l —水溶液に 10 p pmの Cu2 + (塩化第二銅で調整) を添加した 80 °Cの試験液に 7
2時間浸漬した。 表 1
Figure imgf000008_0001
図 1に、 鋼 Xの溶接裏面の外観写真と、 それに対応する位置関係の断面図を示す。 写真上に は溶接熱影響部の最高到達温度の目盛りを併記してある。 この最高到達温度はステンレス鋼表 面の種々の位置に熱電対を取り付けることにより測定した温度分布を示したものである。 溶接 熱影響部の最高到達温度は溶接金属部 (ビード) から離れるにしたがって低下し、 溶接ボンド から2mm離れた位置で1000°C、 5 mmでは 500 °Cであった。 本来、 溶接ボンドからの 距離と最高到達温度の関係は溶接条件によって異なるが、 フェライト系ステンレス鋼の T I G 溶接条件範囲は比較的狭いため、 板厚が同じであれば溶接熱影響部での温度分布はほぼ同じに なる。 すなわち、 板厚が決まれば最高到達温度は溶接ボンドからの距離によってほぼ決まる。 浸漬試験後の溶接試験片には最高到達温度が 800 付近および 400〜60 の位置で 酸化スケールの液中への溶解または剥離が観察され、 800°Cより少し高温の領域では皮膜の 溶解や剥離は認められなかった。 光学顕微鏡で鋼素地を観察したところ、 80 の位置では 孔食による侵食はほとんど生じていなかった。 孔食の発生と進行は 400〜600°Cの位置で 認められた。 図 2に、 最高到達温度と最大侵食深さの関係を示す。 最大侵食深さは、 光学顕微 鏡を用いて焦点深度法により孔食深さを測定し、 同じ温度の位置で最も深い孔食深さを表示し たものである。 鋼 X、 鋼 Yとも、 最高到達温度が 500°C付近で最大侵食深さがピークとなつ た。 ただし、 鋼 Xの方が最大侵食深さが浅く、 溶接熱影響部での耐食性は優れていた。 このよ うに、 T I G溶接部での孔食発生は溶接熱影響部のなかで 400〜600°Cの加熱を受けた位 置で生じること、 および鋼種間で孔食の進行が異なることがわかった。
〔鋼素地表層部と酸化スケールの C r濃度分析〕
上記溶接後の試験片の溶接ボンドから 2 mmの位置 (最高到達温度 100 に相当) およ び同 5mm (最高到達温度 500°Cに相当) の位置について、 酸化スケールと鋼素地表層部
(酸化スケールとの界面近傍) の断面を TEM (透過型電子顕微鏡) で観察することが可能な 薄膜試料を作製し、 TEM— EDX (日立ハイテクサイエンスシステムズ社製、 HF 200 0) により組成分析を行った。
鋼素地については、 鋼素地 酸化スケール界面から 1 nm (酸化スケール直下) 、 10 η m、 20nm、 100 n mの各深さ位置を分析した。 図 3に、 鋼素地の分析試料における分析 位置を模式的に示す。 図 4には、 最高到達温度が 500°Cに相当する部位における分析結果を 例示する。 図 4からわかるように、 最高到達温度 5 0 に相当する部位での鋼素地表層部の C r濃度 は、 鋼 X、 鋼 Yとも、 鋼素地 酸化スケール界面から 1 n mの深さ (すなわち酸化スケール直 下) で低下が大きく、 また、 深さが 1 0〜 1 0 0 n mの領域では 1〜 1 0 n mの極表層領域に 比べ C r濃度の変化率 (濃度勾配) が小さい。 1 n m深さでの C r濃度は鋼 Xで約 1 9質量% であり、 鋼 Yでは 1 4質量%を下回った。 1 0 n m深さでの C r濃度は鋼 Xで 2 0質量%程度 を維持しているが、 鋼 Yでは 1 6質量%を下回っている。 このような鋼 Xと鋼 Yの鋼素地表層 部での C r濃度の差は、 鋼中の C r含有量の差 (すなわち鋼種の差) に起因していると考えら れる。 なお、 最高到達温度 1 0 0 0 °Cに相当する部位での鋼素地表層部の C r濃度は、 鋼 X、 鋼 Yともそれぞれ、 上記 5 0 0 °Cに相当する部位とほぼ同じ結果であった。
発明者らは鋼 X、 鋼 Yの他に、 種々の鋼種について上記のような鋼素地表層部の分析を詳細 に行ってきた。 その結果、 酸化スケール直下の鋼素地において C r濃度の低下が大きくても、 1 0 n m深さにおいて 1 6質量。 /0以上の C r濃度が維持されていれば、 その部位における温水 環境での耐食性は、 耐孔食性だけでなく、 耐隙間腐食性についても問題ないレベルが維持され ることを見出した。 したがって、 T I G溶接部裏面の熱影響部の耐食性を問題ないレベルに引 き上げるには、 最も耐食性低下の大きい部位、 すなわち最高到達温度が 5 0 0で程度になった 部位において、 1 0 n m以上の深さ領域における鋼素地中の C r濃度が 1 6質量%以上に維持 されていることが重要である。 なお、 M oについては界面直下を含めその近傍においても鋼素 地中での濃化等、 特異な現象を観測されなかった。
一方、 酸化スケールについて T E M—E D Xで分析したところ、 最高到達温度 5 0 0 °Cに相 当する部位には、 鋼 X、 鋼 Yとも F e 2 O 3を主体とした酸化スケールが形成されていること がわかった。 この酸化スケール中の C r濃度は 1〜2 3質量%と低かった。 ここでいう酸化ス ケ一ル中の C r濃度は金属元素に占める C rの割合であり、 Cや Oの分析値は C r濃度の算出 において除外した。 この C r濃度が低い F e 2 O 3主体の酸化物は塩化物水溶液中で容易に溶 けるので、 温水容器の場合、 最高到達温度 5 0 0 °Cに相当する部位では前述した鋼素地表層部 ( C r濃度が耐食性を支配していると見てよい。
また、 最高到達温度 1 0 0 0 °C程度に相当する部位には、 鋼 X、 鋼 Yとも C r濃度が 3 0〜 8 4質量%と高い C r 2-x F e X O 3タイプの酸化物を主体とした酸化スケールが形成されて いた。 鋼中の C r含有量レベルが違っても酸化スケール中の C r濃度には特段の差は認められ なかった。 ここでいう酸化スケール中の C r濃度も金属元素に占める C rの割合であり、 Cや Oの分析値は C r濃度の算出において除外した。 この C r濃度が高い酸化物は上水等の塩化物 水溶液中において化学的に安定である。 鋼 X、 鋼 Yともこの部位において孔食の発生が全く認 められなかったのは、 C r濃度が高い酸化スケールが保護被膜として機能するためであると考 えられる。 発明者らは鋼 X、 鋼 Y以外の種々の鋼種についても酸化スケールの分析を行ってき たが、 その結果、 裏ビード近傍の鋼材表面 (最高到達温度が 8 0 を超える部分の鋼素地表 面) に C r濃度 3 0質量%以上の酸化スケールを有することが、 当該裏ビード近傍での温水に 対する耐食性を高く維持する上で有利であるとの結論を得た。 なお、 この酸化スケール中には S iの軽微な濃化は観測されたが、 A 1、 T i、 N b等の濃化は認められなかった。
以下、 本発明の温水容器に使用するフェライト系ステンレス鋼の組成について説明する。 〔鋼組成〕
Cおよび Nは、 鋼中に不可避的に含まれる元素である。 C、 N含有量を低減すると鋼は軟質 になり加工性が向上し、 また炭化物、 窒化物の生成が少なくなり溶接性および溶接部の耐食性 が向上する。 このため C含有量および N含有量は低い方が好ましく、 C、 Nとも 0 . 0 2 5 % 以下の含有量に制限される。 また、 C、 Nとも◦ . 0 1 5質量。 /0以下であることがより好まし レ、。
S iは、 脱酸剤として精鍊ゃ铸造では有用な元素であるが、 多量に添加すると、 鋼が硬質に なる、 溶接部の高温割れが助長される、 溶接部の靭性が低下する、 溶接部の腐食進行が助長さ れるといった弊害が顕在化するようになる。 特に温水容器の素材としては溶接部の耐食性を維 持することが重要であり、 その意味で S i含有量は 1 %以下に制限される。 腐食進行を助長す るため、 上限を 1 %とする。 加工性や溶接性をも重視する場合は S i含有量を 0 . 4質量%以 下に制限することが好ましい。
M nは、 鋼中に不純物として存在する Sと結合し、 化学的に不安定な M n Sを形成して耐食 性を低下させる。 また固溶 M nも耐食性を阻害する要因となる。 このため M n含有量は低い方 が好ましく、 1 %以下に制限される。 M n含有量は 0 . 5質量%以下とすることがより好まし く、 0 . 3質量%以下が一層好ましい。
Pは、 母材および溶接部の靭性を損なうので低い方が望ましいが、 0 . 0 4 5質量%まで許 容できる。
Sは、 M n Sを形成して孔食の起点となり耐食性を阻害するものの、 孔食の成長を促進する 作用はない。 しかし、 溶接部の高温割れに悪影響を及ぼすため低い方が好ましい。 したがって S含有量は 0 . 0 1質量。 /0以下に制限される。
N iは、 C r含有量が 2 1質量%を超える鋼への適量添加によって酸化スケール中の C r濃 度および酸化スケール直下の C r濃度を高める作用を有する。 また N iは腐食の進行を抑制す る作用を有する。 溶接部の酸化スケールが溶出しメタル新生面 (不動態皮膜が形成されていな い状態) が露出した場合、 N iはメタルの溶出を抑制する作用を発揮し、 C rによる不動態皮 膜形成に寄与することが期待される。 その他 N iはフェライト系ステンレス鋼の靭性改善に有 効な元素である。 これらの作用を有効に得るためには 0 . 1 %以上の N i含有が必要である。 ただし多量の N i含有は鋼の機械的性質を損ねて加工性を阻害するので、 N i含有量の上限は 1 %とする。
C rは、 不動態皮膜の構成元素であり、 一般に耐孔食性、 耐隙間腐食性などの耐局部腐食性 を向上させ、 その耐食性向上効果は C r含有量とともに大きくなる。 バックガスシールなしの T I G溶接部裏面における温水環境での耐食性を問題ないレベルに維持するためには、 前述の ように溶接熱影響部の鋼素地表層部 1 0 n m深さ以上の領域で C r濃度が 1 6質量%以上にな つていることが重要である。 種々検討の結果、 前記領域での C r濃度を安定して 1 6質量%以 上に維持するためには、 鋼中の C r含有量を 2 1質量%を超える量とすることが極めて有効で あることがわかった。 ただし、 C r含有量があまり高くなると鋼の製造性や機械的性質 (特に 靭性) が低下し、 製造コス トが増大する。 本発明の T I G溶接構造温水容器の使用環境を考慮 すると、 C r含有量は 2 1超え〜 25質量%の範囲とすればよく、 23〜 25質量%とするこ とがより好ましい。
Moは、 一般的には C rとともに耐食性を高める有効な元素である。 C r量が低いと Moの 耐食性改善効果は十分に発揮されないが、 T I G溶接部裏面の熱影響部で発生した腐食の成長 は、 鋼素地/酸化スケール界面から離れたへと進行していくので、 その成長点では概ね添加し た C r量に等しい C r濃度があり、 その C r濃度は Mo本来の耐食性改善効果を発揮させる上 で十分である。 上水の温水環境を考慮すると、 Mo含有量が 0 . 1質量%未満では耐食性の改 善効果は小さい。 一方、 2質量%を超える Mo含有は加工性の低下やコス トの上昇を招く。 し たがって、 Mo含有量は 0 . 1〜2質量%とする。
Cuは、 フヱライト系ステンレス鋼の孔食電位を向上させるとともに、 腐食の進行を抑える 作用を有する。 すなわち、 酸化スケールが溶出して新生面が露出した場合、 Cuはメタルの溶 出を抑制することで、 N iと同様に C rによる不動態皮膜形成に寄与するので、 本発明では必 要に応じて Cuを添加することができる。 Cuの上記作用を十分に得るには 0 . 1質量%以上 の Cu含有量とすることがより効果的である。 ただし、 過剰の Cu含有はむしろ腐食の進行を 促進する要因になるので、 C uを添加する場合は 1質量%以下の範囲で行う。
T i、 Nbは、 C、 Nとの親和力が強く、 フヱライト系ステンレス鋼で問題となる粒界腐食 を防止するのに有効な元素である。 その効果を十分に得るためには、 T i : 0 . 05質量%以 上、 Nb : 0 . 05質量%のうち少なくとも 1種を含有させる必要がある。 しかし、 T iを過 剰に含有させると素材の表面品質や溶接性が悪くなり、 N bを過剰に含有させると溶接高温割 れが生じやすくなり、 また溶接部靭性も低下するようになる。 したがって、 丁 1含有量は0 . 4質量%以下、 Nb含有量は 0 . 5質量%以下の範囲とする。 A 1は、 T iと複合添加することで、 溶接トーチ面の A rガスシールされる溶接部表面に A 1酸化物皮膜を形成し、 C rの酸化ロスを防止することにより耐食性の低下を小さくする。 A 1含有量が 0 . 0 2質量%未満では有効な A 1酸化物皮膜が形成されない。 一方、 A 1含有量 が 0 . 3質量%を超えると素材の表面品質と溶接性が低下する。 したがって A 1含有量は 0 . 0 2〜0 . 3質量%とする。
〔温水容器の製造〕
以上の組成を有するステンレス鋼板を一般的なステンレス鋼板製造工程で製造し、 板厚が概 ね 0 . 6〜1 . 5 mm程度の冷延焼鈍鋼板とする。 表面仕上げは酸洗とすればよい。 この鋼板 を成形加工して温水容器の缶体部材 (例えば鏡、 胴) を作製し、 これらの部材どうしを T I G 溶接で接合する手法を用いて本発明の温水容器を構築することができる。 ただし、 その溶接施 ェに際しては、 容器内面に裏ビードが形成されるようにバックガスシールなしで T I G溶接す る工程を少なくとも缶体部材どうしを接合する最後の溶接工程で実施する。 これにより、 フラ ンジ部を除いて容器が密閉状態となる最後の溶接を、 容器外面側にトーチを配置して、 容器内 面のバックガスシールを行うことなく実施できるので、 内面のバックガスシールを必要として いた従来の製造法と比較して、 作業性が格段に向上する。 また、 バックガスシール用の A rも 不要となり、 さらに、 バックガスシールのためだけに設ける必要のあったフランジも不要とな る。 このようにして得られる本発明の温水容器は、 従来のものと比べコストパフォーマンスが 高い。 また本発明の温水容器は水 (温水を含む) の流路ではなく、 かつ通電部品挿入箇所では ないフランジを持たないシンプルな構造とすることができ、 この場合は不要なフランジ部での 耐食性低下を懸念する必要がなく、 一層信頼性の高いものとなる。 実 施 例
Γ実施例 1 J
表 2に示す化学組成のステンレス鋼を溶製し、 熱間圧延にて板厚 3 mmの熱延板を作製し た。 その後、 板厚 1 · Ommまで冷間圧延し、 980〜1050 °Cで仕上げ焼鈍を施し、 酸洗 したのち試供材とした。 表 2中、 鋼 1〜3は本発明で規定する組成範囲の温水容器素材であ る。 鋼 4は 18C r— 2Moの SUS444、 鋼 5は 22C r— IMoの SUS445 J 1で ある。 これらの製造履歴はいずれも共通である。
表 2
Figure imgf000015_0001
各供試材の鋼板に、 バックガスシールなしの条件で T I G:なめ付け溶接を施し、 T I G溶接 試料を得た。 T I G溶接試料において、 溶接裏面の溶接熱影響部の溶接ボンドから 5 mmの位 置 (最高到達温度約 500°Cに相当する位置) について断面観察試料を作製し、 鋼素地表層部 の C r濃度を分析した。 分析手法は前述の TEM—EDXによる方法を採用した。 ただし、 鋼 素地/酸化スケール界面からの距離が 1 nm (酸化スケール直下) から 20 nmの範囲におい ては、 前述の鋼 X、 鋼 Yの例よりもさらに深さ方向の測定ポイントを増やしてデータを採取し た。 同じ深さで場所を変えて 10点のデータを採取した。 そして、 C r濃度が 16質量%未満 である測定点のうち、 鋼素地 酸化スケール界面からの距離が最も大きい測定点の当該距離 を、 「C r濃度 16質量%未満の深さ」 とした。 表 3に、 酸化スケール直下 (l nm深さ) の C r濃度、 および C r濃度 16質量%未満の深さを示す。 酸化スケール直下の C r濃度は、 1 0点の測定値の範囲を表示してある。
また、 T I G溶接試料において、 溶接裏面の溶接熱影響部の溶接ボンドから 2 mmの位置 (最高到達温度約 1000°Cに相当する位置) について断面観察試料を作製し、 酸化スケール の C r濃度を分析した。 分析手法は前述の TEM— EDXによる方法を採用した。 分析位置は 鋼素地 酸化スケール界面からの距離が約 10 nmの箇所とし、 10点のデータを測定して、 1 0点のうち最も C r濃度の低かった値をその酸化スケール中の C r濃度として採用した。 そ の結果、 いずれの鋼種も 3 0質量%以上の C r濃度を有することが確認された。
表 3
Figure imgf000016_0001
表 3に示されるように、 本発明例のものは、 耐食性の低下が最も大きくなる最高到達温度 5 0 0 °Cに相当する部位で、 鋼素地表層部において C r濃度 1 6質量%未満の深さが 1 0 n mよ り小さくなつた。 これに対し、 比較例の鋼 4、 鋼 5はいずれも酸化スケール直下の C r濃度が 低く、 また 1 0 n m深さにおいても 1 6質量。 /。以上の C r濃度は維持されていなかった。 その 理由については、 鋼 4では鋼の C r含有量が 1 8 . 3質量。 /0と低いこと、 鋼 5では N i含有量 が低いことが考えられる。
「実施例 2」
実施例 1で作製した各鋼種の供試材 (板厚 l mmの冷延焼鈍酸洗鋼板) 力 ら、 1 5 mm X 4 0 mmの大部材、 および 1 5 mm X 2 5 mmの小部材を切り出し、 図 5に模式的に示す構造め T I G溶接隙間試験片を作製した。 すなわち、 小部材の一方の短辺付近に曲げを施した後、 小 部材の曲げを施した方の短辺が大部材の板面中央に位置するように配置し、 前記の曲げによつ て 2つの部材が重なり合う部分に隙間が形成されるような状態で、 これらを T I G溶接で接合 した。 その際、 トーチが大部材を挟んで小部材と反対側に位置するようにするとともに、 隙間 部にトーチから吹き出す A rガスが当たらないようにした。 また、 バックガスシールも行って いない。 ' この T I G溶接試験片を 80°Cの 2000 p pmC 1 -水溶液に 30日間浸漬した。 その 際、 図 6に示すような装置構成とした。 腐食を促進させるための P t補助力ソードを試験片に 接続している。 この場合、 容量 300 L (リットル) の温水缶体に相当する力ソード能力があ る。 試験中、 腐食電流をモニターした。 また浸漬試験後に試験片を解体し、 大部材および小部 材の隙間を形成していた部位について光学顕微鏡を用いた焦点深度法により侵食深さを測定 し、 観測された最も深い侵食深さの値をその鋼種の 「隙間腐食深さ」 とした。 結果を表 4に示 す。 表 4
Figure imgf000017_0001
(*1)
〇 : 7日以内で腐食電流が消滅(1μ A以下)
® : 30日以内で腐食電流が消滅(1 A以下)
• : 30日以上腐食電流が継続(1 IX A超え)
表 4より、 いずれの鋼種も試験期間 30日の間に腐食電流は 1 μ A以下になり、 事実上、 腐 食電流は消滅した。 ただし、 隙間腐食深さに優劣が見られた。 すなわち、 本発明例の鋼 1〜鋼 3は隙間腐食深さが 0 . 1mm以下と浅く、 これは、 再不動態化によって腐食の進行が食い止 められたと判断される。 一方、 比較例の鋼 4 (SU S 444) および鋼 5 (SUS 445 J 1) はいずれも隙間腐食深さが 0 . 1mmを超えており、 腐食は成長の懸念があると判断され る。 この耐食性の優劣は、 バックガスシールなしの T I.G溶接部裏面の熱影響部において鋼素 地表層部の C r濃度分布に差が生じたこと (実施例 1参照) に起因すると考えられる。 なお、 溶接熱影響部での耐食性改善に対して M oの効果は小さい。 「実施例 3」
実機温水容器での溶接接合部の耐食性を調査するため、 本発明例の前記鋼 3と比較例の前記 鋼 4 (SUS 444) を用いて温水容器を試作した。 図 7に温水容器の構造を模式的に示す。 図 7 (a) は試験缶体の外観を示したものである。 この試験缶体は上鏡 1 1、 胴 1 2および下 鏡 1 3を T I G溶接により接合した構造を有し、 高さ 143 Omm, 幅 5 2 Omm、 容量 30 0 Lの俵型である。 胴 1 2は筒状に曲げた鋼板の端部どうしを T I G溶接したものであり、 溶 接接合部 14を有している。 上鏡 1 1および下鏡 1 3には口金 1 7が接合されている。 それ以 外にはフランジ部がないシンプルな構造である。 上鏡 1 1、 胴 1 2および下鏡 1 3の部材に上 記供試鋼が使用されている (上鏡 1 1、 胴 1 2および下鏡 1 3は同一鋼種) 。 図 7 (b) は上 鏡 1 1と胴 1 2の溶接部断面の構造を模式的に示したものである。 図 7 (c) は下鏡 1 3と胴 1 2の溶接部断面の構造を模式的に示したものである。 これらの溶接接合部 1 5、 16におい ては容器内部側に鏡部材の端部が入り込んで溶接隙間を形成している。 溶接接合部 14、 1 5、 1 6の溶接施工では容器外面側にトーチを配置して、 バックガスシールを行わずに、 容器 內面に裏ビ一ドが形成される条件で T I G溶接を実施した。 溶加材として SUS 3 1 6 Lを使 用した。
図 8に実機での耐食性試験方法を模式的に示す。 試験液槽 22で試験液をヒーター 2 1によ り 8 O :に加熱し、 液送ポンプ 23により試験液を試験缶体 24の下部口金から常時 10 L/ m i nの流量で送り込み、 合計 2ヶ月間循環させる試験を実施した。 試験缶体 24の各溶接部 は無手入れのままの状態にしてあり、 前記溶接接合部 14、 1 5、 1 6はバックガスシールな しの溶接を行って形成された裏ビード側溶接部が試験液に曝されるようになつている。 試験液 は山口県周南市上水で調製した 2000 p pmC 1 —水溶液に酸化剤として Cu +を 2 p pm 添加したものを用いた。 この濃度の Cu2+は温水中の残留塩素にほぼ匹敵する酸化力を有して いるが、 腐食の進行に伴い濃度が減少するため、 7日毎に液を更新した。 C l _はNa C l、 Cuz ¾CuC 1 2 · 2H 2 O試薬により調整した。 液温は容量 300 Lの試験液槽 22内で 80°Cとなるようにコントロールした。 試験後の缶体を解体し、 溶接接合部 14、 1 5、 1 6 について腐食発生状況を調べた。 結果を表 5に示す。 表 5
Figure imgf000019_0001
一腐食状態評価一
〇:腐食なし
®:軽微な腐食 (侵食深さ 0.1mm以下)
▲:激し!/ヽ腐食 (侵食深さ 0· 1mm超え)
書:貫通腐食 鋼 2を用いて試作した本発明例の温水容器は、 2ヶ月間の腐食試験において、 最も腐食が問 題とされる鏡と胴の溶接隙間形成部に全く腐食は認められなかった。 一方、 鋼 4 (SUS 44 4) を用いて試作した比較例の温水容器は、 胴と下鏡の溶接隙間形成部に板厚を貫通する腐食 が認められ、 バックガスシールなしの T I G溶接部裏面では高耐食性が維持できなかった。

Claims

請求の範囲
1. C r含有量が 2 1超え〜 25質量%の鋼材どうしをバックガスシールなしで T I G溶接す ることにより形成された裏ビードを容器内面に有し、 その T I G溶接部裏面の熱影響部におい て、 塩化物水溶液に可溶の酸化スケールが形成された部位の鋼素地における C r濃度が、 鋼素 地 酸化スケール界面から 1 0 nm以上の深さ領域で 1 6質量%以上である温水容器。
2. 質量0 /0で、 C : 0 . 025%以下、 S i : 1%以下、 Mn : 1 %以下、 P : 0 . 045% 以下、 S : 0 . 0 1%以下、 N i : 0 . 1〜: I %、 C r : 2 1超え〜 25%、 Mo : 0 . 1〜 2 %、 A 1 : 0 . 02〜 0 . 3 %、 N : 0 . 025 %以下であり、 T i : 0 . 05〜0 . 4% および Nb : 0 . 05〜0 . 5%の 1種以上を含有し、 残部 F eおよび不可避的不純物である 組成の鋼材どうしをバックガスシールなしで T I G溶接することにより形成された裏ビ一ド を、 容器内面に有する温水容器。
3. 前記鋼材がさらに Cu : 1%以下を含有するものである請求の範囲 1に記載の温水容器。
4. 前記 T I G溶接部裏面の熱影響部において、 塩化物水溶液に可溶の酸化スケールが形成さ れた部位の鋼素地における C r濃度が、 鋼素地 酸化スケール界面から 1 0 nm以上の深さ領 域で 1 6質量%以上である請求の範囲 2または 3に記載の温水容器。
5. 裏ビード近傍の鋼材表面に C r濃度 30質量%以上の酸化スケールを有する請求の範囲 1 ないし 4のいずれかに記載の温水容器。
6. 請求の範囲 1ないし 5のいずれかに記載の温水容器であって、 水 (温水を含む) の流路で はなく、 かつ通電部品の揷入箇所ではないフランジを持たない構造の温水容器。
7. 質量0 /oで、 C : 0 . 025%以下、 S i : 1%以下、 Mn : 1 %以下、 P : 0. 045% 以下、 S : 0. 0 1%以下、 N i : 0 . 1〜; 1 %、 C r : 2 1超え〜 25%、 Mo : 0 . 1〜
2 %、 A 1 : 0 . 02〜 0 . 3 %、 N : 0 . 025 %以下であり、 T i : 0. 05〜0 . 4% および Nb : 0 . 05〜0 . 5%の 1種以上を含有し、 残部 F eおよび不可避的不純物である 組成の鋼材どうしを、 容器内面に裏ビードが形成されるようにバックガスシールなしで T I G 溶接することにより接合する工程を有する温水容器の製造法。
8. 前記鋼材がさらに Cu : 1%以下を含有するものである請求の範囲 7に記載の温水容器の 製造法。
PCT/JP2008/054678 2007-03-09 2008-03-07 温水容器およびその製造法 WO2008111656A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08738660.3A EP2135699B1 (en) 2007-03-09 2008-03-07 Hot water container
US12/530,294 US20100096291A1 (en) 2007-03-09 2008-03-07 Hot water tank and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007060986A JP2008221266A (ja) 2007-03-09 2007-03-09 温水容器およびその製造法
JP2007-060986 2007-03-09

Publications (1)

Publication Number Publication Date
WO2008111656A1 true WO2008111656A1 (ja) 2008-09-18

Family

ID=39759587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054678 WO2008111656A1 (ja) 2007-03-09 2008-03-07 温水容器およびその製造法

Country Status (6)

Country Link
US (1) US20100096291A1 (ja)
EP (1) EP2135699B1 (ja)
JP (1) JP2008221266A (ja)
KR (1) KR20090117940A (ja)
CN (1) CN101631639A (ja)
WO (1) WO2008111656A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2456413A (en) * 2008-01-14 2009-07-22 Trevor Kenneth Crabtree Hot water cylinder

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202916A (ja) * 2009-03-02 2010-09-16 Nisshin Steel Co Ltd オーステナイト系ステンレス鋼との溶接部の耐食性に優れたフェライト系ステンレス鋼
JP2011068967A (ja) * 2009-09-28 2011-04-07 Nisshin Steel Co Ltd ステンレス鋼製パネル溶接施工貯水槽
JP5218440B2 (ja) * 2010-01-27 2013-06-26 新日鐵住金株式会社 溶接金属の割れ感受性評価試験方法
GB2478015B (en) * 2010-05-10 2012-02-22 Warmflow Engineering Company Ltd Cylinder
CN102398119A (zh) * 2010-09-13 2012-04-04 黄朝林 热水器筒体焊接方法
JP2013086136A (ja) 2011-10-19 2013-05-13 Taiyo Nippon Sanso Corp フェライト系ステンレス鋼板のtig溶接方法
JP5780660B2 (ja) * 2013-09-09 2015-09-16 株式会社精和工業所 フェライト系ステンレス鋼製缶体の溶接構造
CN107825000A (zh) * 2017-12-07 2018-03-23 巨浪(苏州)热水器有限公司 一种热水器内胆的制作方法
CN107999927A (zh) * 2017-12-07 2018-05-08 巨浪(苏州)热水器有限公司 一种热水器内胆的直缝焊接方法
CN107824999A (zh) * 2017-12-07 2018-03-23 巨浪(苏州)热水器有限公司 一种热水器
CN108006974A (zh) * 2017-12-07 2018-05-08 巨浪(苏州)热水器有限公司 一种热水器内胆
CN113414556A (zh) * 2021-07-23 2021-09-21 兰州空间技术物理研究所 一种用于卫星压力容器的金属复合气口及其制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009290A (ja) * 2005-07-01 2007-01-18 Nisshin Steel Co Ltd 温水容器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279951A (ja) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd 温水器用フェライト系ステンレス鋼
US7297214B2 (en) * 1999-09-03 2007-11-20 Kiyohito Ishida Free cutting alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009290A (ja) * 2005-07-01 2007-01-18 Nisshin Steel Co Ltd 温水容器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2456413A (en) * 2008-01-14 2009-07-22 Trevor Kenneth Crabtree Hot water cylinder

Also Published As

Publication number Publication date
EP2135699A4 (en) 2017-01-25
EP2135699B1 (en) 2018-06-27
US20100096291A1 (en) 2010-04-22
KR20090117940A (ko) 2009-11-16
CN101631639A (zh) 2010-01-20
EP2135699A1 (en) 2009-12-23
JP2008221266A (ja) 2008-09-25

Similar Documents

Publication Publication Date Title
WO2008111656A1 (ja) 温水容器およびその製造法
JP5010323B2 (ja) 溶接構造温水容器用フェライト系ステンレス鋼および温水容器並びにその製造法
JP5931053B2 (ja) 溶接部の耐食性及び強度に優れるフェライト系ステンレス鋼およびtig溶接構造物
JP6004700B2 (ja) 二相ステンレス鋼を合わせ材とするクラッド鋼板およびその製造方法
BRPI0912550B1 (pt) Aço inoxidável ferrítico, folha de aço composta com mesmo, junção de aço inoxidável, e, processo para produzir uma folha de aço inoxidável ferrítico
JP2009161836A (ja) 溶接隙間部の耐食性に優れるフェライト系ステンレス鋼板
US20120193328A1 (en) Method for making a hot water tank of ferritic stainless steel with a tig welded structure
JP2007009290A (ja) 温水容器
JP2010202916A (ja) オーステナイト系ステンレス鋼との溶接部の耐食性に優れたフェライト系ステンレス鋼
JP2009185382A (ja) 溶接隙間酸化皮膜の耐食性に優れるフェライト系ステンレス鋼板
JP4784239B2 (ja) ティグ溶接用フェライト系ステンレス鋼溶加棒
JP2011105976A (ja) 排水管
JPH06279951A (ja) 温水器用フェライト系ステンレス鋼
JP6782660B2 (ja) 酸化性流体環境用の二相ステンレス鋼溶接構造体
JP2006241564A (ja) 溶接構造物用フェライト系ステンレス鋼
JP5780660B2 (ja) フェライト系ステンレス鋼製缶体の溶接構造
JP5937867B2 (ja) 溶接部の耐食性に優れるフェライト系ステンレス鋼
JP4732208B2 (ja) シーズヒーター用鋼管およびシーズヒーター
JP2009167439A (ja) 溶接隙間構造温水容器用フェライト系ステンレス鋼
JP7343691B2 (ja) 溶接構造、ステンレス鋼製溶接構造物、ステンレス鋼製溶接容器ならびにステンレス鋼
JP2011068967A (ja) ステンレス鋼製パネル溶接施工貯水槽
JP2005015816A (ja) 耐食性に優れた温水器缶体
JP2014162988A (ja) フェライト系ステンレス鋼
JP2011202254A (ja) 溶接部の耐食性に優れたフェライト系ステンレス鋼
Kelly Stainless steels

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880007690.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08738660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097018371

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008738660

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12530294

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE