WO2008069266A1 - 圧電マイクロブロア - Google Patents

圧電マイクロブロア Download PDF

Info

Publication number
WO2008069266A1
WO2008069266A1 PCT/JP2007/073571 JP2007073571W WO2008069266A1 WO 2008069266 A1 WO2008069266 A1 WO 2008069266A1 JP 2007073571 W JP2007073571 W JP 2007073571W WO 2008069266 A1 WO2008069266 A1 WO 2008069266A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
blower
opening
piezoelectric element
piezoelectric
Prior art date
Application number
PCT/JP2007/073571
Other languages
English (en)
French (fr)
Inventor
Atsuhiko Hirata
Gaku Kamitani
Hiroaki Wada
Midori Sunaga
Shungo Kanai
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to KR1020097011063A priority Critical patent/KR101088943B1/ko
Priority to EP07859726.7A priority patent/EP2090781B1/en
Priority to JP2008548326A priority patent/JP4873014B2/ja
Priority to CN2007800442645A priority patent/CN101542122B/zh
Publication of WO2008069266A1 publication Critical patent/WO2008069266A1/ja
Priority to US12/472,833 priority patent/US8678787B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/06Venting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1077Flow resistance valves, e.g. without moving parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/08Cylinder or housing parameters
    • F04B2201/0806Resonant frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Definitions

  • the present invention relates to a piezoelectric microblower suitable for transporting a compressive fluid such as air.
  • Piezoelectric micropumps are used as cooling water transport pumps for small electronic devices such as laptop computers and fuel transport pumps for fuel cells.
  • a piezoelectric micro blower can be used as a blower for replacing a cooling fan such as a CPU or a blower for supplying oxygen necessary for power generation by a fuel cell.
  • Both the piezoelectric micro pump and the piezoelectric micro blower are pumps (blowers) that use a diaphragm that bends and deforms when a voltage is applied to the piezoelectric element.
  • the structure is simple, can be configured thinly, and has low power consumption. There are advantages.
  • Patent Document 1 discloses a cooling system in which a pump chamber is formed between a pump body and a piezoelectric element, an inflow port is formed on a side surface of the pump chamber, and an exhaust port is formed on a surface facing the piezoelectric element.
  • the inflow port is formed in a tapered shape in which the opening area gradually decreases from the outside toward the pump chamber, and the discharge port is formed in a tapered shape in which the opening force gradually decreases from the pump chamber to the outside.
  • a fluid for example, air
  • the force S can be omitted to omit the check valves at the inflow and discharge ports.
  • Patent Document 2 discloses an ultrasonic drive body having a piezoelectric disk mounted on a stainless steel disk, a first stainless steel film body to which the ultrasonic drive body is attached, and a predetermined number from the ultrasonic drive body.
  • a gas flow generator comprising a second stainless steel film body mounted substantially parallel to the ultrasonic driver with an interval of! By applying a voltage to the piezoelectric disk, the ultrasonic drive body is bent and displaced, and air is released from the hole formed in the central portion of the second stainless steel film body. Since this gas flow generator also has no check valve, the ultrasonic driver can be driven at a high frequency.
  • Patent Document 2 Special Table 2006—522896
  • a preferred embodiment of the present invention is to provide a piezoelectric micro blower capable of efficiently transporting a compressible fluid without using a check valve and ensuring a flow rate.
  • the present invention provides a blower body, a diaphragm having an outer peripheral portion fixed to the blower body and having a piezoelectric element, and a blower chamber formed between the blower body and the diaphragm.
  • a piezoelectric micro blower that transports a compressive fluid by applying a voltage to the piezoelectric element to bend and deform the diaphragm, thereby forming a blower chamber first wall with the diaphragm.
  • a second wall portion spaced from the first wall portion, a second opening portion formed in a portion of the second wall portion facing the first opening portion, and the first Formed between the first wall and the second wall, Side end portion is communicated with the outside, to provide a piezoelectric My Kuroburoa comprising an inlet passage inner end portion connected to the first opening and the second opening.
  • FIG. 1 shows an example of the basic structure of a piezoelectric microblower that is effective in the present invention.
  • the piezoelectric microblower includes a blower body 1 and a diaphragm 2 whose outer peripheral portion is fixed to the blower body 1, and a piezoelectric element 3 is attached to the center of the back surface of the diaphragm 2.
  • a blower chamber 4 is formed between the first wall la of the probe body 1 and the diaphragm 2.
  • a first opening 5 a is formed at a portion of the first wall la facing the center of the diaphragm 2.
  • the blower body 1 is provided with a second wall portion lb at a distance from the first wall portion la on the opposite side of the blower chamber 4 with the first wall portion la in between and facing the first opening 5a.
  • a second opening 5b is formed at the second wall portion lb. Between the first wall portion la and the second wall portion lb, the outer end portion communicates with the outside, and the inner end portion is the first opening.
  • An inflow passage 7 connected to the mouth 5a and the second opening 5b is formed.
  • Figures 1 (a) to 1 (e) show the blower operation when diaphragm 2 is displaced in the primary resonance mode.
  • Fig. 1 (a) shows the initial state (when no voltage is applied), and diaphragm 2 is flat.
  • (B) in FIG. 1 shows the first quarter period of the voltage applied to the piezoelectric element 3, and diaphragm 2 is bent convexly downward, so that the distance between first opening 5a and diaphragm 2 increases, Fluid is sucked into the blower chamber 4 through the first opening 5a. Arrows indicate fluid flow. At this time, a part of the fluid in the inflow passage 7 is sucked into the blower chamber 4.
  • the openings 5a and 5b flow at a high speed as the diaphragm 2 is displaced.
  • the fluid can be drawn from the inflow passage 7 into the openings 5a and 5b. That is, the fluid can be drawn into the openings 5a and 5b from the inflow passage 7 not only when the diaphragm 2 is convexly displaced downward but also when the diaphragm 2 is convexly displaced upward. Since the fluid drawn in from the inflow passage 7 and the fluid pushed out from the blower chamber 4 merge and are discharged from the second opening 5b, a discharge flow rate equal to or greater than the displacement volume of the diaphragm 2 can be obtained.
  • the inflow passage 7 Since the inflow passage 7 is connected to the space between the openings 5 a and 5 b and is not directly connected to the blower chamber 4, the inflow passage 7 is not affected by the pressure change in the blower chamber 4. Therefore, it is possible to effectively increase the flow rate at which the high-speed flow flowing through the openings 5a and 5b does not flow back into the inflow passage 7 without providing a check valve.
  • the second opening 5b that is the fluid outlet and the outer end of the inlet passage 7 that is the inlet can be provided at positions separated from each other.
  • a cooling fan for a heat source such as a CPU
  • a central space having a larger opening area than the first opening and the second opening may be formed at the inner end of the inflow passage connected to the first opening and the second opening.
  • the fluid that has passed through the inflow passage is once collected in the central space and discharged together from the second opening by the flow of the fluid blown out from the first opening.
  • the inflow passage is composed of a plurality of passages extending radially from the central space, and an inlet is formed at each outer end of each inflow passage, the passage area of the inflow passage can be secured. The resistance can be reduced and the flow rate can be further increased.
  • the central space of the first wall portion accompanies the displacement of the diaphragm. It is preferable to set the opening area of the central space so that the portion facing the surface resonates. That is, the first wall portion can resonate following the displacement of the diaphragm by bringing the natural frequency of the portion of the first wall portion facing the central space close to the vibration frequency of the diaphragm. In this case, there is a function to increase the flow rate of the fluid generated by the diaphragm by the displacement of the first wall, and a further increase in the flow rate can be realized.
  • the diaphragm in the present invention is a unimorph type in which a piezoelectric element that expands and contracts in a planar direction is attached to one surface of a resin plate or a metal plate, and a piezoelectric element that expands and contracts in opposite directions on both surfaces of a resin plate or a metal plate. It may be a bimorph type that is pasted, a bimorph type in which a laminated piezoelectric element that itself bends and deforms on one side of a resin plate or a metal plate, or a structure in which the entire diaphragm is composed of laminated piezoelectric elements. . In any case, it is sufficient that the piezoelectric element bends and vibrates in the thickness direction by applying an alternating voltage (sine wave voltage or rectangular wave voltage) to the piezoelectric element.
  • an alternating voltage sine wave voltage or rectangular wave voltage
  • the primary resonance mode is a mode in which the central part and the peripheral part of the diaphragm are displaced in the same direction
  • the tertiary resonance mode is a direction in which the central part and the peripheral part of the diaphragm are displaced in the opposite directions. It is a mode.
  • the force S can be brought close to the blower body that holds the outer peripheral part of the diaphragm, so if wiring is connected to the outer peripheral part of the piezoelectric element, Wiring work is easier and reliability is improved.
  • the diaphragm is bent and vibrated, whereby the fluid in the inflow passage is sucked into the blower chamber through the first opening, and the second opening is provided.
  • Exists in the inflow passage outside the blower chamber together with the high-speed flow pushed out of the blower chamber from Fluid can be rolled in and pushed out together.
  • a discharge flow rate greater than the diaphragm displacement volume can be obtained, and a large flow rate blower can be realized.
  • the high-speed flow flowing through both openings can be prevented from flowing back into the inflow passage without using a check valve, the flow rate can be effectively increased.
  • FIG. 2 to FIG. 5 show a first embodiment of a piezoelectric microblower that is effective in the present invention.
  • the piezoelectric micro blower A in this example is an example used as an air cooling blower for an electronic device.
  • the top plate (second wall portion) 10 the flow path forming plate 20, the separator (first wall portion) 30, the blower frame
  • the body 40, the diaphragm 50, and the bottom plate 60 are laminated and fixed in order from the top.
  • the outer peripheral portion of the diaphragm 50 is bonded and fixed between the blower frame 40 and the bottom plate 60.
  • the parts 10, 2 0, 30, 40, 60 excluding the diaphragm 50 constitute the blower body 1 and are made of a rigid flat plate material such as a metal plate or a hard resin plate!
  • the top plate 10 is formed of a rectangular flat plate, and a discharge port (second opening) 11 penetrating the front and back is formed at the center of the top plate 10.
  • the flow path forming plate 20 is also a flat plate having the same outer shape as the top plate 10, and as shown in FIG. 5, a central hole (central space) 21 larger in diameter than the discharge port 11 is formed in the center thereof. Has been. A plurality of (four in this case) inflow passages 22 extending in the radial direction from the central hole 21 to the four corners are formed. In the case of the piezoelectric micro blower A of this example, since the inflow passage 22 communicates with the central hole 21 from four directions, the fluid is attracted to the central hole 21 without resistance along with the bombing operation of the diaphragm 50, The flow rate can be further increased.
  • the separator 30 is also a flat plate having the same outer shape as the top plate 10, and a through-hole 31 (first opening) having substantially the same diameter as the discharge port 11 is located at the center of the separator 30 at a position facing the discharge port 11. Is formed.
  • the discharge port 11 and the through hole 31 may have the same diameter or different diameters, but have a diameter that is at least smaller than the central hole 21.
  • an inflow hole 32 is formed at a position corresponding to the outer end of the inflow passage 22.
  • the blower frame 40 is also a flat plate having the same outer shape as the top plate 10, and a large-diameter cavity 41 is formed at the center thereof. In the vicinity of the four corner portions, inflow holes 42 are formed at positions corresponding to the inflow holes 32.
  • the blower chamber 4 is formed by the cavity 41 of the blower frame 40 by bonding the separator 30 and the diaphragm 50 with the blower frame 40 interposed therebetween. Note that the blower chamber 4 need not be a closed space and may be partially opened. For example, a slit is formed in the cavity 41 formed in the center of the blower frame 40 and communicates with the outside of the blower frame 40, or a block-shaped blower frame is formed only near the inflow hole 42. Also good. In other words, the blower chamber 4 of the present invention may be a space defined by the separator 30 and the diaphragm 50! /.
  • the bottom plate 60 is also a flat plate having the same outer shape as the top plate 10, and a hollow portion 61 having substantially the same shape as the blower chamber 3 is formed at the center thereof.
  • the bottom plate 60 is formed thicker than the sum of the thickness of the piezoelectric element 52 and the displacement amount of the diaphragm 51. Even when the micro blower A is mounted on a substrate or the like, the bottom plate 60 does not contact the substrate. Can be prevented.
  • the hollow portion 61 forms a hollow portion surrounding the periphery of the piezoelectric element 52 of the diaphragm 50 described later. In the vicinity of the four corners of the bottom plate 60, inflow holes 62 are formed at positions corresponding to the inflow holes 32, 42.
  • the diaphragm 50 has a structure in which a circular piezoelectric element 52 is attached to the lower surface of the central portion of the diaphragm 51.
  • a circular piezoelectric element 52 is attached to the lower surface of the central portion of the diaphragm 51.
  • various metal materials such as stainless steel and brass can be used, and a resin plate made of a resin material such as a glass epoxy resin may be used.
  • the piezoelectric element 52 is a disk having a smaller diameter than the hollow portion 41 of the blower frame 40 described above.
  • a single-plate piezoelectric ceramic having electrodes on the front and back surfaces is used as the piezoelectric element 52, and this is attached to the back surface (the surface opposite to the blower chamber 3) of the vibration plate 51 to form a unimorph diaphragm. Configured.
  • the piezoelectric element 52 By applying an alternating voltage (sine wave or rectangular wave) to the piezoelectric element 52, the piezoelectric element 52 expands and contracts in the plane direction, so that the entire diaphragm 50 is bent and deformed in the plate thickness direction. Bending displacement of diaphragm 50 to piezoelectric element 52 in primary resonance mode or tertiary resonance mode By applying the alternating voltage to be applied, the displacement volume of the diaphragm 50 can be remarkably increased and the flow rate can be greatly increased as compared with the case of applying voltages of other frequencies.
  • alternating voltage sine wave or rectangular wave
  • inflow holes 51a are formed at positions corresponding to the inflow holes 32, 42, 62.
  • an inflow port 8 having one end opened downward and the other end communicating with the inflow passage 22 is formed.
  • the inlet 8 of the piezoelectric microblower A is opened downward from the blower body 1, and the discharge port 11 is opened on the upper surface side. Compressible fluid can be sucked in from the inlet 8 on the back side of the piezoelectric micro-port A and discharged from the outlet 11 on the front side, making it a suitable structure as a fuel cell air supply blower or CPU air cooling blower .
  • the inflow port 8 may be opened to the outer periphery as long as it does not need to be opened downward.
  • a force using a diaphragm 50 composed of a diaphragm 51 and a piezoelectric element 52 As shown in FIG. 6, a diaphragm 50a in which an intermediate plate 53 is provided between the diaphragm 51 and the piezoelectric element 52. May be used.
  • the intermediate plate 53 can be a metal plate such as SUS.
  • the operation of the piezoelectric microblower A of the present embodiment is almost the same as that shown in FIG.
  • the central space 21 having an opening area larger than the first opening 31 and the second opening 11 is formed at the inner end of the inflow passage 22, and the separator 30 is formed of a thin metal plate. It is. Therefore, the operation shown in Fig. 7 can be performed, and a further increase in flow rate can be realized.
  • FIG. 7 is a schematic diagram for explaining the operation of the piezoelectric microblower A, and the displacement is greatly represented for easy understanding.
  • 7A shows the initial state (when no voltage is applied)
  • FIGS. 7B to 7E show the diaphragm 50 and the separator 30 every 1/4 period of the voltage applied to the piezoelectric element 52 (for example, sin wave).
  • the displacement of is illustrated.
  • the operations (b) to (e) are periodically repeated.
  • diaphragm 50 The separator 30 resonates with the vibration, and the separator 30 vibrates with a phase delayed by about 90 ° with respect to the diaphragm 50.
  • FIG. 7 shows an example in which the diaphragm 50 is displaced in the primary resonance mode, but the same applies to the case where the diaphragm 50 is displaced in the tertiary resonance mode.
  • the displacement amount of the separator 30 is smaller than the diaphragm 50 due to the size of the central space 21, the Young's modulus and the thickness of the separator 30, etc.
  • the phase delay of the separator 30 with respect to the diaphragm 50 is not limited to 90 °.
  • the separator 30 may vibrate together with a certain phase lag with respect to the diaphragm 50, so that the distance force between the diaphragm 50 and the separator 30 changes more greatly than when the separator 30 does not vibrate. That's fine.
  • a diaphragm was prepared in which a piezoelectric element made of a PZT single plate having a thickness of 0.15 mm and a diameter of 12.7 mm was attached on a SUS plate having a thickness of 0.1 mm.
  • a separator made of a brass plate, a top plate made of a SUS plate, a flow path forming plate, a blower frame, and a bottom plate were prepared.
  • a second opening with a diameter of 0.8 mm is provided at the center of the top plate, and a first opening with a diameter of 0.6 mm is provided at the center of the separator.
  • a central space with a diameter of 6 mm and a height of 0.4 mm is provided at the center of the flow path forming plate.
  • the above components are stacked and bonded in the order of the bottom plate, diaphragm, blower frame, separator, flow path forming plate, and top plate to produce a blower body that is 20mm long x 20mm wide x 2.4mm high. did.
  • the blower chamber of the blower body is designed with a height of 0.15 mm and a diameter of 18 mm.
  • Table 1 shows the difference in flow rate when the driving frequency of the diaphragm 50 and the diameter of the central space 21 are changed.
  • the unit of flow rate is L / min.
  • the thickness of the 42Ni plate at a driving frequency of 24.4 kHz was 0.08 mm, and the thickness of the 42Ni plate at a driving frequency of 25.5 kHz was 0.1 mm.
  • FIG. 8 shows an experimental result of the micro blower B using the diaphragm 50 a in which the intermediate plate 53 is provided between the vibration plate 51 and the piezoelectric element 52.
  • Table 2 the flow rates when the material and thickness of the separator 30 were changed were compared.
  • Sample 1 used phosphor bronze with a thickness of 0.05 mm as a separator
  • sample 2 used SUS304 with a thickness of 0.1 mm as a separator.
  • the other configuration is the same as micro blower A.
  • the configuration other than the separator was common to Sample 1 and Sample 2, and the drive frequency was 24.4 kHz.
  • Top plate material Western white Western white Hole diameter of second opening (mm) 0.8 0.8
  • Blower chamber material Western white Western white Blower chamber height (mm) 0.15 0.15 Blower chamber diameter ( mm ) 16 16
  • FIG. 8 (a) For example, when compared at an applied voltage of 20 Vpp, it is approximately 0.42 L / min in sample 2, whereas it is approximately 0.778 L / min in sample 1.
  • the flow rate of 1 is about twice that of sample 2. In other words, it can be seen that the vibration of the separator part greatly contributes to the increase in flow rate.
  • Figure 8 (b) compares the flow rates based on power consumption. Because the impedance changes, the power consumption also changes, but it can be seen that Sample 1 is more advantageous when compared with the same power consumption.
  • FIG. 9 shows a second embodiment of the microblower according to the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • a ring-shaped piezoelectric element 52a having a cavity at the center is used as a piezoelectric element, and the outer peripheral part of the piezoelectric element 52a is held by the outer peripheral part of the diaphragm 50b 1 It is close to.
  • FIG. 10 shows the displacement in the third-order resonance mode of a diaphragm using a disk-shaped piezoelectric element and a ring-shaped piezoelectric element.
  • the piezoelectric element 52 When the disk-shaped piezoelectric element 52 is used, as shown in (a), the piezoelectric element is attached to the center position (Omm position) force and the position of 6 mm.
  • ring-shaped piezoelectric element 52b When ring-shaped piezoelectric element 52b is used, as shown in (b), there is a cavity from the center position (position of Omm) to the position of 2.5 mm, and the piezoelectric element is in the range of 2.5 mm to 8 mm. Is attached. In either case, an area of 8 mm or more on the outer peripheral side of the diaphragms 50 and 50b is fixed by the blower body 1.
  • the node point is located in the intermediate region (4 mm position) of the piezoelectric element 52.
  • the node point is in the middle part of the piezoelectric element 52 and is a point, it is a small area when trying to connect so as not to be disconnected by vibration. Therefore, high-precision positioning is required and wiring is difficult.
  • the outer peripheral portion of the piezoelectric element 52a can be brought close to the blower body 1 as shown in FIG. If the wiring is connected to the wire, the connection position is hardly vibrated, so wiring is easy and reliability is improved.
  • a diaphragm having a ring-shaped piezoelectric element.
  • a diaphragm was prepared in which a piezoelectric element made of a ring-shaped PZT single plate having a thickness of 0.2 mm, an outer diameter of 18 mm, and an inner diameter of 5 mm was attached to a brass plate having a thickness of 0.1 mm.
  • a separator made of a brass plate, a top plate made of a SUS plate, a flow path forming plate, a blower frame, and a bottom plate were prepared.
  • Omm is provided at the center of the top plate, and a first opening with a diameter of 0.8 mm is provided at the center of the separator.
  • a central space with a diameter of 6mm and a height of 0.5mm is provided at the center of the flow path forming plate.
  • a voltage of a sin waveform with a frequency of 25.2 kHz, 60 Vp-p is applied to the micro blower C having the above configuration.
  • a flow rate of 700 ml / min at the time of lOOPa: a maximum generated pressure of 0.7 kPa was obtained.
  • This is an example of driving in the tertiary mode, but it can also be driven in the primary mode.
  • FIG. 10 (b) when the ring-shaped piezoelectric element 52a is used, the amount of displacement at the center of the diaphragm 50b becomes very large.
  • a brass plate with a thickness of 0.1 mm and a diameter of 5 mm has a natural frequency of about 25 kHz.
  • the thickness of the diaphragm 51 is 0.1 mm and the inner diameter of the ring-shaped piezoelectric element 52 a is 5 mm, it is driven at around 25 kHz. Then, since the central portion of the diaphragm 50b resonates due to the bending of the ring-shaped piezoelectric element 52a, a very large displacement is obtained in the central portion of the diaphragm 5 Ob, and an increase in flow rate can be realized. In addition, since there is no piezoelectric element in the maximum displacement portion, the displacement / driving speed of the piezoelectric element can be reduced, and durability can be improved.
  • FIG. 11 to 13 show a third embodiment of the microblower according to the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • a rectangular central space 23 that also serves as an inflow passage is formed in the central portion of the flow path forming plate 20.
  • the central space 23 has a larger opening area than the hollow portion 41 of the blower frame 40 constituting the blower chamber 4.
  • Notches 33, 43, 63 and 51b are formed in the two corners of the separator (first wall) 30, the blower frame 40, the bottom plate 60 and the diaphragm 50, respectively. It corresponds to the corner portion of the central space 23, and these notches constitute the inflow port 8.
  • a diaphragm was prepared, in which a piezoelectric element made of a PZT single plate having a thickness of 0.2 mm and a diameter of 12.7 mm was attached on a SUS plate having a thickness of 0.1 mm.
  • a separator made of a SUS plate, a top plate, a flow path forming plate, a blower frame, and a bottom plate were prepared.
  • a second opening with a diameter of 0.6 mm is provided at the center of the top plate, and a first opening with a diameter of 2.0 mm is provided at the center of the separator.
  • the flow path forming plate is provided with a central space of 20mm in length X 20mm in width. It is. Subsequently, the constituent members were stacked and bonded in the order of a bottom plate, a diaphragm, a blower frame, a separator, a flow path forming plate, and a top plate to produce a blower body 22 mm long ⁇ 22 mm wide ⁇ 2 mm high.
  • the blower chamber of the blower body is designed to have a height of 0.1 mm and a diameter of 18 mm.
  • micro-blower C configured as described above was driven by applying a sinusoidal voltage with a frequency of 16kHz and 60Vp-p, a flow rate of 90ml / min was obtained at lOOPa.
  • This is an example of driving in the third resonance mode, but it can also be driven in the first resonance mode.
  • the central space 23 functions as an inflow passage that opens in all directions around the openings 11 and 31, so that the air resistance of the inflowing air can be reduced.
  • the separator 30 since almost the entire area of the separator 30 facing the blower chamber is opened by the central space 23, a wide area of the separator 30 can vibrate together with the vibration of the diaphragm 50. Therefore, the separator 30 can be made to resonate even when the diaphragm 50 vibrates in the primary resonance mode.
  • the force shown in the example in which the portion of the separator (first wall portion) corresponding to the central space resonates with the vibration of the diaphragm.
  • the vibration of the diaphragm that does not necessarily require the separator to resonate.
  • the separator is vibrated and the separator vibrates with a predetermined phase delay with respect to the diaphragm, an increase in flow rate can be achieved.
  • the blower body is configured by laminating and bonding a plurality of plate-like members.
  • the present invention is not limited to this.
  • the top plate 10 and the flow path forming plate 20, the separator 30 and the blower frame body 40, and the flow path forming plate 20 and the separator 30 can be integrally formed of resin or metal.
  • the shape of the inflow passage is not limited to the shape linearly extending in the radial direction as shown in FIG.
  • the number of inflow passages is also arbitrary and can be selected according to the flow rate and noise level.
  • FIG. 1 is an operation principle diagram of a piezoelectric microblower according to an embodiment of the present invention.
  • FIG. 2 is an overall perspective view of a first embodiment of a piezoelectric microblower according to the present invention.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view of the V-V spring in FIG.
  • FIG. 6 is a cross-sectional view of a modification of the piezoelectric microblower shown in FIG.
  • FIG. 7 is a schematic operation diagram of the piezoelectric microblower shown in FIG.
  • Fig. 10 Comparison of the displacement of a diaphragm using a disk-shaped piezoelectric element and a diaphragm using a ring-shaped piezoelectric element.
  • FIG. 11 A perspective view of a third embodiment of the piezoelectric microblower according to the present invention.
  • FIG. 12 is a cross-sectional view taken along line XII—XII in FIG.
  • FIG. 13 is an exploded perspective view of the piezoelectric microblower shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

【課題】逆止弁を使用せずに圧縮性流体を効率よく輸送でき、流量を確保できる圧電マイクロブロアを提供する。 【解決手段】ブロア本体1に第1壁部1aと第2壁部1bとを設け、ダイヤフラム50の中央部と対向する壁部の位置に開口部5a,5bを形成する。両壁部の間に、開口部5a,5bと外部とを連通させる流入通路7を形成する。圧電素子3に電圧を印加してダイヤフラム50を振動させると、開口部5a周辺の第1壁部1aが振動し、流入通路7から気体を吸い込み、開口部5bから気体を排出することができる。

Description

明 細 書
圧電マイクロブロア
技術分野
[0001] 本発明は空気のような圧縮性流体を輸送するのに適した圧電マイクロブロアに関す るものである。
背景技術
[0002] ノートパソコンなどの小型電子機器の冷却水輸送用ポンプや燃料電池の燃料輸送 用ポンプなどに、圧電マイクロポンプが用いられている。一方、 CPU等の冷却用ファ ンに代わる送風用ブロア、あるいは燃料電池で発電するのに必要な酸素を供給する ための送風用ブロアとして、圧電マイクロブロアを用いることができる。圧電マイクロポ ンプ及び圧電マイクロブロアは共に、圧電素子への電圧印加により屈曲変形するダ ィャフラムを用いたポンプ (ブロア)であり、構造が簡単で、薄型に構成でき、かつ低 消費電力であるとレ、う利点がある。
[0003] 液体のような非圧縮性流体を輸送する場合には、流入口および流出口にそれぞれ ゴムや樹脂のような柔らカ 、材料を用いた逆止弁を設け、数十 Hz程度の低!/、周波 数で圧電素子を駆動するのが一般的である。ところ力 逆止弁を持つマイクロポンプ を空気のような圧縮性流体を輸送するために用いた場合、圧電素子の変位量が非 常に小さぐ流体を殆ど吐出できない。圧電素子をダイヤフラムの共振周波数(1次 共振周波数又は 3次共振周波数)付近で駆動すると、最大変位が得られるが、共振 周波数は kHzのオーダーの高周波数のため、逆止弁が追従動作できない。そのた め、圧縮性流体を輸送するためには逆止弁を有しない圧電マイクロブロアが望ましい
[0004] 特許文献 1には、ポンプ本体と圧電素子との間にポンプ室を形成し、ポンプ室の側 面側に流入ポートを形成し、圧電素子と対向する面に排出ポートを形成した冷却デ バイスが開示されている。流入ポートは外部からポンプ室に向力 て開口面積が漸 次小さくなるテーパ形状に形成され、排出ポートはポンプ室から外部に向力、つて開口 面積が漸次小さくなるテーパ形状に形成されている。このように流入ポートと排出ポ 一トとをテーパ形状とすることにより、流入ポートと排出ポートを通過する流体抵抗に 差を与え、圧電素子がポンプ室の容積を増大する方向に変位した時には流入ポート 力、ら流体 (例えば空気)を流入させ、ポンプ室の容積が減少する方向に変位した時に は流出ポートから流体を排出させることができ、流入ポート,排出ポートの逆止弁を省 略すること力 Sでさる。
[0005] しかしながら、前記のように流入ポートと排出ポートのテーパ形状を設定したとして も、圧電素子がポンプ室の容積を増大する方向に変位した時、流体は流入ポートか ら流入するだけでなぐ流出ポートからも流入する。逆に、ポンプ室の容積が減少す る方向に変位した時には、流体が流出ポートから排出されるだけでなぐ流入ポート 力、らも排出される。そのため、流出ポートから吐出されるポンプの全体流量は、圧電 素子の体積変化量に比べて小さくなる。圧電素子の体積変化量自体は極めて小さ いので、流量もそれに応じて非常に少なくなり、冷却デバイスとして十分な冷却効果 を得ることが困難であるという問題があった。
[0006] 特許文献 2には、ステンレス鋼製ディスク上に取り付けられた圧電ディスクを有する 超音波駆動体と、超音波駆動体を取り付けた第 1のステンレス鋼膜体と、超音波駆動 体から所定の間隔を隔てて超音波駆動体と略平行に取り付けられた第 2のステンレ ス鋼膜体とを備えたガス流発生器が開示されて!/、る。圧電ディスクに電圧を印加する ことにより、超音波駆動体が屈曲変位し、第 2のステンレス鋼膜体の中心部分に形成 された孔から空気が放出される。このガス流発生器も逆止弁を有しないので、超音波 駆動体を高周波で駆動することができる。
[0007] 前記ガス流発生器の場合、超音波駆動体を高周波で駆動すると、第 2ステンレス鋼 膜体の中心部分に形成された孔の周囲の空気を吸い込み、あるいは巻き込みながら 、空気を孔の直交方向に吐出し、慣性噴射 (ジェット)を発生させることができる。しか し、第 2ステンレス鋼膜体の中心孔の周囲の状況により、流量が大きく変動する。例え ば、中心孔の近傍に障害物が存在すると、吐出流量が極端に減少してしまう。また、 このガス流発生器を CPU等の発熱源の冷却用ファンとして使用した場合、発熱源の 周囲にある温かい空気をそのまま発熱源に吹き付けるだけであるため、単に空気を 力、き混ぜて!/、るだけであり、熱交換効率が悪!/、。 特許文献 1:特開 2004— 146547号公報
特許文献 2:特表 2006— 522896号公報
発明の開示
発明が解決しょうとする課題
[0008] そこで、本発明の好まし!/、実施形態の目的は、逆止弁を使用せずに圧縮性流体を 効率よく輸送でき、流量を確保できる圧電マイクロブロアを提供することにある。
課題を解決するための手段
[0009] 前記目的を達成するため、本発明は、ブロア本体と、外周部がブロア本体に対して 固定され、圧電素子を有するダイヤフラムと、ブロア本体とダイヤフラムとの間に形成 されたブロア室とを備え、前記圧電素子に電圧を印加してダイヤフラムを屈曲変形さ せることにより、圧縮性流体を輸送する圧電マイクロブロアにおいて、前記ダイヤフラ ムとの間でブロア室を形成するブロア本体の第 1壁部と、前記ダイヤフラムの中心部 と対向する前記第 1壁部の部位に形成され、ブロア室の内部と外部とを連通させる第 1開口部と、前記第 1壁部を間にしてブロア室と反対側に、第 1壁部と間隔をあけて設 けられた第 2壁部と、前記第 1開口部と対向する前記第 2壁部の部位に形成された第 2開口部と、前記第 1壁部と第 2壁部との間に形成され、外側端部が外部に連通され 、内側端部が第 1開口部及び第 2開口部に接続された流入通路とを備える圧電マイ クロブロアを提供する。
[0010] 図 1は本発明に力、かる圧電マイクロブロアの基本構造の一例を示す。この圧電マイ クロブロアは、ブロア本体 1と、外周部がブロア本体 1に対して固定されたダイヤフラム 2とを備え、ダイヤフラム 2の背面中央部には圧電素子 3が貼り付けられている。プロ ァ本体 1の第 1壁部 l aとダイヤフラム 2との間にはブロア室 4が形成されている。ダイ ャフラム 2の中心部と対向する第 1壁部 laの部位に第 1開口部 5aが形成されている。 圧電素子 3に電圧を印加することにより、ダイヤフラム 2を屈曲変形させ、第 1開口部 5 aとダイヤフラム 2との距離を変化させることができる。ブロア本体 1には、第 1壁部 la を間にしてブロア室 4と反対側に、第 1壁部 l aと間隔をあけて第 2壁部 lbが設けられ 、第 1開口部 5aと対向する第 2壁部 lbの部位に第 2開口部 5bが形成されている。第 1壁部 l aと第 2壁部 lbとの間には、外側端部が外部に連通され、内側端部が第 1開 口部 5a及び第 2開口部 5bに接続された流入通路 7が形成されている。
[0011] 図 1の(a)〜(e)はダイヤフラム 2を 1次共振モードで変位させた場合のブロア動作 を示す。図 1の(a)は初期状態(非電圧印加時)であり、ダイヤフラム 2は平坦状であ る。図 1の(b)は圧電素子 3への印加電圧の最初の 1/4周期を示し、ダイヤフラム 2 が下に凸に屈曲するので、第 1開口部 5aとダイヤフラム 2との距離が増大し、第 1開 口部 5aを介してブロア室 4内に流体が吸い込まれる。矢印は流体の流れを示す。こ のとき、流入通路 7の流体の一部がブロア室 4内に吸い込まれる。次の 1/4周期で は、図 1の(c)のようにダイヤフラム 2は平坦状に戻る時、第 1開口部 5aとダイヤフラム 2との距離が減少し、流体は開口部 5a, 5bを通って上方向に押し出される。この時、 流入通路 7の流体を一緒に巻き込みながら上方に流れるので、第 2開口部 5bの出口 側では大流量が得られる。次の 1/4周期では、図 1 (d)のようにダイヤフラム 2が上に 凸に屈曲するので、第 1開口部 5aとダイヤフラム 2との距離が減少し、ブロア室 4内の 流体が高速で開口部 5a, 5bから上方向に押し出される。この高速流は、流入通路 7 の流体を一緒に巻き込みながら上方に流れるので、第 2開口部 5bの出口側では大 流量が得られる。次の 1/4周期では、図 1の(e)のようにダイヤフラム 2は平坦状に戻 る時、第 1開口部 5aとダイヤフラム 2との距離が増大し、流体は第 1開口部 5aを通過 してブロア室 4内に若干吸い込まれる力 S、流入通路 7の流体は'慣性により中心方向、 及びブロア室外に流体が押し出される方向に流れ続ける。その後、ダイヤフラム 2の 動作は図 1の (b)に戻り、それ以後(b)〜(e)の動作を周期的に繰り返す。ダイヤフラ ム 2を高周波で屈曲振動させることにより、流入通路 7を流れる流体の'慣性が終息す る前に、開口部 5a, 5bに次の流れを発生させることができ、流入通路 7の中に常に 中心方向への流れを起こさせることができる。この動作は、第 1開口部 5aとダイヤフラ ム 2との距離が増大する方向にダイヤフラム 2が変位するとき、流入通路 7内の流体を 第 1開口部 5aを介してブロア室 4内に吸引し、第 1開口部 5aとダイヤフラム 2との距離 が減少する方向にダイヤフラム 2が変位するとき、第 2開口部 5bからブロア室 4外に 押し出される高速流と一緒に、ブロア室 4外の流入通路 7に存在する流体も一緒に巻 き込んで押し出すとレ、う作用が生じて!/、るものと考えられる。
[0012] 本実施形態の場合には、ダイヤフラム 2の変位に伴って開口部 5a, 5bを高速で流 れる流体により、流入通路 7から流体を開口部 5a, 5bへ引き込むことができる。つまり 、ダイヤフラム 2が下に凸に変位する時だけでなぐ上に凸に変位する時にも流入通 路 7から流体を開口部 5a, 5bへ引き込むことができる。流入通路 7から引き込まれた 流体と、ブロア室 4から押し出された流体とが合流して第 2開口部 5bから吐出される ので、ダイヤフラム 2の変位体積以上の吐出流量を得ることができる。流入通路 7は 開口部 5a, 5bの間の空間に接続され、ブロア室 4に直接接続されていないので、流 入通路 7がブロア室 4内の圧力変化の影響を受けない。そのため、逆止弁を設けなく ても開口部 5a, 5bを流れる高速流が流入通路 7に逆流することがなぐ流量を効果 的に増大させることカでさる。
[0013] 本圧電マイクロブロアでは、流体の流出口である第 2開口部 5bと流入口である流入 通路 7の外側端部とを離れた位置に設けることができるので、本圧電マイクロブロアを 例えば CPU等の発熱源の冷却用ファンに適用した場合、第 2開口部 5bを発熱源に 向け、流入通路 7の外側端部を冷気空間に接続すれば、冷気空間から吸い込んだ 冷気を発熱源に対して吹き付けることが可能となる。
[0014] 第 1開口部及び第 2開口部と接続された流入通路の内側端部に、第 1開口部及び 第 2開口部より大きな開口面積を有する中央空間を形成するのがよい。この場合には 、流入通路を通った流体が一旦中央空間に集められ、第 1開口部から吹き出される 流体の流れによって、一緒に第 2開口部から排出される。この場合、流入通路を中央 空間から放射方向に伸びる複数の通路で構成し、各流入通路の外側端部にそれぞ れ流入口を形成すれば、流入通路の通路面積を確保できるので、流路抵抗を低減 でき、さらなる流量増加を図ることができる。
[0015] 前記のように流入通路の内側端部に第 1開口部及び第 2開口部より大きな開口面 積を有する中央空間を形成した場合、ダイヤフラムの変位に伴い、第 1壁部の中央 空間と対向する部分が共振するように、中央空間の開口面積を設定するのがよい。 即ち、第 1壁部の中央空間と対向する部分の固有振動数をダイヤフラムの振動周波 数と近づけることにより、ダイヤフラムの変位に追随して第 1壁部を共振させることがで きる。この場合には、ダイヤフラムが発生する流体の流量を第 1壁部の変位によって 増加させる働きがあり、さらなる流量増加を実現できる。 [0016] 本発明におけるダイヤフラムとは、樹脂板または金属板の片面に平面方向に伸縮 する圧電素子を貼り付けたュニモルフ型、樹脂板または金属板の両面に互いに逆方 向に伸縮する圧電素子を貼り付けたバイモルフ型、樹脂板または金属板の片面にそ れ自体が屈曲変形する積層型圧電素子を貼り付けたバイモルフ型、さらにはダイヤ フラム全体が積層型圧電素子で構成されたものなどでもよい。いずれにしても、圧電 素子に交番電圧(正弦波電圧または矩形波電圧)を印加することによって、板厚方向 に屈曲振動するものであればよい。
[0017] 圧電素子を含むダイヤフラムを 1次共振モード(1次共振周波数)で駆動するのが、 最も大きな変位量が得られるので望ましいが、 1次共振周波数は可聴域となるため、 騒音が大きくなる場合がある。これに対し、 3次共振モード(3次共振周波数)を用い ると、 1次共振モードに比べて変位量が小さくなるものの、共振モードを使用しない場 合より大きな変位量が得られ、し力、も可聴領域を越えた周波数で駆動できるため、騒 音を防ぐこと力できる。なお、 1次共振モードとは、ダイヤフラムの中央部と周辺部とが 同方向に変位するモードのことであり、 3次共振モードとは、ダイヤフラムの中央部と 周辺部とが逆方向に変位するモードのことである。
[0018] 3次共振モードを用いた場合、ダイヤフラムの中央部が上に凸に変位したとき、ダイ ャフラムの周辺部は下に凸に変位する。圧電素子を円板状とした場合、ダイヤフラム の中央部と周辺部との間に変位のノード点が存在するので、そのノード点に対応した 圧電素子の部位に配線を行うのが一般的である。しかし、ノード点はかなり狭い領域 に制限され、し力、も圧電素子の中間領域に位置するため、はんだ付けなどの配線作 業がしにくく、信頼性が低下する可能性がある。これに対し、圧電素子をリング状とし た場合、圧電素子の外周部をダイヤフラムの外周部を保持しているブロア本体に近 づけること力 Sできるので、圧電素子の外周部に配線を接続すればよぐ配線作業が 容易になり、信頼性が向上する。
発明の好ましい実施形態の効果
[0019] 以上のように、本発明の圧電マイクロブロアによれば、ダイヤフラムを屈曲振動させ ることにより、流入通路内の流体を第 1開口部を介してブロア室内に吸引し、第 2開口 部からブロア室外に押し出される高速流と一緒に、ブロア室外の流入通路に存在す る流体も一緒に巻き込んで押し出すことができる。そのため、ダイヤフラムの変位体 積以上の吐出流量を得ることができ、大流量のブロアを実現できる。また、逆止弁を 使用しなくても両開口部を流れる高速流が流入通路に逆流するのを防止できるので 、流量を効果的に増大させることができる。
発明を実施するための最良の形態
[0020] 以下に、本発明の好ましい実施の形態を、実施例に基づいて説明する。
実施例 1
[0021] 図 2〜図 5は本発明に力、かる圧電マイクロブロアの第 1実施例を示す。本実施例の 圧電マイクロブロア Aは、電子機器の空冷用ブロアとして用いた例であり、天板(第 2 壁部) 10、流路形成板 20、セパレータ(第 1壁部) 30、ブロア枠体 40、ダイヤフラム 5 0及び底板 60が上方から順に積層固定されている。ダイヤフラム 50の外周部は、ブ ロア枠体 40と底板 60との間で接着固定されている。ダイヤフラム 50を除く部品 10, 2 0, 30, 40, 60はブロア本体 1を構成しており、金属板や硬質樹脂板のような剛性の ある平板材料で形成されて!/、る。
[0022] 天板 10は四角形平板で形成されており、その中心部には表裏に貫通する吐出口( 第 2開口部) 11が形成されて!/、る。
[0023] 流路形成板 20も天板 10と同一外形を有する平板であり、図 5に示すように、その中 央部には吐出口 11より大径な中央孔(中央空間) 21が形成されている。中央孔 21か ら 4つのコーナ部に向力、つて放射方向に延びる複数 (ここでは 4本)の流入通路 22が 形成されている。本実施例の圧電マイクロブロア Aの場合、流入通路 22が中央孔 21 に対して 4方向から連通しているため、ダイヤフラム 50のボンビング動作に伴って流 体が抵抗なく中央孔 21に引き寄せられ、さらなる流量の増加を図ることができる。
[0024] セパレータ 30も天板 10と同一外形を有する平板であり、その中心部には吐出口 11 と対向する位置に、吐出口 11とほぼ同一径の貫通孔 31 (第 1開口部)が形成されて いる。なお、吐出口 11と貫通孔 31とは同一径であってもよいし、異なる径であっても よいが、少なくとも中央孔 21より小さい径を有する。 4つのコーナ部近傍には、流入通 路 22の外側端部と対応する位置に流入孔 32が形成されている。天板 10と流路形成 板 20とセパレータ 30とを接着することにより、吐出口 11と中央孔 21と貫通孔 31とが 同一軸線上に並び、後述するダイヤフラム 50の中心部と対応している。なお、後述 するように、セパレータ 30の中央孔 21と対応する部分を共振させるため、セパレータ 30を薄肉金属板で形成するのが望まし!/、。
[0025] ブロア枠体 40も天板 10と同一外形を有する平板であり、その中心部には大径な空 洞部 41が形成されている。 4つのコーナ部近傍には、前記流入孔 32と対応する位置 に流入孔 42が形成されている。ブロア枠体 40を間にしてセパレータ 30とダイヤフラ ム 50とを接着することにより、ブロア枠体 40の空洞部 41によってブロア室 4が形成さ れる。なお、ブロア室 4は閉鎖された空間である必要はなぐ一部開放されていてもよ い。例えばブロア枠体 40の中心部に形成された空洞部 41にスリットが形成されブロ ァ枠体 40の外部と連通されていたり、流入孔 42付近にのみブロック状のブロア枠体 を形成していてもよい。すなわち、本発明のブロア室 4はセパレータ 30とダイヤフラム 50とで挟まれ区画された空間であればよ!/、。
[0026] 底板 60も天板 10と同一外形を有する平板であり、その中心部にはブロア室 3とほ ぼ同形の空洞部 61が形成されている。底板 60は圧電素子 52の厚みと振動板 51の 変位量との合計より厚肉に形成されており、マイクロブロア Aを基板などに搭載した場 合でも、圧電素子 52が基板と接触するのを防止できる。前記空洞部 61は後述するダ ィャフラム 50の圧電素子 52の周囲を取り囲む空洞部を形成している。底板 60の 4つ のコーナ部近傍には、前記流入孔 32, 42と対応する位置に流入孔 62が形成されて いる。
[0027] ダイヤフラム 50は、振動板 51の中央部下面に円形の圧電素子 52を貼り付けた構 造を有する。振動板 51としては、ステンレス、真鍮等の種々の金属材料を用いること ができる他、ガラスエポキシ樹脂等の樹脂材料からなる樹脂板を用いてもよい。圧電 素子 52は上述のブロア枠体 40の空洞部 41より小径な円板である。この実施例では 、圧電素子 52として表裏面に電極を持つ単板の圧電セラミックスを使用し、これを振 動板 51の裏面(ブロア室 3と逆側の面)に貼り付けてュニモルフ型ダイヤフラムを構 成した。圧電素子 52に交番電圧(正弦波または矩形波)を印加することにより、圧電 素子 52が平面方向に伸縮するので、ダイヤフラム 50全体が板厚方向に屈曲変形す る。圧電素子 52にダイヤフラム 50を 1次共振モード又は 3次共振モードで屈曲変位 させる交番電圧を印加することにより、それ以外の周波数の電圧を印加する場合に 比べてダイヤフラム 50の変位体積を格段に大きくでき、流量を大幅に増加させること ができる。
[0028] 振動板 51の 4つのコーナ部近傍には、前記流入孔 32, 42, 62と対応する位置に 流入孔 51aが形成されている。前記流入孔 32, 42, 62, 51aによって、一端が下方 に開口し、他端が流入通路 22へ通じる流入口 8が形成される。
[0029] 図 4に示すように、圧電マイクロブロア Aの流入口 8はブロア本体 1の下方に向かつ て開口しており、吐出口 11は上面側に開口している。圧縮性流体を圧電マイクロブ口 ァ Aの裏側の流入口 8から吸込み、表側の吐出口 11から排出することができるので、 燃料電池の空気供給用ブロアや CPUの空冷用ブロアとして好適な構造となる。なお 、流入口 8は下方に開口している必要はなぐ外周に開口していてもよい。
[0030] 図 4では、振動板 51と圧電素子 52とで構成されるダイヤフラム 50を用いた力 図 6 のように、振動板 51と圧電素子 52との間に中間板 53を設けたダイヤフラム 50aを用 いてもよい。中間板 53は SUS等の金属板を利用することができる。このような中間板 53を振動板 51と圧電素子 52との間に設けることによって、ダイヤフラム 50aが屈曲 変位する際の中立面を中間板 53内に位置させることができ、変位を阻害する要因を 取り除くことができる。その結果、変位効率がさらに良好になり、低電圧で流量の大き な圧電マイクロブロア Bを得ることができる。
[0031] 本実施例の圧電マイクロブロア Aの作動は図 1に示したものとほぼ同様である。但し 、本実施例では、流入通路 22の内側端部に第 1開口部 31および第 2開口部 11より 大きな開口面積を持つ中央空間 21を形成し、かつセパレータ 30を薄肉金属板で形 成してある。そのため、図 7に示すような作動を行うことができ、さらなる流量増加を実 現できる。
[0032] 図 7は圧電マイクロブロア Aの作動を説明するための概略図であり、理解を容易に するため、変位を大きく表してある。図 7の(a)は初期状態(非電圧印加時)であり、 (b )〜(e)は圧電素子 52への印加電圧(例えば sin波)の 1/4周期毎にダイヤフラム 50 とセパレータ 30の変位を図示したものである。圧電素子 52に交番電圧を印加するこ とにより、(b)〜(e)の動作を周期的に繰り返す。図示するように、ダイヤフラム 50の 振動に伴ってセパレータ 30が共振し、セパレータ 30はダイヤフラム 50に対して約 90 ° 位相が遅れた形で振動する。セパレータ 30が共振することによって、第 1開口部 3 1から大きな圧力波が上方向に向けて生成され、この圧力波によって中央空間 21内 の空気が第 2開口部 11から外部へ向けて排出されるため、セパレータ 30が共振しな い場合に比べて流量増加を達成できる。中央空間 21の空気が外部へ排出されるこ とによって、流入通路 22内の空気は中央空間 21に向力 て引き込まれ、第 2開口部 11から連続的に空気流を発生させることができる。
[0033] 図 7ではダイヤフラム 50が 1次共振モードで変位する例を記載したが、 3次共振モ ードで変位する場合も同様である。また、セパレータ 30の変位量がダイヤフラム 50の 変位量より大きい例を示した力 中央空間 21の大きさ、セパレータ 30のヤング率およ び厚み等によって、セパレータ 30の変位量がダイヤフラム 50より小さい場合もありう る。さらに、セパレータ 30のダイヤフラム 50に対する位相遅れは 90° に限るものでは ない。要するに、セパレータ 30がダイヤフラム 50に対してある位相遅れをもって共に 振動し、それによつてダイヤフラム 50とセパレータ 30との距離力 セパレータ 30が振 動しない場合に比べてより大きく変化するように構成してあればよい。
[0034] 以下に示すデータは、前記構成よりなるマイクロブロア Aの一実験例である。まず、 厚み 0· 1mmの SUS板上に、厚み 0· 15mm,直径 12. 7mmの PZT単板からなる圧 電素子を貼り付けたダイヤフラムを用意した。続いて、真鍮板からなるセパレータ、及 び SUS板からなる天板、流路形成板、ブロア枠体及び底板を用意した。なお、天板 の中心には直径 0. 8mmの第 2開口部が設けられ、セパレータの中心には直径 0. 6 mmの第 1開口部が設けられている。また、流路形成板の中心には、直径が 6mmで 高さが 0. 4mmの中央空間が設けられている。続いて、前記の構成部材を、底板、ダ ィャフラム、ブロア枠体、セパレータ、流路形成板、天板の順に積み重ねて接着し、 縦 20mm X横 20mm X高さ 2. 4mmのブロア本体を作製した。なお、ブロア本体の ブロア室は高さ 0. 15mm,直径 18mmに設計されている。
[0035] 前記構成のマイクロブロア Aに、周波数 17kHz、 60Vp— pの sin波形の電圧を印 加して駆動したところ、 lOOPa時で流量 800ml/minを得た。これは 3次モードで駆 動させた場合の例である力 1次モードでも駆動することが可能である。このように、 流量が大きいマイクロブロアを得ることができた。
[0036] 表 1は、ダイヤフラム 50の駆動周波数と、中央空間 21の直径とを変化させた場合の 流量の違レ、を示したものである。流量の単位は L/minである。
[表 1]
Figure imgf000013_0001
なお、駆動周波数 24. 4kHzにおける 42Ni板の厚みは 0. 08mm,駆動周波数 25 . 5kHzにおける 42Ni板の厚みは 0. 1mmのものを使用した。
[0037] 表 1から明らかなように、中央空間 21の直径が 5mmの場合には、周波数を高くする 方が流量が増加する力 中央空間 21の直径が 6mmの場合には、周波数を低くする 方が流量が増加することがわかる。このように、中央空間 21に対応するセパレータ 30 の振動が流量に影響していることがわかる。これは振動板 51の材質及び厚みによつ てダイヤフラムの固有振動数も異なってくる力 中央空間 21の直径を調整することで 、中央空間 21に対応するセパレータ 30の固有振動数を、ダイヤフラムの固有振動数 に近づけ共振させることができ、それによつて流量が増大したものと思われる。
[0038] 図 8は、振動板 51と圧電素子 52との間に中間板 53を設けたダイヤフラム 50aを用 いたマイクロブロア Bの実験結果を示す。この実験は、表 2に示すように、セパレータ 3 0の材質及び厚みを変化させたときの流量を比較したものである。サンプル 1はセパ レータとして厚みが 0. 05mmのりん青銅を使用し、サンプル 2はセパレータとして厚 みが 0. 1mmの SUS304を使用した。その他の構成は、マイクロブロア Aと同一であ る。セパレータ以外の構成は、サンプル 1とサンプル 2とで共通とし、駆動周波数は共 に 24. 4kHzとした。
[0039] [表 2] サンプル 1 サンプル 2 セパレ一夕材質 りん青銅 SUS304
セパレー夕厚さ(mm) 0.05 0.1 第 1開口部穴径(mm) 0.6 0.6
天板材質 洋白 洋白 第 2開口部穴径 (mm) 0.8 0.8
ブロア室材質 洋白 洋白 ブロア室高さ(mm) 0.15 0.15 ブロア室直径 (mm) 16 16
振動板材質 4 2 N i 4 2 N i 振動板厚み(mm) 0.08 0.08
中間板厚み(mm) 0.15 0.15
中間板直径 (mm) 1 1 1 1 圧電素子厚み(mm) 0.20 0.20 圧電素子直径 (mm) 1 1 1 1 中央空間穴径(mm) 6 6 中央空間高さ(mm) 0.5 0.5
[0040] りん青銅と SUS304は、同じ厚みで比較した場合、 SUS304の方がりん青銅より 1 . 5倍程度剛性が高くなる力 厚みの違いが 2倍あるので、サンプル 1に比べてサンプ ノレ 2の方がセパレータの剛性が格段に高くなつている。換言すると、サンプル 1では 中央空間に面するセパレータ部分が振動する力 サンプル 2ではセパレータ部分が 殆ど振動しないと考えられる。この実験は、中央空間に面するセパレータ部分の振動 の流量に及ぼす影響を測定したものである。
[0041] 図 8の(a)に示すように、例えば印加電圧 20Vppで比較すると、サンプル 2では約 0 . 42L/minであるのに対し、サンプル 1では約 0· 78L/minであり、サンプル 1の 流量はサンプル 2の約 2倍となっている。つまり、セパレータ部分の振動が流量増加 に大きく寄与していることがわかる。図 8の (b)は消費電力に基づく流量を比較したも のである。インピーダンスが変化するため、消費電力も変化するが、同じ消費電力で 比較しても、サンプル 1の方が有利であることがわかる。
実施例 2
[0042] 図 9は本発明にかかるマイクロブロアの第 2実施例を示す。第 1実施例と同一部分 には同一符号を付して重複説明を省略する。この実施例のマイクロブロア Bでは、圧 電素子として中心部に空洞を持つリング形状の圧電素子 52aを使用し、圧電素子 52 aの外周部をダイヤフラム 50bの外周部を保持しているブロア本体 1に近づけたもの である。 [0043] 図 10は円板状の圧電素子とリング状の圧電素子とを用いたダイヤフラムの 3次共振 モードでの変位を示す。円板状圧電素子 52を用いた場合、(a)に示すように中心位 置(Ommの位置)力、ら 6mmの位置まで圧電素子が取り付けられて!/、る。リング状圧 電素子 52bを用いた場合には、(b)で示すように中心位置(Ommの位置)から 2. 5m mの位置まで空洞があり、 2. 5mm〜8mmの範囲に圧電素子が取り付けられている 。いずれの場合も、ダイヤフラム 50, 50bの外周側の 8mm以上の領域がブロア本体 1で固定されている。
[0044] 図 10の(a)に示すように、円板状圧電素子 52を有するダイヤフラム 50を 3次共振 モードで振動させた場合、圧電素子 52の中間領域 (4mmの位置)にノード点が存在 する。圧電素子 52へのリード線の接続はノード点に行うのが望ましいが、ノード点は 圧電素子 52の中間部にあり、かつ点であるため、振動によって断線しないように接続 しょうとすると、小さい面積で高精度な位置合わせが必要となり、配線の難易度が高 い。これに対し、リング状圧電素子 52aを有するダイヤフラム 50bの場合、図 10の(b) のように、圧電素子 52aの外周部をブロア本体 1と近接させることができるので、圧電 素子 52aの外周部に配線を接続すればよぐ接続位置が殆ど振動しないので、配線 が容易になり、信頼性が向上する。
[0045] 以下に示すデータは、リング状圧電素子を有するダイヤフラムを用いたマイクロブ口 ァ Cの一実験例である。まず、厚み 0· 1mmの真鍮板に、厚みが 0· 2mm、外形 18 mm、内径 5mmのリング状の PZT単板からなる圧電素子を貼り付けたダイヤフラムを 用意した。続いて、真鍮板からなるセパレータ、及び SUS板からなる天板、流路形成 板、ブロア枠体及び底板を用意した。なお、天板の中心には直径 1. Ommの第 2開 口部が設けられ、セパレータの中心には直径 0. 8mmの第 1開口部が設けられてい る。また、流路形成板の中心には直径 6mmで高さが 0. 5mmの中央空間が設けられ ている。続いて、前記の構成部材を、底板、ダイヤフラム、ブロア枠体、セパレータ、 流路形成板、天板の順に積み重ねて、それぞれ接着し、縦 20mm X横 20mm X高 さ 4· Ommのブロア本体を作製した。なお、ブロア本体のブロア室は高さ 0. 05mm, 直径 18mmに設計されている。
[0046] 前記構成のマイクロブロア Cに、周波数 25. 2kHz, 60Vp— pの sin波形の電圧を 印加して駆動したところ、 lOOPa時で流量 700ml/min :最大発生圧力 0. 7kPaを 得た。これは 3次モードで駆動させた場合の例であるが、 1次モードでも駆動すること が可能である。図 10の (b)に示すように、リング状圧電素子 52aを使用した場合、ダ ィャフラム 50bの中心部の変位量が非常に大きくなる。例えば、厚み 0. lmm、直径 5mmの真鍮板の固有振動数は約 25kHzであるため、振動板 51の厚みを 0. lmm、 リング状圧電素子 52aの内径を 5mmとした場合、 25kHz付近で駆動するとリング状 圧電素子 52aの屈曲によりダイヤフラム 50bの中央部が共振するため、ダイヤフラム 5 Obの中心部に非常に大きな変位が得られ、流量増加を実現できる。また、この最大 変位部分には圧電素子が存在しないので、圧電素子の変位 ·駆動速度を小さくでき 、耐久性の向上を実現できる。
実施例 3
[0047] 図 11〜図 13は本発明に係るマイクロブロアの第 3実施例を示す。第 1実施例と同 一部分には同一符号を付して重複説明を省略する。この実施例のマイクロブロア D では、流路形成板 20の中央部に流入通路を兼ねる四角形の中央空間 23が形成さ れている。中央空間 23はブロア室 4を構成するブロア枠体 40の空洞部 41より広い開 口面積を持つ。セパレータ(第 1壁部) 30、ブロア枠体 40、底板 60及びダイヤフラム 50の対角の 2つコーナ部には、それぞれ切欠部 33, 43, 63及び 51bが形成され、こ れら切欠部は前記中央空間 23のコーナ部と対応しており、これら切欠部が流入口 8 を構成している。なお、底板 60には切溝 64が形成されている力 これはマイクロブ口 ァ Dを基板などに搭載した場合に、ダイヤフラム 50の下面側空間が密閉空間になる のを防止する通気溝として、及び圧電素子 52の配線を引き出すための溝として使用 される。
[0048] 以下に示すデータは、前記構成よりなるマイクロブロア Dの一実験例である。まず、 厚み 0· 1mmの SUS板上に、厚み 0· 2mm、直径 12. 7mmの PZT単板からなる圧 電素子を貼り付けたダイヤフラムを用意した。続いて、 SUS板からなるセパレータ、天 板、流路形成板、ブロア枠体及び底板を用意した。なお、天板の中心には直径 0. 6 mmの第 2開口部が設けられ、セパレータの中心には直径 2. 0mmの第 1開口部が 設けられている。また、流路形成板には、縦 20mm X横 20mmの中央空間が設けら れている。続いて、前記の構成部材を、底板、ダイヤフラム、ブロア枠体、セパレータ 、流路形成板、天板の順に積み重ねて接着し、縦 22mm X横 22mm X高さ 2mmの ブロア本体を作製した。なお、ブロア本体のブロア室の高さは 0. lmm、直径 18mm に設計されている。
[0049] 前記構成のマイクロブロア Cに、周波数 16kHz, 60Vp— pの sin波形の電圧を印 加して駆動したところ、 lOOPa時で流量 90ml/minを得た。これは 3次共振モードで 駆動した場合の例であるが、 1次共振モードでも駆動することが可能である。
[0050] この実施例では、中央空間 23が開口部 11 , 31を中心として全方向に開放する流 入通路として機能するので、流入空気の空気抵抗を減らすことができる。また、ブロア 室と対向するセパレータ 30のほぼ全領域が中央空間 23によって開放されているの で、セパレータ 30の広い領域がダイヤフラム 50の振動と共に振動できる。そのため、 ダイヤフラム 50がー次共振モードで振動する場合でもセパレータ 30を共振させるこ とが可能である。
[0051] 前記各実施例では、中央空間と対応するセパレータ(第 1壁部)の部分をダイヤフラ ムの振動に伴って共振させる例を示した力 必ずしもセパレータが共振する必要はな ぐダイヤフラムの振動と共にセパレータに振動が励振され、かつセパレータがダイヤ フラムに対して所定の位相遅れをもって振動する構造であれば、流量増加を達成で きる。
[0052] また、前記実施例ではブロア本体を複数の板状部材を積層接着して構成したが、 これに限るものではない。例えば、天板 10と流路形成板 20、セパレータ 30とブロア 枠体 40、流路形成板 20とセパレータ 30を、樹脂又は金属で一体形成することも可 能である。
[0053] 流入通路の形状は、図 5に示すような放射方向に直線的に延びた形状に限るもの ではなぐ任意に選択できる。また、流入通路の本数も任意であり、流量、騒音の程 度に応じて選択できる。
図面の簡単な説明
[0054] [図 1]本発明の一実施形態の圧電マイクロブロアの動作原理図である。
[図 2]本発明に係る圧電マイクロブロアの第 1実施例の全体斜視図である。 園 3]図 2に示す圧電マイクロブロアの分解斜視図である。
[図 4]図 2の IV— IV線断面図である。
[図 5]図 4の V— V泉断面図である。
[図 6]図 4に示す圧電マイクロブロアの変形例の断面図である。
園 7]図 2に示す圧電マイクロブロアの概略動作図である。
園 8]セパレータの材質及び厚みを変えたサンプルにおける印加電圧に対する流量 特性と、消費電力に対する流量特性とを示す。
園 9]本発明に係る圧電マイクロブロアの第 2実施例の断面図である。
園 10]円板状圧電素子を用いたダイヤフラムとリング状圧電素子を用いたダイヤフラ ムの変位を比較した図である。
園 11]本発明に係る圧電マイクロブロアの第 3実施例の斜視図である。
[図 12]図 11の XII— XII線断面図である。
[図 13]図 11に示す圧電マイクロブロアの分解斜視図である。
符号の説明
A〜D 圧電マイクロブロア
1 ブロア本体
2 ダイヤフラム
3 圧電素子
4 ブロア室
8 流入口
10 天板 (第 2壁部)
11 吐出口(第 2開口部)
20 流路形成板
21 中央空間
22 流入通路
30 セパレータ(第 1壁部)
31 貫通孔 (第 1開口部)
40 ブロア枠体 , 50a, 50b ダイヤフラム 振動板
, 52a 圧電素子 底板

Claims

請求の範囲
[1] ブロア本体と、外周部がブロア本体に対して固定され、圧電素子を有するダイヤフラ ムと、ブロア本体とダイヤフラムとの間に形成されたブロア室とを備え、前記圧電素子 に電圧を印加してダイヤフラムを屈曲変形させることにより、圧縮性流体を輸送する 圧電マイクロブロアにお!/、て、
前記ダイヤフラムとの間でブロア室を形成するブロア本体の第 1壁部と、 前記ダイヤフラムの中心部と対向する前記第 1壁部の部位に形成され、ブロア室の 内部と外部とを連通させる第 1開口部と、
前記第 1壁部を間にしてブロア室と反対側に、第 1壁部と間隔をあけて設けられた 第 2壁部と、
前記第 1開口部と対向する前記第 2壁部の部位に形成された第 2開口部と、 前記第 1壁部と第 2壁部との間に形成され、外側端部が外部に連通され、内側端部 が第 1開口部及び第 2開口部に接続された流入通路とを備えることを特徴とする圧電 マイクロブロア。
[2] 前記第 1開口部及び第 2開口部と接続された流入通路の内側端部に、前記第 1開口 部及び第 2開口部より大きな開口面積を有する中央空間が形成されていることを特 徴とする請求項 1に記載の圧電マイクロブロア。
[3] 前記流入通路は、前記中央空間から放射方向に伸びる複数の通路で構成され、各 流入通路の外側端部にそれぞれ流入口が形成されてレ、ることを特徴とする請求項 2 に記載の圧電マイクロブロア。
[4] 前記ダイヤフラムの変位に伴い、前記第 1壁部の前記中央空間と対向する部分が共 振するように、前記中央空間の開口面積が設定されていることを特徴とする請求項 2 又は 3に記載の圧電マイクロブロア。
[5] 前記圧電素子は、中心部に空洞を持つリング形状であることを特徴とする請求項 1乃 至 4のいずれか 1項に記載の圧電マイクロブロア。
[6] 前記圧電素子に、圧電素子を含むダイヤフラムが 1次または 3次の共振モードで変 位する電圧を印加することを特徴とする請求項 1乃至 5のいずれ力、 1項に記載の圧電 マイクロブロア。
PCT/JP2007/073571 2006-12-09 2007-12-06 圧電マイクロブロア WO2008069266A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020097011063A KR101088943B1 (ko) 2006-12-09 2007-12-06 압전 마이크로 블로어
EP07859726.7A EP2090781B1 (en) 2006-12-09 2007-12-06 Piezoelectric micro-blower
JP2008548326A JP4873014B2 (ja) 2006-12-09 2007-12-06 圧電マイクロブロア
CN2007800442645A CN101542122B (zh) 2006-12-09 2007-12-06 压电微型鼓风机
US12/472,833 US8678787B2 (en) 2006-12-09 2009-05-27 Piezoelectric micro-blower

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006332693 2006-12-09
JP2006-332693 2006-12-09
JP2007268503 2007-10-16
JP2007-268503 2007-10-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/472,833 Continuation US8678787B2 (en) 2006-12-09 2009-05-27 Piezoelectric micro-blower

Publications (1)

Publication Number Publication Date
WO2008069266A1 true WO2008069266A1 (ja) 2008-06-12

Family

ID=39492144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073571 WO2008069266A1 (ja) 2006-12-09 2007-12-06 圧電マイクロブロア

Country Status (6)

Country Link
US (2) US8678787B2 (ja)
EP (1) EP2090781B1 (ja)
JP (1) JP4873014B2 (ja)
KR (1) KR101088943B1 (ja)
CN (1) CN101542122B (ja)
WO (1) WO2008069266A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148008A1 (ja) * 2008-06-03 2009-12-10 株式会社村田製作所 圧電マイクロブロア
US20110070110A1 (en) * 2008-05-30 2011-03-24 Murata Manufacturing Co., Ltd. Piezoelectric micro blower
WO2011040320A1 (ja) 2009-10-01 2011-04-07 株式会社村田製作所 圧電マイクロブロア
CN102057163A (zh) * 2008-06-05 2011-05-11 株式会社村田制作所 压电微型鼓风机
US7972124B2 (en) 2007-10-16 2011-07-05 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US8064204B2 (en) * 2007-12-28 2011-11-22 Sony Corporation Electronic apparatus
EP2529780A1 (en) 2011-05-31 2012-12-05 Metran Co., Ltd. Pump unit and breathing assistance device
WO2013039104A1 (ja) 2011-09-12 2013-03-21 株式会社メトラン 呼気弁及び呼吸補助装置
WO2013084918A1 (ja) 2011-12-08 2013-06-13 株式会社メトラン ポンプユニット、呼吸補助装置
US8492959B2 (en) 2009-07-17 2013-07-23 Murata Manufacturing Co., Ltd. Structure for bonding metal plate and piezoelectric body and bonding method
WO2013151014A1 (ja) 2012-04-02 2013-10-10 株式会社メトラン ポンプユニット、呼吸補助装置
WO2013157517A1 (ja) 2012-04-16 2013-10-24 株式会社メトラン 開閉具及び呼吸補助装置
WO2014129043A1 (ja) 2013-02-21 2014-08-28 株式会社メトラン 呼吸補助装置
US8899944B2 (en) 2009-12-04 2014-12-02 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
JP2015048792A (ja) * 2013-09-03 2015-03-16 株式会社タクミナ 容積移送式ポンプ
WO2015053054A1 (ja) 2013-10-11 2015-04-16 株式会社メトラン 開閉具及び呼吸補助装置
US9103337B2 (en) 2011-09-06 2015-08-11 Murata Manufacturing Co., Ltd. Fluid control device
WO2016009870A1 (ja) * 2014-07-16 2016-01-21 株式会社村田製作所 流体制御装置
WO2016140181A1 (ja) * 2015-03-03 2016-09-09 株式会社村田製作所 吸引装置
JPWO2015166749A1 (ja) * 2014-04-30 2017-04-20 株式会社村田製作所 吸入装置
US9714651B2 (en) 2007-10-16 2017-07-25 Murata Manufacturing Co., Ltd. Vibrating device and piezoelectric pump
US9777974B2 (en) 2012-05-09 2017-10-03 Murata Manufacturing Co., Ltd. Cooling device and heating and cooling apparatus
US20180006346A1 (en) * 2016-06-30 2018-01-04 Faraday&Future Inc. Pressure maintenance reservoir
JP2018085511A (ja) * 2016-11-24 2018-05-31 研能科技股▲ふん▼有限公司 空冷放熱装置
WO2019221121A1 (ja) * 2018-05-15 2019-11-21 京セラ株式会社 圧電ガスポンプ
WO2021049460A1 (ja) 2019-09-11 2021-03-18 京セラ株式会社 圧電ポンプおよびポンプユニット
US11098347B2 (en) 2014-07-08 2021-08-24 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
JP2021166805A (ja) * 2017-01-23 2021-10-21 伊藤超短波株式会社 電気刺激装置

Families Citing this family (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436961B1 (en) * 2009-05-25 2020-09-30 Murata Manufacturing Co., Ltd. Valve, fluid apparatus and fluid supply apparatus
US9581756B2 (en) 2009-10-05 2017-02-28 Lighting Science Group Corporation Light guide for low profile luminaire
US9157581B2 (en) 2009-10-05 2015-10-13 Lighting Science Group Corporation Low profile luminaire with light guide and associated systems and methods
TWI503654B (zh) * 2009-12-29 2015-10-11 Foxconn Tech Co Ltd 電子裝置及其微型液體冷卻裝置
CN102130081A (zh) * 2010-01-12 2011-07-20 富瑞精密组件(昆山)有限公司 散热装置及其气流产生装置
JP5494801B2 (ja) 2010-05-21 2014-05-21 株式会社村田製作所 流体ポンプ
US9532423B2 (en) 2010-07-23 2016-12-27 Lighting Science Group Corporation System and methods for operating a lighting device
US9827439B2 (en) 2010-07-23 2017-11-28 Biological Illumination, Llc System for dynamically adjusting circadian rhythm responsive to scheduled events and associated methods
US8841864B2 (en) 2011-12-05 2014-09-23 Biological Illumination, Llc Tunable LED lamp for producing biologically-adjusted light
US9024536B2 (en) 2011-12-05 2015-05-05 Biological Illumination, Llc Tunable LED lamp for producing biologically-adjusted light and associated methods
US9681522B2 (en) 2012-05-06 2017-06-13 Lighting Science Group Corporation Adaptive light system and associated methods
US8743023B2 (en) 2010-07-23 2014-06-03 Biological Illumination, Llc System for generating non-homogenous biologically-adjusted light and associated methods
US8465167B2 (en) 2011-09-16 2013-06-18 Lighting Science Group Corporation Color conversion occlusion and associated methods
US8686641B2 (en) 2011-12-05 2014-04-01 Biological Illumination, Llc Tunable LED lamp for producing biologically-adjusted light
US8760370B2 (en) 2011-05-15 2014-06-24 Lighting Science Group Corporation System for generating non-homogenous light and associated methods
US8401231B2 (en) 2010-11-09 2013-03-19 Biological Illumination, Llc Sustainable outdoor lighting system for use in environmentally photo-sensitive area
US8384984B2 (en) 2011-03-28 2013-02-26 Lighting Science Group Corporation MEMS wavelength converting lighting device and associated methods
US8608348B2 (en) 2011-05-13 2013-12-17 Lighting Science Group Corporation Sealed electrical device with cooling system and associated methods
US8754832B2 (en) 2011-05-15 2014-06-17 Lighting Science Group Corporation Lighting system for accenting regions of a layer and associated methods
US8901850B2 (en) 2012-05-06 2014-12-02 Lighting Science Group Corporation Adaptive anti-glare light system and associated methods
US9173269B2 (en) 2011-05-15 2015-10-27 Lighting Science Group Corporation Lighting system for accentuating regions of a layer and associated methods
JP5528404B2 (ja) 2011-09-06 2014-06-25 株式会社村田製作所 流体制御装置
US8408725B1 (en) 2011-09-16 2013-04-02 Lighting Science Group Corporation Remote light wavelength conversion device and associated methods
EP3346131B1 (en) 2011-10-11 2022-04-27 Murata Manufacturing Co., Ltd. Fluid control apparatus and method for adjusting fluid control apparatus
US8866414B2 (en) 2011-12-05 2014-10-21 Biological Illumination, Llc Tunable LED lamp for producing biologically-adjusted light
US9220202B2 (en) 2011-12-05 2015-12-29 Biological Illumination, Llc Lighting system to control the circadian rhythm of agricultural products and associated methods
US9289574B2 (en) 2011-12-05 2016-03-22 Biological Illumination, Llc Three-channel tuned LED lamp for producing biologically-adjusted light
US8963450B2 (en) 2011-12-05 2015-02-24 Biological Illumination, Llc Adaptable biologically-adjusted indirect lighting device and associated methods
US9913341B2 (en) 2011-12-05 2018-03-06 Biological Illumination, Llc LED lamp for producing biologically-adjusted light including a cyan LED
US8545034B2 (en) 2012-01-24 2013-10-01 Lighting Science Group Corporation Dual characteristic color conversion enclosure and associated methods
JP5849723B2 (ja) * 2012-01-25 2016-02-03 株式会社村田製作所 流体制御装置
DE102012101861A1 (de) 2012-03-06 2013-09-12 Continental Automotive Gmbh Mikropumpe mit gasdurchlässigem, aber flüssigkeitsundurchlässigen Gewebe im Ansaugbereich
DE102012101859A1 (de) 2012-03-06 2013-09-12 Continental Automotive Gmbh Drucksensor für ein Aufprallsensorsystem
JP6068886B2 (ja) * 2012-03-30 2017-01-25 日東電工株式会社 換気システム
US9402294B2 (en) 2012-05-08 2016-07-26 Lighting Science Group Corporation Self-calibrating multi-directional security luminaire and associated methods
US8680457B2 (en) 2012-05-07 2014-03-25 Lighting Science Group Corporation Motion detection system and associated methods having at least one LED of second set of LEDs to vary its voltage
US9006987B2 (en) 2012-05-07 2015-04-14 Lighting Science Group, Inc. Wall-mountable luminaire and associated systems and methods
US8899776B2 (en) 2012-05-07 2014-12-02 Lighting Science Group Corporation Low-angle thoroughfare surface lighting device
US8899775B2 (en) 2013-03-15 2014-12-02 Lighting Science Group Corporation Low-angle thoroughfare surface lighting device
JP5928160B2 (ja) * 2012-05-29 2016-06-01 オムロンヘルスケア株式会社 圧電ポンプおよびこれを備えた血圧情報測定装置
US20140002991A1 (en) * 2012-06-29 2014-01-02 General Electric Company Thermal management in optical and electronic devices
US9127818B2 (en) 2012-10-03 2015-09-08 Lighting Science Group Corporation Elongated LED luminaire and associated methods
US9174067B2 (en) 2012-10-15 2015-11-03 Biological Illumination, Llc System for treating light treatable conditions and associated methods
US9322516B2 (en) 2012-11-07 2016-04-26 Lighting Science Group Corporation Luminaire having vented optical chamber and associated methods
CN103016296B (zh) * 2012-12-13 2015-08-26 江苏大学 基于合成射流的压电微泵
US9347655B2 (en) 2013-03-11 2016-05-24 Lighting Science Group Corporation Rotatable lighting device
US9459397B2 (en) 2013-03-12 2016-10-04 Lighting Science Group Corporation Edge lit lighting device
US9255670B2 (en) 2013-03-15 2016-02-09 Lighting Science Group Corporation Street lighting device for communicating with observers and associated methods
US20140268731A1 (en) 2013-03-15 2014-09-18 Lighting Science Group Corpporation Low bay lighting system and associated methods
FR3012443B1 (fr) * 2013-10-24 2021-04-30 Univ Sciences Technologies Lille Procede pour generer un ecoulement de fluide
US9429294B2 (en) 2013-11-11 2016-08-30 Lighting Science Group Corporation System for directional control of light and associated methods
EP2890228A1 (en) * 2013-12-24 2015-07-01 Samsung Electronics Co., Ltd Radiation apparatus
US20150192119A1 (en) * 2014-01-08 2015-07-09 Samsung Electro-Mechanics Co., Ltd. Piezoelectric blower
WO2016006496A1 (ja) * 2014-07-11 2016-01-14 株式会社村田製作所 吸引装置
CN104100541A (zh) * 2014-07-18 2014-10-15 长春隆美科技发展有限公司 一种微型压电式轴流风机
CN104100543B (zh) * 2014-07-20 2019-07-05 长春隆美科技发展有限公司 一种双振子压电驱动式风机
WO2016063711A1 (ja) * 2014-10-23 2016-04-28 株式会社村田製作所 バルブ、流体制御装置
US9726579B2 (en) 2014-12-02 2017-08-08 Tsi, Incorporated System and method of conducting particle monitoring using low cost particle sensors
CN104515282B (zh) * 2014-12-11 2018-05-18 珠海格力电器股份有限公司 隔膜泵送风装置、空调器
WO2016096775A1 (en) * 2014-12-19 2016-06-23 Koninklijke Philips N.V. Wearable air purification device
US10744295B2 (en) 2015-01-13 2020-08-18 ResMed Pty Ltd Respiratory therapy apparatus
EP3260702B1 (en) * 2015-02-17 2020-11-18 Daiken Medical Co., Ltd. Pump unit and method of manufacturing same
JP6394801B2 (ja) * 2015-05-08 2018-09-26 株式会社村田製作所 ポンプ、流体制御装置
TWI557321B (zh) * 2015-06-25 2016-11-11 科際精密股份有限公司 壓電泵及其操作方法
EP3135909B1 (de) * 2015-08-24 2020-11-04 Pfeiffer Vacuum Gmbh Membranvakuumpumpe
TWI602996B (zh) * 2016-01-29 2017-10-21 研能科技股份有限公司 壓電致動器
EP3203080B1 (en) 2016-01-29 2021-09-22 Microjet Technology Co., Ltd Miniature pneumatic device
US9976673B2 (en) 2016-01-29 2018-05-22 Microjet Technology Co., Ltd. Miniature fluid control device
US10529911B2 (en) 2016-01-29 2020-01-07 Microjet Technology Co., Ltd. Piezoelectric actuator
US10451051B2 (en) 2016-01-29 2019-10-22 Microjet Technology Co., Ltd. Miniature pneumatic device
EP3203078B1 (en) 2016-01-29 2021-05-26 Microjet Technology Co., Ltd Miniature pneumatic device
US10487821B2 (en) 2016-01-29 2019-11-26 Microjet Technology Co., Ltd. Miniature fluid control device
EP3203081B1 (en) 2016-01-29 2021-06-16 Microjet Technology Co., Ltd Miniature fluid control device
US10487820B2 (en) 2016-01-29 2019-11-26 Microjet Technology Co., Ltd. Miniature pneumatic device
US10388850B2 (en) 2016-01-29 2019-08-20 Microjet Technology Co., Ltd. Piezoelectric actuator
US10615329B2 (en) 2016-01-29 2020-04-07 Microjet Technology Co., Ltd. Piezoelectric actuator
US10584695B2 (en) 2016-01-29 2020-03-10 Microjet Technology Co., Ltd. Miniature fluid control device
US10388849B2 (en) 2016-01-29 2019-08-20 Microjet Technology Co., Ltd. Piezoelectric actuator
TWI589334B (zh) * 2016-02-26 2017-07-01 和碩聯合科技股份有限公司 球體
CN105545712B (zh) * 2016-02-29 2017-07-18 江苏大学 收缩管合成射流无阀压电泵
WO2018021514A1 (ja) * 2016-07-29 2018-02-01 株式会社村田製作所 バルブ、気体制御装置
TWI625468B (zh) 2016-09-05 2018-06-01 研能科技股份有限公司 流體控制裝置
TWI613367B (zh) * 2016-09-05 2018-02-01 研能科技股份有限公司 流體控制裝置
TWI602995B (zh) * 2016-09-05 2017-10-21 研能科技股份有限公司 流體控制裝置
US10746169B2 (en) 2016-11-10 2020-08-18 Microjet Technology Co., Ltd. Miniature pneumatic device
US10683861B2 (en) 2016-11-10 2020-06-16 Microjet Technology Co., Ltd. Miniature pneumatic device
US10655620B2 (en) 2016-11-10 2020-05-19 Microjet Technology Co., Ltd. Miniature fluid control device
TWI634264B (zh) * 2017-01-13 2018-09-01 研能科技股份有限公司 空氣馬達
CN108457846B (zh) * 2017-02-20 2020-03-03 研能科技股份有限公司 微型气体传输装置
WO2018190159A1 (ja) * 2017-04-10 2018-10-18 株式会社村田製作所 送風装置及び流体制御装置
TWI642850B (zh) 2017-08-21 2018-12-01 研能科技股份有限公司 氣體循環控制裝置
TWI656517B (zh) * 2017-08-21 2019-04-11 研能科技股份有限公司 具致動傳感模組之裝置
EP3479859A1 (en) 2017-11-02 2019-05-08 Koninklijke Philips N.V. Breathing mask and mask control method
WO2019038112A1 (en) 2017-08-22 2019-02-28 Koninklijke Philips N.V. RESPIRATORY MASK AND METHOD OF CONTROLLING MASK
JP7219722B2 (ja) * 2017-12-26 2023-02-08 株式会社村田製作所 ポンプ装置
TWI635291B (zh) * 2017-12-29 2018-09-11 研能科技股份有限公司 微型丙酮檢測裝置
JP6908175B2 (ja) * 2018-02-16 2021-07-21 株式会社村田製作所 流体制御装置
US20190306628A1 (en) * 2018-03-29 2019-10-03 Bae Systems Controls Inc. Air cooling apparatus
CN109695562A (zh) * 2018-05-25 2019-04-30 常州威图流体科技有限公司 一种流体泵及激振元件
US11456234B2 (en) 2018-08-10 2022-09-27 Frore Systems Inc. Chamber architecture for cooling devices
US11464140B2 (en) 2019-12-06 2022-10-04 Frore Systems Inc. Centrally anchored MEMS-based active cooling systems
DE102018120782B3 (de) 2018-08-24 2019-08-22 Bartels Mikrotechnik Gmbh Mikrogebläse
IT201900005808A1 (it) * 2019-04-15 2020-10-15 St Microelectronics Srl Dispositivo mems a micropompa per la movimentazione o eiezione di un fluido, in particolare microsoffiante o flussimetro
DE102019004450B4 (de) 2019-06-26 2024-03-14 Drägerwerk AG & Co. KGaA Mikropumpensystem und Verfahren zur Führung eines kompressiblen Fluids
KR102677216B1 (ko) 2019-10-30 2024-06-24 프로리 시스템스 인코포레이티드 Mems 기반 기류 시스템
TWI747076B (zh) * 2019-11-08 2021-11-21 研能科技股份有限公司 行動裝置散熱組件
US11510341B2 (en) 2019-12-06 2022-11-22 Frore Systems Inc. Engineered actuators usable in MEMs active cooling devices
US11796262B2 (en) * 2019-12-06 2023-10-24 Frore Systems Inc. Top chamber cavities for center-pinned actuators
US12033917B2 (en) 2019-12-17 2024-07-09 Frore Systems Inc. Airflow control in active cooling systems
CN113661568A (zh) 2019-12-17 2021-11-16 福珞尔系统公司 用于封闭和开放设备的基于mems的冷却系统
JP7278548B2 (ja) * 2020-03-05 2023-05-22 新東工業株式会社 ガス測定器
CN111237175A (zh) * 2020-03-13 2020-06-05 常州威图流体科技有限公司 一种微型压电泵
TWI755075B (zh) 2020-09-25 2022-02-11 研能科技股份有限公司 微型流體輸送裝置
US11765863B2 (en) * 2020-10-02 2023-09-19 Frore Systems Inc. Active heat sink
TW202217146A (zh) * 2020-10-20 2022-05-01 研能科技股份有限公司 薄型氣體傳輸裝置
US11692776B2 (en) * 2021-03-02 2023-07-04 Frore Systems Inc. Mounting and use of piezoelectric cooling systems in devices
KR102541128B1 (ko) * 2021-09-30 2023-06-12 주식회사 위일트로닉 피에조 펌프
TWI825521B (zh) * 2021-12-07 2023-12-11 研能科技股份有限公司 鼓風機
CN114228966B (zh) * 2021-12-15 2022-10-28 杭州电子科技大学 一种高质量流量的压电脉冲推动器及水下机器人
US20240179868A1 (en) * 2022-11-30 2024-05-30 Frore Systems Inc. Integration of active mems cooling systems into thin computing devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642793B2 (ja) * 1982-02-16 1989-01-18 Matsushita Electric Ind Co Ltd
JP2004146547A (ja) 2002-10-24 2004-05-20 Hitachi Ltd 電子機器の冷却装置
JP2005113918A (ja) * 2003-10-07 2005-04-28 Samsung Electronics Co Ltd バルブレスマイクロ空気供給装置
JP2005299597A (ja) * 2004-04-15 2005-10-27 Tama Tlo Kk マイクロポンプ
JP2006522896A (ja) 2003-04-09 2006-10-05 ザ テクノロジー パートナーシップ ピーエルシー ガス流発生器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219369A (ja) * 1988-02-26 1989-09-01 Hitachi Ltd 微量ポンプ装置
US7011507B2 (en) * 2002-06-04 2006-03-14 Seiko Epson Corporation Positive displacement pump with a combined inertance value of the inlet flow path smaller than that of the outlet flow path
DE10238600A1 (de) * 2002-08-22 2004-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Peristaltische Mikropumpe
CN1179127C (zh) * 2002-09-03 2004-12-08 吉林大学 多腔压电薄膜驱动泵
JP2004146574A (ja) 2002-10-24 2004-05-20 Mitsubishi Electric Corp 半導体装置
JP3951998B2 (ja) * 2003-09-29 2007-08-01 ブラザー工業株式会社 液体移送装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642793B2 (ja) * 1982-02-16 1989-01-18 Matsushita Electric Ind Co Ltd
JP2004146547A (ja) 2002-10-24 2004-05-20 Hitachi Ltd 電子機器の冷却装置
JP2006522896A (ja) 2003-04-09 2006-10-05 ザ テクノロジー パートナーシップ ピーエルシー ガス流発生器
JP2005113918A (ja) * 2003-10-07 2005-04-28 Samsung Electronics Co Ltd バルブレスマイクロ空気供給装置
JP2005299597A (ja) * 2004-04-15 2005-10-27 Tama Tlo Kk マイクロポンプ

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9714651B2 (en) 2007-10-16 2017-07-25 Murata Manufacturing Co., Ltd. Vibrating device and piezoelectric pump
US7972124B2 (en) 2007-10-16 2011-07-05 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US8064204B2 (en) * 2007-12-28 2011-11-22 Sony Corporation Electronic apparatus
US20110070110A1 (en) * 2008-05-30 2011-03-24 Murata Manufacturing Co., Ltd. Piezoelectric micro blower
WO2009148008A1 (ja) * 2008-06-03 2009-12-10 株式会社村田製作所 圧電マイクロブロア
US8596998B2 (en) 2008-06-03 2013-12-03 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US8684707B2 (en) 2008-06-05 2014-04-01 Murata Manufacturing Co., Ltd. Piezoelectric microblower
CN102057163A (zh) * 2008-06-05 2011-05-11 株式会社村田制作所 压电微型鼓风机
US8492959B2 (en) 2009-07-17 2013-07-23 Murata Manufacturing Co., Ltd. Structure for bonding metal plate and piezoelectric body and bonding method
JP5316644B2 (ja) * 2009-10-01 2013-10-16 株式会社村田製作所 圧電マイクロブロア
WO2011040320A1 (ja) 2009-10-01 2011-04-07 株式会社村田製作所 圧電マイクロブロア
JPWO2011040320A1 (ja) * 2009-10-01 2013-02-28 株式会社村田製作所 圧電マイクロブロア
US8721303B2 (en) 2009-10-01 2014-05-13 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
US8899944B2 (en) 2009-12-04 2014-12-02 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
EP2529780A1 (en) 2011-05-31 2012-12-05 Metran Co., Ltd. Pump unit and breathing assistance device
US9408991B2 (en) 2011-05-31 2016-08-09 Metran Co. Ltd. Pump unit and breathing assistance device
US9103337B2 (en) 2011-09-06 2015-08-11 Murata Manufacturing Co., Ltd. Fluid control device
WO2013039104A1 (ja) 2011-09-12 2013-03-21 株式会社メトラン 呼気弁及び呼吸補助装置
WO2013084918A1 (ja) 2011-12-08 2013-06-13 株式会社メトラン ポンプユニット、呼吸補助装置
US10036377B2 (en) 2011-12-08 2018-07-31 Metran Co., Ltd. Pump unit and respiratory assistance device
EP3064773A1 (en) 2012-04-02 2016-09-07 Metran Co., Ltd. Pump unit and respiratory assistance device
WO2013151014A1 (ja) 2012-04-02 2013-10-10 株式会社メトラン ポンプユニット、呼吸補助装置
WO2013157517A1 (ja) 2012-04-16 2013-10-24 株式会社メトラン 開閉具及び呼吸補助装置
US9821136B2 (en) 2012-04-16 2017-11-21 Metran Co., Ltd. Opening and closing device and respiratory assistance device
US9777974B2 (en) 2012-05-09 2017-10-03 Murata Manufacturing Co., Ltd. Cooling device and heating and cooling apparatus
WO2014129043A1 (ja) 2013-02-21 2014-08-28 株式会社メトラン 呼吸補助装置
US9623203B2 (en) 2013-02-21 2017-04-18 Metran Co., Ltd. Respiratory assistance device with blower placed above the mouth of a user
JP2015048792A (ja) * 2013-09-03 2015-03-16 株式会社タクミナ 容積移送式ポンプ
WO2015053054A1 (ja) 2013-10-11 2015-04-16 株式会社メトラン 開閉具及び呼吸補助装置
JPWO2015166749A1 (ja) * 2014-04-30 2017-04-20 株式会社村田製作所 吸入装置
US11781181B2 (en) 2014-07-08 2023-10-10 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
US11098347B2 (en) 2014-07-08 2021-08-24 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
WO2016009870A1 (ja) * 2014-07-16 2016-01-21 株式会社村田製作所 流体制御装置
JP2017072140A (ja) * 2014-07-16 2017-04-13 株式会社村田製作所 流体制御装置
GB2542527A (en) * 2014-07-16 2017-03-22 Murata Manufacturing Co Fluid control device
US10280915B2 (en) 2014-07-16 2019-05-07 Murata Manufacturing Co., Ltd. Fluid control device
GB2542527B (en) * 2014-07-16 2020-08-26 Murata Manufacturing Co Fluid control device
JP6052475B2 (ja) * 2014-07-16 2016-12-27 株式会社村田製作所 流体制御装置
JPWO2016140181A1 (ja) * 2015-03-03 2017-10-12 株式会社村田製作所 吸引装置
WO2016140181A1 (ja) * 2015-03-03 2016-09-09 株式会社村田製作所 吸引装置
US20180006346A1 (en) * 2016-06-30 2018-01-04 Faraday&Future Inc. Pressure maintenance reservoir
JP2018085511A (ja) * 2016-11-24 2018-05-31 研能科技股▲ふん▼有限公司 空冷放熱装置
JP2021166805A (ja) * 2017-01-23 2021-10-21 伊藤超短波株式会社 電気刺激装置
JP7134518B2 (ja) 2017-01-23 2022-09-12 伊藤超短波株式会社 電気刺激装置
WO2019221121A1 (ja) * 2018-05-15 2019-11-21 京セラ株式会社 圧電ガスポンプ
JPWO2019221121A1 (ja) * 2018-05-15 2021-03-18 京セラ株式会社 圧電ガスポンプ
WO2021049460A1 (ja) 2019-09-11 2021-03-18 京セラ株式会社 圧電ポンプおよびポンプユニット

Also Published As

Publication number Publication date
CN101542122B (zh) 2011-05-04
JP4873014B2 (ja) 2012-02-08
EP2090781A1 (en) 2009-08-19
US20090232682A1 (en) 2009-09-17
US8678787B2 (en) 2014-03-25
US20090232683A1 (en) 2009-09-17
EP2090781A4 (en) 2011-01-12
KR101088943B1 (ko) 2011-12-01
JPWO2008069266A1 (ja) 2010-03-25
EP2090781B1 (en) 2018-08-22
CN101542122A (zh) 2009-09-23
KR20090077001A (ko) 2009-07-13

Similar Documents

Publication Publication Date Title
WO2008069266A1 (ja) 圧電マイクロブロア
JP5287854B2 (ja) 圧電マイクロブロア
JP5012889B2 (ja) 圧電マイクロブロア
TWI683959B (zh) 壓電致動器及其所適用之微型流體控制裝置
KR101033077B1 (ko) 압전 펌프
JP4957480B2 (ja) 圧電マイクロポンプ
WO2009148005A1 (ja) 圧電マイクロブロア
EP2438302A1 (en) Pump with disc-shaped cavity
JP5429317B2 (ja) 圧電マイクロポンプ
WO2010035862A1 (ja) 圧電ポンプ
WO2007111049A1 (ja) マイクロポンプ
JP4957501B2 (ja) 圧電マイクロブロア
JP5402673B2 (ja) 接合体および流体機器
JP2003139064A (ja) 小型ポンプ
JP2004353638A (ja) マイクロポンプ
KR20200056896A (ko) 압전 블로어 및 그 제조 방법
JP2006132477A (ja) ダイヤフラム気体ポンプ
JP2004332707A (ja) マイクロポンプ
JP2004332706A (ja) マイクロポンプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044264.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07859726

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548326

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007859726

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097011063

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE