WO2008072693A1 - 板ガラス欠陥検出装置、板ガラスの製造方法、板ガラス物品、板ガラスの良否判定装置及び板ガラスの検査方法 - Google Patents

板ガラス欠陥検出装置、板ガラスの製造方法、板ガラス物品、板ガラスの良否判定装置及び板ガラスの検査方法 Download PDF

Info

Publication number
WO2008072693A1
WO2008072693A1 PCT/JP2007/074026 JP2007074026W WO2008072693A1 WO 2008072693 A1 WO2008072693 A1 WO 2008072693A1 JP 2007074026 W JP2007074026 W JP 2007074026W WO 2008072693 A1 WO2008072693 A1 WO 2008072693A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
plate glass
light
glass sheet
light receiving
Prior art date
Application number
PCT/JP2007/074026
Other languages
English (en)
French (fr)
Inventor
Hidemi Suizu
Yasuhiro Nishimura
Masakazu Iwata
Original Assignee
Nippon Electric Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co., Ltd. filed Critical Nippon Electric Glass Co., Ltd.
Priority to CN2007800456991A priority Critical patent/CN101558292B/zh
Priority to US12/518,960 priority patent/US20100028567A1/en
Publication of WO2008072693A1 publication Critical patent/WO2008072693A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/081Testing mechanical properties by using a contact-less detection method, i.e. with a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/033Silicon compound, e.g. glass or organosilicon
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates

Definitions

  • Sheet glass defect detection apparatus sheet glass manufacturing method, sheet glass article, sheet glass quality determination apparatus, and sheet glass inspection method
  • the present invention relates to a defect detection device for detecting defects in a plate glass formed from molten glass, particularly a plate glass mounted on a liquid crystal display device or a plasma display, a method for producing a plate glass using this defect detection device,
  • the present invention relates to a plate glass article obtained by a manufacturing method, and a pass / fail determination device for evaluating pass / fail by evaluating defects in the plate glass.
  • Patent Document 1 As a method for inspecting a plate glass substrate having a rough surface obtained after hydrofluoric acid treatment of a plate glass mounted on a liquid crystal display device, inspection light is irradiated from an oblique direction of the plate glass substrate and transmitted through the substrate. An inspection method is disclosed in which the projected light is projected onto a projection surface, and the optical characteristics of the plate glass substrate are inspected based on the projection image on the projection surface.
  • Patent Document 2 uses a system that can detect optical path length changes smaller than lOOnm using a lens that detects the phase difference of light in order to detect defects in a transparent substrate such as a glass sheet. ing.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-42738
  • Patent Document 2 Special Table 2006—522934
  • the present invention can quickly and efficiently detect various defects occurring on the inside or the surface of a sheet glass with high accuracy when producing a large area sheet glass at a high speed for such a situation. It is an object to make it possible to judge whether a plate glass is good or bad with high reproducibility. Means for solving the problem
  • the sheet glass defect detection device of the present invention irradiates light from a light source onto a plate glass having a light transmitting surface opposed in the thickness direction, and receives the light from the plate glass with a light receiving device.
  • a device for detecting defects in which a light source and a light receiving device are arranged with a plate glass interposed therebetween, and a light transmitting surface of the plate glass is inclined with respect to an optical axis of an optical system extending from the light source to the light receiving device, On the optical axis, the focal length of the lens system of the light receiving device is a light beam that is irradiated from the light source, which is smaller than the distance from the light receiving element of the light receiving device to the plate glass, toward the light transmitting surface of the plate glass, and is transmitted through the plate glass. Is received by the light receiving element through the lens system of the light receiving device.
  • the optical axis is a virtual symmetry axis that optically connects the light receiving device and the light source in the optical system of the apparatus and passes through the center of the optical system of the apparatus. Specifically, the optical axis is connected to the center of a series of optical elements constituting an optical system from the light source to the light receiving device.
  • Defects on the surface (translucent surface) or inside of the glass sheet include not only knots, striae (or code), bubbles (also referred to as seeds or blisters) due to foreign matter in the glass sheet or insufficient melting, It also covers undulations, streaks, open pores, irregularities, and scratches on the surface of plate glass.
  • the quality of the plate glass is not inherently a problem! /, For example, fine foreign objects or dust adhering to the surface of the plate glass, Even the very fine undulations on the surface of the glass sheet are not recognized by the light receiving device, and this information becomes noise, reducing the detection accuracy of defects, and complicating subsequent data processing.
  • the focal length of the lens system of the light receiving device is set to be smaller than the distance from the light receiving element of the light receiving device to the plate glass, and the image of the plate glass itself is the light receiving element of the light receiving device.
  • the above-mentioned inconvenience is prevented.
  • the plate glass, the light source, and the light receiving device so that the light-transmitting surface of the plate glass is inclined with respect to the optical axis, the optical path length of the light transmitted through the inside of the plate glass becomes relatively large, and the plate glass Since the amount of information per unit area of the light flux that has passed through is increased, it is possible to obtain sufficient information regarding defects even for a plate glass with a particularly small thickness.
  • the plate glass may be swung at an arbitrary speed, and the defect may be detected while changing the inclination angle between the light transmitting surface and the optical axis within a predetermined range.
  • the defect may be detected while moving the plate glass in a direction parallel to the translucent surface at a constant speed.
  • the wavelength of the light source those having various wavelengths in the region from ultraviolet rays to visible rays can be arbitrarily used. Therefore, it may be a monochromatic light source or a light beam in a certain wavelength range.
  • HID lamps High Intensity Dis charge Lamps
  • HID lamps such as water silver lamps, sodium lamps, metal halide lamps, halogen lamps, xenon lamps, LED lamps, EL, etc. It may be a lamp, an electrodeless lamp, or the like.
  • the plate glass that can be inspected by the plate glass defect detection device of the present invention includes a plate glass mounted on a liquid crystal display device, various filter plate glasses, a cover glass of a solid-state image sensor such as a CCD or CMOS, and a laser diode.
  • Window glass, window glass for building materials, and glass with tempered glass are various types of glass glass that are formed into crystallized glass and glass.
  • the size of the plate glass is not particularly limited, but the present invention can be effectively utilized as the area increases, particularly when molding.
  • the sheet glass defect detection device of the present invention can be used in combination with various incidental facilities as required. It is possible to use a reflector, a condensing lens, and a slit, diffraction grating, filter, etc. in order to properly collect the light from the light source.
  • the plate glass defect detection device of the present invention is highly sensitive to defects in the inside or the surface of the plate glass if the inclination angle of the light transmitting surface of the plate glass with respect to the optical axis is within the range of 5 ° force and 40 °. Can be detected with a stable inspection.
  • the tilt angle force with respect to the optical axis of the light transmission surface of the plate glass is less than 5 °, the optical path length of the light beam passing through the inside of the plate glass becomes too large, and the light flux per unit area of the light beam transmitted through the plate glass Since the amount of information becomes too large, high resolution is required to decompose the obtained information, and sufficient analysis may be difficult. Conversely, if the tilt angle force S with respect to the optical axis of the light transmission surface of the plate glass exceeds 40 °, the optical path length S of the light beam transmitted through the plate glass becomes too small, and the light flux per unit area of the light beam transmitted through the plate glass becomes smaller.
  • the lower limit of the angle of inclination of the light-transmitting surface of the glass sheet with respect to the optical axis is 6 °.
  • S is preferable, more preferably 7 °, more preferably 8 °, and most preferably 10 °
  • the upper limit is 30 °.
  • it is 26 °, more preferably 25 °, and most preferably 20 °. That is, the most preferable range of the inclination angle with respect to the optical axis of the light-transmitting surface of the plate glass is a range of 10 ° or more and 20 ° or less.
  • the glass sheet defect detection device of the present invention may obtain two or more pieces of information at the same time by disposing a plurality of sets of the light source and the light receiving device.
  • the first set of light sources and light receiving devices are arranged so that the inclination angle of the light transmission surface of the plate glass with respect to the optical axis is always 10 °.
  • the second set of light source and light-receiving device can be arranged with a force S so that the inclination angle of the light transmission surface of the plate glass with respect to the optical axis is always 20 °.
  • the light source and the light receiving device cooperate with each other so that the incident angles of the light rays incident on the plate glass are various angles. Moyore.
  • the plate glass defect detection apparatus of the present invention includes various optical members such as various reflecting mirrors and filters in an optical system in which light travels in the apparatus in order to make the apparatus compact. It is possible to arrange a plurality of them at appropriate positions. As a result, in addition to making the entire apparatus compact, it is possible to reduce the weight of the apparatus, improve the measurement accuracy, or improve the operation speed and measurement response during measurement.
  • the plate glass defect detection device of the present invention has a high detection capability and is stable as a device if the light receiving device has a solid-state imaging device or a phototube as the light receiving device. Since operation
  • the solid-state imaging device is an image sensor such as a CCD or CMOS
  • the photoelectric tube is, for example, a photomultiplier tube, a vacuum photoelectric tube, a gas discharge tube, or the like.
  • the plate glass defect detection apparatus of the present invention is configured to scan in a direction crossing the continuous direction of the defects with a light beam from the light source, thereby being connected in a predetermined direction. It is possible to demonstrate particularly high detectability for defects with shapes.
  • the point of scanning the inspected portion of the plate glass in a direction crossing the continuous direction of defects will be described in detail with reference to FIG.
  • the defect S connected in the predetermined direction T exists on the light transmitting surface of the glass sheet G.
  • This defect S is a striae caused by a slight difference in homogeneity in the glass, or wavy lines due to irregularities on the glass surface.
  • this defect S is scanned by light rays from the light source, the same direction as the continuous direction T of the defects S, that is, D
  • the defect position is determined from the scanning angle.
  • the continuous defect is not necessarily limited to the continuous defect, and may be intermittently connected in a predetermined direction.
  • the range of 80 ° force 90 ° is more preferable because the various continuous defects that occur in the sheet glass may not always be linear, and even in such a case, to ensure inspection. This is also preferable in order to increase the accuracy of the force in the scanning range from 80 ° to 90 °.
  • the sheet glass defect detection device of the present invention in order to detect the continuous defects of the plate glass while continuously pulling out the sheet glass immediately after the formation of the sheet glass, it is different from the drawing direction of the sheet glass. It is important to obtain defect information while scanning the part to be inspected in the direction. This is because when the glass sheet is pulled out by continuous molding in this way, defects generated in the glass sheet are distributed in a state of being stretched in the direction of pulling out the glass sheet. In other words, when a defect is detected while the glass sheet is continuously drawn out immediately after forming the glass sheet, “scan in a direction intersecting with the direction in which the defects are linked” is rephrased as “scan in a direction different from the glass sheet drawing direction”. be able to. Yo More preferably, the scanning is performed so as to be perpendicular to the drawing direction of the glass sheet.
  • the plate glass defect detection device of the present invention When the plate glass is scanned by the plate glass defect detection device of the present invention, only the plate glass may be moved or only the light source of the device may be moved, or both may be simultaneously used. You can move it! /
  • the sheet glass defect detection device of the present invention has a storage device that stores information on the light beam received by the light receiving device, and a data display unit that displays the information on a display. In addition to recording the detected information and displaying it on the display, the properties of the glass sheet can be reliably grasped.
  • the storage device is, for example, a node disk, DVD, memory or the like
  • the display is, for example, a liquid crystal display device or the like.
  • the plate glass defect detection apparatus of the present invention is particularly suitable for inspection of thin glass for mounting display devices.
  • the display device is a liquid crystal display device or a plasma display.
  • the plate glass manufacturing method of the present invention performs pass / fail screening by inspecting the surface and / or internal defects of the cooled plate glass formed by a molding apparatus after being heated and melted using the plate glass defect detection apparatus. It is characterized by that.
  • the position where the sheet glass defect detection device is disposed may be a position immediately after the sheet glass forming process or a position after the rough cutting process, or a position immediately before packing in the final process. Further, they may be arranged at any plurality of locations in the series of steps. In addition, if measuring during the conveyance of the glass sheet, a sheet glass defect detection device should be installed along the conveyance route.
  • the downdraw molding apparatus includes a slit downdraw molding apparatus, a roll-out downdraw molding apparatus, and an overflow downdraw molding apparatus.
  • the float forming apparatus is an apparatus that casts molten glass on a molten metal such as metallic tin.
  • the method for producing a plate glass of the present invention is a plate glass for a liquid crystal display! /, It is particularly suitable for the production of a plate glass for a mdisplay.
  • the sheet glass article of the present invention is manufactured by the above-described method for manufacturing a sheet glass, is made of non-alloyed glass, has a sheet thickness of 0.7 mm or less, and a maximum defect size of less than 0.1 m.
  • the alkali-free glass is a glass having a substantially alkali-free glass composition.
  • the content value is restricted to less than 0.1% by mass percentage display! is there.
  • the plate glass article of the present invention can be obtained, for example, as follows. That is, a non-alkali glass plate having a thickness of 0.7 mm or less and a maximum defect size of less than 0.1 m is prepared as a test piece, and the thickness is 0.7 mm or less and the maximum defect size is 0. m. Prepare a number of non-alkali glass plates that are close to each other (for example, 0 ⁇ 09 111, 0.11 m, etc.) as test pieces, measure these test pieces with a plate glass defect detector, and accumulate the measured values. Keep it.
  • the threshold value for the maximum defect size is defined as a specified value, and plate glass whose maximum defect size measured by the plate glass defect detection device exceeds the above threshold value is excluded as a defective product.
  • the glass sheet article of the invention can be obtained.
  • the plate glass article of the present invention preferably has a maximum defect size of less than 0.08 am, and more preferably a maximum defect size of less than 0.0511.
  • the maximum defect size that may be defined as the size of a defect along the scanning direction of the light beam is the size of the largest defect among the defects. For this maximum defect size, the accuracy of the measured value may be guaranteed by other inspection methods, for example, measurement using an optical microscope or an electron microscope equipped with a calibrated micro gauge.
  • the plate glass quality determination device of the present invention includes a measuring unit that irradiates a plate glass with light from a light source and receives the light from the plate glass by a light receiving device, and a luminance profile of an image obtained by the measuring unit. It is characterized by having a chart acquisition means for obtaining a processing result chart by Fourier transform or wavelet transformation, and an algorithm processing system for evaluating defects of the plate glass based on the processing result chart and judging pass / fail. [0037] Specifically, a component extraction process is performed by performing Fourier transform or wavelet transform on the measured value of the brightness profile obtained by the measurement means, followed by inverse Fourier transform or inverse wavelet transform, and then the brightness of the transmitted light. The change state of the value is clearly visualized, and it is evaluated whether or not it exceeds the preset upper limit value or lower limit value for the obtained chart showing the change in luminance. If it does not exceed, pass or fail will be judged.
  • the Fourier transform is a conversion process that decomposes a waveform graph having a complicated shape into a simplified sine wave, if explained briefly.
  • the luminance obtained as a result of the measurement is shown.
  • the wavelet transform has a lower periodicity than the Fourier transform! /, That is, can effectively apply a transformation process to a localized waveform, and is applied to a glass transparent surface. It is especially effective when there is no large periodicity in the various defects that appear
  • sampling frequency of the Fourier transform or wavelet transform can be arbitrarily determined, and the values processed by the transform program can be stored and displayed as processing data. It can also be displayed as an image.
  • the upper limit value or lower limit value of the processing result chart finally obtained by performing Fourier transform or wavelet transform is the appearance inspection level obtained from visual inspection or the like and other fine defects. It can be set in advance from the size and location of the defect type obtained by the inspection method or inspection means for examining changes in the macro range, and the optimum setting value can be set according to the required performance of the plate glass used. It is also possible to decide.
  • a plate glass having a defect of a specific dimension is inspected in advance and the measured value is stored, and a desired defect is identified by the measured value pattern.
  • Can detect power S For example, in order to set the maximum defect size to be less than 0, the measured values of plate glass having a defect size near 0.1 ⁇ m, such as 0.09 ⁇ m and 0.11 ⁇ m, are accumulated, Based on the measured information, set values can be set and measurements can be made that require actual judgment.
  • the quality determination device of the present invention can operate in conjunction with other processing programs, and performs various measurement operations such as measurement of surface properties of plate glass and transmittance of plate glass, and analysis of the measurement values. Can be performed simultaneously.
  • the pass / fail judgment may be further subdivided so as to select from the grade used as cullet to the grade collected as a product that can be used as a fine-size aggregate.
  • the above algorithm processing system combines two or more processing result charts and performs final pass / fail judgment based on pass / fail results obtained from the upper and lower limit values of the respective process result charts. May be. As a result, more detailed determination can be performed, and optimal determination can be made according to the type of use.
  • the above inspection may be performed in combination with visual inspection by human power, or may be performed in combination with inspection using the plate glass defect detection device of the present invention. Moreover, even if the inspection is performed only on the plate glass, it may be performed in a state where a thin film or the like is coated on the surface of the plate glass, or in a state where a protective frame or a conveyance frame is applied to the end surface of the plate glass. .
  • the plate glass defect detection device of the present invention includes the plate glass, the light source, and the light receiving device arranged such that the light-transmitting surface of the plate glass is inclined with respect to the optical axis.
  • the focal length of the lens system of the light receiving device is set to be smaller than the distance from the light receiving element of the light receiving device to the plate glass. In contrast, sufficient information on defects can be obtained, and noise entering the light receiving device can be reduced, and high-precision and rapid defect inspection can be realized.
  • the surface and / or internal defects of the cooled plate glass formed by a forming apparatus after heating and melting are inspected using the above plate glass defect detection apparatus. Since the quality is selected, whether or not the glass sheet is a product can be determined at an early stage, and the production efficiency can be increased.
  • the plate glass article of the present invention is made of alkali-free glass, has a plate thickness of 0.7 mm or less, and a maximum defect size of less than 0.1 m. It is suitable as a plate glass to be mounted on a large image display device such as the above liquid crystal display device. Correspondingly, it is a glass material having excellent homogeneity.
  • the plate glass quality determination device of the present invention includes a measuring means for irradiating a light beam from a light source to the plate glass and receiving the light beam from the plate glass by a light receiving device, and an image obtained by the measuring means. It has a chart acquisition means for obtaining a processing result chart by Fourier transform or wavelet transform of the luminance profile, and an algorithm processing system for evaluating defects based on the processing result chart by evaluating defects on the plate glass. Therefore, it is possible to easily and reliably determine whether or not a defect in the glass sheet is acceptable, and by changing the reference value of the defect in the processing result chart as necessary, the manufacturing system can be easily adapted to the required quality. Establishing power S Kurakura.
  • a plate glass defect detection apparatus a plate glass manufacturing method, a plate glass article obtained by the plate glass manufacturing method, a plate glass defect detection determination program, and a plate glass detection method of the present invention will be described based on examples.
  • FIG. 2 (A) and FIG. 2 (B) conceptually show the glass sheet defect detection apparatus 10 according to the first embodiment.
  • the plate glass defect detection device 10 includes a light source 20 and a light receiving device 30 that are arranged at opposing positions with the plate glass G interposed therebetween.
  • the plate glass G has light-transmitting surfaces Ga and Gb facing in the thickness direction.
  • the light-transmitting surfaces Ga and Gb are optical axes Lx (from the light source 20 to the light receiving device 30) of the optical system of the plate glass defect detecting device 10. It is disposed between the light source 20 and the light receiving device 30 so as to be inclined by a predetermined angle ⁇ with respect to a line connecting the centers of a series of optical elements constituting the optical system.
  • the light receiving device 30 and the plate glass G are such that the focal length F of the lens system 31 of the light receiving device 30 is a distance from the light receiving element (line sensor, etc.) of the light receiving device 30 to the plate glass G on the optical axis Lx. They are arranged so as to be smaller than Z (G1 indicates the position of the glass sheet G on the optical axis Lx).
  • a thin glass mounted on a liquid crystal display device is used as the glass plate G to be detected
  • a 200 W metal halide lamp is used as the light source 20
  • a 2000 pixel line sensor is used as the light receiving device of the light receiving device 30.
  • the glass sheet G was disposed between the light source 20 and the light receiving device 30 so that the angle ⁇ force between the light-transmitting surfaces Ga and Gb and the optical axis Lx was 15 °.
  • the light beam L emitted from the metal halide lamp as the light source 20 is incident on the inside of the glass sheet G from the thin light-transmitting surface Ga inclined at an angle of 15 ° with respect to the optical axis Lx, and is transmitted through the inside of the glass sheet G.
  • the light is emitted to the outside of the glass sheet G from the other light transmitting surface Gb inclined at an angle of 15 ° with respect to the optical axis Lx.
  • the light beam L that has passed through the plate glass G enters the line sensor of the light receiving device 30 as a transmitted light beam that includes information about the inside of the plate glass G and the properties of the light-transmitting surfaces Ga and Gb. As shown in FIG.
  • the glass sheet defect detection device 10 of this embodiment inputs the luminance value from the light receiving device 30 (line sensor) to the luminance measurement system S 1 at a necessary frequency, and the luminance measurement system
  • the luminance measurement system By sending data from S 1 to the data storage system S2, the data display system S3, and the sheet glass defect determination system S4, various operations can be performed by inputting and outputting data between the programs of each system. Making it possible.
  • the luminance value of the light beam L incident on the light receiving device 30 can be temporarily stored as digital data in the measurement device.
  • the data stored in the RAM—Hiromori Hakuho can be stored in a hard disk drive (HDD) drive that is driven by the data storage system S2, and the brightness measurement value is permanently Can be saved and reused.
  • the brightness value of the light beam L incident on the light receiving device 30 (line sensor) is two-dimensionally determined by using the data display system S3 as a parameter with other variables or constants as one parameter on a display such as a liquid crystal display device. Or, 3D graph display can be displayed, or several data display can be performed.
  • the data display system S3 can display, for example, time-series data, type-specific defect occurrence frequency data, distribution display of defect type occurrence locations, comparison graphs with luminance data, and the like.
  • this brightness data can be pooled in combination with sheet glass transmittance, time data, temperature, humidity, dust measurement data, etc., in conjunction with other sensors and timers.
  • the brightness value of the light beam L incident on the light receiving device 30 (line sensor) is further converted by an algorithm system equipped with a program for performing wavelet transform, and can be stored or displayed together with the original brightness data. It becomes a specification that can be done!
  • a method for producing a sheet glass by incorporating the sheet glass defect detection device 10 is obtained.
  • the glass article will be specifically described.
  • a plurality of glass raw materials prepared in advance so as to have a non-alkali glass composition suitable for mounting on a liquid crystal display device are weighed, mixed uniformly, and stored in a mixed raw material storage container. .
  • This mixed glass material is then galvanized by a batch charger.
  • the glass raw material charged in the glass melting furnace is heated to a high temperature of 1000 ° C or higher, undergoes a high-temperature vitrification reaction, becomes a crude molten state, and then becomes a homogeneous state by a homogenizing means such as a stirrer. Of molten glass.
  • the homogenized molten glass is supplied to a sheet glass forming apparatus.
  • This sheet glass forming apparatus has a bowl-shaped molten glass supply groove having an opening at the top, the top of both side walls of the glass supply groove is used as an overflow weir, and the outer surface of both side walls has a cross-sectional shape.
  • the molded body is provided with outer surfaces of both side walls approaching each other downward so as to be substantially wedge-shaped and terminated at the lower end.
  • the molten glass homogenized in the melting furnace is continuously supplied from one end of the glass feed groove, overflows the ridgeline force on the top of both sides, flows down along the outer surface of both sides of the compact, and joins at the lower end of the wedge. And it becomes the state of one sheet glass.
  • the thin plate glass thus formed is in a high temperature state at the beginning of molding, it is cooled from the hot plate state to the cooled state by being air-cooled in the middle of being sequentially fed out by a molding roll or the like. .
  • a sheet glass article G having a predetermined length is obtained by scribing using a folding cutting device.
  • the sheet glass article G is conveyed one by one to the stocker by the conveying device, but the optical axis Lx is in the middle of the conveyance path to this stocker with respect to the light-transmitting surfaces Ga and Gb of the sheet glass article G.
  • the sheet glass defect detection device 10 By disposing the sheet glass defect detection device 10 so as to have an angle of 15 °, the inspected portion of the sheet glass G is scanned so as to be perpendicular to the longitudinal direction (continuous direction) of the defect by 90 °. Continuously measure whether there are any defects on the surface (translucent surfaces Ga, Gb) and inside of the glass sheet G.
  • a product having a maximum defect size of less than 0.1 m when a product having a maximum defect size of less than 0.1 m is selected as a non-defective product, it has a defect size in the vicinity of 0.1 m, such as 0.09 ⁇ m or 0.111 111, and a thickness of 0.7 mm
  • a defect size in the vicinity of 0.1 m such as 0.09 ⁇ m or 0.111 111
  • a thickness of 0.7 mm To prepare multiple glass-free glass plates as test pieces, measure these test pieces with the plate glass defect detector 10 and accumulate the measured values, and then select non-defective / defective products based on the data. Is defined as a specified value.
  • the brightness measurement result input to the light receiving device 30 (line sensor) by the measurement of the sheet glass article G is sequentially subjected to wavelet transform processing, and is subjected to the pre-processing previously described in the algorithm processing system for determining defects. Depending on the specified upper and lower limits (thresholds) The determination operation is performed.
  • the flat glass article G that does not meet the regulations that is, the flat glass article G having a maximum defect size of 0. ⁇ ⁇ or more is sent to the cullet storage without being stored in the non-defective storage stocker.
  • Sheet glass articles G that have been found to have no problem by the judgment are sequentially transported to the stocker and aligned and stored as sheet glass articles to be commercialized.
  • the plate glass article manufactured by the plate glass manufacturing method as described above is efficiently detected and discriminated as a defect existing in the inside or surface of the plate glass, an accurate pass / fail determination is performed.
  • High-homogeneity and surface precision that can fully demonstrate the performance of high-definition liquid crystal display devices when mounted on large-sized liquid crystal display devices exceeding 40 inches used in displays and televisions The state is realized.
  • the plate glass defect detection program starts measurement by “start measurement”, and is input in a state in which clear electrical noise is removed by filtering the luminance value profile file as necessary 1 Then go to Process 2.
  • Process 2 the necessary data from RAM is saved to the HDD at a predetermined frequency using the data storage system S2 described above. Further, in process 3, the input luminance value is subjected to Fourier transform or wavelet transform processing, and an operation corresponding to the plate glass defect determination system S4 is performed.
  • process 3-4 If it is determined to be “good”, then process 3-4 Thus, the window function width value is determined from the brightness value profile and the conversion processing result chart. In accordance with the window function width value determined in Process 3-4, Process 3-5 calculates the conversion result chart again. For the second conversion processing result chart obtained in this way, the quality is further judged, and if it is judged as “No”, it is used as a power rate as described above, or to other applications. Diverted. If it is determined to be “good”, the brightness profile is again compared with the conversion processing result chart in process 3-6, and further, it is determined whether or not the continuous conversion processing is necessary. As a result, if it is determined that further conversion processing is necessary, process 3-4 is performed again. If it is determined that it is not necessary to continue, the survey is completed and the plate glass is determined to be good.
  • FIG. 5 shows a chart of the luminance data processing described above.
  • “electrical noise” component is removed from the “luminance profile” obtained from the light receiving device 30, and “luminance data” is obtained.
  • “Chart 1” shows the short frequency components obtained by Fourier transforming “luminance data”.
  • defective parts la, lb, and lc are detected from the upper and lower limits of “Chart 1”.
  • “Chart 2” shows components with long frequencies. Defective part 2a was detected from the upper and lower limits of “Chart 2”.
  • Table 1 is an example showing determination criteria when determining a non-defective product and a defective product.
  • the above glass sheet defect detection program can be stored on an appropriate medium such as an HDD, DVD, CD-ROM, or flash memory, and the program operation can be changed if linkage with other systems is required. May be.
  • the above-mentioned plate glass defect detection program can be described using an appropriate program language such as C ++ or C.
  • the inspection method for the glass sheet in this embodiment can substitute the inspection with the naked eye, and complements the inspection with the naked eye. It is also possible to employ it for the purpose.
  • the light source 20 metal halide
  • the light receiving device 30 line sensor
  • Inspection is performed by receiving the light beam L from the lamp), but when the light beam L from the light source 20 is received for a length of 2000 mm in the width direction of the plate glass, the sampling frequency is linked to the plate glass transport speed. It is preferable to do this. Therefore, it can be a system with a processing system that changes the sampling of the inspection depending on the forming speed of the glass sheet. It has become so.
  • the plate glass defect detection apparatus As described above, the plate glass defect detection apparatus, the plate glass manufacturing method, the plate glass defect detection determination program, and the plate glass inspection method according to this example have the following advantages. Thus, it is possible to greatly contribute to the production of various types of plate glass while appropriately determining the quality of the plate glass within the process.
  • This glass sheet detector 11 is configured to continuously measure a thin glass sheet G mounted on a TFT liquid crystal display device, for example, having a width dimension of 1500 mm and a thickness of 0.65 mm in a space-saving manner.
  • FIG. 6 the main components of the sheet glass defect detection apparatus 11 are schematically shown.
  • the sheet glass G is formed from the glass melting furnace from the upper side to the lower side, and then lowered by a heat-resistant roll (not shown). The state of being pulled out continuously is shown. W in the figure indicates the moving direction of the glass sheet G.
  • the plate glass defect detection device 11 includes a light source 20, a light receiving device 30a, and a reflection mirror 40 that are arranged at positions sandwiching the plate glass G.
  • a metal halide lamp is used as the light source 20, and the light receiving device 30a is equipped with a solid-state imaging device.
  • the light source 20, the light receiving device 30 a, and the reflection mirror 40 are attached to an inspection stage 50 movable in the V direction in the figure, and the light L emitted from the light source 20 passes through the plate glass G and enters the reflection mirror 40. The light is reflected by the reflecting mirror 40 and enters the light receiving device 30a.
  • the plate glass G has light-transmitting surfaces Ga and Gb facing in the thickness direction, and the light-transmitting surfaces Ga and Gb are optical axes Lx (from the light source 20 to the light receiving device 30a) of the optical system of the plate glass defect detecting device 11. It is arranged between the light source 20 and the light receiving device 30a so as to be inclined by a predetermined angle ⁇ with respect to a line connecting the centers of a series of optical elements constituting the optical system.
  • the distance from the light source 20 to the position G1 of the glass sheet G is 1000 mm
  • the distance from the position G1 of the glass sheet G to the reflecting mirror 40 is 500 mm
  • the distance from the reflecting mirror 40 to the solid-state image sensor of the light receiving device 30a The distance is set to 500mm It is.
  • the angle ⁇ formed between the light-transmitting surfaces Ga and Gb of the glass sheet G and the optical axis Lx is 20 °.
  • the inspection stage 50 is parallel to the light-transmitting surfaces Ga and Gb of the glass sheet G, and perpendicular (90 °) to the drawing direction (movement direction W) of the glass sheet G.
  • the plate glass G is measured in 3 seconds and moved in the scanning direction V at 500 m / s.
  • Various defects S such as undulations due to surface irregularities on the surface or inside of the glass sheet G are caused by a molding device that is stretched at the time of forming the glass sheet or is in contact with the glass surface. In many cases, it is distributed in the same direction T as the moving direction W). For this reason, the direction D of scanning the inspected part of the glass sheet G depends on the drawing speed of the glass sheet G (to the moving direction W).
  • the moving speed of the inspection stage 50 and the scanning speed of the inspection stage 50 in the scanning direction V are combined, and the scanning is performed within a range of, for example, 80 ° force and 84 ° with respect to the defect continuous direction T. become.
  • the image capturing speed is 10,000 times / second, and 30000 every 0.05 mm. This sampling data can be used for IJ judgment to judge the quality of flat glass G.
  • the reflection mirror 40 is used in order to make the entire device compact so that it can be installed even in a narrow measurement environment. Even in the environment, it will demonstrate high inspection capabilities. Therefore, in an environment where sufficient space can be secured, even if the light receiving device 30b equipped with a solid-state image sensor is used instead of the light receiving device 30a, measurement is performed without using the reflection mirror 40. Good.
  • the light receiving device 30b is disposed at a position facing the light source 20 with the plate glass G interposed therebetween.
  • FIG. 7 shows a conceptual diagram related to a plate glass defect detection device of another configuration.
  • the distance from the light source 20 to the position G1 of the plate glass G is 1000 mm on the optical axis Lx, and the distance G1 from the plate glass G to the solid-state image sensor of the light receiving device 30a.
  • the distance is set to 1000mm.
  • the focal length of the lens system of the light receiving device 30a is 700 mm. Therefore, on the optical axis Lx, the focal length 700 mm of the lens system of the light receiving device 30a is smaller than the distance 1000 mm from the light receiving device 30a to the position G1 of the plate glass G.
  • the angle ⁇ formed between the light-transmitting surfaces Ga and Gb of the glass sheet G and the optical axis Lx is 20 °.
  • This plate glass defect detection apparatus is configured to perform measurement when the cut plate glass G is moved one by one.
  • the plate glass G moves in the ⁇ direction (horizontal direction) shown in Fig. 7, and this movement direction ⁇ is perpendicular to the continuous direction ⁇ of surface defects of the plate glass G. That is, the measurement is performed while moving the plate glass G in the direction ⁇ and the vertical direction ⁇ ⁇ where the defects of the plate glass G continue. For this reason, the direction D of scanning the inspection area of the glass sheet G is
  • scanning is performed within the range of 89 ° force and 90 ° with respect to the direction in which the continuous stripe-like surface defects S are oriented.
  • the quality of the sheet glass G can be accurately determined one by one, and since the maximum defect size can be selected in advance to be less than 0.1 l ⁇ m, it is inexpensive. It becomes easy to obtain a plate glass of stable quality.
  • FIG. 1 is a conceptual explanatory diagram of the scanning direction of the glass sheet defect detection device of the present invention.
  • FIG. 2 It is explanatory drawing of the plate glass defect detection apparatus based on an Example, ( ⁇ ) is the schematic of an apparatus, ( ⁇ ) shows the conceptual diagram about an optical system!
  • FIG. 3 is a conceptual diagram illustrating a system configuration of a glass sheet defect detection device according to an embodiment.
  • FIG. 4 is a flowchart for explaining the processing system of the glass sheet defect detection determination program according to the embodiment.
  • FIG. 5 is a chart obtained by luminance data processing of the glass sheet defect detection determination program according to the example.
  • FIG. 6 is an explanatory diagram of a system configuration of a glass sheet defect detection device according to another embodiment.
  • FIG. 7 is an explanatory diagram of a system configuration of a glass sheet defect detection device according to another embodiment.

Abstract

【課題】板ガラスの内部、あるいは表面に発生する各種の欠陥を迅速かつ効率的に高い精度で検出する。 【解決手段】板ガラス欠陥検出装置10は、板ガラスGを挟む対向位置に配置された光源20と受光装置30とを備えている。板ガラスGは、その厚み方向に対向する透光面Ga、Gbを有し、透光面Ga、Gbが、この板ガラス欠陥検出装置10の光学系の光軸Lxに対して所定角度αだけ傾斜するように、光源20と受光装置30との間に配置されている。また、受光装置30と板ガラスGとは、光軸Lx上において、受光装置30のレンズ系31の焦点距離Fが、受光装置30の受光素子から板ガラスGまでの距離Zよりも小さくなるような位置関係で配置されている。

Description

明 細 書
板ガラス欠陥検出装置、板ガラスの製造方法、板ガラス物品、板ガラスの 良否判定装置及び板ガラスの検査方法
技術分野
[0001] 本発明は、溶融ガラスより成形された板ガラス、特に液晶表示装置やプラズマディ スプレイに搭載される板ガラスの欠陥を検出する欠陥検出装置、この欠陥検出装置 を使用する板ガラスの製造方法、この製造方法により得られる板ガラス物品、及び板 ガラスの欠陥を評価して良否判断を行う良否判定装置に関するものである。
背景技術
[0002] ディスプレイデバイス技術の著し!/、発展に伴!/、、液晶ディスプレイやプラズマデイス プレイ等の各種方式の画像表示装置に関連する技術が大きく進歩してきて!/、る。特 に大型で高精細な表示を実現する画像表示装置等では、その製造原価の低減と画 像品位の向上のため、高度な技術革新が進渉している。このような各種装置に搭載 され、画像を表示するために使用される板ガラスについても、従前以上の高い寸法 品位と高精度な表面性状が求められている。ディスプレイデバイス用途等の板ガラス の製造では、各種の製造装置を使用することにより板ガラスが成形されている力 い ずれも無機ガラス原料を加熱溶解し、溶融ガラスを均質化した後に所定形状に成形 するということが一般に行われている。この際に、ガラス原料の溶融不足や製造途中 での意図しない異物の混入、あるいは成形装置の老朽化や一時的な成形条件の不 具合等、種々の原因によって板ガラスに表面品位の異常等の欠陥が生じる場合があ る。このような板ガラスの欠陥の発生を抑止するために種々の対策がこれまでに施さ れてきたが、欠陥の発生を完全に抑止することは困難であり、またある程度まで欠陥 の発生を抑制することができても、欠陥を有する板ガラスを明瞭に識別する技術がな いと、良品と判定した板ガラスの中に本来は不良とすべき欠陥品が混入してしまうこと になる。従って、板ガラスの欠陥を精度良く検出する技術は非常に重要なものとなつ ている。
[0003] このような状況の下、これまでも板ガラスの欠陥を検出しょうとする技術は数多く提 案されてきている。例えば、特許文献 1では液晶表示装置に搭載される板ガラスをフ ッ酸処理した後に得られる粗面状態の板ガラス基板の検査方法として、板ガラス基板 の斜め方向から検査光を照射して当該基板を透過した光を被投影面に投影し、該被 投影面への投影画像に基づいて板ガラス基板の光学特性を検査する検査方法が開 示されている。また特許文献 2では、ガラスシートなどの透明な基板の欠陥を検出す るために、光の位相差を検出するレンズを使用して lOOnmより小さい光路長変化を 検出することのできるシステムを利用している。
特許文献 1 :特開 2003— 42738号公報
特許文献 2:特表 2006— 522934号公報
発明の開示
発明が解決しょうとする課題
[0004] 特許文献 1の検査方法では、被投影面からの散乱光をも撮影することとなるため光 量が乏しぐまた被投影面からのノイズもあるため、高い精度を有する検査を実現す ること力 Sできない。さらに、板ガラス基板の両端近傍の投影画像は歪みが生じ、必要 な精度が得られない欠点もある。また特許文献 2のシステムは、それなりの性能はあ るものの、光線をガラスシートに対して垂直方向に照射するため、特に厚さの小さい ガラスシートでは欠陥に関する情報が十分に得られない場合がある。また、検査に時 間を要し、大面積のディスプレイ用板ガラスを詳細に検査しょうとすると、検査時間の 長時間化によって製造速度が制限されるという問題がある。ディスプレイ搭載用の各 種板ガラスは、より大面積の寸法のものが求められるようになつており、このような大面 積の板ガラスについては、従来よりも厳しい管理を必要とすることが少なくない。一方 、検査時間が長くなる等の要因のために、製造原価を従前よりも高価なものとすること はできない。また画像表示装置の高精細化に伴って、板ガラスに発生する欠陥品位 に関しては、より微細な寸法のものあるいは従来は問題視されなかった寸法のものま でも注視せねばならなレ、状況となってレ、る。
[0005] 本発明は、係る状況に対して大面積の板ガラスを高速生産する際に、板ガラスの内 部、あるいは表面に発生する各種の欠陥を迅速かつ効率的に高い精度で検出し、ま た板ガラスの良 '不良を高レ、再現性をもって判定できるようにすることを課題とする。 課題を解決するための手段
[0006] すなわち、本発明の板ガラス欠陥検出装置は、厚み方向に対向する透光面を有す る板ガラスに光源から光線を照射し、板ガラスからの光線を受光装置で受光して、板 ガラスの欠陥を検出する装置であって、光源と受光装置とが板ガラスを挟んで配置さ れており、板ガラスの透光面は光源から受光装置に至る光学系の光軸に対して傾斜 しており、該光軸上において、受光装置のレンズ系の焦点距離は、受光装置の受光 素子から板ガラスまでの距離よりも小さぐ光源から板ガラスの透光面に向けて光線 を照射し、板ガラスを透過した光線を受光装置のレンズ系を通して受光素子で受光 することを特徴とする。
[0007] ここで、光軸とは、この装置の光学系において、受光装置と光源とを光学的に連結 するもので、この装置の光学系の中心を通る仮想的な対称軸である。具体的には、 光軸は、光源から受光装置に至る光学系を構成する一連の光学素子の中心を連ね る' feでめ ·ο。
[0008] 板ガラスの表面(透光面)または内部にある欠陥としては、板ガラス中の異物や溶融 不足等によるノット、脈理(あるいはコードともいう)、泡(シードあるいはブリスターとも いう)に加え、板ガラス表面のうねり、すじ、オープンポア、凹凸さらに傷等も対象とす る。一方、板ガラス自身の像が受光装置の受光素子に結像されると、板ガラスの品位 としては本来問題とはならな!/、ようなもの、例えば板ガラス表面に付着した微細な異 物やゴミ、板ガラス表面のごく微細なうねり等の性状までもが受光装置によって認識さ れていまい、これらの情報がノイズとなって、欠陥の検出精度が低下したり、その後の データ処理が複雑になったりする。そこで、本発明では、光軸上において、受光装置 のレンズ系の焦点距離が、受光装置の受光素子から板ガラスまでの距離よりも小さく なるように設定し、板ガラス自身の像が受光装置の受光素子に結像されなレ、ようにし て、上記のような不都合が生じることを防止している。また、板ガラスの透光面が光軸 に対して傾斜するように、板ガラス、光源及び受光装置を配置することにより、板ガラ スの内部を透過する光線の光路長が相対的に大きくなり、板ガラスを透過した光線束 の単位面積当たりの情報量が多くなるので、特に厚さの小さい板ガラスに対しても、 欠陥に関する十分な情報を得ることが可能となる。 [0009] 尚、板ガラスを任意の速度で揺動させ、透光面と光軸との傾斜角度を所定範囲内 で変化させながら欠陥を検出するようにしてもよい。あるいは、板ガラスを透光面に平 行な方向に一定速度で移動させながら欠陥を検出するようにしてもよい。
[0010] 本発明にお!/、て、光源の波長は、紫外線から可視光線までの領域の種々の波長 のものを任意に利用することができる。よって、単色光源であっても、ある波長範囲の 光線であってもよい。むろん、蛍光灯や白熱灯等の一般的な光源であってもよぐ水 銀灯、ナトリウムランプ、メタルハライドランプ等の HIDランプ(High Intensity Dis charge Lamps)やハロゲンランプ、キセノンランプ、 LEDランプ、 ELランプ、無電極 ランプ等であってもよい。
[0011] 本発明の板ガラス欠陥検出装置で検査することのできる板ガラスは、液晶表示装置 に搭載される板ガラスや各種フィルター用板ガラス、さらに CCDや CMOS等の固体 撮像素子のカバーガラス、そしてレーザーダイオードの窓板ガラス、建材用窓板ガラ ス、強化板ガラスあるレ、は結晶化板ガラスとレ、つたシート形状で成形される各種板ガ ラスである。その板ガラスの大きさは問わないが、特に成型時には大面積であればあ るほど本発明を有効に活用することができる。
[0012] また、本発明の板ガラス欠陥検出装置は、必要に応じて種々の付帯設備を併用す ること力 Sできる。光源からの光線を適切に集光するための反射鏡や集光レンズ、さら にスリットや回折格子、フィルタ一等の併用を行うことができる。
[0013] また、本発明の板ガラス欠陥検出装置は、板ガラスの透光面の光軸に対する傾斜 角度が、 5° 力も 40° の範囲内にあるならば、板ガラスの内部や表面の欠陥を高い 感度で検出することができ、安定した検査が行える。
[0014] 板ガラスの透光面の光軸に対する傾斜角度力、 5° 未満の場合には、板ガラスの 内部を透過する光線の光路長が大きくなりすぎ、板ガラスを透過した光線束の単位 面積当たりの情報量が多くなりすぎるため、得られた情報を分解するために高い分解 能が必要となり、充分な解析が困難となる場合がある。逆に、板ガラスの透光面の光 軸に対する傾斜角度力 S、 40° を超えると、板ガラスの内部を透過する光線の光路長 力 S小さくなりすぎ、板ガラスを透過した光線束の単位面積当たりの情報量が少なくな ると共に、板ガラス表面形状による光線強度の変化量が小さくなるため、板ガラスの 表面や内部の微細な欠陥を検出するのが困難となる場合がある。板ガラスの透光面 の光軸に対する傾斜角度の下限値は 6° であること力 S好ましく、さらに好ましくは 7° 、一層好ましくは 8° 、最も好ましくは 10° であり、上限値は 30° であることが好まし く、さらに好ましくは 26° 、一層好ましくは 25° 、最も好ましくは 20° である。すなわ ち、板ガラスの透光面の光軸に対する傾斜角度の最も好ましい範囲は、 10° 以上、 20° 以下の範囲である。
[0015] また、本発明の板ガラス欠陥検出装置は、上記の光源と受光装置を複数組配設す ることによって、同時に 2以上の情報を得るものであってもよい。例えば、 2組の光源と 受光装置を配設する場合では、 1組目の光源と受光装置とは、板ガラスの透光面の 光軸に対する傾斜角度が常に 10° となるように配設し、 2組目の光源と受光装置は 、板ガラスの透光面の光軸に対する傾斜角度が常に 20° となるように配設すること力 S 可能である。また、、一組又は複数組の光源と受光装置を配設する場合において、 板ガラスへ入射する光線の入射角度が種々の角度となるように、光源と受光装置とが 協調動作するシステムであってもよレ、。
[0016] また、本発明の板ガラス欠陥検出装置は、上述に加え、装置をコンパクトな構成と するために、各種反射ミラーやフィルタ一等の各種光学部材を装置内で光線の進行 する光学系内の適所に複数配設することが可能である。これにより、装置全体をコン パクトにすることに加え、装置の軽量化、測定精度の向上、あるいは測定時の動作速 度や計測レスポンス等の向上を図ることができる。
[0017] また、本発明の板ガラス欠陥検出装置は、上述に加え、受光装置が受光素子とし て固体撮像素子または光電管を搭載したものであるならば、高い検出能を有しかつ 装置として安定した動作を実現することができるので好ましい。
[0018] ここで、固体撮像素子は、例えば CCDや CMOS等のイメージセンサであり、光電 管は、例えば光電子倍増管、真空光電管やガス入り放電管等である。
[0019] また、本発明の板ガラス欠陥検出装置は、光源からの光線により、板ガラスの被検 查部位を欠陥の連なり方向と交差する方向に走査する構成とすることにより、所定方 向に連なった形状を有する欠陥に対して特に高い検出能を発揮することが可能とな [0020] 板ガラスの被検査部位を欠陥の連なり方向と交差する方向に走査するという点に関 して、図 1に従い詳しく説明する。図 1では、板ガラス Gの透光面に、所定方向 Tに連 なった欠陥 Sが存在している。この欠陥 Sは、ガラス中の僅かな均質性の差異により 生じる脈理、あるいはガラス表面の凹凸によるうねりゃスジ等である。この欠陥 Sを光 源からの光線によって走査する場合、欠陥 Sの連なり方向 Tと同じ方向、すなわち D
4 と表示した方向に走査したのでは、正確な情報を検出することができない(図 1で符 号 Gは板ガラス Gの光軸上での位置を示している)。このため、光線による走査方向 は、図 1で D、あるいは D 、 Dの方向、すなわち欠陥の連なり方向と交差する方向に
1 2 3
走査するのが好ましい。ただし、 D、 Dの方向の場合には、走査角度から欠陥位置
2 3
を算出する必要性が生じるため、より好ましくは Dの方向、すなわち欠陥の連なり方 向に略垂直な方向に走査するのが好ましい。すなわち、板ガラスの被検査部位を欠 陥の連なり方向に対して 3° 力、ら 90° までの範囲で走査することが好ましぐより好ま しくは 80° 力 90° の範囲とすることである。欠陥の連なり方向に対して 3° 未満の 角度で走査する場合には、 0。 、すなわち欠陥の連なり方向と平行に走査するのと大 差なぐ正確な検出がおぼつかなくなる場合もある。尚、連なった欠陥は、必ずしも連 続したものには限られず、所定方向に断続的に連なっている場合もある。 80° 力 9 0° の範囲がより好ましいものであるのは、板ガラスに生じる各種の連なった欠陥は、 必ずしも直線状ではない場合もあり、そのような場合であっても確実に検査するため には 80° から 90° の走査範囲で行うの力 精度を高めるためにも好ましいからであ
[0021] そして、本発明の板ガラス欠陥検出装置を使用して、板ガラスの成形直後に連続 的に板ガラスを引き出しながら、その板ガラスの連なった欠陥を検出するためには、 板ガラスの引き出し方向とは異なる方向に被検査部位を走査しつつ欠陥情報を得る ことが重要である。なぜなら、このように連続成形によって板ガラスを引き出す場合に は、板ガラスに発生する欠陥は、板ガラスの引き出し方向に伸張した状態で分布する ことになるからである。すなわち、板ガラスの成形直後に連続的に板ガラスを引き出し ながら欠陥を検出する場合は、「欠陥の連なり方向と交差する方向に走査する」は「 板ガラスの引き出し成形方向と異なる方向に走査する」と言い換えることができる。よ り好ましくは、板ガラスの引き出し成形方向と垂直となるように走査することである。
[0022] 本発明の板ガラス欠陥検出装置によって、板ガラスの走査を行う場合には、板ガラ スのみを移動させてもよぐまたは装置の光源等のみを移動させてもよぐあるいは両 者を同時に移動させてもよ!/、。
[0023] また、本発明の板ガラス欠陥検出装置は、上述に加え、受光装置で受光された光 線に関する情報を記憶する記憶装置と、前記情報をディスプレイに表示するデータ 表示部とを有するならば、検出された情報を記録すると共に、ディスプレイに表示す ることもでき、板ガラスの性状を確実に把握することができる。
[0024] ここで、記憶装置は例えばノヽードディスクや DVD、メモリー等であり、ディスプレイ は例えば液晶表示装置等である。
[0025] また、本発明の板ガラス欠陥検出装置は、特にディスプレイデバイス搭載用の薄板 ガラスの検査に好適である。
[0026] ここで、上記のディスプレイデバイスは、液晶表示装置やプラズマディスプレイ、ある
[0027] 本発明の板ガラスの製造方法は、加熱溶融後に成形装置で成形され、冷却された 板ガラスの表面及び/または内部の欠陥を上記の板ガラス欠陥検出装置を用いて 検査して良否選別を行うことを特徴とする。
[0028] 板ガラス欠陥検出装置を配設する位置は、板ガラスの成形工程の直後の位置であ つても、粗切工程の後の位置であってもよぐまた最終工程で梱包を行う直前の位置 であってもよく、さらにこれら一連の工程の任意の複数箇所に配置しても良い。また、 板ガラスを搬送する最中に計測する場合には、搬送ルート等に沿って板ガラス欠陥 検出装置を配設すればょレ、。
[0029] 上記の成形装置としては、ダウンドロー成形装置あるいはフロート成形装置を採用 すること力 Sできる。ダウンドロー成形装置には、スリットダウンドロー成形装置、ロール アウトダウンドロー成形装置、オーバーフローダウンドロー成形装置が含まれる。フロ ート成形装置は、金属錫のような熔融金属上に熔融ガラスを流し出して成形する装 置である。
[0030] また、本発明の板ガラスの製造方法は、液晶ディスプレイ用板ガラスある!/、はプラズ マディスプレイ用板ガラスの製造に特に好適である。
[0031] 本発明の板ガラス物品は、上記の板ガラスの製造方法によって製造され、無アル力 リガラスからなり、板厚が 0. 7mm以下、最大欠陥寸法が 0. 1 m未満であることを特 徴とする。
[0032] ここで、無アルカリガラスとは、実質的にアルカリフリーのガラス組成を有するガラス である。すなわち、ガラス原料中の不純物からガラス組成中に含有されることになるァ ルカリ金属元素は許容するものの、その含有値は質量百分率表示で 0. 1 %未満に 規制されて!/、るガラスである。
[0033] 本発明の板ガラス物品は、例えば次のようにして得ること力 Sできる。すなわち、板厚 が 0. 7mm以下、最大欠陥寸法が 0. 1 m未満である無アルカリガラス板をテストピ ースとして準備すると共に、板厚が 0. 7mm以下、最大欠陥寸法が 0.; m近傍値( 例えば 0· 09 111や 0. 11 m等)である複数の無アルカリガラス板をテストピースとし て準備し、これらのテストピースを板ガラス欠陥検出装置で計測して、その計測値を 蓄積しておく。そして、この蓄積したデータに基づいて最大欠陥寸法の閾値を規定 値として定め、板ガラス欠陥検出装置で計測した欠陥の最大欠陥寸法が上記の閾 値を超える板ガラスを不良品として排除することで、本発明の板ガラス物品を得ること ができる。
[0034] また、本発明の板ガラス物品は、好ましくは最大欠陥寸法が 0. 08 a m未満であり、 さらに好ましくは最大欠陥寸法が 0. 05 111未満である。
[0035] 欠陥寸法は、光線による走査方向に沿った欠陥の寸法と定義しても良ぐ最大欠陥 寸法は、欠陥のうち最も大きな欠陥の寸法である。この最大欠陥寸法については、他 の検査方法、例えば校正されたマイクロゲージを備えた光学顕微鏡や電子顕微鏡等 による計測によって、その測定値の精度を保証してもよい。
[0036] 本発明の板ガラスの良否判定装置は、板ガラスに光源から光線を照射し、該板ガラ スからの光線を受光装置で受光する計測手段と、計測手段によって得られた画像の 輝度プロファイルをフーリエ変換またはウェーブレット変換して処理結果チャートを得 るチャート獲得手段と、該処理結果チャートに基づいて板ガラスの欠陥を評価して良 否判断を行うアルゴリズム処理系とを有することを特徴とする。 [0037] 具体的には、計測手段によって得られた輝度プロファイルの計測値をフーリエ変換 またはウェーブレット変換することによって成分抽出処理を行い、さらに逆フーリエ変 換または逆ウェーブレット変換し、次いで透過光の輝度値の変化状態を明瞭に可視 化し、得られた輝度の変化を示すチャートに対して予め設定した上限値あるいは下 限値を超えるものとなるかどうかを査定し、超える値である場合には不良とし、超えな い場合には良とすることによって良否を判断する。
[0038] ここで、フーリエ変換は、簡単に説明するならば複雑な形状を有する波形グラフを 単純化した正弦波に分解する変換処理のことであり、ここでは計測の結果として得ら れた輝度プロファイルに認められる複雑な形状のグラフから任意の抽出幅での抽出 によって、変換前の輝度プロファイルに認められる複雑なチャートに意味ある波形形 状がどれだけの量だけ存在するかの情報を得るために使用している。そして、変換処 理後のチャートについての上下限値を予め設定することによって、選別を行うことを 可能としている。
[0039] また、ウェーブレット変換は、フーリエ変換よりも周期性の低!/、場合、すなわち局所 化した波形に対して効果的に変換処理を適用することができるものであり、ガラス透 光面に表れる各種の欠陥に大きな周期性が認められない場合に特に効果的である
[0040] フーリエ変換あるいはウェーブレット変換のサンプリング頻度は任意に決めることが 可能であり、変換プログラムによって処理された値を処理データとして蓄積しつつ、 表示させることも可能であり、またディスプレイ上や記録紙に画像として表示すること もできる。
[0041] フーリエ変換あるいはウェーブレット変換をすることによって最終的に得られた処理 結果チャートの上限値、あるいは下限値は、 目視検査等から得られた外観検査レべ ルと他の微細な欠陥等の検査手法あるいはマクロな範囲の変化を調べる検査手段 により得られた欠陥種の寸法や発生位置等から予め設定することもできるし、また利 用される板ガラスの要求性能に応じて最適な設定値を決めることも可能である。
[0042] また、特定寸法の欠陥種を特定するためには、予め特定寸法の欠陥のある板ガラ スを事前に検査してその計測値を蓄え、その計測値パターンによって所望の欠陥を 検出すること力 Sできる。例えば最大欠陥寸法が 0. 未満となるように設定するに は、 0. 09 μ mや 0· 1 1 μ m等の 0· 1 μ m近傍の欠陥寸法を有する板ガラスの計測 値を蓄積し、その計測された情報に基づいて、設定値を定めて実際の判定を要する 測定時に対応すればよい。
[0043] また、本発明の良否判定装置は、他の処理プログラムと連動して動作することがで き、板ガラスの表面性状や板ガラスの透過率の計測等の各種測定動作とその計測値 の解析とを同時に行うことが可能である。また、良否判定についても、良否判定の基 準をさらに細分化して、カレットとして使用する品位から微小寸法の骨材等として利用 できる製品として採取する品位までを選別するものとしてもよい。
[0044] また、上記のアルゴリズム処理系は、処理結果チャートを 2以上組み合わせて、そ れぞれの処理結果チャートの上下限値から得られる良否結果により最終的な良否判 断を行うものであっても良い。これにより、より詳細な判定を行うことが可能となり、用 途ゃ種別などに応じた最適な判定が可能となる。
[0045] 本発明の良否判定装置によって、例えばディスプレイ搭載用板ガラスの透光面品 位の検査を行うことができる。
[0046] 上記の検査は、人力による目視検査と組み合わせて行うものであっても、本発明の 板ガラス欠陥検出装置を使用する検査との併用により行われるものであってもよレ、。 また、板ガラスのみについての検査を行うものであっても、板ガラス表面上に薄膜な どを被覆させた状態や、板ガラス端面に保護枠や搬送枠等を施した状態で行うもの であってもよい。
[0047] また、必要に応じて複数の板ガラスを積層した状態での評価を行うことも可能である 。この場合には、積層状態とするために使用される介在層に起因する欠陥情報につ いても、検出することが可能となる。
発明の効果
[0048] (1)以上のように、本発明の板ガラス欠陥検出装置は、板ガラスの透光面が光軸に 対して傾斜するように、板ガラス、光源及び受光装置が配置されていると共に、光軸 上において、受光装置のレンズ系の焦点距離が、受光装置の受光素子から板ガラス までの距離よりも小さくなるように設定されているので、特に厚さの小さい板ガラスに 対しても、欠陥に関する十分な情報を得ることができ、また、受光装置に入るノイズが 少なくなり、高精度で迅速な欠陥検査を実現することができる。
[0049] (2)また、光源からの光線により、板ガラスの被検査部位を欠陥の連なり方向と交差 する方向に走査する構成とすることにより、微弱な脈理ゃ目視不可能なスジ、あるい は連なった異物や気泡、表面うねり等の欠陥についての精度の高い検出能を発揮 すること力 S可倉 となる。
[0050] (3)また、受光装置で受光された光線に関する情報を記憶する記憶装置と、前記 情報をディスプレイに表示するデータ表示部とを具備させることにより、情報の再利 用性に優れ、 目視性にも優れた装置となり、工程内での異常検出手段として迅速な 対応が要求される場合や製造方法の問題点を解析する際等において極めて大きな 力を発揮する。
[0051] (4)本発明の板ガラスの製造方法は、加熱溶融後に成形装置で成形され、冷却さ れた板ガラスの表面及び/または内部の欠陥を上記の板ガラス欠陥検出装置を用 いて検査して良否選別を行うものであるため、板ガラスの製品としての可否を早い時 期に決定することができ、製造効率を高めることが可能である。
[0052] (5)本発明の板ガラス物品は、無アルカリガラスからなり、板厚が 0· 7mm以下、最 大欠陥寸法が 0. 1 m未満であるため、例えば高精細を要求される 40インチ以上の 液晶表示装置などの大型画像表示装置に搭載される板ガラスとして好適なものとな る。相応しレ、優れた均質性を有するガラス材である。
[0053] (6)本発明の板ガラスの良否判定装置は、板ガラスに光源から光線を照射し、該板 ガラスからの光線を受光装置で受光する計測手段と、計測手段によって得られた画 像の輝度プロファイルをフーリエ変換またはウェーブレット変換して処理結果チャート を得るチャート獲得手段と、該処理結果チャートに基づ!/、て板ガラスの欠陥を評価し て良否判断を行うアルゴリズム処理系とを有するものであるため、板ガラスの欠陥に 関する良否判別を容易かつ確実に行うことができ、また、処理結果チャートの欠陥の 基準値を必要に応じて変更することで、要求品位に応じた製造体制を容易に確立す ること力 S可倉 となる。
[0054] (7)本発明の板ガラスの良否判定装置を用いてディスプレイ搭載用板ガラスの透光 面品位の検査を行うことにより、ディスプレイ搭載用板ガラスの透光面品位の品位水 準に応じた検査を実現することができ、ディスプレイ搭載用板ガラスの検査時間を短 縮し、しかも高い検査レベルを達成することができる。
発明を実施するための最良の形態
[0055] 以下に本発明の板ガラス欠陥検出装置、板ガラスの製造方法、板ガラスの製造方 法により得られる板ガラス物品、板ガラス欠陥検出判定プログラム及び板ガラスの検 查方法について、実施例に基づいて説明する。
実施例 1
[0056] 図 2 (A)及び図 2 (B)は、実施例 1に係る板ガラス欠陥検出装置 10を概念的に示し ている。この板ガラス欠陥検出装置 10は、板ガラス Gを挟む対向位置に配置された 光源 20と受光装置 30とを備えている。板ガラス Gは、その厚み方向に対向する透光 面 Ga、 Gbを有し、透光面 Ga、 Gbが、この板ガラス欠陥検出装置 10の光学系の光 軸 Lx (光源 20から受光装置 30に至る光学系を構成する一連の光学素子の中心を 結ぶ線)に対して所定角度 αだけ傾斜するように、光源 20と受光装置 30との間に配 置されている。また、受光装置 30と板ガラス Gとは、光軸 Lx上において、受光装置 3 0のレンズ系 31の焦点距離 Fが、受光装置 30の受光素子(ラインセンサ等)から板ガ ラス Gまでの距離 Z (G1は板ガラス Gの光軸 Lx上での位置を示している。)よりも小さ くなるような位置関係で配置されている。
[0057] 具体例を示すと、検出対象である板ガラス Gとして液晶表示装置に搭載される薄板 ガラスを用い、光源 20として 200Wメタルハライドランプを使用し、受光装置 30の受 光素子として 2000画素ラインセンサを配し、透光面 Ga、 Gbと光軸 Lxとのなす角度 α力 15° となるように、板ガラス Gを光源 20と受光装置 30との間に配置した。光源 2 0としてのメタルハライドランプから照射された光線 Lは、光軸 Lxに対して角度 15° だ け傾斜した薄一方の透光面 Gaから板ガラス Gの内部に入射し、板ガラス Gの内部を 透過して、光軸 Lxに対して角度 15° だけ傾斜した他方の透光面 Gbから板ガラス G の外部に出射する。このようにして、板ガラス Gを透過した光線 Lは、板ガラス Gの内 部や透光面 Ga、Gbの性状に関する情報を含んだ透過光線となって受光装置 30の ラインセンサに入射する。 [0058] 図 3に示すように、この実施例の板ガラス欠陥検出装置 10は、受光装置 30 (ライン センサ)からの輝度値を必要頻度で輝度計測システム S 1へと入力し、輝度計測シス テム S 1からデータ保管システム S2、データ表示システム S3及び板ガラス欠陥判定 システム S4の 4つのアルゴリズム処理系へとデータを送出することによって、各システ ムのプログラム間でのデータの出入力によって各種の動作を実現することを可能にし ている。
[0059] すなわち、板ガラス欠陥検出装置 10では、受光装置 30 (ラインセンサ)に入射した 光線 Lの輝度値をデジタルデータとして計測装置内に一時保存することのできる RA M (randam— access memory)と、 らに RAMに——日守白勺に蓄えられにァータをァ ータ保管システム S2により駆動している HDD (hard— disk drive)記憶装置に蓄積 することができ、恒久的に輝度計測値を保存して再利用することが可能となっている 。また、受光装置 30 (ラインセンサ)に入射した光線 Lの輝度値は、データ表示システ ム S3の動作によって液晶表示装置等のディスプレイ上に他の複数の変数あるいは 常数 等をパラメータ一として、 2次元又は 3次元グラフ表示を fiい、あるいは数 デ ータ表示を行うこともできる。このデータ表示システム S3で表示することができるのは 、例えば時系列データ、品種別欠陥発生頻度データ、欠陥種発生箇所の分布表示 さらに輝度データとの比較グラフ等である。またこの輝度データは、他のセンサ類や タイマー等と連動することによって、板ガラスの透過率や時間データ、温度、湿度や ダスト計測データ等とも組み合わせてプールすることができる。そして受光装置 30 (ラ インセンサ)に入射した光線 Lの輝度値は、さらにウェーブレット変換を行うプログラム を備えたアルゴリズム系により変換処理を行い、元の輝度データ等と共に保存、ある いは表示することができる仕様となって!/、る。
[0060] 次いで板ガラス欠陥検出装置 10を組み込むことにより、板ガラスを製造する方法に ついて、液晶表示装置の画像表示部に搭載される無アルカリガラス組成を有する薄 板ガラスの製造方法とそれによつて得られるガラス物品について具体的に説明する。
[0061] まず、液晶表示装置に搭載するに適した無アルカリガラス組成となるように予め準 備した複数のガラス原料を秤量して均一になるように混合し、混合原料保管容器に て保管する。次いで、この混合済みのガラス原料をバッチチャージヤーによってガラ ス溶融炉内へと投入する。ガラス溶融炉内に投入されたガラス原料は、 1000°C以上 の高温状態に加熱され、高温ガラス化反応を起こして、粗溶融状態になり、その後撹 拌装置等の均質化手段によって均質な状態の溶融ガラスとする。
[0062] 均質化された溶融ガラスは、板ガラス成形装置へと供給される。この板ガラス成形 装置は、上部が開口した樋形状の熔融ガラス供給溝を頂部に有しており、このガラス 供給溝の両側壁頂部をオーバーフローの堰とし、かつ両側壁の外面部をその断面 形状が略楔形となるように両側壁の外面同士を下方に向けて相互に接近させて下端 で終結させた成形体を備えている。溶融炉内で均質化された熔融ガラスは、ガラス供 給溝の一端から連続的に供給されて両側壁頂部稜線力 オーバーフローし、成形体 の両側壁外面に沿って流下して略楔形下端で合流し、 1枚の板ガラス状態となる。
[0063] こうして成形された薄板状の板ガラスは、成形当初は高温状態であるが、成形ロー ル等により順次送り出される途中で空冷されて熱板状態から冷却された状態へと移 行していく。このようにして成形、冷却され、ある程度冷却された後に、折り割り切断装 置を使用してスクライブ切断されて所定長の長さ寸法を有する板ガラス物品 Gが得ら れる。この後に板ガラス物品 Gは搬送装置によってストッカーまで 1枚ずつ搬送されて いくことになるが、このストッカーまでの搬送経路の途中に、板ガラス物品 Gの透光面 Ga、 Gbに対して光軸 Lxが 15° の角度を有するように、板ガラス欠陥検出装置 10を 配設することで、板ガラス Gの被検査部位を欠陥の長手方向(連なり方向)に 90° の 垂直な方向となるように走査し、板ガラス物品 Gの表面(透光面 Ga、 Gb)及び内部に 欠陥が認められないかを連続的に計測する。
[0064] 例えば、最大欠陥寸法が 0. 1 m未満のものを良品として選別する場合、 0. 09 μ mや 0· 11 111等の0. 1 m近傍の欠陥寸法を有する 0· 7mm厚の複数の無アル力 リガラス板をテストピースとして用意し、これらテストピースを板ガラス欠陥検出装置 10 にて計測して計測値を蓄積した上で、そのデータに基づいて良品 ·不良品を選別す るための閾値を規定値として定める。
[0065] そして板ガラス物品 Gの計測によって受光装置 30 (ラインセンサ)に入力された輝 度の計測結果は逐次ウェーブレット変換処理が行われ、欠陥を判定するァルゴリズ ム処理系で予め前述した前処理により設定された上限、下限(閾値)の規定値によつ て判定操作が行われる。判定の結果、規定に見合わない板ガラス物品 G、すなわち 最大欠陥寸法が 0. Ι πι以上の板ガラス物品 Gは、良品保管用ストッカーに保管さ れることなぐカレット保管庫へと送られることになり、判定によって問題のないことが 判明した板ガラス物品 Gはストッカーへ順次搬送され、製品化される板ガラス物品とし て整列保管されることとなる。
[0066] 以上のような板ガラスの製造方法により製造された板ガラス物品は、板ガラスの内 部や表面に存在する欠陥が効率よく検出されて判別が行われ、正確な良否判定が 行われているため、ディスプレイやテレビなどに使用される 40インチを越える大型の 液晶表示装置に搭載されると高精細な液晶表示装置の性能を申し分なく発揮させる ことが可能な高い均質性と表面精度を有する品位の状態が実現されたものとなる。
[0067] つぎに、板ガラス欠陥検出装置 10を使用して、例えば液晶表示装置やプラズマデ イスプレイに搭載される薄板ガラスの欠陥を検出する際に使用される板ガラス欠陥検 出判定プログラムについての説明を、図 4のフローチャートを参照しながら行う。
[0068] 板ガラス欠陥検出プログラムは、「計測の開始」によって測定を開始し、輝度値のプ 口ファイルに必要に応じてフィルターを施して明瞭な電気ノイズ等を除去した状態で 入力されるプロセス 1を経て、プロセス 2へと進む。プロセス 2では前述したデータ保 管システム S2により、 RAMからの必要なデータを所定の頻度で HDDへ保存する。 さらにプロセス 3では、入力された輝度値に対してフーリエ変換あるいはウェーブレツ ト変換処理を行レ、、板ガラス欠陥判定システム S4に相当する動作を行う。
[0069] まずプロセス 3— 1でフーリエ変換あるいはウェーブレット変換処理を行い、次いで プロセス 3— 2で成分抽出処理を行い、ノイズ等を削除し、フーリエ逆変換あるいはゥ エーブレット逆変換処理を行い、そしてプロセス 3— 3では、最狭幅での窓関数に対 しての変換処理結果チャートを算出する。得られた変換処理結果チャートは、データ 保管システム S2により保管され、またデータ表示システム S3によりグラフ画像として 表示される。そしてこの最狭幅での窓関数に対しての変換処理結果チャートは、予め 設定した良否の上下限値(閾値)を超えるか超えないかを判定する。こうして閾値を 超える場合には、この計測に係る板ガラスは「否」と判定され、カレットとするかあるい は他の用途へと転用される。次いで「良」と判定された場合には、プロセス 3— 4にあ るように輝度値のプロファイルと変換処理結果チャートとから窓関数の幅値の値を決 定する。このプロセス 3— 4で決定した窓関数の幅値に従い、プロセス 3— 5では、再 度変換処理結果チャートを算出する。こうして得られた 2回目の変換処理結果チヤ一 トに対して、更に良否の判定を行い、「否」と判定された場合には先述と同様に力レツ トとするかあるいは他の用途へと転用される。次いで「良」と判定された場合には、プ ロセス 3— 6で輝度プロファイルと再度変換処理結果チャートとの比較を行い、さらに 継続した変換処理が必要力、どうかを判定する。その結果さらに継続した変換処理が 必要と判定されれば、再度プロセス 3— 4の処理を行う。また継続する必要はないと終 了判断された場合には、これで調査が終了し、板ガラスは良品であると判定されるこ とになる。
[0070] 図 5は、上述してきた輝度データの処理のチャート等を表している。図 5では、受光 装置 30から得られた「輝度プロファイル」から「電気ノイズ」成分を除去し、「輝度デー タ」が得られる。次いで「輝度データ」をフーリエ変換することによって得られる周波数 の短い成分を「チャート 1」に示す。ここで、 「チャート 1」の上下限値から不良部分 la, lb, lcを検出している。また、同様にして周波数の長い成分を「チャート 2」に示す。「 チャート 2」の上下限値から不良部分 2aが検出された。
[0071] また、表 1は、良品と不良品とを判定した場合の判定基準について表した例である
1S この表 1のように、複数の窓関数を設定し、それぞれの判定結果の組み合わせか ら総合的に判断して良否を決定することにより、さらに詳細な良、不良判定を行うこと ができる。
[0072] [表 1]
窓関数 1での 窓関数 2での 窓関数 3での
条件 最終判定
チヤ一ト 1 ヂヤート 2 チヤ一ト 3
1 不良都分がある - - 不良廃棄
2 不良部分がある 不良都分がある 不良廃棄
2お PJf以上
3 不良廃棄
不 AiP分がある
1力
4 - 不良 分がない Ε¾Β¾
不良 gp分がある
- 不良部分がない 不良部分がある 級 πτι
6 条件 1かも条件 5に該 §しない fid
なお、上記の板ガラス欠陥検出プログラムは、 HDDや DVDあるいは CD— ROM、 フラッシュメモリー等の適切な媒体で保管することができ、他のシステムとの連動が必 要ならば、プログラムの動作を変更してもよい。また、上記の板ガラス欠陥検出プログ ラムは、 C + +や C等の適切なプログラム言語を使用して記述することができる。
[0073] 次いで、本発明の板ガラスの検査方法について、液晶表示装置搭載用の板ガラス の検査方法を例にして説明する。
[0074] 液晶表示装置の透光面は、液晶表示装置に搭載されると画像が表示される面に相 当するため、その表面に関しては肉眼で認められる欠陥が存在するものは許容でき ない。このためこの種の検査としては、主として肉眼による検査が重要視されているが 、この実施例の板ガラスの検査方法は、肉眼での検査を代用することもでき、また肉 眼での検査を補完する目的で採用することも可能である。
[0075] 検査に係る液晶用の薄板ガラスを搬送する際には、上述したように薄板ガラスを透 光面に平行な方向に動作させながら、受光装置 30 (ラインセンサ)で光源 20 (メタル ハライドランプ)からの光線 Lを受光することによって検査を行うが、板ガラスの幅方向 2000mmの長さについて、光源 20からの光線 Lを受光する場合には、板ガラスの搬 送速度と連動したサンプリング頻度とするのが好ましい。よって、板ガラスの成形速度 によって、検査のサンプリングを変更する処理系を付属するシステムとすることができ るようになっている。
[0076] また板ガラスの表面に所定の膜を施工した状態で最終的な検査に使用することも 可能であり、プラズマディスプレイ用の板ガラス等では膜付け品についての高い検査 品位を実現することが可能となる。
[0077] 以上示したように、この実施例の板ガラス欠陥検出装置、板ガラスの製造方法、板 ガラス欠陥検出判定プログラム及び板ガラスの検査方法は、 V、ずれも優れた性能の 板ガラスを製造する際に、その板ガラスの品位を適切に工程内で判定しつつ、各種 の板ガラスを製造することに大きく貢献することができるものである。
実施例 2
[0078] つぎに、実施例 2に係る板ガラス欠陥検出装置 11について、図 6を参照しつつ具 体的に説明する。この板ガラス検出装置 11は、例えば TFT液晶表示装置に搭載さ れる、幅寸法が 1500mmで 0. 65mm厚の薄板ガラス Gを省スペースで連続的に計 測するために構成されたものである。図 6では、板ガラス欠陥検出装置 11の主要構 成部材が概略的に示されており、板ガラス Gは上方から下方へとガラス溶融炉から成 形された後で耐熱性ロール(図示省略)により下方へと連続的に引き出されている状 態が表されている。同図における Wは板ガラス Gの移動方向を示している。
[0079] この板ガラス欠陥検出装置 11は、板ガラス Gを挟む位置に配置された光源 20と受 光装置 30a及び反射ミラー 40とを備えている。例えば、光源 20としてメタルハライドラ ンプが使用され、受光装置 30aは固体撮像素子を搭載している。光源 20と受光装置 30a及び反射ミラー 40は同図で V方向に可動な検査ステージ 50に取り付けられてお り、光源 20から照射された光線 Lは板ガラス Gを透過して反射ミラー 40に入射し、反 射ミラー 40で反射されて受光装置 30aに入射する。板ガラス Gは、その厚み方向に 対向する透光面 Ga、 Gbを有し、透光面 Ga、 Gbが、この板ガラス欠陥検出装置 11の 光学系の光軸 Lx (光源 20から受光装置 30aに至る光学系を構成する一連の光学素 子の中心を結ぶ線)に対して所定角度 αだけ傾斜するように、光源 20と受光装置 30 aとの間に配置されている。光軸 Lx上において、光源 20から板ガラス Gの位置 G1ま での距離は 1000mm、板ガラス Gの位置 G1から反射ミラー 40までの距離は 500m m、反射ミラー 40から受光装置 30aの固体撮像素子までの距離は 500mmに設定さ れている。受光装置 30aのレンズ系の焦点距離は 700mmである。従って、光軸 Lx 上において、受光装置 30aのレンズ系の焦点距離 700mmは、受光装置 30aから板 ガラス Gの位置 G1までの距離 1000mm ( = 500mm+ 500mm)よりも小さい。また、 板ガラス Gの透光面 Ga、 Gbと光軸 Lxとのなす角度 αは 20° である。
[0080] この板ガラス欠陥検出装置 11による検査では、検査ステージ 50を板ガラス Gの透 光面 Ga、 Gbに対して平行で、かつ板ガラス Gの引き出し成形方向(移動方向 W)と 垂直(90° )となる走査方向 Vへ 500m/sの動作速度で移動させ、 3秒間で板ガラ ス Gを計測するようになっている。板ガラス Gの表面や内部に存在する脈理ゃ表面の 凹凸によるうねり等の各種の欠陥 Sは、板ガラス成形時に延伸され、あるいはガラス 表面に接触する成形装置等に起因して板ガラスの引き出し成形方向(移動方向 W) と同一の方向 Tに連なって分布する状態になる場合が多い。このため、板ガラス Gの 被検査部位を走査する方向 D は、板ガラス Gの引き出し成形速度 (移動方向 Wへ
21
の移動速度)と検査ステージ 50の走査方向 Vへの走査速度とが合成された方向とな り、欠陥の連なり方向 Tに対して例えば 80° 力も 84° の範囲内で走査が行われるこ とになる。例えば、受光装置 30aに搭載された固体撮像素子は 2000画素の CMOS であって、受光装置 30の転送速度が 20MHzであるので、画像取込速度は 10000 回/秒となり、 0. 05mm毎の 30000のサンプリングデータを板ガラス Gの良否判定 に禾 IJ用することカできる。
[0081] また、この板ガラス欠陥検出装置 11では、狭い測定環境でも配設できるように装置 全体をコンパクトな構成とするため、反射ミラー 40を使用しており、こうすることによつ て狭い検査環境であっても高い検査能力を発揮するものとなる。よって、十分なスぺ ースが確保できる環境であれば、受光装置 30aの代わりに固体撮像素子を搭載した 受光装置 30bを使用し、反射ミラー 40を使用することなく計測するものであってもよい 。この受光装置 30bは、板ガラス Gを挟さんで光源 20と対向する位置に配置される。 実施例 3
[0082] さらに図 7には、他の構成の板ガラス欠陥検出装置に係る概念図を示す。この板ガ ラス欠陥検出装置では、光軸 Lx上において、光源 20から板ガラス Gの位置 G1まで の距離は 1000mm、板ガラス Gの位置 G1から受光装置 30aの固体撮像素子までの 距離は 1000mmに設定されている。受光装置 30aのレンズ系の焦点距離は 700m mである。従って、光軸 Lx上において、受光装置 30aのレンズ系の焦点距離 700m mは、受光装置 30aから板ガラス Gの位置 G1までの距離 1000mmよりも小さい。また 、板ガラス Gの透光面 Ga、 Gbと光軸 Lxとのなす角度 αは 20° である。
[0083] この板ガラス欠陥検出装置では、切断された後の板ガラス Gを 1枚ずつ移動させる 際に計測を行うように構成されている。板ガラス Gは図 7に示す Η方向(水平方向)に 移動し、この移動方向 Ηは、板ガラス Gの表面欠陥等の連なる方向 Τと垂直になって いる。すなわち、板ガラス Gの欠陥の連なる方向 Τと垂直方向 Ηに板ガラス Gを移動さ せながら計測が行われる。このため、板ガラス Gの被検査部位を走査する方向 D は
11
、連なったスジ状の表面欠陥 Sが配向する方向に対して 89° 力も 90° の範囲内で 走査が行われることになる。
[0084] このような計測によって、板ガラス Gの良否を 1枚ずつ正確に行うことができ、予め最 大欠陥寸法が 0. l ^ m未満となるように選別を行うことができるので、安価で安定し た品位の板ガラスを得ることが容易となる。
図面の簡単な説明
[0085] [図 1]本発明の板ガラス欠陥検出装置の走査方向についての概念説明図
[図 2]実施例に係る板ガラス欠陥検出装置の説明図であり、(Α)は装置の概略図、 ( Β)は光学系につ!/、ての概念図を示して!/、る。
[図 3]実施例に係る板ガラス欠陥検出装置のシステム構成を説明する概念図。
[図 4]実施例に係る板ガラス欠陥検出判定プログラムの処理系を説明するためのフロ 一チャート。
[図 5]実施例に係る板ガラス欠陥検出判定プログラムの輝度データ処理等により得ら れたチャート。
[図 6]他の実施例に係る板ガラス欠陥検出装置のシステム構成の説明図。
[図 7]他の実施例に係る板ガラス欠陥検出装置のシステム構成の説明図。
符号の説明
[0086] 10、 11 板ガラス欠陥検出装置 21 光源の位置
30、 30a, 30b 受光装置
31 受光装置のレンズ系
40 反射ミラー
50 検査ステージ
D、 D 、 D、 D 、 D 被検査部位を走査する方向
1 11 2 3 21
D 被検査部位を走査しない方向
4
G 板ガラス物品
G 板ガラスの光軸上の位置
Ga、 Gb 板ガラス透光面
L 光線
Lx 光軸
光軸と板ガラス透光面とのなす角
F 受光装置の焦点距離
S 板ガラスの欠陥
τ 連なった欠陥の長尺方向
V 検査ステージの移動方向
W、 H 板ガラスの移動方向
Z 板ガラスから受光装置までの距離
la、 lb、 lc チャート 1から検出された不良判定部分
2a チャート 2から検出された不良判定部分

Claims

請求の範囲
[1] 厚み方向に対向する透光面を有する板ガラスに光源から光線を照射し、該板ガラ スからの光線を受光装置で受光して、板ガラスの欠陥を検出する装置であって、 前記光源と前記受光装置とが前記板ガラスを挟んで配置されており、
前記板ガラスの透光面は前記光源から前記受光装置に至る光学系の光軸に対し て傾斜しており、該光軸上において、前記受光装置のレンズ系の焦点距離は、前記 受光装置の受光素子から前記板ガラスまでの距離よりも小さく、
前記光源から前記板ガラスの透光面に向けて光線を照射し、該板ガラスを透過した 光線を前記受光装置のレンズ系を通して受光素子で受光することを特徴とする板ガ ラス欠陥検出装置。
[2] 前記板ガラスの透光面の前記光軸に対する傾斜角度力 5° 力 40° の範囲内に あることを特徴とする請求項 1に記載の板ガラス欠陥検出装置。
[3] 前記受光装置が受光素子として固体撮像素子または光電管を搭載したものである ことを特徴とする請求項 1または請求項 2に記載の板ガラス欠陥検出装置。
[4] 前記板ガラスの欠陥は所定方向に連なった形状をなし、前記光源からの光線により 、前記板ガラスの被検査部位を前記欠陥の連なり方向と交差する方向に走査するこ とを特徴とする請求項 1から請求項 3の何れかに記戴の板ガラス欠陥検出装置。
[5] 前記受光装置で受光された光線に関する情報を記憶する記憶装置と、前記情報を ディスプレイに表示するデータ表示部とを有することを特徴とする請求項 1から請求 項 4の何れかに記載の板ガラス欠陥検出装置。
[6] 前記板ガラスがディスプレイデバイス搭載用の薄板ガラスであることを特徴とする請 求項 1から請求項 5に記載の板ガラス欠陥検出装置。
[7] 加熱溶融後に成形装置で成形され、冷却された板ガラスの表面及び/または内部 の欠陥を請求項 1から請求項 5の何れかに記載の板ガラス欠陥検出装置を用いて検 查して良否選別を行うことを特徴とする板ガラスの製造方法。
[8] 前記成形装置がダウンドロー成形装置あるいはフロート成形装置であることを特徴 とする請求項 7に記載の板ガラスの製造方法。
[9] 前記板ガラスが液晶ディスプレイ用板ガラスまたはプラズマディスプレイ用板ガラス であることを特徴とする請求項 8に記載の板ガラスの製造方法。
[10] 請求項 7から請求項 9の何れかに記載の板ガラスの製造方法によって製造され、無 アルカリガラスからなり、板厚が 0. 7mm以下、最大欠陥寸法が 0. 1 m未満である ことを特徴とする板ガラス物品。
[11] 板ガラスに光源から光線を照射し、該板ガラスからの光線を受光装置で受光する計 測手段と、該計測手段によって得られた画像の輝度プロファイルをフーリエ変換また はウェーブレット変換して処理結果チャートを得るチャート獲得手段と、前記処理結 果チャートに基づいて板ガラスの欠陥を評価して良否判断を行うアルゴリズム処理系 とを有することを特徴とする板ガラスの良否判定装置。
[12] 前記アルゴリズム処理系は、前記処理結果チャートを 2以上組み合わせて、それぞ れの処理結果チャートの上下限値力 得られる良否結果により最終的な良否判断を 行うことを特徴とする請求項 11に記載の板ガラスの良否判定装置。
PCT/JP2007/074026 2006-12-14 2007-12-13 板ガラス欠陥検出装置、板ガラスの製造方法、板ガラス物品、板ガラスの良否判定装置及び板ガラスの検査方法 WO2008072693A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800456991A CN101558292B (zh) 2006-12-14 2007-12-13 玻璃板的缺陷检测装置和制造方法、玻璃板制品、玻璃板的好坏判定装置和检查方法
US12/518,960 US20100028567A1 (en) 2006-12-14 2007-12-13 Glass sheet defect detection device, glass sheet manufacturing method, glass sheet, glass sheet quality judging device, and glass sheet inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006336518 2006-12-14
JP2006-336518 2006-12-14

Publications (1)

Publication Number Publication Date
WO2008072693A1 true WO2008072693A1 (ja) 2008-06-19

Family

ID=39511709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074026 WO2008072693A1 (ja) 2006-12-14 2007-12-13 板ガラス欠陥検出装置、板ガラスの製造方法、板ガラス物品、板ガラスの良否判定装置及び板ガラスの検査方法

Country Status (6)

Country Link
US (1) US20100028567A1 (ja)
JP (1) JP5169194B2 (ja)
KR (1) KR101475310B1 (ja)
CN (1) CN101558292B (ja)
TW (1) TWI465711B (ja)
WO (1) WO2008072693A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159419A1 (ja) * 2014-04-18 2015-10-22 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法、ならびに液晶ディスプレイ
CN105717137A (zh) * 2016-01-27 2016-06-29 中国建筑材料科学研究总院 石英玻璃微缺陷检测方法
JP6228695B1 (ja) * 2017-02-27 2017-11-08 株式会社ヒューテック 欠陥検査装置
TWI644098B (zh) * 2017-01-05 2018-12-11 國立臺灣師範大學 透明基板之瑕疵檢測方法與裝置
IT202100010865A1 (it) * 2021-04-29 2022-10-29 Etrusca Vetreria Sistema e metodo per la rilevazione di infusi in manufatti di vetro cavo

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8315464B2 (en) * 2008-02-07 2012-11-20 Coherix Method of pore detection
JP4884540B2 (ja) * 2010-01-21 2012-02-29 東京エレクトロン株式会社 基板検査装置及び基板検査方法
JP2011232204A (ja) * 2010-04-28 2011-11-17 Rigaku Corp カラーフィルタ基板検査方法及び検査装置
CN102939512A (zh) * 2010-06-07 2013-02-20 旭硝子株式会社 形状测定装置、形状测定方法及玻璃板的制造方法
EP2584334B8 (en) 2010-06-17 2019-10-23 Envision AESC Japan Ltd. Air tightness test method and air tightness test device for sealed batteries
CN102466515B (zh) * 2010-11-11 2014-12-17 比亚迪股份有限公司 用于校准移动终端的光传感器的方法及系统
JP5796430B2 (ja) * 2011-09-15 2015-10-21 日本電気硝子株式会社 板ガラス検査装置、板ガラス検査方法、板ガラス製造装置、及び板ガラス製造方法
KR101441359B1 (ko) * 2012-01-16 2014-09-23 코닝정밀소재 주식회사 광전지용 커버유리의 투과율 측정장치
US20130250288A1 (en) * 2012-03-22 2013-09-26 Shenzhen China Star Optoelectronics Technology Co., Ltd. Glass substrate inspection device and inspection method thereof
JP5923172B2 (ja) * 2012-08-13 2016-05-24 川崎重工業株式会社 板ガラスの検査ユニット及び製造設備
CN103500336B (zh) * 2013-09-24 2016-08-17 华南理工大学 滤光片缺陷特征参数选择的熵方法
CN105204207B (zh) * 2014-04-18 2019-07-09 安瀚视特控股株式会社 平板显示器用玻璃基板及其制造方法、以及液晶显示器
CN105091761B (zh) * 2014-04-28 2020-02-07 深圳迈瑞生物医疗电子股份有限公司 样本形态监测装置及方法
US9933373B2 (en) * 2014-04-29 2018-04-03 Glasstech, Inc. Glass sheet acquisition and positioning mechanism for an inline system for measuring the optical characteristics of a glass sheet
US10851013B2 (en) 2015-03-05 2020-12-01 Glasstech, Inc. Glass sheet acquisition and positioning system and associated method for an inline system for measuring the optical characteristics of a glass sheet
CN104777131B (zh) * 2015-04-17 2018-01-30 蓝思科技(长沙)有限公司 一种玻璃品质检测装置
JP6067777B2 (ja) * 2015-04-27 2017-01-25 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法、ならびに液晶ディスプレイ
JP6531940B2 (ja) * 2015-05-25 2019-06-19 日本電気硝子株式会社 表面粗さ評価方法、表面粗さ評価装置およびガラス基板
CN106248684B (zh) * 2015-06-03 2019-12-17 法国圣戈班玻璃公司 用于检测透明基底的内部瑕疵的光学装置及方法
DE102015114065A1 (de) * 2015-08-25 2017-03-02 Brodmann Technologies GmbH Verfahren und Einrichtung zur berührungslosen Beurteilung der Oberflächenbeschaffenheit eines Wafers
JP6587211B2 (ja) * 2015-12-17 2019-10-09 日本電気硝子株式会社 ガラス板の製造方法
JP6642223B2 (ja) * 2016-04-13 2020-02-05 Agc株式会社 透明板表面検査装置、透明板表面検査方法、およびガラス板の製造方法
US20180164224A1 (en) * 2016-12-13 2018-06-14 ASA Corporation Apparatus for Photographing Glass in Multiple Layers
JP6765639B2 (ja) * 2016-12-26 2020-10-07 日本電気硝子株式会社 ガラス板の製造方法
CN110431406B (zh) * 2017-02-28 2022-04-01 东洋玻璃株式会社 容器的检查装置和容器的检查方法
JP7054481B2 (ja) * 2017-08-24 2022-04-14 日本電気硝子株式会社 板ガラスの製造方法
TWI640748B (zh) * 2017-10-26 2018-11-11 頂瑞機械股份有限公司 玻璃檢測方法
CN107942965B (zh) * 2017-11-02 2019-08-02 芜湖东旭光电科技有限公司 玻璃基板成型异常的监控方法及系统
FR3074295B1 (fr) * 2017-11-30 2019-11-15 Saint-Gobain Glass France Procede de detection de defauts de laminage dans un verre imprime
EP3775804A4 (en) 2018-04-05 2022-02-09 Alliance for Sustainable Energy, LLC METHODS AND SYSTEMS FOR DETERMINING POLLUTION ON PHOTOVOLTAIC MODULES
JP6890101B2 (ja) * 2018-04-13 2021-06-18 日東電工株式会社 画像識別装置、及び画像識別装置を備える物品製造装置
IT201800005143A1 (it) * 2018-05-08 2019-11-08 Metodo per il controllo di un oggetto in materiale trasparente e relativo sistema di controllo
CN110208973B (zh) * 2019-06-28 2022-02-18 苏州精濑光电有限公司 一种液晶显示屏合格性的检测方法
CN111179248B (zh) * 2019-12-27 2023-06-09 深港产学研基地 一种透明平滑曲面缺陷识别方法及检测装置
CN114981218A (zh) * 2020-03-25 2022-08-30 日本电气硝子株式会社 玻璃板制造方法及其制造装置
CN113034863B (zh) * 2021-03-18 2022-07-26 河北光兴半导体技术有限公司 压延辊前异物预警处理系统及预警处理方法
CN113798201A (zh) * 2021-09-22 2021-12-17 陈冬红 一种可降低次品率的光学玻璃生产系统及控制方法
CN117670876A (zh) * 2024-01-31 2024-03-08 成都数之联科技股份有限公司 一种面板缺陷严重程度判级方法、系统、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308046A (ja) * 1993-04-28 1994-11-04 Dainippon Screen Mfg Co Ltd 周期性パターン検査装置
JPH10185828A (ja) * 1996-12-20 1998-07-14 Matsushita Electric Ind Co Ltd 透明平面体表面の欠陥検査方法及びその装置
JPH1153544A (ja) * 1997-07-30 1999-02-26 Mitsubishi Heavy Ind Ltd 画像処理装置
JPH11110561A (ja) * 1997-09-30 1999-04-23 Advantest Corp 画像情報処理装置
JP2002026052A (ja) * 2000-07-05 2002-01-25 Sumitomo Metal Electronics Devices Inc バンプ電極の外観検査方法
JP2003042738A (ja) * 2001-08-02 2003-02-13 Seiko Epson Corp 基板の検査方法、電気光学装置の製造方法、電気光学装置および電子機器
WO2004079406A2 (en) * 2003-03-05 2004-09-16 Corning Incorporated Inspection apparatus for detecting defects in transparent substrates
JP2006078909A (ja) * 2004-09-10 2006-03-23 Sharp Corp 透明絶縁膜修正装置及び透明絶縁膜修正方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585343A (en) * 1983-11-04 1986-04-29 Libbey-Owens-Ford Company Apparatus and method for inspecting glass
JPH06100553B2 (ja) * 1990-01-31 1994-12-12 東レ株式会社 欠陥検出装置
JP2795595B2 (ja) * 1992-06-26 1998-09-10 セントラル硝子株式会社 透明板状体の欠点検出方法
JPH08304295A (ja) * 1995-05-01 1996-11-22 Nippon Sheet Glass Co Ltd 表面欠陥検出方法および装置
US5726749A (en) * 1996-09-20 1998-03-10 Libbey-Owens-Ford Co. Method and apparatus for inspection and evaluation of angular deviation and distortion defects for transparent sheets
JP2001041719A (ja) * 1999-07-27 2001-02-16 Canon Inc 透明材の検査装置及び検査方法並びに記憶媒体
JP2004309287A (ja) * 2003-04-07 2004-11-04 Nippon Sheet Glass Co Ltd 欠陥検出装置、および欠陥検出方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308046A (ja) * 1993-04-28 1994-11-04 Dainippon Screen Mfg Co Ltd 周期性パターン検査装置
JPH10185828A (ja) * 1996-12-20 1998-07-14 Matsushita Electric Ind Co Ltd 透明平面体表面の欠陥検査方法及びその装置
JPH1153544A (ja) * 1997-07-30 1999-02-26 Mitsubishi Heavy Ind Ltd 画像処理装置
JPH11110561A (ja) * 1997-09-30 1999-04-23 Advantest Corp 画像情報処理装置
JP2002026052A (ja) * 2000-07-05 2002-01-25 Sumitomo Metal Electronics Devices Inc バンプ電極の外観検査方法
JP2003042738A (ja) * 2001-08-02 2003-02-13 Seiko Epson Corp 基板の検査方法、電気光学装置の製造方法、電気光学装置および電子機器
WO2004079406A2 (en) * 2003-03-05 2004-09-16 Corning Incorporated Inspection apparatus for detecting defects in transparent substrates
JP2006078909A (ja) * 2004-09-10 2006-03-23 Sharp Corp 透明絶縁膜修正装置及び透明絶縁膜修正方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159419A1 (ja) * 2014-04-18 2015-10-22 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法、ならびに液晶ディスプレイ
CN105717137A (zh) * 2016-01-27 2016-06-29 中国建筑材料科学研究总院 石英玻璃微缺陷检测方法
TWI644098B (zh) * 2017-01-05 2018-12-11 國立臺灣師範大學 透明基板之瑕疵檢測方法與裝置
JP6228695B1 (ja) * 2017-02-27 2017-11-08 株式会社ヒューテック 欠陥検査装置
JP2018141644A (ja) * 2017-02-27 2018-09-13 株式会社ヒューテック 欠陥検査装置
IT202100010865A1 (it) * 2021-04-29 2022-10-29 Etrusca Vetreria Sistema e metodo per la rilevazione di infusi in manufatti di vetro cavo

Also Published As

Publication number Publication date
JP5169194B2 (ja) 2013-03-27
CN101558292A (zh) 2009-10-14
KR20090096685A (ko) 2009-09-14
US20100028567A1 (en) 2010-02-04
JP2008170429A (ja) 2008-07-24
TW200834061A (en) 2008-08-16
CN101558292B (zh) 2013-08-28
TWI465711B (zh) 2014-12-21
KR101475310B1 (ko) 2014-12-22

Similar Documents

Publication Publication Date Title
JP5169194B2 (ja) 板ガラス欠陥検出装置、板ガラスの製造方法
JP6295353B2 (ja) 物体の欠陥を検出するための方法および装置
US8040502B2 (en) Optical inspection of flat media using direct image technology
US7760350B2 (en) Glazing inspection
KR100756254B1 (ko) 투명 매체의 다크뷰 검사 시스템
JP6033041B2 (ja) 光学ガラス母材の自動品質検査装置及び光学ガラス母材の自動品質検査方法
JP2002529698A (ja) ガラス検査装置
JP2010019834A (ja) 板ガラス欠陥検査装置及びフラットパネルディスプレイ用板ガラスの製造方法
CA2408183C (en) Inspection system for edges of glass
TW201140043A (en) End face inspection method for light-pervious rectangular sheets and end face inspection apparatus
JP3746433B2 (ja) ガラス製品の製造方法及び製造装置
KR20180012359A (ko) 유리기판 미세 결함 검출 장치
US20090201368A1 (en) Glazing inspection
TWI470210B (zh) 顯示裝置之光學層件之缺陷檢測方法
KR20170129077A (ko) 투과 광학계 검사 장치 및 이를 이용한 결함 검사 방법
WO2017158655A1 (ja) ルツボ測定装置、ルツボ測定方法、ルツボの製造方法
KR102306234B1 (ko) 투과 광학계 검사 장치
JP2002277411A (ja) 透明積層体の検査方法および検査装置
TWM457889U (zh) 面板瑕疵檢測之裝置
US20240085342A1 (en) Glass inspection
JP2009229326A (ja) レンズ欠陥検査装置
JP2017032523A (ja) 光学ガラス母材欠陥検査装置及び光学ガラス母材欠陥検査方法
CN113340920A (zh) 一种透明材料上下表面缺陷的检测方法及设备
JP2016014636A (ja) 検査方法及び検査装置
JP2010261742A (ja) 表面検査装置及び表面検査方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780045699.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097006200

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12518960

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850546

Country of ref document: EP

Kind code of ref document: A1