WO2008069204A1 - 発光装置およびプロジェクタ - Google Patents

発光装置およびプロジェクタ Download PDF

Info

Publication number
WO2008069204A1
WO2008069204A1 PCT/JP2007/073401 JP2007073401W WO2008069204A1 WO 2008069204 A1 WO2008069204 A1 WO 2008069204A1 JP 2007073401 W JP2007073401 W JP 2007073401W WO 2008069204 A1 WO2008069204 A1 WO 2008069204A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
light
emitting diode
emitting element
Prior art date
Application number
PCT/JP2007/073401
Other languages
English (en)
French (fr)
Inventor
Hiroki Sato
Jun Okamoto
Tatsuya Kogure
Natsuko Matsudo
Naoki Kitaura
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Priority to JP2008548291A priority Critical patent/JP5357549B2/ja
Publication of WO2008069204A1 publication Critical patent/WO2008069204A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/12Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the geometrical disposition of the light-generating elements, e.g. arranging light-generating elements in differing patterns or densities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a light emitting device and a projector in which light emitting elements are mounted at high density.
  • a high pressure mercury lamp As a light source of a conventional projector, a high pressure mercury lamp is often used.
  • a light source device using a high pressure mercury lamp which is a discharge type lamp, requires a high voltage power supply circuit, which is difficult to miniaturize and has a short life. In addition, start-up time is long.
  • LED chip is small in size, light in weight, has a long life, and can be adjusted flexibly by turning on / off and adjusting the amount of emitted light by controlling the drive current. Therefore, it is suitable as a light source for projectors, and is already used for small-sized and portable small-screen projectors.
  • the amount of light obtained from a single LED chip is smaller than that of a high pressure mercury lamp. Therefore, it is known that a plurality of LED lamps are arranged to obtain a desired light emission amount.
  • Patent Document 1 Japanese Patent Application Publication No. 2005-84402
  • LEDs LED bare chips
  • the n-type electrode of each LED is formed on the mounting substrate It is necessary to connect a wire to the p electrode pad formed and connected to the p-type electrode of the adjacent LED. The said process is performed by the wire bonding which used the CALIBRY.
  • the LEDs are arranged on the mounting substrate in a posture in which each side of the rectangular light emitting surface of the LED is parallel to the columns and rows of the matrix in which the plurality of LEDs are arranged. If a region where the p electrode pad formed on the mounting substrate is exposed on the surface side is formed between adjacent LEDs, one side of the region is as short as the side of the LED. Therefore, the region becomes an elongated shape having one side longer than necessary for wire bonding, and the area of the region becomes large. Therefore, there is a problem that the size can not be sufficiently reduced or the manufacturing becomes very difficult.
  • the present invention has been made in view of the above-mentioned problems, and a light emitting element having electrodes with different polarities formed on the light emitting surface is mounted at a high density to achieve a smaller size and higher brightness compared to the prior art. It is an object of the present invention to provide a light emitting device and a projector capable of achieving
  • the present invention has been made in view of the above-mentioned problems, and light-emitting elements in which electrodes having different polarities are formed on the light-emitting surface and the back surface are mounted at high density, Light emitting device and projector capable of achieving high brightness with various configurations
  • a light emitting device of a first aspect has a first electrode and a first electrode having a reverse polarity to the first electrode.
  • a plurality of light emitting elements provided with two electrodes on the same surface side and the two-dimensional shape on the surface side emitting surface light is substantially rectangular and mutually having a substantially identical external shape are arranged in the column direction and row direction orthogonal to each other.
  • a plurality of light emitting devices wherein the light emitting devices are arranged adjacent to each other in the row direction and arranged in the same posture;
  • the different poles of the light emitting elements are connected by a wire to form a connection row, and a plurality of columns identical to the connection row are repeatedly arranged in the row direction, and the wires are non-parallel to the column direction Is located in
  • connection row is formed as described above, and the wires are arranged non-parallel to the row direction.
  • the first electrode of the first light emitting element and the second electrode of the second light emitting element which is the connection destination through the other wire which is the connection destination of the first light emitting element It is possible to have a relatively long distance between them. Therefore, in the manufacturing process, the step of connecting the first electrode of the first light emitting element and the second electrode of the second light emitting element which are connected in series is simply performed by wire bonding or the like using a cavity. Can.
  • the positions in the row direction are the same as the positions in the row direction of the odd-numbered light emitting elements belonging to the connection column.
  • the positions in the row direction of the even-numbered light emitting elements belonging to the connection column are mutually the same, and are different from the positions in the row direction of the odd-numbered light emitting elements.
  • the first electrode and the second electrode are positioned along the diagonal of the rectangle, and the plurality of light emitting devices Are arranged in a matrix.
  • a plurality of light emitting means for emitting mutually different colors in a time division manner and light from the light emitting device are reflected in pixel units according to image data or
  • a light control means for transmitting the light and emitting it in the projection direction, wherein the light emitting means comprises a first electrode and a second electrode having a reverse polarity to the first electrode on the same surface side;
  • the light emitting device has a plurality of light emitting elements each having a substantially rectangular two-dimensional shape on the surface side to emit light, and a plurality of light emitting elements having substantially the same outer shape in the column direction and the row direction orthogonal to each other.
  • the different poles of the light emitting elements adjacent to each other in the column direction and arranged in the same posture are connected by wires to form a connection column, and a plurality of columns identical to the connection column are repeatedly arranged in the row direction.
  • the wires are disposed nonparallel to the row direction.
  • the light emitting device of the invention of the first aspect is used as the light emitting means.
  • a high brightness image can be projected with a small scale configuration.
  • a first electrode and a second electrode having a reverse polarity to the first electrode are provided on the same surface side, and the two-dimensional shape of the surface side for surface light emission is substantially rectangular.
  • a light emitting device in which a plurality of light emitting elements having substantially the same outer shape are disposed at a predetermined pitch in the row direction with ⁇ IJ orthogonal to each other, and in each of the columns, odd rows and even rows
  • the different poles of the light emitting elements arranged in the same posture are sequentially connected by wires and connected in series for each of the light emitting elements, and the wires are positioned between the light emitting elements adjacent in the row direction.
  • the light emitting elements in the even rows are arranged at positions offset in the row direction with respect to the light emitting elements in the odd rows.
  • the light emitting elements in the even rows are the light emitting elements in the odd rows so that the wires are positioned between the light emitting elements adjacent in the row direction. It is arranged at a position shifted in the row direction. Therefore, even when the plurality of light emitting elements are arranged at high density, a distance necessary for mounting (necessary for wire bonding) can be secured between the light emitting elements.
  • the overlapping region of the wires for connection can be reduced, and the light extraction efficiency can be improved.
  • the amount of deviation is 1/2 of the pitch of each column in the row direction.
  • each of the first electrode and the second electrode is in a diagonal direction of a rectangle, and the diagonal direction coincides with the direction of the row.
  • the elements are arranged, and the odd rows and the even rows are shifted in the column direction by 1/2 of the pitch of each row.
  • the light emitting device of the present invention includes the light emitting elements that respectively emit red, green and blue, and a plurality of the light emitting elements that emit the same color are connected in series.
  • a plurality of light emitting elements provided with the first electrode and the second electrode having the opposite polarity to the first electrode on the same surface side are connected in series in the column direction.
  • the light emitting element groups thus formed are arranged on the substrate such that the light emitting element groups in the even rows are shifted by a predetermined amount in the column direction with respect to the light emitting element groups in the odd rows.
  • each of the light emitting elements in the odd-numbered rows and the light emitting elements in the even-numbered rows a part of the surface is opposed It has a laminated structure in which the first electrodes of the light emitting elements in odd columns are connected to the second electrodes of the light emitting elements in even columns in posture, and the end portion of the light emitting element group in the even rows
  • a wire from the light emitting element is located between the light emitting element group in the odd row adjacent to the light emitting element group in the row direction, and a wire from the light emitting element at the end of the light emitting element group in the odd row is The light emitting element group of the even row adjacent to the light emitting element group in the row direction
  • high density can be realized by forming the light emitting element group by laminating the light emitting elements.
  • the wires are disposed between the light emitting element groups, the rate of obstruction by the light power S wire from the light emitting elements can be reduced. With these, high brightness can be realized
  • the wire of the light emitting device of the present invention is located closer to the substrate than the light extraction side surface of the stacked light emitting element. That is, it is preferable that the height of the wire does not exceed the highest surface of the light emitting element. This further reduces the percentage of light blocked by the wires and also allows the next optics such as lenses to be placed closer together.
  • the projector according to the present invention comprises a plurality of light emitting means for emitting different colors in a time division manner, and light from the light emitting device, reflected or transmitted in pixel units according to image data, in the projection direction
  • the light emitting means includes a first electrode and a second electrode having a polarity opposite to that of the first electrode on the same surface side, and the surface side emits light.
  • a light emitting device in which a plurality of light emitting elements having a substantially rectangular two-dimensional shape and mutually having substantially the same outer shape are arranged at predetermined pitches in a column and a row direction orthogonal to each other.
  • each of the light emitting elements in odd and even rows different poles of the light emitting elements arranged in the same posture are sequentially connected by wires and connected in series, and the wires are adjacent in the row direction. So as to be between the light emitting elements.
  • the light emitting elements are disposed at positions shifted in the row direction with respect to the light emitting elements in the odd rows.
  • the light emitting device of the present invention is used as the light emitting means. This makes it possible to project a high brightness image with a small scale configuration.
  • a first electrode formed on a light emitting surface, and a reverse electrode to the first electrode.
  • a plurality of light emitting elements having a substantially rectangular parallelepiped shape and having a second electrode formed on the surface opposite to the light emitting surface, and having substantially the same outer shape are arranged in a matrix on the mounting substrate And each of the plurality of light emitting elements is disposed such that each rectangular side of the light emitting surface is inclined with respect to the column direction or the row direction of the matrix, and between the adjacent four light emitting elements.
  • An electrode pad electrically connected to the second electrode of the light emitting element of one of the four light emitting elements is located in an area on the mounting substrate which is not occupied by the light emitting elements formed in the four light emitting elements.
  • the first electrode of the light emitting element other than the one light emitting element and the electrode node located in the area on the mounting substrate which is not occupied are connected via a wire. /.
  • each of the plurality of light emitting elements is disposed on the mounting substrate in such a manner that each side of the rectangle of the light emitting surface is inclined with respect to the column direction or row direction of the matrix. .
  • a bonding region (for example, a substantially rectangular region) in which each side is formed on the side shorter than one side of the light emitting element is generated between the four adjacent light emitting elements.
  • the bonding area is made a rectangular area formed by the minimum length and width required for bonding. be able to. That is, compared with the case where the light emitting element is arranged without being inclined, the bonding area can be reduced to the limit at which the wire can be connected. As a result, light emitting elements can be mounted at higher density, and the amount of light emission per unit area can be increased.
  • the electrode pad is a first region located in a region on the unoccupied mounting substrate, the second electrode of the light emitting element, and the mounting. And a second region interposed between the substrate and the substrate.
  • the second electrode of the light emitting element corresponding to the second region of the electrode pad is placed. With all the light emitting elements mounted on the mounting substrate, the first region of the electrode pad is exposed to the outside without being occupied by the light emitting elements.
  • the second region is located inside a region occupied by the light emitting element in a two-dimensional direction along the light emitting surface, and the region The area is smaller.
  • the light emitting device of the present invention is connected in series via a plurality of the light emitting element power S wires located along one direction.
  • the four adjacent light emitting elements are connected in series via a wire.
  • the light emitting device of the present invention includes the light emitting elements that respectively emit red, green and blue, and a plurality of the light emitting elements that emit the same color are connected in series.
  • Another light emitting device includes a first electrode formed on a light emitting surface, and a second electrode formed on a surface opposite to the light emitting surface and having reverse polarity to the first electrode. And a plurality of light emitting elements having substantially the same outer shape are arranged in a matrix on the mounting substrate, and are orthogonal to the light emitting surface of the first light emitting element. A portion of the first side faces the second side of the second light emitting element adjacent to the first light emitting element, and is adjacent to a portion other than the portion of the first side, the light emitting element And a second region connected to the second electrode of the first light emitting element between the first light emitting element and the mounting substrate.
  • the first region of the electrode pattern is formed of the first electrode and the wire of the light emitting element other than the first light emitting element. They are connected to each other through.
  • the projector comprises a plurality of light emitting means for emitting mutually different colors in a time division manner, and light from the light emitting device being reflected or transmitted in pixel units according to image data to be projected in the projection direction.
  • a light control means for emitting light wherein the light emission means has a first electrode formed on the light emission surface, and has a polarity opposite to that of the first electrode and is formed on the surface opposite to the light emission surface
  • a plurality of light emitting elements having substantially the same external shape are arranged in a matrix on a mounting substrate, forming a substantially rectangular parallelepiped provided with a second electrode, each of the plurality of light emitting elements being a rectangle of the light emitting surface Of each side of the matrix with respect to the column direction or row direction of the matrix
  • the second one of the light emitting elements of one of the four light emitting elements is An electrode pad electrically connected to the
  • the light emitting means emits different colors in a time division manner.
  • the light from the light emitting means is reflected or transmitted pixel by pixel according to the image data by the light control means and emitted in the projection direction.
  • the projector of the present invention can project a high brightness image with a small scale configuration.
  • Another projector has a plurality of light emitting means for emitting different colors in a time division manner, and light from the light emitting device reflected or transmitted in pixel units according to image data and projected.
  • Light emitting means for emitting light in a direction wherein the light emitting means has a first electrode formed on the light emitting surface and a surface opposite to the light emitting surface, having a polarity opposite to that of the first electrode
  • a plurality of light emitting elements having a substantially rectangular parallelepiped shape and including the formed second electrode and having substantially the same outer shape are arranged in a matrix on the mounting substrate, and the light emitting surface of the first light emitting element is formed.
  • a portion of the orthogonal first side faces the second side of the second light emitting element adjacent to the first light emitting element, and is adjacent to a portion other than the portion of the first side.
  • the light emitting element is connected to the first electrode of the light emitting element via a wire.
  • a light emitting device and a projector capable of achieving a smaller size and higher brightness compared to the prior art by mounting a light emitting element having electrodes of different polarities formed on the light emitting surface at a high density.
  • Ability to offer S can.
  • a light emitting device capable of mounting a light emitting element in which electrodes having different polarities are formed on the light emitting surface and the back surface at a high density, and achieving high brightness with a smaller configuration than conventional. And the ability to provide a projector S can.
  • the LED light source modules 11R, 11G and 11B shown in FIG. 1 are an example of the light emitting device of the present invention, and the DMD 17 is an example of the reflecting means used in the present invention.
  • a light emitting diode L (X, Y) shown in FIG. 2 is an example of a light emitting element used in the present invention.
  • n-type electrode 43 (X, Y) is an example of the first electrode used in the present invention
  • the p-type electrode 45 (X, Y) is an example of the second electrode used in the present invention.
  • the series connection of the light emitting diodes L (X, 1) to L (X, 6) is an example of the connection series in the present invention.
  • the X direction shown in FIG. 2 is an example of the row direction in the present invention, and the Y direction is an example of the column direction in the present invention.
  • FIG. 1 is an overall configuration diagram of a projector 1 according to an embodiment of the present invention.
  • the projector 1 shown in FIG. 1 is, for example, a one-chip DLP (Digital Light Processing) (registered trademark) method, and projects an image according to image data onto a screen using a DMD (Digital Mirror Device) (registered trademark). Do.
  • DLP Digital Light Processing
  • DMD Digital Mirror Device
  • the projector 1 includes, for example, three LED light source modules 11R, 11G, and 11B, an optical system 13, a condenser lens 15, a DMD 17, and a projection lens 19.
  • Each of the LED light source modules 11R, 11G and 11B has a plurality of LEDs mounted at high density in a predetermined layout described later.
  • the LED light source modules 11 R, 11 G and 11 B respectively emit R, G and B lights toward the optical system 13.
  • on / off switching control is performed in a time-division manner at fixed intervals by a drive circuit (not shown) so that only one LED light source module is turned on and the other is turned off. It is done.
  • the color wheel is not required by performing the on / off switching control of the LED light source modules 11R, 11G, and 11B.
  • the on / off switching interval of the LED light source modules 11R, 11G, 11B is, for example, 1 to 4 msec. The configuration of the LED light source modules 11R, 11G and 1 IB will be described in detail later.
  • the optical system 13 emits R, G, B light incident from the LED light source modules 11 R, 11 G, 11 B to the collecting lens 15.
  • Condenser lens 15 condenses R, G, B light incident from optical system 13 and emits it to DMD 17
  • the DMD 17 has, for example, a structure in which hundreds of thousands to millions of small mirrors are spread on a Si chip using CMOS technology.
  • the minute mirror corresponds to one pixel, and the angle is switched according to the image data to control whether the light incident on each mirror is emitted toward the projection lens 19 or not.
  • the LED light source modules 11R, 11G, and 11B are on / off controlled in a time division manner, R, G, and B light from the condensing lens 15 sequentially enters in time division. Ru. Then, in the DMD 17, the reflection (angle of each mirror) of the R, G, B light in pixel units is controlled on a time basis based on the image data.
  • the projection lens 19 projects the R, G, B light reflected by the DMD 17 onto the screen 21 outside the projector 1.
  • the LED light source modules 11R, 11G, and 11B turn on / off the emission of R, G, and B light by time division at predetermined time intervals.
  • R, G and B lights emitted from the LED light source modules 11 R, 11 G and 11 B enter the optical system 13 in a time division manner.
  • the incident R, G, B light is emitted toward the condensing lens 15, is condensed by the condensing lens 15, and is incident on the DMD 17 at mutually different timing.
  • the DMD 17 is controlled by the control circuit (not shown) according to R, G, B data contained in the image data, and at the timing when R, G, B light is incident from the condensing lens 15, respectively.
  • the angles of the mirrors are controlled to control whether each of the mirrors reflects R, G, B light toward the projection lens 19 or reflects the light other than the projection lens 19.
  • the image projected onto the screen through the projection lens 19 is a combination of R, G, and B light in pixel units for humans. Was done Recognized as a color image.
  • LED light source module 11R will be described in detail.
  • the LED light source modules 11G and 11B have the same configuration as the LED light source module 11R except that light emitting diodes that emit G and B light are used, and thus the description thereof is omitted.
  • FIG. 2 is a view for explaining the LED chip layout of the LED light source module 11R shown in FIG. 1
  • FIG. 3 is a view of the LED light source module 11R seen from the direction of arrow A shown in FIG.
  • the LED light source module 11R arranges 36 light emitting diodes L (X, Y) of R light emission on the mounting substrate 31.
  • the X and Y directions are defined, and the order from the left end in FIG. 2 is assigned as “X” of the six light emitting diodes L having the same position in the Y direction.
  • the order from the upper end in FIG. 2 of the row to which the light emitting diode L belongs is assigned as "Y" of the diode L.
  • FIG. 4 is an external perspective view of a light emitting diode L (X, ⁇ ).
  • the light emitting diode L (X, Y) has a p side 41 (X, Y) having a substantially rectangular two-dimensional shape on the p-type semiconductor layer side which is the surface side.
  • the p side 41 (X, Y) is the light emitting surface.
  • the plurality of light emitting diodes L (X, Y) have the same outer shape.
  • n-type electrode 43 (X, Y) and a p-type electrode 45 (X, Y) are formed on the p side 41 along the Y direction.
  • the length of one side of the p side 41 is, for example, about 320 111.
  • the n-type electrode 43 (X, Y) is located near the center in the X direction in FIG. 4 in the p-side surface 41 (X, Y) and near one end in the Y direction.
  • the p-type electrode 45 (X, Y) is located near the center in the X direction in FIG. 4 in the p side 41 (X, Y) and near the other end in the Y direction.
  • the n-type electrode 43 (X, Y) and the p-type electrode 45 (X, Y) are formed! Become.
  • the LED light source module 11R for example, about 36 light emitting diodes L (X, Y) are arranged in an area of about 2 mm 2 .
  • Light-emitting diodes L (X, Y) are arranged. Light-emitting diodes L (X, 1), L (X, 3), L (X (X, 1) are located at odd-numbered positions among six different positions in the Y direction. , 5) in the X direction are the same.
  • the positions of the light emitting diodes L (X, 2), L (X, 4), L (X, 6) in the even-numbered positions in the X direction are the light emitting diodes L in the odd-numbered positions. It is in the middle position of the position of the X direction of two light emitting diodes L (X, Y) adjacent in the X direction of (X, 1), L (X, 3), L (X, 5)
  • the light emitting diode L (X, Y) is positioned with its n-type electrode 43 (X, Y) on the upper side (the positive side in the Y direction) in FIG.
  • the mold electrode 45 (X, Y) is disposed on the mounting substrate 31 so as to be positioned on the lower side (the negative side in the Y direction) in FIG.
  • a diagram of the light emitting diodes L (l, 6), L (2, 6), L (3, 6), L (4, 6), L (5, 6), L (6, 6) 2 6 Y electrode pads 39 (1) to 39 (6) are arranged on the negative side in the Y direction! /.
  • a predetermined positive potential is applied to the electrode pads 39 (;!) To 39 (6).
  • the wire connected to the p-type electrode 45 (X, Y) of the light emitting diode L (X, Y) is denoted as W (X, Y).
  • the LED light source module 11R six light emitting diodes L (X, 1) to L (X, 6) are connected in series in order. That is, the wire Wl (X, 1) between the n-type electrode 43 (X, Y) of the light emitting diode L (X, 1) and the p-type electrode 45 (X, 6) of the light emitting diode L (X, 6) , Wl (X, 2), Wl (X, 3), Wl (X, 4), W1 (X, 5), W1 (X, 6) are connected in series.
  • the p-type electrode 45 (X, 6) is connected to the electrode pad 39 (X).
  • 36 light emitting diodes L (X, Y) are arranged in a staggered pattern, and the connection between them is in the Y direction (identical It is not parallel to the direction connecting n-type electrode 43 (X, Y) and p-type electrode 45 (X, Y) of light emitting diode M (X, Y) doing.
  • n type electrodes 43 (X, Y) and p type electrodes of two light emitting diodes L (X, Y) connected in series It is possible to have the distance S necessary for wire bonding with a cable between them and 45 (X, Y).
  • the light emitting diodes L (X, Y) are connected without dropping the wires W1 (X, 1) to W1 (X, 6) onto the mounting substrate 31.
  • 36 light emitting diodes L (X, Y) can be mounted closely (closely) on the mounting substrate 31, and the amount of light emission per unit area can be increased.
  • the electrode pad 39 (X) is set to a predetermined potential.
  • the p-type electrode 45 (X, 6) of the light emitting diode L (X, 6) connected in series and the n-type electrode 43 (X, Y) of the light emitting diode L (X, 1) are connected. Between them, a potential difference corresponding to the predetermined potential is generated.
  • the p side 41 (X, 1) to (X, 6) of X, 6) emits light.
  • LED light source module 11R among the light emitting diodes L (X, Y), light emitting diodes L (X, Y) to which the same X is assigned are connected in series, but light emitting diodes L to which different X are assigned Parallel connection is made with (X, Y).
  • the electrode pad 39 (X) is formed on the mounting substrate 31.
  • an adhesive is applied on the mounting substrate 31 at the position where the light emitting diode L (X, Y) is to be disposed.
  • the light emitting diode L (X, Y) is placed on the mounting substrate 31 at the position where the adhesive is applied, and the light emitting diode L (X, Y) is fixed on the mounting substrate 31.
  • wire bonding is performed using a cavity, and as shown in FIG. 2, the n-type electrode 43 (X, Y) of the light emitting diode L (X, Y) and the p-type electrode 45 (X, Y) Form the wire Wl (X, Y) between Y).
  • the n-type electrode 43 (X, Y) and the p-type electrode 45 (X, Y) are positioned along the Y direction
  • the light emitting diodes L (X, Y) are arranged such that the positions of the adjacent light emitting diodes L (X, Y) at different positions in the Y direction are different. ) Is placed on mounting board 31.
  • the wire W1 (X, Y) [Y l to 5], the ⁇ -type electrode 43 ( ⁇ , ⁇ ) and the ⁇ ⁇ -type electrode 45 ( ⁇ , ⁇ ) in the light emitting diode ⁇ (X, ⁇ ) It can be arranged with an inclination to the connecting direction ( ⁇ direction).
  • one light emitting diode L (X, Y) connected in series is compared with the case where the positions in the X direction of adjacent light emitting diodes L (X, Y) at different positions in the X direction are made the same.
  • the distance between the p-type electrode 45 (X, Y) and the n-type electrode 43 (X, Y) of the other light emitting diode L (X, Y) can be secured.
  • the light emitting diodes L (X, Y) are connected without dropping the wires Wl (X, 1) to W1 (X, 6) onto the mounting substrate 31. There is. As a result, 36 light emitting diodes L (X, Y) can be mounted closely (closely) on the mounting substrate 31, and the amount of light emission per unit area can be increased.
  • the LED light source modules 11R, 11G, and 11B can be configured on a small scale with high brightness, and as a result, a small scale and high brightness projector 1 can be provided.
  • LED light source module l lRa In the LED light source module l lRa according to the modification of the first embodiment, as shown in FIG. 5, light emitting diodes L (X, Y) where X is an odd number, and light emitting diodes L (X, X) where X is an even number.
  • the layout was made with the side where the n-type electrode 43 (X, Y) and the p-type electrode 45 (X, Y) are located (the arrangement attitude of the light emitting diode M (X, Y)) opposite to Y).
  • the same effect as the LED light source module 11R of the first embodiment can be obtained by the LED light source module l lRa according to the present modification.
  • the electrode pad 39a (2), 39a (4), 39a (6) and the electrode pad 39b (1), 39b (3), 39b to which a predetermined potential is applied Since (5) is divided into two on the positive and negative sides of the light emitting diode M (X, Y) in the Y direction, the high potential region is concentrated on one side on the mounting board 31. It is possible to avoid
  • n-type electrode and a p-type electrode are positioned along a rectangular diagonal line which is a two-dimensional shape on the light emitting surface side will be described as the light emitting diode.
  • FIG. 6 shows the LED chip of the LED light source module 411R according to the first embodiment of the present invention.
  • the projector according to the present embodiment is the same as the projector 1 of the first embodiment except for the configuration of the LED light source module.
  • the R light-emitting LED light source module 411 R used in the projector of the present embodiment explained.
  • the G and B light emitting LED light source modules have the same configuration as the LED light source module 411 R except that they use G and B light emitting diodes, respectively, so the description will be omitted.
  • the LED light source module 411R As shown in FIG. 6, in the LED light source module 411R, six light emitting diodes M (X, Y) are provided along the X direction at each of six different positions in the Y direction on the mounting substrate 31. It is arranged.
  • Light emitting diodes M (X, Y) are arranged, and light emitting diodes M (X, 1), M (X, 3), M (X (X, 1) are located at odd-numbered positions among six different positions in the Y direction. , 5) in the X direction
  • the positions of the light emitting diodes M (X, 2), M (X, 4) and M (X, 6) at the even-numbered positions are the same.
  • the positions of the light emitting diodes M (X, 2), M (X, 4) and M (X, 6) in the even-numbered positions are the light emitting diodes M (odd numbers) X, 1), M (X, 3), M (X,
  • the light emitting diode M (X, Y) has its p-type electrode 3 45 (X, Y) positioned on the negative side in the Y direction (lower side in FIG. 6). It is disposed on the mounting substrate 31 so that (X, Y) is positioned on the Y direction plus side (upper side in FIG. 6).
  • the n-type electrode 343 (X, 1) of the light emitting diode M (X, 1) is connected to the ground.
  • the p-type electrode 345 (X, 1) of the light emitting diode M (X, 1) and the n-type electrode 343 (X, 2) of the light emitting diode M (X, 2) and the force, wire W4 (X , 1) is connected via.
  • the p-type electrode 345 (X, Y) of the light emitting diode M (X, 6) is connected to the electrode pad 423 (X).
  • the case where all the light emitting diodes M (X, Y) are arranged in the same posture has been illustrated.
  • the directions of the n-type electrode 343 (X, Y) and the p-type electrode 34 5 (X, Y) may be reversed between the light emitting diodes M (X, Y) where X, Y) and X are even numbers.
  • the electrode pads 423 (1), 423 (3), 423 (5) supply voltages to the light emitting diodes M (X, Y) where X is an odd number.
  • the electrode pads 423 (2), 423 (4), and 423 (6) supply voltages to the light emitting diodes M (X, Y) where X is an even number.
  • the n-type electrode 343 (X, Y) and the p-type electrode 345 (along the diagonal of the rectangle that is the two-dimensional shape on the p side 341 (X, Y) side).
  • FIG. 8 is a view for explaining the chip layout of the LED light source module 511R of the present embodiment.
  • the LED light source module 511R includes 36 light emitting diodes M (X, Y
  • all the light emitting diodes M (X, Y) are arranged in the same posture, and their n-type electrode 443 (X, Y) is positioned on the positive side in the Y direction (upper side in FIG. 8).
  • the p-type electrode 445 (X, Y) is located on the negative side in the Y direction (lower side in Fig. 8).
  • LED light source module 511R As shown in FIG. 8, light emitting diodes M (X, 1) to (X, 6) belonging to the same row are connected in series.
  • the n-type electrode 343 (X, Y) of the light emitting diode M (X, 1) is connected to the ground.
  • the p-type electrode 345 (X, Y) of the light emitting diode M (X, 6) is in contact with the electrode pad 539 (X). It is continued.
  • the case where all the light emitting diodes M (X, Y) are arranged in the same posture is exemplified.
  • the LED light source module 51 IRa shown in FIG. Of the n-type electrode 343 (X, Y) and the p-type electrode 345 (X, Y) of the light emitting diode M (X, Y) and the even number row of light emitting diodes M (X, Y) It may be arranged.
  • the p-type electrodes 345 (2, 6), 345 (4, 6), 345 of the light emitting diodes M (2, 6), M (4, 6), and M (6, 6) are used. It is connected to the (6, 6) cathode node, 539b (2), 539b (4), 539b (6).
  • the present invention is not limited to the embodiments described above.
  • the light emitting diode L (X, Y), M (X, Y) is exemplified to have a flat light emitting surface (p side surface), but the n-type electrode 43 (X, Y), There may be a step between the surface on which 343 (X, Y) is formed and the surface on which p-type electrodes 45 (X, Y) and 345 (X, Y) are formed.
  • the light emitting surface of the light emitting element is provided with an n-type electrode and a p-type electrode! /, And the positional relationship between them and the shape of the electrodes are not particularly limited to those described above.
  • the light emitting diode L (X, Y), M (X, Y) is exemplified to have a substantially square two-dimensional shape on the light emitting surface (surface) side. .
  • the positions in the X direction of the light emitting diodes at the even-numbered positions in the Y direction are intermediate positions of the adjacent positions in the X direction of the light emitting diodes at the odd-numbered positions in the Y direction.
  • the case was illustrated.
  • the p-type electrode 45 of the light emitting diode L (X, 1) is formed at one end of the adjacent connection row using the electrode pads 539 (;!) To (3). (X, 1) may be connected to the n-type electrode 43 (X + 1, 1) of the light emitting diode L (X + 1, 1). Thus, 12 stages of light emitting diodes L (X, Y) are connected in series.
  • FIG. 11 is a view for explaining the LED chip layout of the fourth embodiment of the LED light source module 11R shown in FIG. 1, and FIG. 12 is a view of the LED light source module 11R seen from the direction of arrow A shown in FIG. is there.
  • the LED light source module 11R arranges 36 light emitting diodes L (X, Y) of R light emission on the mounting substrate 31! /.
  • the X and Y directions are defined, and the light emitting diodes are assigned the order from the left end in FIG. 11 as “X” of six light emitting diodes having the same position in the Y direction.
  • the order from the upper end in FIG. 11 of the row to which the light emitting diode L belongs is assigned as “Y” of the row.
  • indexes ( ⁇ , ⁇ ) using “ ⁇ ” and “ ⁇ ” assigned to the light emitting diode L are assigned to the light emitting diode L.
  • the LED light source module 11R As shown in FIG. 11, in the LED light source module 11R, six light emitting diodes L (X, Y) are provided along the X direction at each of six different positions in the Y direction on the mounting substrate 31. ) Are arranged.
  • the LED light source module 11R for example, about 36 light emitting diodes L (X, Y) are arranged in an area of about 2 mm 2 .
  • Light-emitting diodes L (X, Y) are disposed at light-emitting diodes L (X, 1), L (X, 3), L (X (X, 1) at odd-numbered positions among six different positions in the Y direction. , 5) in the X direction are the same. Further, the positions in the X direction of the light emitting diodes L (X, 2), L (X, 4) and L (X, 6) at the even-numbered positions are the same.
  • the positions in the X direction of the plurality of light emitting diodes L (X, Y) positioned along the X direction at the positions are one-off. It is the same.
  • the positions of the light emitting diodes L (X, 2), L (X, 4) and L (X, 6) in the even-numbered positions are the light emitting diodes L in the odd-numbered positions. It is in the middle position of the position of the X direction of two light emitting diodes L (X, Y) adjacent in the X direction of (X, 1), L (X, 3), L (X, 5)
  • the light emitting diode L (X, Y) at one position is located at the middle position between the positions in the X direction of the other.
  • a light emitting diode L (X, Y) is arranged.
  • the light emitting diodes L (l, Y), L (3, Y), L (5, ⁇ ) of the odd-numbered rows have their ⁇ -type electrodes 43 ( ⁇ , ⁇ ) in FIG. It is disposed on the mounting substrate 31 so that the ⁇ -type electrode 45 ( ⁇ , ⁇ ) is positioned on the lower side ( ⁇ direction minus side) in FIG.
  • the light-emitting diodes L (2, Y), L (4, Y), and L (6, Y) in the even-numbered columns are referred to as the upper side ( ⁇ direction in FIG.
  • the ⁇ -type electrode 43 (X, ⁇ ) is disposed on the mounting substrate 31 so that the ⁇ -type electrode 43 (X, ⁇ ) is positioned on the lower side (the ⁇ direction minus side) in FIG.
  • three light emitting diodes L (X, Y) at odd-numbered positions in the Y direction are connected in series in three stages, and three light-emitting diodes at even positions in the Y direction. Three stages of series connection are made between the diodes L (X, Y).
  • a wire connected to the p-type electrode 45 (X, Y) of the light emitting diode L (X, Y) is represented as W2 (X, Y).
  • the LED light source module 11R three stages of series connection are performed by the light emitting diodes L (X, 1), L (X, 3), and L (X, 5) at odd-numbered positions in the Y direction. There is.
  • the p-type electrode 45 (X, Y) of the light emitting diode L (X, Y) at the odd-numbered position in the Y direction emits light at the even-numbered position adjacent to the odd-numbered position
  • the light emitting diodes L (X, Y) are disposed at the other odd numbered positions adjacent to the even numbered positions, passing between the light emitting diodes L (X, Y) adjacent to each other among the diodes L (X, Y).
  • the p-type electrode 45 (X, Y) of the light emitting diode L (X, Y) at the even numbered position in the Y direction is a light emitting diode at the odd numbered position adjacent to the even numbered position
  • the light emitting diodes L (X, Y) are disposed at other even-numbered positions adjacent to the odd-numbered positions, passing between the light emitting diodes L (X, Y) adjacent to each other among L (X, Y).
  • the electrode pad 213 (X) and the p-type electrode 45 (X, 5) of the light emitting diode L (X, 5) are connected via the wire W 2 (X, 5).
  • Light-emitting diode L (X, 5) n-type electrode 43 (X, 5) and light-emitting diode L (X, 3) p-type electrode 45 (X, 3) and force S, wire W2 (X, 3) Connected through.
  • Light-emitting diode L (X, 3) n-type electrode 43 (X, 3) and light-emitting diode L (X, 1) p-type electrode 45 (X, 1) and force S, wire W2 (X, 1) Connected through.
  • the n-type electrode 43 (X, 1) of the light emitting diode L (X, 1) is connected to the ground.
  • the electrode pad 223 (X) is connected to the p-type electrode 45 (X, 2) of the light emitting diode L (X, 2) through the force sensor W 2 (X, 2).
  • n-type electrode 43 (X, 2) of the light emitting diode L (X, 2) and the p-type electrode 45 (X, 4) of the light emitting diode L (X, 4) are connected to the wire W2 (X, 4) Connected through.
  • Light-emitting diode L (X, 4) n-type electrode 43 (X, 4) and light-emitting diode L (X, 6) p-type electrode 45 (X, 6) and force S, wire W2 (X, 6) Connected through.
  • the n-type electrode 43 (X, 6) of the light emitting diode L (X, 6) is connected to the ground.
  • connection between the 36 light emitting diodes L (X, Y) is between the positions skipping by one in the Y direction, that is, the Y direction is an odd-numbered position It is realized between the light emitting diodes L (X, Y) and between the light emitting diodes L (X, Y) at the even-numbered positions.
  • n type electrode 43 (X, Y) and p type electrode of two light emitting diodes L (X, Y) connected in series It is possible to have the distance S necessary for mounting (the distance required for wire bonding using a ca- bly) between 45 and (X, Y).
  • the LED light source module 11R by wiring W2 (X, Y) as described above, between the light emitting diodes L (X, Y) at the odd-numbered (even-numbered) positions in the Y direction to prevent the light from being blocked by the wires that can not overlap with the p-side side 41 (light emitting area) of the light emitting diode L (X, Y) in the even numbered (odd numbered) position in the Y direction.
  • the ability to obtain high light extraction efficiency S The ability to obtain high light extraction efficiency S.
  • the connection by the wires W2 (X, 1) to W2 (X, 6) is realized without dropping onto the substrate (mounting surface) 31. As a result, the space for dropping the wire on the mounting substrate 31 becomes unnecessary, and 36 light emitting diodes L (X, Y) can be mounted closely (closely) on the mounting substrate 31, and the light emitting area per unit area is obtained. Can be increased.
  • the electrode pads 213 (X) and 223 (X) are set to a predetermined potential.
  • electrode pads 213 (X) and 223 (X) are formed on the mounting substrate 31.
  • an adhesive is applied on the mounting substrate 31 at the position where the light emitting diode L (X, Y) is to be disposed.
  • the light emitting diode L (X, Y) is placed on the mounting substrate 31 at the position where the adhesive is applied, and the light emitting diode L (X, Y) is mounted on the mounting substrate 31. , Y) fix.
  • wire bonding is performed using a cavity, and as shown in FIG. 11, the electrode pad 213 (X), the n-type electrode 43 (X, Y) of the light emitting diode L (X, Y), and the p-type electrode 45 Wire W2 (X, Y) is formed between X, Y), and electrode pad 223 (X).
  • the voltage applied to the electrode pads 213 (X) and 223 (X) can be smaller than that of the one embodiment. That is, the drive voltage can be reduced.
  • the LED light source module 11R has a configuration in which twelve circuits connected in series in three stages are connected in parallel. Therefore, even if a defect occurs in the light emitting diode L (X, Y) or its wire W (X, Y), the operation of the light emitting diode L (X, Y) not connected in series with the defect affects Don't receive it!
  • the LED light source module 11R by wiring the wire W2 as described above, even when the light emitting diodes L (X, Y) are mounted at a high density, the necessary distance for mounting is determined between the light emitting diodes. I can do it. Further, in the LED light source module 11R, the area of the portion where the wire W2 overlaps the light emitting area of the light emitting diode L (X, Y) can be reduced, and high light extraction efficiency can be obtained.
  • the electrode pad 213 to which a predetermined potential is applied is applied
  • the light emitting diode L (X, Y)
  • FIG. 13 shows an LED light source module llRa according to a modification of the fourth embodiment.
  • the light emitting diode L (X, Y) having an odd number of Y and the light emitting diode L (X, Y) having an even number of Y have an n-type electrode 43
  • the (X, Y) and p-type electrodes 45 (X, Y) were placed in reverse positions.
  • the n-type electrodes 43 (X, Y) of all the light emitting diodes L (X, Y) Place the p-type electrode 45 (X, Y) on the negative side in the Y direction.
  • the n-type electrode 43 (X, 1) of the light emitting diode L (X, 1) is held at the ground level.
  • the p-type electrode 45 (X, 1) of the light emitting diode L (X, 1) is connected to the n-type electrode 43 (X, 3) of the light emitting diode L (X, 3).
  • the p-type electrode 45 (X, 3) of the light emitting diode L (X, 3) is connected to the n-type electrode 43 (X, 5) of the light emitting diode L (X, 5).
  • the p-type electrode 45 (X, 5) of the light-emitting diode L (X, 5) has electrode pads 213a (l), 213a (3), 213a (5), 213a (7), 213a (9), 213a (11 ) I am connected and I will write.
  • the 0170-type electrode 43 (X, 2) of the light emitting diode L (X, 2) is held at the ground level! /.
  • the p-type electrode 45 (X, 2) of the light emitting diode L (X, 2) is connected to the n-type electrode 43 (X, 4) of the light emitting diode L (X, 4).
  • the p-type electrode 45 (X, 4) of the light emitting diode L (X, 4) is connected to the n-type electrode 43 (X, 6) of the light emitting diode L (X, 6).
  • the p-type electrode 45 (X, 6) of the light-emitting diode L (X, 6) has electrode pads 213a (2), 213a (4), 213a (6), 213a (8), 213a (10), 213a (12) ) I am connected and I will write.
  • n-type electrode and a p-type electrode are positioned along a diagonal of a rectangular shape having a two-dimensional shape on the light emitting surface side will be described as the light emitting diode.
  • FIG. 14 shows the LED chip of the LED light source module 311R according to the fifth embodiment of the present invention
  • the projector according to the present embodiment is the same as the projector 1 of the first embodiment except for the configuration of the LED light source module.
  • the LED light source module 311R of R light emission used in the projector of the present embodiment will be described.
  • the G and B light emitting LED light source modules have the same configuration as the LED light source module 311 R except that they use G and B light emitting diodes respectively, so the description will be omitted.
  • the LED light source module 311R six light emitting diodes M (X, Y) are arranged along the X direction at each of six different positions in the Y direction on the mounting substrate. It is done.
  • Light emitting diodes M (X, 1), M (X, 3), M (X (X, Y)) are located at odd-numbered positions among six different positions in the Y direction. , 5) in the X direction
  • the positions of the light emitting diodes M (X, 2), M (X, 4) and M (X, 6) in the even-numbered positions are the light emitting diodes M (odd numbers)
  • the middle position of the position in the X direction of two light emitting diodes M (X, Y) adjacent to each other in the X direction of X, 1), M (X, 3), and M (X, 5) My name is ⁇ .
  • the light emitting diode M (X, Y) with an odd number of Y has its p-type electrode 345 (X, Y) positioned on the plus side in the Y direction (upper side in FIG. 14)
  • the mold electrode 343 (X, Y) is disposed on the mounting substrate 31 such that the mold electrode 343 (X, Y) is positioned on the negative side in the Y direction (lower side in FIG. 14).
  • a light emitting diode M (X, Y) having an even number of Y has its n-type electrode 343 (X, Y) positioned on the plus side in the Y direction (upper side in FIG. 14). ) Is disposed on the mounting substrate 31 so as to be positioned on the negative side in the Y direction (the lower side in FIG. 14).
  • the p-type electrode 345 (X, 1) of the light emitting diode M (X, 1) is connected to the electrode pad 323 (X).
  • the n-type electrode 343 (X, 2) of the light emitting diode M (X, 2) is held at the ground level.
  • the p-type electrodes 345 (X, 6) of the light emitting diode M (X, 6) are connected to the electrode pads 313 (X), respectively.
  • the n-type electrode 343 (X, 5) of the light emitting diode M (X, 5) is held at the ground level.
  • the wire connected to the p-type electrode 345 (X, Y) of the light emitting diode M (X, Y) is represented as W3 (X, Y).
  • the LED light source module 311R three stages of light emitting diodes M (X, 1), M (X, 3), and M (X, 5) at odd-numbered positions in the Y direction are used. A series connection is made. In addition, the light emitting diodes M (X, 2), M (X, 4), M (X, X) are located at even-numbered positions in the Y direction.
  • Light-emitting diode M (X, 3) n-type electrode 43 (X, 3) and light-emitting diode M (X, 5) p-type electrode 45 (X, 5) and force S, wire W3 (X, 5) Connected through.
  • the n-type electrode 43 (X, 5) of the light emitting diode M (X, 5) is connected to the ground.
  • the n-type electrode 343 (X, 2) of the light emitting diode M (X, 2) is connected to the ground.
  • the p-type electrode 345 (X, 6) of the light emitting diode M (X, 6) is connected to the electrode pad 313 (X).
  • the n-type electrode 343 (X, Y) and the p-type electrode 345 are arranged along the diagonal of the two-dimensional rectangular shape. Even in the case of using the light emitting diode M (X, Y) in which (X, Y) is located, high density mounting can be realized as in the fourth embodiment.
  • FIG. 15 shows an LED light source module 31 IRa according to a modification of the fifth embodiment.
  • the light emitting diode M (X, X) has an odd number of Y.
  • Y and Y are even light emitting diodes M (X, Y), n-type electrode 343 (X, Y) and p-type electrode
  • the n-type electrodes 343 (X, Y) of all the light emitting diodes M (X, Y) are arranged in the Y direction. Place the p-type electrode 345 (X, Y) on the negative side in the Y direction.
  • n-type electrode 343 (X, 1) of the light emitting diode M (X, 1) is held at the ground level.
  • the p-type electrode 345 (X, 1) of the light emitting diode M (X, 1) is connected to the n-type electrode 343 (X, 3) of the light emitting diode M (X, 3).
  • the p-type electrode 345 (X, 3) of the light emitting diode M (X, 3) is connected to the n-type electrode 343 (X, 5) of the light emitting diode M (X, 5).
  • the p-type electrode 345 (X, 5) of the light emitting diode M (X, 5) is an electrode pad 313a (l), 313a (3), 313a (5), 313a (7), 313a (9), 313a (ll) ) I am connected and I will write.
  • the ⁇ -type electrode 343 (X, 2) of the light emitting diode ⁇ (X, 2) is held at the ground level.
  • the ⁇ -type electrode 345 ( ⁇ , 2) of the light-emitting diode ⁇ ( ⁇ , 2) is connected to the ⁇ -type electrode 343 (X, 4) of the light-emitting diode ⁇ ( ⁇ , 4).
  • the ⁇ -type electrode 345 ( ⁇ , 4) of the light-emitting diode ⁇ ( ⁇ , 4) is connected to the ⁇ -type electrode 343 (X, 6) of the light-emitting diode ⁇ ( ⁇ , 6).
  • the ⁇ -type electrode 345 ( ⁇ , 6) of the light emitting diode ⁇ ( ⁇ , 6) is an electrode pad 313a (2), 313a (4), 313a (6), 313a (8), 313a (10), 313a (12) ) I am connected and I will write.
  • the LED light source module 31 IRa according to the present variation also achieves the same effect as the LED light source module 311R of the second embodiment.
  • FIG. 16 is an overall configuration diagram of a projector 501 according to the sixth embodiment of the present invention.
  • the projector 501 shown in FIG. 16 is, for example, a one-chip DLP (registered trademark) method as in the first and second embodiments, and an image according to image data is displayed on the screen 21 using the DMD 17.
  • the projector 501 includes, for example, one LED light source module 511, a rod integrator 502, a DMD 17, and a projection lens 19.
  • the LED light source module 511 mounts a plurality of R, G and B LEDs at a high density in a predetermined layout described later.
  • the rod integrator 502 makes the illuminance distribution of the light from the LED light source module 511 uniform and emits the light to the DMD 17.
  • the LED chip layout of the LED light source module 511 will be described below.
  • FIG. 17 is a view for explaining an LED chip layout of the LED light source module 511 shown in FIG.
  • light emitting diodes R (X, Y) for R light emission are arranged at odd-numbered positions in the X direction and odd-numbered positions in the Y direction on the mounting substrate.
  • a light emitting diode B (X, Y) for R light emission is disposed at even-numbered positions in the X direction and odd-numbered positions in the Y direction on the mounting substrate.
  • light emitting diodes G (X, Y) for G light emission are disposed at even-numbered positions in the Y direction on the mounting substrate.
  • the ⁇ -type electrode 43 ( ⁇ , ⁇ ) is positioned on the positive side in the ⁇ direction, and the ⁇ -type electrode 45 ( ⁇ , ⁇ ) is on the negative side Position on
  • the p-type electrode 45 (X, Y) is positioned on the positive side in the Y direction, and the n-type electrode 43 (X, Y) is positioned on the negative side in the Y direction.
  • the light emitting diodes R (X, Y), G (X, ⁇ ) and ⁇ ( ⁇ , ⁇ ) have slightly different outer shapes and dimensions due to differences in their internal configuration and the like. In the present invention, the difference is within the range of "substantially the same”.
  • the n-type electrode 43 (X, 1) of the light emitting diode R (X, 1) of R light emission is connected to the ground.
  • the p-type electrode 45 (X, 1) of the light-emitting diode R (X, 1) is connected to the n-type electrode 43 (X, 3) of the light-emitting diode R (X, 3) via a wire! Ru.
  • the p-type electrode 45 (X, 3) of the light emitting diode R (X, 3) is connected to the n-type electrode 43 (X, 5) of the light emitting diode R (X, 5) through a wire! Ru.
  • the p-type electrode 45 (X, 5) of the light emitting diode R (X, 5) is an electrode package to which a predetermined potential is applied. It is connected to the wires 513 (1), 513 (3), 513 (5) via a wire.
  • the n-type electrode 43 (X, 1) of the light emitting diode B (X, 1) for B light emission is connected to the ground.
  • the p-type electrode 45 (X, 1) of the light-emitting diode B (X, 1) is connected to the n-type electrode 43 (X, 3) of the light-emitting diode B (X, 3) via a wire! Ru.
  • the p-type electrode 45 (X, 3) of the light-emitting diode B (X, 3) is connected to the n-type electrode 43 (X, 5) of the light-emitting diode B (X, 5) via a wire! Ru.
  • the p-type electrode 45 (X, 5) of the light emitting diode B (X, 5) is connected to the electrode pad 513 (2), 513 (4), 513 (6) to which a predetermined potential is applied through a wire. ing.
  • the LED light source module 511 is a G light emitting diode G
  • a p-type electrode 45 (X, 2) of (X, 2) is connected to electrode pads 523 (;!) To 523 (6) to which a predetermined potential is applied via a wire.
  • the n-type electrode 43 (X, 2) of the light emitting diode G (X, 2) is connected to the p-type electrode 45 (X, 4) of the light emitting diode G (X, 4) through a wire! Ru.
  • the n-type electrode 43 (X, 4) of the light emitting diode G (X, 4) is connected to the p-type electrode 45 (X, 6) of the light emitting diode G (X, 6) through a wire.
  • the n-type electrode 43 (X, 6) of the light emitting diode G (X, 6) is connected to the ground.
  • the LED light source module 511 by arranging the light emitting diodes R (X, Y), G (X, ⁇ ), ⁇ ( ⁇ , ⁇ ), R, G
  • the light emission positions of each of ⁇ and ⁇ can be arranged substantially equally.
  • the light emission output is small G light emission light emitting diode G (X,
  • LED light source module 511 light emitting diodes R (X, Y), G (X, Y), which emit the same light.
  • the light emitting diode R (X, Y)
  • G (X, ⁇ ) and ⁇ ( ⁇ , ⁇ ), as in the first and second embodiments series connection is performed.
  • a necessary distance for mounting can be provided between the n-type electrode 43 (X, Y) and the p-type electrode 45 (X, Y) of the two light emitting diodes.
  • the wiring force between the light emitting diodes at odd-numbered positions in the Y direction emits light at even-numbered positions in the Y direction. It is possible to prevent the light from being blocked by the wiring that does not overlap the light emitting area of the diode, and to obtain high light extraction efficiency.
  • the connection by the wire is realized without dropping onto the substrate (mounting surface).
  • the space for dropping the wire on the mounting substrate is not required, 36 light emitting diodes can be mounted closely (closely) on the mounting substrate, and the light emitting area per unit area can be increased.
  • the electrode pads 539 (;!) To 539 (6) are used, and at one end of the connection row, as shown in FIG.
  • the n-type electrode 43 (X, 1) of the light emitting diode L (X, 1) may be connected to the p-type electrode 45 (X, 2) of the light emitting diode L (X, 2).
  • six stages of light emitting diodes L (X, Y) are connected in series.
  • FIG. 19 is an external perspective view of an LED light source module 601 according to a seventh embodiment of the present invention
  • FIG. 20 is a side view of the LED light source module 601 shown in FIG. 19
  • FIG. 21 is an LED light source module shown in FIG.
  • FIG. 6 is a view of a plane 601.
  • the luminance can be obtained. Improve. At this time, at least five light-emitting diodes L (X, Y) will be connected in series. The power of five series is one set of light-emitting diodes, which are arranged in parallel. In addition, by passing a wire between the light emitting diode groups, the number of series connected can be reduced, the required voltage can be reduced, and a plurality of light emitting diodes L (X, Y) can be mounted at a high density.
  • the height of the wires is lower than the top of the light emitting diodes L (X, Y)! /, It is possible to position S. Therefore, it becomes possible to arrange the next optical system such as a lens closer.
  • ten light emitting diode groups are predetermined in the row and column directions. Are arranged on the mounting substrate in the pattern of
  • Each light emitting diode group is configured by connecting five light emitting diodes L (l, Y) to L (5, Y) in series.
  • the light emitting diodes L (X, Y) are arranged and connected in five series and ten parallel! /.
  • the light emitting diode groups in the even-numbered rows are arranged offset with respect to the light emitting diode groups in the odd rows in the column direction by at least the length of the one light emitting diode group in the column direction.
  • Each light emitting diode group includes light emitting diodes L (1, Y), (3, Y), and (5, Y) in odd columns and light emitting diodes L (2, Y), (4, Y) in even columns. And the n-type electrode and the p-type electrode of the light-emitting diode L (X, Y) of the odd-numbered row and the p-type electrode of the light-emitting diode L (X, Y) of the even-numbered row An n-type electrode is connected.
  • connection relation of the light emitting diodes L (l, Y) to L (5, Y) in the odd-numbered rows is as follows.
  • a wire W (0, Y) is connected to the n-type electrode 43 (1, Y) of the light emitting diode L (l, Y). Wire W (0, Y) is grounded.
  • the p-type electrode 45 (1, Y) of the light emitting diode L (1, Y) is connected in a state of facing the n-type electrode 43 (2, Y) of the light emitting diode L (2, Y).
  • the p-type electrode 45 (2, Y) of the light emitting diode L (2, Y) is connected to face the n-type electrode 43 (3, Y) of the light emitting diode L (3, Y).
  • the p-type electrode 45 (3, Y) of the light emitting diode L (3, Y) is connected to face the n-type electrode 43 (4, Y) of the light emitting diode L (4, Y).
  • the p-type electrode 45 (4, Y) of the light emitting diode L (4, Y) is connected to face the n-type electrode 43 (5, Y) of the light emitting diode L (5, Y).
  • a wire W (5, Y) is connected to the p-type electrode 45 (5, Y) of the light emitting diode L (5, Y).
  • the wires W (5, Y) extend in the column direction between the even-numbered light emitting diode groups and are connected to the plus electrode.
  • connection relationship of the light-emitting diodes L (l, Y) to L (5, Y) of Y in even-numbered rows is as follows: p-type electrodes 45 (1, Y of light-emitting diodes L (l, Y) Wire W (0, Y) is connected to. Wires W (0, Y) extend in the column direction between the odd-numbered light emitting diode groups and are connected to the plus electrode. The n-type electrode 43 (1, Y) of the light emitting diode L (l, Y) is connected to face the p-type electrode 45 (2, Y) of the light emitting diode L (2, Y).
  • the n-type electrode 43 (2, Y) of the diode L (2, Y) is connected to face the p-type electrode 45 (3, Y) of the light emitting diode L (3, Y).
  • the n-type electrode 43 (3, Y) of the light emitting diode L (3, Y) is connected to face the p-type electrode 45 (4, Y) of the light emitting diode L (4, Y).
  • the n-type electrode 43 (4, Y) of the light emitting diode L (4, Y) is connected to face the p-type electrode 45 (5, Y) of the light emitting diode L (5, Y).
  • Wires W (5, Y) are connected to n-type electrodes 43 (5, Y) of the light emitting diode L (5, Y).
  • the emitters W (5, Y) of the odd-numbered light emitting diode groups are arranged to extend in the column direction between the even-numbered light emitting diode groups.
  • the wires W (5, Y) of the even-numbered light emitting diode groups are arranged to extend in the column direction between the odd-numbered light emitting diode groups.
  • the height of the wire is lower than the top of the light emitting diode L (X, Y).
  • the secondary optical system such as a lens closer to the light emitting surface of the light emitting diode L (X, Y) than in the related art. Also, the package can be reduced in height.
  • FIG. 22 is a view for explaining the configuration of the flat side of the LED light source module 701 according to the embodiment of the present invention.
  • the LED light source module 701 has 18 light emitting diode groups each configured by connecting three light emitting diodes L (X, Y) in series.
  • the light emitting diode groups in the odd rows are arranged to be shifted in the column direction by at least the length in the column direction of one light emitting diode group.
  • the light emitting diode groups of the even numbered lines are arranged at the right side in FIG. 22 in the same arrangement as the light emitting diode groups of the six odd lines. There is.
  • Each light emitting diode group includes three light emitting diodes L (l, Y) to L (3, Y) or The light emitting diodes L (4, Y) to L (6, Y) are connected in series.
  • Each light-emitting diode group L (l, Y) to L (3, Y) is a light-emitting diode L (l, Y), (3, Y) in odd-numbered rows and a light-emitting diode L (2, y) in even-numbered rows.
  • each light emitting diode group L (4, Y) to L (6, Y) is a light emitting diode L (3,
  • the n-type electrode 43 (1, Y) of the light-emitting diode L (1, Y) is grounded via the wire W (0, Y).
  • the p-type electrode 45 (3, Y) of the light emitting diode L (3, Y) is an n-type electrode 43 (4, Y) of the light emitting diode L (4, Y) through the wire W (3, Y). Connected with).
  • the p-type electrode 45 (6, Y) of the light emitting diode L (6, Y) is connected to the positive electrode via the wire W (6, Y).
  • the light emitting diodes L (l, Y) to (6, ⁇ ) form a six-stage series connection.
  • the wires W (0, Y) of the light emitting diode group in the even rows are adjacent light emitting diodes in the odd rows formed of the light emitting diodes L (l, Y) to (3, ⁇ ) in the odd rows. It is arranged between groups.
  • wires W (3, ⁇ ) of the light emitting diode groups in the even rows are adjacent light emitting diode groups in the odd rows formed of the light emitting diodes L (4, Y) to (6, ⁇ ) in the odd rows. Placed between There is.
  • the LED light source module 701 shown in FIG. 22 the same effect as that of the LED light source module of the fourth embodiment can be obtained.
  • a force exemplarily shows the case where the number of light emitting diodes (X, Y) connected in series is three or six.
  • the number of light emitting diodes in series may be three or six!
  • the light emitting diode groups in the even rows and the light emitting diode groups in the odd rows are wired so that the total number of light emitting diodes L (X, Y) becomes six. You may connect via.
  • square light emitting diodes L (X, Y) are connected by rectangular light emitting diodes C (X, Y). At this time, the rectangular light emitting diodes C (X, Y) are arranged to cross the square light emitting diodes L (X, Y).
  • the number of series can be reduced, the required voltage can be reduced, and a plurality of light emitting diodes L (X, Y) and C (X, Y) can be mounted at high density.
  • the light emitting diodes are stacked, it is possible to improve the brightness S.
  • no wire is used except at the end of the line, the number of wires covering the light emitting area is reduced, which also improves the brightness.
  • the light emitting diode ⁇ (X, ⁇ ) described in the second embodiment is used.
  • the light emitting diode ⁇ ( ⁇ , ⁇ ) has ⁇ -type electrode 343 (X, ⁇ ) and ⁇ -type electrode 345 along a diagonal of a rectangle which is a two-dimensional shape on the ⁇ side 341 (X, ⁇ ) side. ( ⁇ , ⁇ ) is located.
  • the light emitting diode groups in the even rows are arranged offset from the light emitting diode groups in the odd rows in the column direction by the length of the light emitting diode group in the column direction.
  • the p-type electrode 345 (5, Y) of the light emitting diode M (5, Y) located at the end of the light emitting diode group in the odd-numbered row extends along the X direction (column direction) Wires W (5, Y) are disposed between the light emitting diode groups in a row. Wire W (5, Y) is positive connected to the electrode.
  • n-type electrodes 343 (0, Y) of the light-emitting diodes M (1, Y) located at the ends of the light-emitting diode groups in the odd rows are grounded.
  • Wire W (0, Y) is grounded.
  • the p-type electrode 345 (5, Y) of the light emitting diode M (5, Y) located at the end of the light emitting diode group in the even row is connected to the plus electrode.
  • the LED light source modules 11R, 11G, 11B shown in FIG. 1 are arranged as shown in FIG.
  • the light emitting diode L (X, Y) shown in FIG. 27 is an example of the light emitting element used in the present invention
  • the X direction is an example of the column direction in the present invention
  • the Y direction is an example of the row direction in the present invention. is there.
  • p-type electrode 43 (X, Y) shown in FIG. 31 is an example of a second electrode used in the present invention
  • n-type electrode 45 (X, Y) is used in the present invention. It is an example of 1 electrode.
  • the electrode pad 61 for p shown in FIG. 28 is an example of the electrode pad used in the present invention
  • the first rectangular area 61a is the second area in the present invention.
  • the second rectangular area 61b is an example of the first area in the present invention.
  • the LED light source modules 11R, 11G, and 11B are configured by arranging the light emitting diodes L (X, Y) in a matrix.
  • the light emitting diode L (X, Y) is, for example, one of the rectangular n-side surfaces 41 (X, Y) as described later.
  • the side is disposed on the mounting substrate 31 in a posture inclined approximately 25 ° counterclockwise with respect to the X direction. By doing this, a bonding area in which each side is formed between the adjacent four light emitting diodes L (X, Y) and shorter than one side of the light emitting diodes L (X, Y) (nearly a square Region) occurs.
  • the bonding area can be reduced to the limit where wires can be connected, and the light emitting diodes L (X, Y) can be mounted at higher density.
  • the light emission amount per unit area can be increased.
  • LED light source module 11R of the present embodiment will be described in detail.
  • the LED light source modules 11G and 11B have the same configuration as the LED light source module 11R except that light emitting diodes that emit G and B light are used, and thus the description thereof is omitted.
  • FIG. 27 is a diagram for explaining the LED chip layout of the LED light source module 11R shown in FIG. 1, and FIG. 28 is a pattern of electrode pads connected to the p-type electrode of the light emitting diode L (X, Y).
  • FIG. 29 is a view of the LED light source module 11R as viewed from the direction of arrow A shown in FIG. 27, and
  • FIG. 30 is an external perspective view of the LED light source module 11R.
  • the X direction and the Y direction are defined. Further, the order from the left end in FIG. 27 is assigned as “X” of the five light emitting diodes L at the same position in the Y direction, and “Y” of the light emitting diode L is assigned the upper end in FIG. Assign the order from.
  • indices ( ⁇ , ⁇ ) using “ ⁇ ”, “ ⁇ ⁇ ⁇ ⁇ ⁇ ” assigned to the light emitting diode L are assigned.
  • the LED light source module 11R arranges 25 light emitting diodes L (X, Y) of R light emission on the mounting substrate 31.
  • FIG. 31 is an external perspective view of a light emitting diode L (X, Y).
  • the light emitting diode L (X, Y) is a single wire type diode.
  • an n-side surface 41 (X, Y) having a substantially rectangular two-dimensional shape is provided on the n-type semiconductor layer side which is the surface side of the light emitting diode L (X, Y).
  • n Side 41 (X, Y) is the light emitting surface.
  • the plurality of light emitting diodes L (X, Y) have the same outer shape.
  • An n-type electrode 45 (X, Y) is formed substantially at the center of the n-side surface 41 (X, Y).
  • the length of one side of the n-side surface 41 is, for example, about 320 m.
  • the thickness of the light emitting diode L (X, Y) is about 180 m.
  • the n-type electrode 45 (X, Y) is formed, and the region becomes an emission region.
  • a p-type electrode 43 (X, Y) is formed on the entire surface of the back surface opposite to the n-side surface 41 (X, Y).
  • Light-emitting diode L (X, Y) is, for example, arranged on mounting substrate 31 with one side of rectangular n-side surface 41 (X, Y) inclined approximately 25 ° counterclockwise with respect to the X direction. It is arranged.
  • the LED light source module 11R for example, about 25 light emitting diodes L (X, Y) are arranged in an area of about 2 mm 2 .
  • the positions of the light emitting diodes L (X, 1) to (X, 5) in the X direction are the same.
  • the positions of the light emitting diodes L (l, Y) to (5, ⁇ ) in the ⁇ direction are the same.
  • the p electrode node 61 (X, Y) and the n electrode pad 63 (Y) are formed corresponding to the position where the light emitting diode L (X, Y) is mounted. It is done.
  • the p-type electrode 43 (X, Y) of the light emitting diode L (X, Y) is bonded to the electrode pad 61 for p 61 (X, Y) by bonding.
  • the electrode pad for p 61 (2, Y), 61 (3, Y), 61 (4, Y), 61 (5, Y) is the first rectangular area 61 a ( 2, Y), 61a (3, Y), 61a (4, ⁇ ), 61a (5, ⁇ ) and the second rectangular area 61b (2, Y), 61b (3, Y), 61b (4, ⁇ ) , 61b (5, ⁇ ).
  • a light emitting diode L (2, Y), L 3-type electrodes 43 (2, ⁇ ), 43 (3, ⁇ ), 43 (4, ⁇ ), 43 (5, ⁇ ) on the back of (3, Y), L (4, Y), L (5, ⁇ ) ⁇ ) is bonded.
  • the first rectangular area 61a (2, Y), 61a (3, Y), 61a (4, Y), 61a (5, ⁇ ) is a light emitting diode L (2, Y), L (3, ⁇ ) Light-emitting diodes L (2, Y), L (3, Y), L (4, ⁇ ), L (5, ⁇ ), which are smaller than the back surface of L (4,)), L (5, ⁇ ) In the placed state, it can not be seen from the front side.
  • the light emitting diode L (X) can be obtained.
  • Y) can be mounted at high density, the desired distance can be provided between adjacent p-type electrode pads 61 (X, Y), and electrical interference can be reduced.
  • Second rectangular area 61b (2, Y), 61b (61, 2, Y), 61 (3, Y), 61 (4, Y), 61 (5, Y) for p 3, Y), 61b (4, Y), 61b (5, ⁇ ) are occupied by the light emitting diode L (X, Y) even when the light emitting diode L (X, Y) is bonded on the mounting substrate 31 Not possible (exposed on the front side).
  • the light emitting diode L (X, Y) is formed by setting one side of the rectangle of the n-side surface 41 (X, Y) approximately counterclockwise in the X direction. It was placed on the mounting substrate 31 in an inclined attitude. As a result, a region (a region close to a square) in which each side is formed with sides shorter than one side of the light emitting diode L (X, Y) is generated between the four adjacent light emitting diodes L (X, Y).
  • the second rectangular area 61b of the p electrode pad 61 (2, Y), 61 (3, Y), 61 (4, Y), 61 (5, Y) described above is 2, Y), 61b (3, Y), 61b (4,)), 61b (5, ⁇ ) are arranged.
  • the area can be made smaller, and the light emission amount per unit area can be increased.
  • an n-use electrode pad 63 (Y) is disposed on the right side of the light-emitting diode L (5, Y) in the drawing.
  • the n-type electrode pad 63 (Y) is connected to the n-type electrode 45 (5, Y) of the light emitting diode L (5, Y) via the wire W (5, Y).
  • a predetermined voltage is applied to the n electrode pad 63 (Y) when the LED light source module 11R is driven. Be added.
  • the electrode pad 61 for p in the LED light source module 11R (X, Y)
  • the wire connected to the n-type electrode 45 (X, Y) of the light emitting diode L (X, Y) is denoted as W (X, Y).
  • the ⁇ electrode pad 61 (1, ⁇ ) is connected to the ground.
  • the eyelid electrode pad 61 (1, ⁇ ) is directly connected to the p-type electrode 43 (1, Y) of the light emitting diode L (1, Y).
  • the n-type electrode 45 (1, Y) of the light emitting diode L (l, Y) is a wire W (l, Y) in the second rectangular area 61b (2, Y) of the electrode pad for p 61 (2, Y). Connected through.
  • the first rectangular area 61a (2, Y) of the P electrode pad 61 (2, Y) is directly connected to the mold electrode 43 (2, Y) of the light emitting diode L (2, Y).
  • the n-type electrode 45 (2, Y) of the light emitting diode L (2, Y) is connected to the second rectangular area 61b (3, Y) of the electrode pad for p 61 (3, Y) by the wire W (2 , Y) are connected.
  • the first rectangular area 61a (3, Y) of the P electrode pad 61 (3, Y) is directly connected to the mold electrode 43 (3, Y) of the light emitting diode L (3, Y).
  • the n-type electrode 45 (3, Y) of the light emitting diode L (3, Y) is a wire W (3, Y) in the second rectangular area 61b (4, Y) of the electrode pad for p 61 (4, Y). Connected through.
  • the first rectangular area 61a (4, Y) of the P electrode pad 61 (4, Y) is directly connected to the mold electrode 43 (4, Y) of the light emitting diode L (4, Y).
  • the n-type electrode 45 (4, Y) of the light emitting diode L (4, Y) is a wire W (4) in the second rectangular area 61b (5, Y) of the electrode pad for p 61 (5, Y). , Y) are connected.
  • the first rectangular area 61a (5, Y) of the P electrode pad 61 (5, Y) is directly connected to the mold electrode 43 (5, Y) of the light emitting diode L (5, Y).
  • n-type electrode 45 (5, Y) of the light emitting diode L (5, Y) is connected to the electrode pad for n 63 (Y) through the wire W (5, Y)! Ru.
  • the 25 light emitting diodes L (X, Y) are rotated approximately 25 ° counterclockwise with respect to the X direction. It was arranged on the mounting substrate 31.
  • the LED light source module 11R can be made small without making the manufacturing process difficult.
  • the n electrode pad 63 (Y) is set to a predetermined potential.
  • the n-type electrode 45 (5, Y) of the light emitting diode L (5, Y) connected in series and the p-type electrode 43 (X, 1) of the light emitting diode L (X, 1) are connected.
  • a potential difference corresponding to the predetermined potential is generated.
  • the n-side surface 41 (1, Y) to (5, ⁇ ) of 5, Y emits light.
  • LED light source module 11R among the light emitting diodes L (X, Y), light emitting diodes L (X, Y) to which the same Y is assigned are connected in series, but light emitting diodes L to which different Y are assigned Parallel connection is made with (X, Y).
  • the electrode pad 61 for p (X, Y) and the electrode pad 63 for n (Y) are formed on the mounting substrate 31 in the pattern shown in FIG.
  • An adhesive is applied on the rectangular area 61a (X, Y), and the light emitting diodes L (X, Y) are placed and fixed thereon.
  • the n-type electrode 45 (2, Y) of the light emitting diode L (2, Y) and the electrode pad 61 (p, 3) are formed by wire bonding using a cavity.
  • a wire W (2, Y) is formed between Y) and the second rectangular area 61 b (3, Y).
  • the n-type electrode 45 (3, Y) of the light emitting diode L (3, Y) and the electrode pad 61 for p 61 (4, A wire W (3, Y) is formed between the second rectangular area 61 b (4, Y) of Y).
  • the n-type electrode 45 (4, Y) of the light emitting diode L (4, Y) and the electrode pad 61 (p, 55) are formed by wire bonding using a cavity.
  • a wire W (4, Y) is formed between Y) and the second rectangular area 61 b (5, Y).
  • the n-type electrode 45 (5, Y) of the light emitting diode L (5, Y) and the electrode pad for n 63 (Y) are formed by wire bonding using a cavity. And the wire W (5,
  • the p-type electrode 43 (X, Y) and the n-type electrode 45 (X, Y) are provided on the opposite side.
  • the light emitting diode L (X, Y) is disposed on the mounting substrate 31 in a posture rotated approximately 25 ° counterclockwise with respect to the X direction.
  • the light emitting diode L (X, Y) is arranged by tilting!
  • the area of the die can be reduced to the limit where wires can be connected, the light emitting diodes L (X, Y) can be mounted at a higher density, and the amount of light emission per unit area can be increased.
  • the structure of the LED light source module 11R can be made smaller without reducing the amount of light emission without making the manufacturing process difficult (using the accuracy of the conventional wire bonding).
  • FIG. 33 is a diagram for explaining an LED light source module 111R of the present embodiment.
  • the case where the light emitting diode L (X, Y) having the substantially square n side surface 41 (X, Y) and the back surface is used is exemplified.
  • the LED light source module 111R of this modification uses a light emitting diode M (X, Y) whose n side 141 (X, Y) and the back surface are substantially rectangular! .
  • the light emitting diodes M (X, Y) are arranged on the mounting substrate 31 in a posture rotated approximately 25 ° counterclockwise with respect to the X direction.
  • the bonding area (area close to a square) in which each side is formed on the side shorter than one side of the light emitting surface of Y, Y) is generated. Then, the light emitting diode M (X,
  • the second rectangular area 161b (X, Y) of the p-use electrode pad 161 (X, Y) connected by a wire to the n-type electrode 145 (X, Y) of Y) is positioned.
  • the bonding area can be made smaller to the limit at which the wire can be connected, and the light emitting diode M (X, Y)
  • the configuration of the LED light source module 111R can be reduced in size without reducing the amount of light emission without making the manufacturing process difficult.
  • the case of emitting R, G, B light is illustrated.
  • FIG. 1 An overall conceptual diagram of a projector according to the present embodiment is the same as FIG.
  • the LED chip layout of the LED light source module 511 of the present invention in FIG. 16 will be described below.
  • FIG. 34 is a view for explaining an LED chip layout of the LED light source module 511 shown in FIG.
  • the LED light source module 511 includes four light emitting diodes R (X, Y) emitting red light, eight light emitting diodes G (X, Y) emitting green light, and four light emitting diodes emitting blue.
  • a total of 16 light emitting diodes B (X, Y) are arranged in a 4 ⁇ 4 matrix.
  • the light emitting diodes R (X, Y), G (X, Y), and B (X, Y) are single-wire types as in the light emitting diode L (X, Y) shown in FIG.
  • An n-type electrode 45 (X, Y) is provided on X, Y), and the back surface is a p-type electrode 43 (X, Y).
  • the light emitting diodes R (X, Y), G (X, ⁇ ), ⁇ ( ⁇ , ⁇ ) are, for example, approximately 25 ° in the counterclockwise direction with respect to one side of the ⁇ side 41 ( ⁇ , ⁇ ). It is placed on the mounting board in an inclined attitude
  • LED light source module 511 for example, about 16 light emitting diodes R (X, Y), G (X, ⁇ ), ⁇ ( ⁇ , ⁇ ) are arranged in an area of about 2 mm 2 .
  • FIG. 35 shows an LE in an LED light source module 511 according to a twelfth embodiment of the present invention.
  • FIG. 18 is a diagram for describing a disposition pattern of a p electrode pad 261 (X, Y) and an n electrode pad 263 (Y) of the D light source module 511.
  • P electrode node 261 (2, 1), 261 (3, 1), 261 (4, 1), 261 (1, 2), 261 (2, 2), 2 Shapes of 61 (3, 2), 261 (4, 2), 261 (2, 3), 261 (3, 3), 261 (1, 4), 261 (2, 4), 261 (3, 4) Is substantially the same as the electrode pad 61 for p shown in FIG. 28 (X, Y).
  • Electrode node for p, 261 (2, 1), 261 (3, 1), 261 (4, 1), 261 (1, 2), 261 (2, 2), 261 (3, 2), 261 (4, 2), 261 (2, 3), 261 (3, 3), 261 (1, 4), 261 (2, 4), 261 (3, 4) are electrode pads for p Similar to 61 (X, Y), it has a first rectangular area 261a (X, Y) and a second rectangular area 26 lb (X, Y).
  • a p-type electrode 43 (X, Y) on the back surface of the light emitting diode is bonded to the first rectangular area 261a (X, Y).
  • the first rectangular area 261a (X, Y) can not be seen from the front side in a state where the light emitting diode smaller than the back surface of the light emitting diode is mounted.
  • the second rectangular area 261b (X, Y) is not occupied by the light emitting diode even when the light emitting diode is bonded on the mounting substrate!
  • the light emitting diodes R (X, Y), G (X, Y), and ⁇ ( ⁇ , ⁇ ) are selected as one side of the ⁇ side 41 ( ⁇ , ⁇ ).
  • the mounting substrate was placed on the mounting substrate in a position inclined approximately 25 ° counterclockwise with respect to the X direction.
  • the above-mentioned bonding area can be bonded to a minimum size It can be made as small as possible, and light-emitting diodes R (X, Y), G (X, ⁇ ) and ⁇ ( ⁇ , ⁇ ) can be mounted at a higher density, and the amount of light emission per unit area can be increased.
  • the LED light source module 511 emits light without making its manufacturing process difficult.
  • the configuration can be made smaller without reducing the amount.
  • the electrode pad for p 261 (X, Y), the electrode pad for n 263 (Y) and the light emitting diode R (X, Y), G (X, Y), ⁇ ( ⁇ ) in the LED light source module 511 Explain the connection between ⁇ ).
  • ⁇ -type electrodes 45 ( ⁇ , ⁇ , X, ⁇ ⁇ , ⁇ ) of light-emitting diodes R (X, Y), G (X, Y), and ⁇ ( ⁇ , ⁇ ) are shown.
  • the wire connected to ⁇ ) is denoted as W (X, Y).
  • LED light source module 511 As shown in FIG. 34, four light emitting diodes R (l, 1), R (2, 1), R (2, 2), which emit R light at the upper left in FIG. R (l, 2) is connected in series.
  • connection relationship regarding the R light emission is as follows.
  • the p electrode pad 261 (1, 1) is connected to the ground.
  • the P electrode pad 261 (1, 1) is directly connected to the p-type electrode 43 (1, 1) of the light emitting diode R (1, 1).
  • the n-type electrode 45 (1, 1) of the light emitting diode R (l, 1) is a wire W2 (l, 1) in the second rectangular area 261b (2, 1) of the electrode pad for p 261 (2, 1). Connected through.
  • the first rectangular area 261a (2, 1) of the P electrode pad 261 (2, 1) is a light emitting diode R (2, 2).
  • the n-type electrode 45 (2, 1) of the light emitting diode R (2, 1) is connected to the second rectangular area 261b (2, 2) of the electrode pad for p 261 (2, 2) by the wire W2 (2 , 1) is connected via.
  • the first rectangular area 261 a (2, 2) of the P electrode pad 261 (2, 2) is a light emitting diode R (2, 2).
  • the n-type electrode 45 (2, 2) of the light emitting diode R (2, 2) is a wire W2 (2, 2) in the second rectangular area 261b (l, 2) of the electrode pad for p 261 (1, 2). Connected through.
  • the first rectangular area 261a (1, 2) of the p electrode pad 261 (1, 2) is directly connected to the p-type electrode 43 (1, 2) of the light emitting diode R (1, 2).
  • the n-type electrode 45 (1, 2) of the light emitting diode R (1, 2) is connected to the electrode pad 263 (2) for n via the wire W 2 (1, 2).
  • connection relation regarding B light emission is as follows. Electrode pad for p connected to ground
  • a light emitting diode B (4, 4) comprising the H. 261 (4, 4), a light emitting diode B (3, 4), a light emitting diode B (3, 3), and a light emitting diode B (4, 3) Connected in series, the n-type electrode 45 (4, 3) of the light emitting diode B (4, 3) is connected to the electrode pad 263 (3) for n.
  • connection relation regarding the G light emission in the upper right in FIG. 34 is as follows.
  • the B (4, 1) is connected in series, and the n-type electrode 45 (4, 1) of the light emitting diode B (4, 1) is connected to the electrode pad 263 (1) for n.
  • connection relationship regarding the G light emission at the lower left in FIG. 34 is as follows.
  • a predetermined voltage for G light emission is applied to the n electrode electrodes 263 (1) and 263 (4).
  • a predetermined voltage for R light emission is applied to the n electrode pad 263 (2).
  • a predetermined voltage for B light emission is applied to the n electrode pad 263 (3).
  • the p-type electrodes 43 (X, Y) of the light emitting diodes R (1, 1), R (2, 1), R (2, 2), R (1, 2) connected in series are obtained.
  • a predetermined voltage for R light emission is applied between the and the n-type electrodes 45 (X, Y), and these emit R light.
  • the light emitting diodes R (X, Y), G (X, ⁇ ), ⁇ ( ⁇ , ⁇ ) have slightly different outer shapes and dimensions due to differences in their internal configuration and the like. The difference is the difference between the present invention and the present invention.
  • the LED light source module 511 As described above, in the projector 501, by using the LED light source module 511, R, G, B light emission is possible with a single light source module.
  • the LED light source module 211 is a light emitting diode R (X, Y), G, as in the first embodiment.
  • the LED light source module 511 has a light emitting diode G (X, Y) having a light emission brightness or approximately half that of the light emitting diodes R (X, Y) and B (X, Y).
  • G (X, Y) having a light emission brightness or approximately half that of the light emitting diodes R (X, Y) and B (X, Y).
  • LED light source module 511 light emitting diodes R (X, Y), G (X
  • the drive voltage suitable for the light emission of each color is connected in series by connecting in series the light emitting diode R (X, Y), G (X, ⁇ ), ⁇ ( ⁇ , ⁇ ). Can be applied.
  • the present invention is not limited to the embodiments described above.
  • the force S exemplarily shows the case where the light emitting diodes are arranged in a 5 ⁇ 5, 3 ⁇ 3, 4 ⁇ 4 matrix, and a plurality of light emitting diodes are arranged in a matrix
  • the number is not particularly limited.
  • the ⁇ -type electrode is located at the end of the light-emitting surface, with the ⁇ -type electrode 45 (X, ⁇ ) located at the approximate center of the light-emitting surface ( ⁇ side) as X, ⁇ ), ⁇ ( ⁇ , ⁇ ).
  • a light emitting diode located may be used
  • a ⁇ -type electrode may be disposed on the light emitting surface, and an ⁇ -type electrode may be disposed on the back surface.
  • the shapes of the ⁇ -type electrode and the ⁇ -type electrode are not particularly limited.
  • the external shape of the light emitting diode L (X, Y), M (X, Y), R (X, Y), G (X, Y), Y (Y, Y) is , Is not particularly limited as long as it is a rectangular solid.
  • the light emitting diodes L (X, Y), R (X, Y), G (X, Y), B (X, ⁇ ) are made anticlockwise with respect to the X direction.
  • the angle is not particularly limited as long as it is other than 0 °, 90 °, and 180 °. The angle is determined based on the distance between adjacent light emitting diodes, the size required as a bonding area, and the like.
  • the DLP (registered trademark) system is exemplified as the system of the projectors 1 and 501, but a 3 LCD system or an LCOS (Liquid Crystal On Silicon) system may be used.
  • a 3 LCD system or an LCOS (Liquid Crystal On Silicon) system may be used.
  • reflection or transmission of light from the LED light source module is controlled in pixel units according to image data using a liquid crystal panel.
  • the LED is illustrated as the light emitting element of the present invention, but a semiconductor laser may be used.
  • the light emitting device of the present invention is used as a projector.
  • the light emitting device of the present invention may be used as a headlight of a vehicle other than the projector, a lighting device, and a back of the display device. You may use it for lights etc.
  • FIG. 1 is an overall configuration diagram of a projector according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the LED chip layout of the LED light source module shown in FIG.
  • FIG. 3 is a view of the LED light source module shown in FIG. 2 as viewed from the direction of arrow A.
  • FIG. 4 is an external perspective view of the light emitting diode L (X, Y) shown in FIG.
  • FIG. 5 is a view for explaining an LED chip layout of an LED light source module according to a modification of the first embodiment.
  • FIG. 6 is a view for explaining an LED chip layout of an LED light source module according to a second embodiment of the present invention.
  • FIG. 7 shows an LED of an LED light source module according to a modification of the second embodiment of the present invention
  • FIG. 8 is a view for explaining an LED chip layout of an LED light source module according to a modification of the third embodiment.
  • FIG. 9 shows an LED of an LED light source module according to a modification of the third embodiment of the present invention
  • FIG. 10 is a view for explaining a modification of the embodiment of the present invention.
  • FIG. 11 is a view for explaining an LED chip layout of the LED light source module.
  • FIG. 12 is a view of the LED light source module shown in FIG. 11 as viewed in the direction of arrow A.
  • FIG. 13 shows an LED chip of an LED light source module according to a modification of the fourth embodiment
  • FIG. 14 shows the LED chip of the LED light source module according to the fifth embodiment of the present invention
  • FIG. 15 is a view for explaining an LED chip layout of an LED light source module according to a modification of the fifth embodiment.
  • FIG. 16 is an overall configuration diagram of a projector according to a sixth embodiment of the present invention.
  • FIG. 17 is a view for explaining an LED chip layout of the LED light source module 511 shown in FIG. 16; Garden 18] It is a figure for demonstrating the modification of the LED light source module 511 of embodiment of this invention.
  • FIG. 20 is a side view of the LED light source module shown in FIG. 19;
  • FIG. 21 is a plan view of the LED light source module shown in FIG. Garden 22] It is a figure for demonstrating the structure by the side of the plane of the LED light-source module based on 8th Embodiment of this invention.
  • FIG. 23 is a view for explaining a modification of the LED light source module according to the eighth embodiment.
  • FIG. 24 is a view for explaining another modification of the LED light source module according to the eighth embodiment.
  • FIG. 25 is a view for explaining the configuration on the flat side of the LED light source module according to the ninth embodiment of the present invention.
  • FIG. 26 is a view for explaining the configuration on the flat side of the LED light source module according to the tenth embodiment of the present invention.
  • FIG. 27 is a view for explaining an LED chip layout of the LED light source module.
  • FIG. 28 is a view for explaining patterns of p electrode pads and n electrode pads of the LED light source module.
  • FIG. 29 is a view of the LED light source module 11R shown in FIG. Garden 30] It is an external appearance perspective view of the layout of the LED chip of a LED light source module.
  • Garden 33 is a diagram for explaining an LED chip layout of an LED light source module according to a modification of the eleventh embodiment.
  • FIG. 34 is a view for explaining an LED chip layout of the LED light source module.
  • FIG. 35 is a view for explaining patterns of p electrode pads and n electrode pads of the LED light source module shown in FIG. 34.
  • Rod integrator 61a (X, Y), 261a (X, Y) ⁇ First rectangular area, 61b (X, Y), 261b (X, ⁇ ) 'second rectangular area, Y, Y ), N (X, Y), R (X, ⁇ ), G (X, ⁇ ), ⁇ (X, ⁇ ) ... light emitting diode,

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

 【課題】 発光面に異なる極性の電極が形成された発光素子を高密度実装させた発光装置およびプロジェクタを提供する。  【解決手段】 Y方向に隣接する発光ダイオードL(X,Y)の間でX方向の位置が異なる。Y方向に隣接する2つの発光ダイオードL(X,Y)のうち、一方の発光ダイオードL(X,Y)のp型電極45(X,Y)と他方の発光ダイオードL(X,Y)のn型電極43(X,Y)とがワイヤ(X,Y)を介して接続されている。ワイヤW(X,Y)は、Y方向に対して傾斜している。

Description

明 細 書
発光装置およびプロジェクタ
技術分野
[0001] 本発明は、発光素子を高密度実装した発光装置およびプロジェクタに関する。
背景技術
[0002] 従来のプロジェクタの光源としては、高圧水銀ランプが多く用いられている。しかし ながら、放電型のランプである高圧水銀ランプを用いた光源装置は高電圧の電源回 路を必要とし、小型化が困難であると共に寿命が短い。また、立ち上げ時間が長い。
[0003] 最近、新し!/、光源として LEDチップを用いた光源が注目されて!/、る。 LEDチップは 小型 ·軽量、長寿命であり、且つ、駆動電流の制御によって、点灯 ·消灯、出射光量 の調整を柔軟に行うことができる。そのため、プロジェクタの光源として適しており、既 に小型 ·携帯用の小画面プロジェクタに用いられて!/、る。
[0004] ところで、単体の LEDチップから得られる光量は、高圧水銀ランプに比べて小さい 。そのため、複数の LEDランプを配置して所望の発光量を得ているものが知られて いる。
特許文献 1 :特開 2005— 84402号公報
発明の開示
発明が解決しょうとする課題
[0005] プロジェクタの小型化および高輝度化の要請から、単位面積当たりの発光量を高め る必要があり、実装基板上に多数の LEDのベアチップ (以下、単に LEDとも称する) を高密度実装することが求められている。
[0006] しかしながら、発光面に p型電極と n型電極とを備えたダブルワイヤー型の LEDを 高密度実装する場合、 LEDを近接して配置すると、直列接続される一方の LEDの p 型電極と他方の LEDの n型電極との間に十分な距離を確保できず、製造過程でキヤ ビラリを用いたワイヤーボンディングが困難になるという問題が生じる。
[0007] また、 LEDの発光面にワイヤが覆いかぶさる面積を小さくして光取り出し効率を向 上したいという要請もある。 [0008] 上述した問題は、 LED以外でも、極性が異なる電極が発光面に形成された発光素 子においても同様にある。
[0009] また、発光面に n型電極を備え、その裏面に p型電極を備えたシングルワイヤー型 の LEDを直列且つ高密度実装する場合、各 LEDの n型電極から、実装基板上に形 成され且つ隣接する LEDの p型電極に接続された p用電極パッドにワイヤを接続する 必要がある。当該工程は、キヤビラリを用いたワイヤーボンディングにより行う。
[0010] その際に、例えば、複数の LEDが配置されるマトリクスの列および行に対して、 LE Dの矩形の発光面の各辺が平行となる姿勢で LEDを実装基板上に配置すると、隣 接する LEDの間に、実装基板上に形成された p用電極パッドが表面側に露出する領 域を作ると、当該領域の一辺は最短で LEDの一辺と同じ長さになる。そのため、当該 領域は、ワイヤーボンディングのために必要以上の長さの一辺を有する細長い形状 になり、当該領域の面積が大きくなつてしまう。そのため、小型化が十分にできなかつ たり、製造が非常に困難になってしまうという問題がある。
[0011] 上述した問題は、 LED以外でも、発光面と裏面とに極性が異なる電極がそれぞれ 形成された発光素子においても同様に生じる。
[0012] 本発明は、上述する問題点に鑑みてなされたもので、極性が異なる電極が発光面 に形成された発光素子を高密度実装させて、従来に比べて小規模化および高輝度 化を達成できる発光装置およびプロジェクタを提供することを目的とする。
[0013] また、本発明は、上述する問題点に鑑みてなされたもので、発光面と裏面とに極性 が異なる電極がそれぞれ形成された発光素子を高密度実装させ、従来に比べて小 規模な構成で高輝度化できる発光装置およびプロジェクタを提供することを目的とす 課題を解決するための手段
[0014] 上述した従来技術の問題点を解決し、上述した目的を達成するため、第 1の観点 の発明の発光装置は、第 1の電極と、当該第 1の電極と逆極性を有する第 2の電極と を同一表面側に備え、面発光する前記表面側の 2次元形状が略矩形であり、相互に 外形が略同一の複数の発光素子を、互いに直交する列方向および行方向に其々複 数配置した発光装置であって、前記列方向に隣接し且つ同じ姿勢で配置された前 記発光素子の異極同士をワイヤで接続して接続列を形成し、前記行方向に前記接 続列と同一の列が繰り返し複数配置され、前記ワイヤは、前記列方向に対して非平 行に配置されている。
[0015] このように、第 1の観点の発明の発光装置では、上述したように接続列を形成し、前 記ワイヤを前記列方向に対して非平行に配置した。これにより、発光素子を密に配置 した場合でも、第 1の発光素子の第 1の電極と、その接続先である他のワイヤを介し た接続先である第 2の発光素子の第 2の電極との間に、比較的長い距離を持たせる ことが可能になる。そのため、製造過程において、直列接続される第 1発光素子の第 1の電極と第 2の発光素子の第 2の電極とを接続する工程を、キヤビラリを用いたワイ ヤーボンディング等により簡単に行うことができる。
[0016] 好適には、第 1の観点の発明の発光装置の前記接続列は、前記行方向の位置が、 当該接続列に属する奇数番目の前記発光素子の前記行方向の位置が同じであり、 当該接続列に属する偶数番目の前記発光素子の前記行方向の位置が相互に同じ であり、且つ、前記奇数番目の発光素子の行方向の位置とは異なる。
[0017] 好適には、第 1の観点の発明の発光装置の記発光素子は、前記矩形の対角線に 沿って前記第 1の電極と前記第 2の電極とが位置し、前記複数の発光素子は、マトリ タス状に配置されている。
[0018] 本発明の第 2の観点の発明のプロジェクタは、相互に異なる色を時分割で発光する 複数の発光手段と、前記発光装置からの光を、画像データに応じて画素単位で反射 あるいは透過して投影方向に出射する光制御手段とを有し、前記発光手段は、第 1 の電極と、当該第 1の電極と逆極性を有する第 2の電極とを同一表面側に備え、面発 光する前記表面側の 2次元形状が略矩形であり、相互に外形が略同一の複数の発 光素子を、互いに直交する列方向および行方向に其々複数配置した発光装置であ つて、前記列方向に隣接し且つ同じ姿勢で配置された前記発光素子の異極同士を ワイヤで接続して接続列を形成し、前記行方向に前記接続列と同一の列が繰り返し 複数配置され、前記ワイヤは、前記列方向に対して非平行に配置されている。
[0019] 第 2の観点の発明のプロジェクタでは、発光手段として、第 1の観点の発明の発光 装置を用いる。これにより、小規模な構成で高輝度な画像を投影できる。 [0020] 本発明は、第 1の電極と、当該第 1の電極と逆極性を有する第 2の電極とを同一表 面側に備え、面発光する前記表面側の 2次元形状が略矩形であり、相互に外形が略 同一の複数の発光素子を、互いに直交する歹 IJ、行方向に其々一定のピッチで複数 配置した発光装置であって、前記列の各々において、奇数行と偶数行の前記発光 素子ごとに、同じ姿勢で配置された前記発光素子の異なる極が順次ワイヤでつなが れて直列に接続されており、前記ワイヤが前記行方向に隣接する前記発光素子の間 に位置するように、偶数行における前記発光素子は奇数行の前記発光素子に対して 行方向にずれた位置に配置されている。
[0021] 本発明の発光装置では、上述したように、前記ワイヤが前記行方向に隣接する前 記発光素子の間に位置するように、偶数行における前記発光素子は奇数行の前記 発光素子に対して行方向にずれた位置に配置されている。そのため、複数の前記発 光素子を高密度に配置した場合でも、前記発光素子間に、実装上必要な(ワイヤー ボンディングに必要な)距離を確保できる。
[0022] また、本発明の発光装置では、発光素子の発光領域のうち、接続のためのワイヤが 重なり合う領域を小さくでき、光取り出し効率を向上できる。
好適には、本発明の発光装置では、前記ずれの量が前記行方向の各列のピッチ の 1/2である。
[0023] 好適には、本発明の発光装置では、前記第 1の電極および前記第 2の電極が矩形 の対角方向にあり、前記対角方向が前記列の方向と一致するように前記各素子が配 置され、奇数行と偶数行が、前記列方向に、各行のピッチの 1/2だけずれた位置に ある。
[0024] 好適には、本発明の発光装置は、赤色、緑色および青色をそれぞれ発光する前記 発光素子を有し、同色を発光する複数の前記発光素子が直列に接続されている。
[0025] また、本発明の発光装置は、第 1の電極と当該第 1の電極と逆極性を有する第 2の 電極とを同一表面側に備えた複数の発光素子を列方向に直列に接続して構成され る発光素子群が、偶数行の前記発光素子群が奇数行の前記発光素子群に対して列 方向に所定量ずれて位置するように基板上に配置され、前記発光素子群の各々は、 奇数列の前記発光素子と偶数列の前記発光素子とが前記表面の一部を対向させた 姿勢で、奇数列の前記発光素子の前記第 1の電極と偶数列の前記発光素子の前記 第 2の電極とを接続させた積層構造を有し、前記偶数行の発光素子群の端部の前記 発光素子からのワイヤが、当該発光素子群と行方向で隣接した前記奇数行の発光 素子群の間に位置し、前記奇数行の発光素子群の端部の前記発光素子からのワイ ャが、当該発光素子群と行方向で隣接した前記偶数行の発光素子群の間に位置す
[0026] 本発明では、前記発光素子群を、前記発光素子を積層して構成したことで高密度 性を実現できる。また、発光素子群の間にワイヤを配設するため、発光素子からの光 力 Sワイヤによって妨げられる割合を少なくできる。これらにより、高輝度化を実現でき
[0027] 好適には、本発明の発光装置の前記ワイヤは、前記積層した発光素子の光取り出 し側の表面より、前記基板側に位置する。すなわち、ワイヤの高さが発光素子の最高 面を超えないようにすることが好ましい。これによりワイヤによって妨げられる光の割合 は更に減少し、レンズ等の次光学系を、より近づけて配置することも可能となる。
[0028] 本発明のプロジェクタは、相互に異なる色を時分割で発光する複数の発光手段と、 前記発光装置からの光を、画像データに応じて画素単位で反射あるいは透過して投 影方向に出射する光制御手段とを有し、前記発光手段は、第 1の電極と、当該第 1の 電極と逆極性を有する第 2の電極とを同一表面側に備え、面発光する前記表面側の 2次元形状が略矩形であり、相互に外形が略同一の複数の発光素子を、互いに直交 する列、行方向に其々一定のピッチで複数配置した発光装置であって、前記列の各 々において、奇数行と偶数行の前記発光素子ごとに、同じ姿勢で配置された前記発 光素子の異なる極が順次ワイヤでつながれて直列に接続されており、前記ワイヤが 前記行方向に隣接する前記発光素子の間に位置するように、偶数行における前記 発光素子は奇数行の前記発光素子に対して行方向にずれた位置に配置されている
[0029] 本発明のプロジェクタでは、発光手段として、本発明の発光装置を用いる。これによ り、小規模な構成で高輝度な画像を投影できる。
[0030] 本発明の発光装置は、発光面に形成された第 1の電極と、当該第 1の電極と逆極 性を有し前記発光面と反対側の面に形成された第 2の電極とを備えた略直方体を成 し、外形が略同一の複数の発光素子が実装基板上にマトリクス状に配置されており、 前記複数の発光素子の各々が、前記発光面の矩形の各辺を、前記マトリクスの列方 向あるいは行方向に対して傾斜して配置されており、隣接した 4つの前記発光素子 の間に形成された前記発光素子に占有されていない前記実装基板上の領域に、当 該 4つの発光素子の一つの前記発光素子の前記第 2の電極に導通する電極パッド が位置し、前記 4つの発光素子のうち前記一つの発光素子以外の発光素子の前記 第 1の電極と、前記占有されていない前記実装基板上の領域に位置する前記電極 ノ ッドとがワイヤを介して接続されて!/、る。
[0031] 本発明の発光装置は、複数の発光素子の各々を、その発光面の矩形の各辺を、マ トリタスの列方向あるいは行方向に対して傾斜して実装基板上に配置している。
[0032] これにより、隣接する 4つの発光素子の間に、発光素子の一辺より短い辺で各辺が 形成されたボンディング領域 (例えば、略長方形の領域)が生じる。
[0033] そのため、上記傾斜の角度と、隣接する発光素子の間の距離とを調整することで、 上記ボンディング領域を、ボンディングのために必要最小限の縦横の辺で構成され る矩形領域とすることができる。すなわち、発光素子を傾斜させないで配置した場合 に比べて、上記ボンディング領域をワイヤーを接続できる限界まで小さくできる。その 結果、発光素子をより高密度に実装でき、単位面積当たりの発光量を高めることがで きる。
[0034] 好適には、本発明の発光装置は、前記電極パッドは、前記占有されていない実装 基板上の領域に位置する第 1の領域と、前記発光素子の前記第 2の電極と前記実装 基板との間に介在する第 2の領域とを有する。
[0035] 前記電極パッドの前記第 2の領域には、それに対応した発光素子の前記第 2の電 極が載置される。全ての前記発光素子が実装基板上に載置された状態で、前記電 極パッドの前記第 1の領域は、発光素子によって占有されずに、外側に露出している
[0036] 当該第 1の領域には、前記隣接した発光素子の第 1の電極からのワイヤがボンディ ングされている。 [0037] 好適には、本発明の発光装置は、前記第 2の領域は、前記発光面に沿った 2次元 方向において、前記発光素子によって占有される領域の内側に位置し、且つ当該領 域より面積が小さい。
[0038] これにより、隣接する発光素子の距離を短くして発光素子を密に配置しても、前記 電極パッド間に十分な距離を保つことができ、電気的な干渉の影響を小さくできる。
[0039] 好適には、本発明の発光装置は、一方向に沿って位置する複数の前記発光素子 力 Sワイヤを介して直列接続されてレ、る。
[0040] 好適には、本発明の発光装置は、前記隣接した 4つの発光素子がワイヤを介して 直列接続されている。
[0041] 好適には、本発明の発光装置は、赤色、緑色および青色をそれぞれ発光する前記 発光素子を有し、同色を発光する複数の前記発光素子が直列に接続されている。
[0042] 本発明のその他の発光装置は、発光面に形成された第 1の電極と、当該第 1の電 極と逆極性を有し前記発光面と反対側の面に形成された第 2の電極とを備えた略直 方体を成し、外形が略同一の複数の発光素子が実装基板上にマトリクス状に配置さ れており、第 1の前記発光素子の前記発光面に直交する第 1の側面の一部分が、前 記第 1の発光素子に隣接する第 2の前記発光素子の第 2の側面と対向し、前記第 1 の側面の前記一部分以外の部分に隣接し前記発光素子が配置されていない第 1の 領域と、前記第 1の発光素子と実装基板との間で前記第 1の発光素子の前記第 2の 電極に接続された第 2の領域とからなる電極パターンを備え、前記電極パターンの前 記第 1の領域は、前記第 1の発光素子以外の前記発光素子の前記第 1の電極とワイ ャを介して接続されている。
[0043] 本発明のプロジェクタは、相互に異なる色を時分割で発光する複数の発光手段と、 前記発光装置からの光を、画像データに応じて画素単位で反射あるいは透過して投 影方向に出射する光制御手段とを有し、前記発光手段は、発光面に形成された第 1 の電極と、当該第 1の電極と逆極性を有し前記発光面と反対側の面に形成された第 2の電極とを備えた略直方体を成し、外形が略同一の複数の発光素子が実装基板 上にマトリクス状に配置されており、前記複数の発光素子の各々が、前記発光面の 矩形の各辺を、前記マトリクスの列方向あるいは行方向に対して傾斜して配置されて おり、隣接した 4つの前記発光素子の間に形成された、当該 4つの発光素子に占有 されていない前記実装基板上の領域に、当該 4つの発光素子の一つの前記発光素 子の前記第 2の電極に導通する電極パッドが位置し、当該電極パッドが、前記占有さ れて!/、な!/、前記実装基板上の領域を介して、前記 4つの発光素子のうち前記一つの 発光素子以外の発光素子の前記第 1の電極にワイヤを介して接続されている。
[0044] 本発明のプロジェクタでは、発光手段が、相互に異なる色を時分割で発光する。前 記発光手段からの光は、光制御手段によって、画像データに応じて画素単位で反射 あるいは透過して投影方向に出射される。
本発明のプロジェクタでは、小規模な構成で高輝度な画像を投影できる。
[0045] 本発明のその他のプロジェクタは、相互に異なる色を時分割で発光する複数の発 光手段と、前記発光装置からの光を、画像データに応じて画素単位で反射あるいは 透過して投影方向に出射する光制御手段とを有し、前記発光手段は、発光面に形 成された第 1の電極と、当該第 1の電極と逆極性を有し前記発光面と反対側の面に 形成された第 2の電極とを備えた略直方体を成し、外形が略同一の複数の発光素子 が実装基板上にマトリクス状に配置されており、第 1の前記発光素子の前記発光面に 直交する第 1の側面の一部分が、前記第 1の発光素子に隣接する第 2の前記発光素 子の第 2の側面と対向し、前記第 1の側面の前記一部分以外の部分に隣接し前記発 光素子が配置されていない第 1の領域と、前記第 1の発光素子と実装基板との間で 前記第 1の発光素子の前記第 2の電極に接続された第 2の領域とからなる電極バタ ーンを備え、前記電極パターンの前記第 1の領域は、前記第 1の発光素子以外の前 記発光素子の前記第 1の電極とワイヤを介して接続されている。
発明の効果
[0046] 本発明によれば、極性が異なる電極が発光面に形成された発光素子を高密度実 装させて、従来に比べて小規模化および高輝度化を達成できる発光装置およびプロ ジェクタを提供すること力 Sできる。
[0047] また、本発明によれば、発光面と裏面とに極性が異なる電極がそれぞれ形成された 発光素子を高密度実装させ、従来に比べて小規模な構成で高輝度化できる発光装 置およびプロジェクタを提供すること力 Sできる。 発明を実施するための最良の形態
[0048] 以下、本発明の実施形態に係わるプロジェクタについて説明する。
<第 1実施形態 >
先ず、本実施形態の構成要素と、本発明の構成要素との対応関係を説明する。 図 1に示す LED光源モジュール 11R, 11G, 11Bが本発明の発光装置の一例で あり、 DMD17が本発明に用いられる反射手段の一例である。
[0049] また、図 2に示す発光ダイオード L (X, Y)が本発明に用いられる発光素子の一例 である。
また、 n型電極 43 (X, Y)が本発明に用いられる第 1の電極の一例であり、 p型電極 45 (X, Y)が本発明に用いられる第 2の電極の一例である。
[0050] また、例えば、発光ダイオード L (X, 1)〜L (X, 6)の直列接続が本発明における接 続列の一例である。また、図 2に示す X方向が本発明における行方向の一例であり、 Y方向が本発明における列方向の一例である。
[0051] 図 1は、本発明の実施形態に係わるプロジェクタ 1の全体構成図である。
図 1に示すプロジェクタ 1は、例えば、 1チップ DLP(Digital Light Processing) (登録 商標)方式であり、 DMD(Digital Mirror Device) (登録商標)を用いて、画像データに 応じた画像をスクリーンに投影する。
[0052] 図 1に示すように、プロジェクタ 1は、例えば、 3個の LED光源モジュール 11R, 11 G, 11B、光学系 13、集光レンズ 15、 DMD17および投影レンズ 19を有している。 L ED光源モジュール 11R, 11G, 11Bの各々は、複数の LEDを後述する所定のレイ アウトで高密度実装している。
[0053] LED光源モジュール 11R, 11G, 11Bは、それぞれ R, G, B光を光学系 13に向け て出射する。このとき、 LED光源モジュール 11R, 11G, 11Bは、いずれか一つの L ED光源モジュールのみがオンし、他がオフするように、図示しない駆動回路によって 一定間隔でオン/オフが時分割で切り換え制御されている。このように、本実施形態 では、 LED光源モジュール 11R, 11G, 11Bのオン/オフ切り換え制御をすることで 、カラーホイールが不要となる。 LED光源モジュール 11R, 11G, 11Bのオン/オフ の切り換え間隔は例えば l〜4msecである。 LED光源モジュール 11R, 11G, 1 IBの構成については後に詳細に説明する。
[0054] 光学系 13は、 LED光源モジュール 11R, 11G, 11Bから入射した R, G, B光を集 光レンズ 15に出射する。
集光レンズ 15は、光学系 13から入射した R, G, B光を集光して DMD17に出射す
[0055] DMD17は、例えば、 CMOS技術を使った Siチップ上に、数十万〜数百万個の微 小な鏡を敷き詰めた構造をしている。当該微小な鏡が 1画素に対応し、その角度を画 像データに応じて切り換えることで、各鏡に入射した光を投影レンズ 19に向けて出射 するか否かを制御する。
[0056] 本実施形態では、上述したように LED光源モジュール 11R, 11G, 11Bが時分割 でオン/オフ制御されるため、集光レンズ 15から R, G, B光が時分割で順に入射す る。そして、 DMD17において、画像データに基づいて、 R, G, B光の画素単位の反 射 (各鏡の角度)が時分割で制御される。
[0057] 投影レンズ 19は、 DMD17で反射された R, G, B光を、プロジェクタ 1の外部のスク リーン 21に投影する。
[0058] 以下、図 1に示すプロジェクタ 1の全体動作例を説明する。
LED光源モジュール 11R, 11G, 11Bは、所定の時間間隔で時分割により、 R, G , B光の発光のオン/オフを行う。
[0059] これにより、 LED光源モジュール 11R, 11G, 11Bから出射された R, G, B光が、 光学系 13に時分割で入射する。
[0060] そして、光学系 13において、入射した R, G, B光が、集光レンズ 15に向けて出射さ れ、集光レンズ 15で集光されて相互に異なるタイミングで DMD17に入射する。
[0061] DMD17は、画像データに含まれる R, G, Bデータに応じた図示しない制御回路 力もの制御に基づいて、集光レンズ 15からそれぞれ R, G, B光を入射するタイミング で、各鏡の角度を制御して、各鏡において R, G, B光を投影レンズ 19に向けて反射 するか、投影レンズ 19以外に向けて反射するかの動作を制御する。
[0062] このとき、上記時分割の時間間隔は l〜4msecと非常に短いため、投影レンズ 19を 介してスクリーンに投影される画像は、人間には R, G, B光が画素単位で合成された カラー画像として認識される。
[0063] 以下、 LED光源モジュール 11Rについて詳細に説明する。
なお、 LED光源モジュール 11G, 11Bは、 G, B光を発光する発光ダイオードを用 いること以外は、 LED光源モジュール 11Rと同じ構成であるため、説明を省略する。
[0064] 図 2は、図 1に示す LED光源モジュール 11Rの LEDチップレイアウトを説明するた めの図、図 3は LED光源モジュール 11Rを図 2に示す矢印 Aの向きから見た図であ
[0065] 本実施形態では、図 2に示す X方向の位置が同一の 6個の発光ダイオード L (X, Y
)を直列接続した場合を例示する。
[0066] 図 2および図 3に示すように、 LED光源モジュール 11Rは、 R発光の 36個の発光ダ ィオード L (X, Y)を実装基板 31上に配置している。
[0067] ここで、図 2に示すように X, Y方向を規定し、 Y方向の位置が同じ 6個の発光ダイォ ード Lの「X」として図 2中左端からの順番を割り当て、発光ダイオード Lの「Y」として当 該発光ダイオード Lが属する行の図 2中上端からの順番を割り当てる。
[0068] そして、発光ダイオード Lに、当該発光ダイオード Lに割り当てた「Χ」, 「Υ」を用いた インデックスお、 Υ)を割り当てる。ここで、 Υは行番号である。
[0069] 図4は、発光ダイオード L (X, Υ)の外観斜視図である。
図 4に示すように、発光ダイオード L (X, Y)は、その表面側である p型半導体層側 に、 2次元形状が略矩形の p側面 41 (X, Y)を有している。 p側面 41 (X, Y)が発光 面となる。複数の発光ダイオード L (X, Y)は、相互に同一外形を有している。
[0070] p側面 41上に n型電極 43 (X, Y)と p型電極 45 (X, Y)とが Y方向に沿って形成さ れている。 p側面 41の一辺の長さは例えば、 320 111程度である。
[0071] n型電極 43 (X, Y)は、 p側面 41 (X, Y)内の図 4中 X方向の中央付近、且つ Y方 向の一方端辺近くに位置する。 p型電極 45 (X, Y)は、 p側面 41 (X, Y)内の図 4中 X 方向の中央付近、且つ Y方向の他方端辺近くに位置する。
[0072] p側面 41 (X, Y)の領域のうち n型電極 43 (X, Y)および p型電極 45 (X, Y)が形成 されて!/、な!/、領域が発光領域となる。
[0073] 以下、 LED光源モジュール 11Rの発光ダイオード L (X, Y)のレイアウトについて説 明する。
[0074] 図 2に示すように、 LED光源モジュール 11Rにおいては、実装基板 31上の Y方向 における異なる 6個の位置の各々に、 X方向に沿って 6個の発光ダイオード L(X, Y) が配置されている。
[0075] LED光源モジュール 11Rでは、例えば、 2mm2程度の領域に約 36個の発光ダイ オード L(X, Y)が配置されている。
[0076] 発光ダイオード L(X, Y)が配置された Y方向における異なる 6個の位置のうち奇数 番目の位置にある発光ダイオード L(X, 1), L(X, 3), L(X, 5)の X方向の位置が同 しである。
[0077] また、偶数番目の位置にある発光ダイオード L(X, 2), L(X, 4), L(X, 6)の X方 向の位置が同じである。
[0078] さらに、偶数番目の位置にある発光ダイオード L(X, 2), L(X, 4), L(X, 6)の X方 向の位置は、奇数番目の位置にある発光ダイオード L(X, 1), L(X, 3), L(X, 5)の X方向で隣接した 2つの発光ダイオード L(X, Y)の X方向の位置の中間位置にある
[0079] LED光源モジュール 11Rにお!/、て、発光ダイオード L (X, Y)は、その n型電極 43 ( X, Y)を図 2中上側 (Y方向プラス側)に位置させ、 p型電極 45(X, Y)を図 2中下側( Y方向マイナス側)に位置させるように、実装基板 31上に配置されている。
[0080] また、発光ダイオード L(l, 6), L(2, 6), L(3, 6), L(4, 6), L(5, 6), L(6, 6) の図 2中 Y方向マイナス側には、 6個の電極パッド 39 (1)〜39 (6)が配置されて!/、る 。 LED光源モジュール 11Rの駆動時に、電極パッド 39 (;!)〜 39 (6)には正の所定 の電位が印加される。
[0081] 以下、 LED光源モジュール 11Rの発光ダイオード L (X, Y)間の接続関係を説明 する。
図 2において、発光ダイオード L(X, Y)の p型電極 45(X, Y)に接続されるワイヤを W(X, Y)と表す。
[0082] LED光源モジュール 11Rでは、 6個の発光ダイオード L (X, 1)〜L(X, 6)が順に 直列接続されている。 すなわち、発光ダイオード L(X, 1)の n型電極 43(X, Y)と発光ダイオード L(X, 6) の p型電極 45 (X, 6)との間が、ワイヤ Wl (X, 1), Wl (X, 2) , Wl (X, 3) , Wl (X, 4), W1(X, 5), W1(X, 6)を介して直列に接続されている。
なお、 p型電極 45(X, 6)は、電極パッド 39 (X)に接続されている。
[0083] 上述したように、 LED光源モジュール 11Rでは、図 2に示すように 36個の発光ダイ オード L(X, Y)を千鳥足状に配置し、それらの間の接続を、 Y方向(同一発光ダイォ ード M(X, Y)の n型電極 43(X, Y)と p型電極 45(X, Y)とを結ぶ方向)に平行では なぐ Y方向に対して傾きを持たせて実現している。そのため、 36個の発光ダイォー ド L(X, Y)を密に配置した場合でも、直列接続される 2つの発光ダイオード L(X, Y) の n型電極 43 (X, Y)と p型電極 45(X, Y)との間にキヤビラリを用いたワイヤーボン デイングに必要な距離 (実装上必要な距離)を持たせること力 Sできる。
[0084] また、ワイヤ W1(X, 1)〜W1(X, 6)を実装基板 31に落とさずに発光ダイオード L( X, Y)間を接続している。これにより、 36個の発光ダイオード L(X, Y)を実装基板 31 上に密に (近接して)実装でき、単位面積当たりの発光量を大きくできる。
[0085] 以下、 LED光源モジュール 11Rの動作例を説明する。
LED光源モジュール 11Rにおいては、電源が投入されると、電極パッド 39 (X)が 所定の電位に設定される。
[0086] これにより、直列に接続された発光ダイオード L(X, 6)の p型電極 45 (X, 6)と、発 光ダイオード L(X, 1)の n型電極 43(X, Y)との間に、上記所定の電位に応じた電位 差が発生する。
[0087] その結果、発光ダイオード L (X, 6)の p型電極 45 (X, 6)から、発光ダイオード L (X
, 1)の n型電極 43(X, Y)に向けて駆動電流が流れ、発光ダイオード L(X, 1)〜L(
X, 6)の p側面 41 (X, 1)〜(X, 6)が発光する。
[0088] LED光源モジュール 11Rでは、発光ダイオード L(X, Y)のうち、同じ Xが割り当て られた発光ダイオード L(X, Y)は直列接続されるが、異なる Xが割り当てられた発光 ダイオード L(X, Y)との間では並列接続となる。
[0089] そのため、発光ダイオード L(X, Y)あるいはそのワイヤ Wl (X, Y)に欠陥が生じた 場合でも、異なる Xが割り当てられた発光ダイオード L(X, Y)の発光には影響がない 〇
[0090] 以下、 LED光源モジュール 11Rの製造方法を説明する。
先ず、実装基板 31上に電極パッド 39 (X)を形成する。
次に、実装基板 31上の発光ダイオード L (X, Y)を配置する位置に接着材を塗布 する。 次に、実装基板 31上の上記接着材が塗布された位置に発光ダイオード L (X , Y)を載置し、実装基板 31上に発光ダイオード L (X, Y)を固定する。
[0091] 次に、キヤビラリを用いてワイヤボンディングを行い、図 2に示すように、発光ダイォ ード L (X, Y)の n型電極 43 (X, Y)および p型電極 45 (X, Y)の間にワイヤ Wl (X, Y)を形成する。
[0092] 以上説明したように、プロジェクタ 1の LED光源モジュール 11R, 11G, 11Bでは、 n型電極 43 (X, Y)と p型電極 45 (X, Y)とが Y方向に沿って位置するように発光ダイ オード L (X, Y)を実装する場合に、 Y方向において異なる位置にある隣接した発光 ダイオード L (X, Y)の X方向の位置が異なるように発光ダイオード L (X, Y)を実装基 板 31上に配置する。これにより、ワイヤ W1 (X, Y) [Y= l〜5]を、発光ダイオード Μ (X, Υ)内の η型電極 43 (Χ, Υ)と ρ型電極 45 (Χ, Υ)とを結ぶ方向(Υ方向)に対して 傾きを持たせて配置できる。
[0093] そのため、 Υ方向において異なる位置にある隣接した発光ダイオード L (X, Y)の X 方向の位置を同じにした場合に比べて、直列接続される一方の発光ダイオード L (X , Y)の p型電極 45 (X, Y)と他方の発光ダイオード L (X, Y)の n型電極 43 (X, Y)と の間に長レ、距離を確保できる。
[0094] その結果、発光ダイオード L (X, Y)を高密度実装しても、製造工程において、キヤ ビラリを用いて上記電極間にワイヤーボンディングを容易に行うことができる。
[0095] また、 LED光源モジュール 11R, 11G, 11Bでは、ワイヤ Wl (X, 1)〜W1 (X, 6) を実装基板 31に落とさずに発光ダイオード L (X, Y)間を接続している。これにより、 36個の発光ダイオード L (X, Y)を実装基板 31上に密に(近接して)実装でき、単位 面積当たりの発光量を大きくできる。
[0096] これらの効果により、 LED光源モジュール 11R, 11G, 11Bを小規模且つ高輝度 に構成でき、その結果、小規模且つ高輝度のプロジェクタ 1を提供できる。 [0097] <第 1実施形態の変形例〉
上述した第 1実施形態では、図 2に示すように、全ての発光ダイオード L (X, X、(D 間でその n型電極 43 (X, Y)および p型電極 45 (X, Y)を同じ側に配置した場合を例 示した。
[0098] 第 1実施形態の変形例に係わる LED光源モジュール l lRaでは、図 5に示すように 、 Xが奇数の発光ダイオード L (X, Y)と、 Xが偶数の発光ダイオード L (X, Y)との間 で、 n型電極 43 (X, Y)および p型電極 45 (X, Y)が位置する側(発光ダイオード M ( X, Y)の配置姿勢)を反対にしてレイアウトした。
[0099] 本変形例に係わる LED光源モジュール l lRaによっても、第 1実施形態の LED光 源モジュール 11Rと同様の効果が得られる。
[0100] また、 LED光源モジュール 1 IRaによれば、所定電位が印加される電極パッド 39a ( 2) , 39a (4) , 39a (6)および電極パッド 39b (1) , 39b (3) , 39b (5)を、発光ダイォ ード M (X, Y)の Y方向プラス側とマイナス側とに 2つに分けて配置するため、実装基 板 31上の一方の側に高い電位領域が集中してしまうことを回避できる。
[0101] <第 2実施形態〉
本実施形態では、発光ダイオードとして、その発光面側の 2次元形状である矩形の対 角線に沿って、 n型電極と p型電極とが位置したものを用いた場合を説明する。
[0102] 図 6は、本発明の第 1実施形態に係わる LED光源モジュール 411Rの LEDチップ
[0103] 上述した第 1実施形態では、図 4に示すように、発光ダイオード L (X, Y)として、そ の P側面 41 (X, Y)側の 2次元形状である矩形の一方の辺に沿って、 n型電極 43 (X , Y)と p型電極 45 (X, Y)とが位置したものを用いた場合を例示した。
[0104] これに対して、本実施形態では、図 6に示すように、発光ダイオード M (X, Y)として 、その p側面 341 (X, Y)側の 2次元形状である矩形の対角線に沿って、 n型電極 34 3 (X, Y)と p型電極 345 (X, Y)とが位置したものを用いた場合を説明する。
[0105] 本実施形態に係わるプロジェクタは、 LED光源モジュールの構成を除いて、第 1実 施形態のプロジェクタ 1と同じである。
[0106] 以下、本実施形態のプロジェクタで用いられる R発光の LED光源モジュール 411R を説明する。 G発光および B発光の LED光源モジュールは、それぞれ G, B発光の 発光ダイオードを用いること以外は、 LED光源モジュール 411Rと同一構成であるた め、説明を省略する。
[0107] 図 6に示すように、 LED光源モジュール 411Rは、実装基板 31上の Y方向における 異なる 6個の位置の各々に、 X方向に沿って 6個の発光ダイオード M(X, Y)が配置 されている。
[0108] 発光ダイオード M(X, Y)が配置された Y方向における異なる 6個の位置のうち奇数 番目の位置にある発光ダイオード M(X, 1), M(X, 3), M(X, 5)の X方向の位置が
|BJしでめる。
[0109] また、偶数番目の位置にある発光ダイオード M (X, 2) , M (X, 4) , M (X, 6)の X 方向の位置が同じである。
[0110] さらに、偶数番目の位置にある発光ダイオード M(X, 2), M(X, 4), M(X, 6)の X 方向の位置は、奇数番目の位置にある発光ダイオード M(X, 1), M(X, 3), M(X,
5)の X方向で隣接した 2つの発光ダイオード M(X, Y)の X方向の位置の中間位置 にめ ·ο。
[0111] LED光源モジュール 411Rにおいて、発光ダイオード M(X, Y)は、その p型電極 3 45 (X, Y)を Y方向マイナス側(図 6中下側)に位置させ、 n型電極 343 (X, Y)を Y方 向プラス側(図 6中上側)に位置させるように、実装基板 31上に配置されている。
[0112] LED光源モジュール 411Rでは、図 6に示すように、 6個の発光ダイオード M (X, Y )が直列に接続されている。
[0113] すなわち、発光ダイオード M(X, 1)の n型電極 343(X, 1)がグランドに接続されて いる。
[0114] また、発光ダイオード M(X, 1)の p型電極 345(X, 1)と、発光ダイオード M (X, 2) の n型電極 343 (X, 2)と力、ワイヤ W4(X, 1)を介して接続されている。
発光ダイオード M(X, 2)の p型電極 345 (X, 2)と、発光ダイオード M(X, 3)の n型 電極 343 (X, 3)と力 S、ワイヤ W4(X, 2)を介して接続されている。
発光ダイオード M(X, 3)の p型電極 345 (X, 3)と、発光ダイオード M(X, 4)の n型 電極 343 (X, 4)と力 S、ワイヤ W4(X, 3)を介して接続されている。 発光ダイオード M (X, 5)の p型電極 345 (X, 5)と、発光ダイオード M (X, 6)の n型 電極 343 (X, 6)と力 S、ワイヤ W4 (X, 5)を介して接続されている。
発光ダイオード M (X, 6)の p型電極 345 (X, Y)が、電極パッド 423 (X)に接続され ている。
本実施形態によっても第 1実施形態と同様の効果が得られる。
[0115] なお、上述した第 2実施形態では、全ての発光ダイオード M (X, Y)を同じ姿勢で 配置した場合を例示したが、図 7に示すように、 Xが奇数の発光ダイオード M (X, Y) と Xが偶数の発光ダイオード M (X, Y)とで、 n型電極 343 (X, Y)および p型電極 34 5 (X, Y)の向きを逆にしてもよい。図 7に示す例では、電極パッド 423(1), 423 (3) , 423 (5)は、 Xが奇数の発光ダイオード M (X, Y)に電圧を供給する。また、電極パッ ド 423(2), 423 (4) , 423 (6)は、 Xが偶数の発光ダイオード M (X, Y)に電圧を供給 する。
この場合においても同様の効果が得られる。
[0116] <第 3実施形態〉
本実施形態では、第 2実施形態と同様に、その p側面 341 (X, Y)側の 2次元形状 である矩形の対角線に沿って n型電極 343 (X, Y)と p型電極 345 (X, Y)とが位置し た発光ダイオード M (X, Y)を用いる。
[0117] 図 8は、本実施形態の LED光源モジュール 511Rのチップレイアウトを説明するた めの図である。
[0118] 図 8に示すように、 LED光源モジュール 511Rは、 36個の発光ダイオード M (X, Y
)を 6 X 6のマトリクス状に配置して!/、る。
[0119] ここで、全ての発光ダイオード M (X, Y)は、同じ姿勢で配置されており、その n型電 極 443 (X, Y)を Y方向プラス側(図 8中上側)に位置させ、 p型電極 445 (X, Y)を Y 方向マイナス側(図 8中下側)に位置させている。
[0120] LED光源モジュール 511Rでは、図 8に示すように、同一の列に属する発光ダイォ ード M (X, 1)〜(X, 6)が直列に接続されている。
[0121] 発光ダイオード M (X, 1)の n型電極 343 (X, Y)はグランドに接続されている。
[0122] また、発光ダイオード M (X, 6)の p型電極 345 (X, Y)は、電極パッド 539 (X)に接 続されている。
本実施形態によっても第 1実施形態と同様の効果が得られる。
[0123] なお、上述した第 3実施形態では、全ての発光ダイオード M(X, Y)を同じ姿勢で 配置した場合を例示したが、図 9に示す LED光源モジュール 51 IRaのように、奇数 列の発光ダイオード M(X, Y)と偶数列の発光ダイオード M(X, Y)とで n型電極 343 (X, Y)および p型電極 345 (X, Y)の向きを逆にした姿勢で配置してもよい。
[0124] この場合には、奇数列では、発光ダイオード M(l, 6), M(3, 6), M(5, 6)の p型 電極 345(1, 6), 345(3, 6), 345(5, 6)カ電極ノ ッ卜、 539b (1) , 539b(3), 539b (5)に接続されている。
[0125] また、偶数列では、発光ダイオード M (2, 6), M(4, 6), M(6, 6)の p型電極 345 ( 2, 6), 345(4, 6), 345(6, 6)カ電極ノ ッド、 539b (2) , 539b (4), 539b (6)に接 続されている。
この場合においても同様の効果が得られる。
[0126] 本発明は上述した実施形態には限定されない。
すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上 述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネー シヨン、並びに代替を行ってもよい。
[0127] 上述した実施形態では、発光ダイオード L (X, Y) , M (X, Y)として発光面(p側面) が平坦なものを例示したが、 n型電極 43(X, Y), 343 (X, Y)が形成される面と、 p型 電極 45(X, Y), 345 (X, Y)が形成される面との間に段差があってもよい。
[0128] また、発光素子の発光面は、 n型電極と p型電極とを備えて!/、れば、それらの位置 関係や電極の形状等は、上述したものには特に限定されない。
[0129] また、上述した実施形態では、発光ダイオード L (X, Y) , M (X, Y)として発光面( 表面)側の 2次元形状が略正方形のものを例示したが、長方形でもよい。
[0130] 上述した実施形態では、 Y方向の偶数番目の位置の発光ダイオードの X方向の位 置が、 Y方向の奇数番目の位置の発光ダイオードの X方向の隣接した位置の中間位 置にある場合を例示した。ただし、本発明は、 Y方向の偶数番目の位置の発光ダイ オードの X方向の位置と、 Y方向の奇数番目の位置の発光ダイオードの X方向の位 置とが異なれば、上記中間位置以外でもよい。
[0131] また、例えば、図 10に示すように、電極パッド 539 (;!)〜(3)を用いて隣接する接続 列の一端部において、発光ダイオード L (X, 1)の p型電極 45 (X, 1)と発光ダイォー ド L (X+ 1 , 1)の n型電極 43 (X+ 1 , 1)とを接続してもよい。これにより、 12段の発光 ダイオード L (X, Y)直列接続される。
[0132] <第 4実施形態〉
図 11は、図 1に示す LED光源モジュール 11Rの第 4実施携帯の LEDチップレイァ ゥトを説明するための図、図 12は LED光源モジュール 11Rを図 11に示す矢印 Aの 向きから見た図である。
[0133] 本実施形態では、図 11に示す X方向の位置が同一の 6個の発光ダイオード L (X,
Y)を直列接続した場合を例示する。
[0134] 図 11および図 12に示すように、 LED光源モジュール 11Rは、 R発光の 36個の発 光ダイオード L (X, Y)を実装基板 31上に配置して!/、る。
[0135] ここで、図 11に示すように X, Y方向を規定し、 Y方向の位置が同じ 6個の発光ダイ オードしの「X」として図 11中左端からの順番を割り当て、発光ダイオードしの「Y」とし て当該発光ダイオード Lが属する行の図 11中上端からの順番を割り当てる。
そして、発光ダイオード Lに、当該発光ダイオード Lに割り当てた「Χ」, 「Υ」を用いた インデックス (Χ、 Υ)を割り当てる。
[0136] 以下、 LED光源モジュール 11Rの発光ダイオード L (X, Y)のレイアウトについて説 明する。
[0137] 図 11に示すように、 LED光源モジュール 11Rにおいては、実装基板 31上の Y方 向における異なる 6個の位置の各々に、 X方向に沿って 6個の発光ダイオード L (X, Y)が配置されている。
[0138] LED光源モジュール 11Rでは、例えば、 2mm2程度の領域に約 36個の発光ダイ オード L (X, Y)が配置されている。
[0139] 発光ダイオード L (X, Y)が配置された Y方向における異なる 6個の位置のうち奇数 番目の位置にある発光ダイオード L (X, 1) , L (X, 3) , L (X, 5)の X方向の位置が同 しである。 [0140] また、偶数番目の位置にある発光ダイオード L(X, 2), L(X, 4), L(X, 6)の X方 向の位置が同じである。
[0141] すなわち、 Y方向の複数の位置のなかで一つ飛びの位置の間で、当該位置におい て X方向に沿って位置する複数の発光ダイオード L(X, Y)の X方向の位置が同じで ある。
[0142] さらに、偶数番目の位置にある発光ダイオード L(X, 2), L(X, 4), L(X, 6)の X方 向の位置は、奇数番目の位置にある発光ダイオード L(X, 1), L(X, 3), L(X, 5)の X方向で隣接した 2つの発光ダイオード L(X, Y)の X方向の位置の中間位置にある
[0143] すなわち、 Y方向の複数の位置のなかで隣接する 2つの位置間で、一方の位置に ある複数の発光ダイオード L(X, Y)の X方向の位置の中間位置に他方の位置の発 光ダイオード L(X, Y)が配置されている。
[0144] LED光源モジュール 11Rにおいて、奇数列の発光ダイオード L(l, Y) , L(3, Y) , L(5, Υ)は、その η型電極 43(Χ, Υ)を図 11中上側 (Υ方向プラス側)に位置させ、 ρ型電極 45(Χ, Υ)を図 11中下側 (Υ方向マイナス側)に位置させるように、実装基板 31上に配置されている。
[0145] また、偶数列の発光ダイオード L (2, Y), L(4, Y) , L(6, Y)は、その ρ型電極 45 ( X, Υ)を図 11中上側(Υ方向プラス側)に位置させ、 η型電極 43 (X, Υ)を図 11中下 側 (Υ方向マイナス側)に位置させるように、実装基板 31上に配置されている。
[0146] また、発光ダイオード L(l, 6), L(2, 6), L(3, 6), L(4, 6), L(5, 6), L(6, 6) の図 11中 Y方向マイナス側には、 6個の電極パッド 213 (1) -213(6)が配置されて いる。 LED光源モジュール 11Rの駆動時に、電極パッド 213 (;!)〜 213 (6)には正 の所定の電位が印加される。
[0147] また、発光ダイオード L(l, 1), L(2, 1), L(3, 1), L(4, 1), L(5, 1), L(6, 1)の 図 11中 Y方向プラス側には、 6個の電極パッド 223 (1)〜223 (6)が配置されて!/、る 。 LED光源モジュール 11Rの駆動時に、電極パッド 223 (;!)〜 223 (6)には正の所 定の電位が印加される。
[0148] 以下、 LED光源モジュール 11Rの発光ダイオード L(X, Y)の接続関係について 説明する。
本実施形態では、 Y方向で奇数番目の位置にある 3個の発光ダイオード L(X, Y) の間で 3段の直列接続が行われ、 Y方向で偶数番目の位置にある 3個の発光ダイォ ード L(X, Y)の間で 3段の直列接続が行われる。
[0149] 図 11において、発光ダイオード L(X, Y)の p型電極 45(X, Y)に接続されるワイヤ を W2(X, Y)として表す。
[0150] LED光源モジュール 11Rでは、 Y方向で奇数番目の位置にある発光ダイオード L ( X, 1), L(X, 3), L(X, 5)により 3段の直列接続が行われている。
また、 Y方向で偶数番目の位置にある発光ダイオード L(X, 2), L(X, 4), L(X, 6 )により 3段の直列接続が行われている。
[0151] ここで、 Y方向で奇数番目の位置にある発光ダイオード L(X, Y)の p型電極 45(X, Y)は、当該奇数番目の位置に隣接した偶数番目の位置にある発光ダイオード L (X , Y)のうち相互に隣接した発光ダイオード L(X, Y)の間を通って、当該偶数番目の 位置に隣接した他の奇数番目の位置にある発光ダイオード L(X, Y)のうち X方向の 位置が同じ他の発光ダイオード L(X, Y)の n型電極 43とワイヤを介して接続されて いる。
[0152] また、 Y方向で偶数番目の位置にある発光ダイオード L (X, Y)の p型電極 45 (X, Y )は、当該偶数番目の位置に隣接した奇数番目の位置にある発光ダイオード L (X, Y)のうち相互に隣接した発光ダイオード L(X, Y)の間を通って、当該奇数番目の位 置に隣接した他の偶数番目の位置にある発光ダイオード L(X, Y)のうち X方向の位 置が同じ他の発光ダイオード L(X, Y)の n型電極 43とワイヤを介して接続されている
[0153] すなわち、電極パッド 213 (X)と、発光ダイオード L(X, 5)の p型電極 45 (X, 5)とが 、ワイヤ W2(X, 5)を介して接続されている。
発光ダイオード L(X, 5)の n型電極 43 (X, 5)と、発光ダイオード L (X, 3)の p型電 極 45(X, 3)と力 S、ワイヤ W2(X, 3)を介して接続されている。
発光ダイオード L(X, 3)の n型電極 43(X, 3)と、発光ダイオード L (X, 1)の p型電 極 45(X, 1)と力 S、ワイヤ W2(X, 1)を介して接続されている。 発光ダイオード L(X, 1)の n型電極 43(X, 1)がグランドに接続されている。
[0154] また、電極パッド 223 (X)と、発光ダイオード L (X, 2)の p型電極 45 (X, 2)と力 ヮ ィャ W2(X, 2)を介して接続されている。
発光ダイオード L(X, 2)の n型電極 43 (X, 2)と、発光ダイオード L (X, 4)の p型電 極 45(X, 4)とが、ワイヤ W2(X, 4)を介して接続されている。
発光ダイオード L(X, 4)の n型電極 43 (X, 4)と、発光ダイオード L (X, 6)の p型電 極 45(X, 6)と力 S、ワイヤ W2(X, 6)を介して接続されている。
発光ダイオード L(X, 6)の n型電極 43 (X, 6)がグランドに接続されている。
[0155] このように、 LED光源モジュール 11Rでは、 36個の発光ダイオード L (X, Y)の間 の接続を、 Y方向で一つ飛びの位置の間、すなわち Y方向が奇数番目の位置の発 光ダイオード L (X, Y)の間、並びに偶数番目の位置の発光ダイオード L (X, Y)の間 でそれぞれ実現している。そのため、 36個の発光ダイオード L(X, Y)を密に配置し た場合でも、直列接続される 2つの発光ダイオード L(X, Y)の n型電極 43(X, Y)と p 型電極 45 (X, Y)との間に実装上必要な距離 (キヤビラリを用いたワイヤボンディング に必要な距離)を持たせること力 Sできる。
[0156] また、 LED光源モジュール 11Rでは、上述したように W2(X, Y)を配線したことで、 Y方向で奇数番目(偶数番目)の位置にある発光ダイオード L(X, Y)の間の配線が 、 Y方向で偶数番目 (奇数番目)の位置にある発光ダイオード L (X, Y)の p側側面 41 (発光領域)に重なり合うことがなぐ配線によって光が遮蔽されることを回避し、高い 光取り出し効率を得ること力 Sできる。また、ワイヤ W2(X, 1)〜W2(X, 6)による接続 を基板(実装面) 31に落とさずに実現している。これにより、実装基板 31上にワイヤを 落とすスペースが不要になり、 36個の発光ダイオード L(X, Y)を実装基板 31上に密 に(近接して)実装でき、単位面積当たりの発光面積を大きくできる。
[0157] 以下、 LED光源モジュール 11Rの動作例を説明する。
LED光源モジュール 11Rは、電源が投入されると、電極パッド 213(X), 223 (X) が所定の電位に設定される。
[0158] これにより、電極パッド 213 (X)に接続された Y方向で奇数番目の位置にある直列 接続された 3段の発光ダイオード L(X, 5), L(X, 3), L(X, 1)に電圧が印加され、 それらの p側面 41 (X, 5) , 41 (X, 3) , 41 (X, 1)が発光する。また、電極パッド 223 ( X)に接続された Y方向で偶数番目の位置にある直列接続された 3段の発光ダイォー ド L (X, 2) , L (X, 4) , L (X, 6)に電圧が印加され、それらの p側面 41 (X, 2) , 41 ( X, 4) , 41 (X, 6)が発光する。
[0159] 以下、 LED光源モジュール 11Rの製造方法を説明する。
先ず、実装基板 31上に電極パッド 213 (X) , 223 (X)を形成する。
次に、実装基板 31上の発光ダイオード L (X, Y)を配置する位置に接着材を塗布 する。
[0160] 次に、図 11に示すように、実装基板 31上の上記接着材が塗布された位置に発光 ダイオード L (X, Y)を載置し、実装基板 31上に発光ダイオード L (X, Y)を固定する 。次に、キヤビラリを用いてワイヤボンディングを行い、図 11に示すように、電極パッド 213 (X)、発光ダイオード L (X, Y)の n型電極 43 (X, Y)および p型電極 45 (X, Y)、 並びに電極パッド 223 (X)の間にワイヤ W2 (X, Y)を形成する。
[0161] 以上説明したように、 LED光源モジュール 11Rでは、発光ダイオード L (X, Y)が 3 段で直列接続されるため、電極パッド 213 (X) , 223 (X)に印加する電圧を第 1実施 形態に比べて小さくできる。すなわち、駆動電圧を小さくできる。
[0162] また、 LED光源モジュール 11Rは、それぞれ 3段で直列接続された回路が 12個並 列接続された構成になる。そのため、発光ダイオード L (X, Y)あるいはそのワイヤ W (X, Y)に欠陥が生じた場合でも、その欠陥箇所と直列接続されていない発光ダイォ ード L (X, Y)の動作は影響を受けな!/、。
[0163] また、 LED光源モジュール 11Rでは、上述したようにワイヤ W2を配線したことで、 発光ダイオード L (X, Y)を高密度実装した場合でも、実装上必要な距離を発光ダイ オード間に持たせること力できる。また、 LED光源モジュール 11Rでは、ワイヤ W2が 発光ダイオード L (X, Y)の発光領域のうちワイヤ W2が重なり合う部分の面積を小さ くでき、高い光取り出し効率を得ることができる。
[0164] さらに、 LED光源モジュール 11Rによれば、所定電位が印加される電極パッド 213
(;!)〜 213 (6)と、電極パッド 223 (;!)〜 223 (6)と力 S、発光ダイオード M (X, Y)の Y 方向プラス側とマイナス側とに 2つに分けて配置するため、実装基板 31上の一方の 側に高い電位領域が集中してしまうことを回避できる。
[0165] <第 4実施形態の変形例〉
本実施形態では、上述した第 4実施形態の場合において、発光ダイオード L(X, Y
)の姿勢を全て同一にして配置した場合を例示する。
[0166] 図 13は、第 4実施形態の変形例に係わる LED光源モジュール llRaの LEDチップ
[0167] 上述した第 4実施形態では、図 11に示すように、 Yが奇数の発光ダイオード L(X, Y)と Yが偶数の発光ダイオード L(X, Y)とで、 n型電極 43(X, Y)および p型電極 45 (X, Y)を逆位置にして配置した。
[0168] これに対して、本変形例に係わる LED光源モジュール llRaでは、図 13に示すよう に、全ての発光ダイオード L(X, Y)の n型電極 43(X, Y)を Y方向プラス側に配置し 、 p型電極 45(X, Y)を Y方向マイナス側に配置する。
[0169] 発光ダイオード L(X, 1)の n型電極 43(X, 1)がグランドレベルに保持されている。
発光ダイオード L(X, 1)の p型電極 45(X, 1)が、発光ダイオード L(X, 3)の n型電 極 43(X, 3)と接続されている。
発光ダイオード L(X, 3)の p型電極 45 (X, 3)が、発光ダイオード L(X, 5)の n型電 極 43(X, 5)と接続されている。
発光ダイオード L(X, 5)の p型電極 45(X, 5)が、電極パッド 213a(l), 213a(3), 213a(5), 213a(7), 213a(9), 213a (11) ίこ接続されてレヽる。
[0170] 発光ダイオード L (X, 2)の η型電極 43 (X, 2)がグランドレベルに保持されて!/、る。
発光ダイオード L(X, 2)の p型電極 45 (X, 2)が、発光ダイオード L(X, 4)の n型電 極 43(X, 4)と接続されている。
発光ダイオード L(X, 4)の p型電極 45 (X, 4)が、発光ダイオード L(X, 6)の n型電 極 43(X, 6)と接続されている。
発光ダイオード L(X, 6)の p型電極 45(X, 6)は、電極パッド 213a(2), 213a(4), 213a(6), 213a(8), 213a(10), 213a (12) ίこ接続されてレヽる。
[0171] 本変形例に係わる LED光源モジュール llRaによっても、第 4実施形態の LED光 源モジュール 11Rと同様の効果が得られる。 [0172] <第 5実施形態〉
本実施形態では、発光ダイオードとして、その発光面側の 2次元形状である矩形の 対角線に沿って、 n型電極と p型電極とが位置したものを用いた場合を説明する。
[0173] 図 14は、本発明の第 5実施形態に係わる LED光源モジュール 311Rの LEDチップ
Figure imgf000027_0001
[0174] 上述した第 4実施形態では、図 11に示すように、発光ダイオード L(X, Y)として、そ の P側面 41 (X, Y)側の 2次元形状である矩形の一方の辺に沿って、 n型電極 43(X , Y)と p型電極 45(X, Y)とが位置したものを用いた場合を例示した。
これに対して、本実施形態では、図 14に示すように、発光ダイオード M(X, Y)とし て、その p側面 341 (X, Y)側の 2次元形状である矩形の対角線に沿って、 n型電極 3 43 (X, Y)と p型電極 345(X, Y)とが位置したものを用いた場合を説明する。
[0175] 本実施形態に係わるプロジェクタは、 LED光源モジュールの構成を除いて、第 1実 施形態のプロジェクタ 1と同じである。
[0176] 以下、本実施形態のプロジェクタで用いられる R発光の LED光源モジュール 311R を説明する。 G発光および B発光の LED光源モジュールは、それぞれ G, B発光の 発光ダイオードを用いること以外は、 LED光源モジュール 311Rと同一構成であるた め、説明を省略する。
[0177] 図 14に示すように、 LED光源モジュール 311Rは、実装基板上の Y方向における 異なる 6個の位置の各々に、 X方向に沿って 6個の発光ダイオード M(X, Y)が配置 されている。
[0178] 発光ダイオード M(X, Y)が配置された Y方向における異なる 6個の位置のうち奇数 番目の位置にある発光ダイオード M(X, 1), M(X, 3), M(X, 5)の X方向の位置が
|BJしでめる。
また、偶数番目の位置にある発光ダイオード M(X, 2), M(X, 4), M(X, 6)の X 方向の位置が同じである。
[0179] さらに、偶数番目の位置にある発光ダイオード M(X, 2), M(X, 4), M(X, 6)の X 方向の位置は、奇数番目の位置にある発光ダイオード M(X, 1), M(X, 3), M(X, 5)の X方向で隣接した 2つの発光ダイオード M(X, Y)の X方向の位置の中間位置 にめ ·ο。
[0180] LED光源モジュール 311Rにおいて、 Yが奇数の発光ダイオード M (X, Y)は、そ の p型電極 345(X, Y)を Y方向プラス側(図 14中上側)に位置させ、 n型電極 343( X, Y)を Y方向マイナス側(図 14中下側)に位置させるように、実装基板 31上に配置 されている。
[0181] Yが偶数の発光ダイオード M(X, Y)は、その n型電極 343 (X, Y)を Y方向プラス 側(図 14中上側)に位置させ、 p型電極 345 (X, Y)を Y方向マイナス側(図 14中下 側)に位置させるように、実装基板 31上に配置されている。
[0182] また、発光ダイオード M(X, 1)の p型電極 345(X, 1)は電極パッド 323 (X)に接続 されている。
発光ダイオード M(X, 2)の n型電極 343 (X, 2)は、それぞれグランドレベルに保持 されている。
発光ダイオード M(X, 6)の p型電極 345(X, 6)は、それぞれ電極パッド 313 (X)に 接続されている。
発光ダイオード M(X, 5)の n型電極 343 (X, 5)は、それぞれグランドレベルに保持 されている。
[0183] 以下、 LED光源モジュール 311Rの発光ダイオード M (X, Y)間の接続関係を説 明する。
[0184] 図 14において、発光ダイオード M(X, Y)の p型電極 345(X, Y)に接続されるワイ ャを W3(X, Y)として表す。
[0185] 本実施形態では、 Y方向で奇数番目の位置にある発光ダイオード M(X, Y)の間で
3段の直列接続が行われると共に、 Y方向で偶数番目の位置にある発光ダイオード
M(X, Y)の間で 3段の直列接続が行われる。
[0186] 具体的には、 LED光源モジュール 311Rでは、 Y方向で奇数番目の位置にある発 光ダイオード M(X, 1), M(X, 3), M(X, 5)で 3段の直列接続が行われている。 また、 Y方向で偶数番目の位置にある発光ダイオード M(X, 2), M(X, 4), M(X,
6)で 3段の直列接続が行われて!/、る。
[0187] 発光ダイオード M(X, 1)の n型電極 343(X, 1)と、発光ダイオード M (X, 3)の p型 電極 345 (X, 3)と力 S、ワイヤ W3 (X, 3)を介して接続されている。
発光ダイオード M (X, 3)の n型電極 43 (X, 3)と、発光ダイオード M (X, 5)の p型 電極 45 (X, 5)と力 S、ワイヤ W3 (X, 5)を介して接続されている。
発光ダイオード M (X, 5)の n型電極 43 (X, 5)がグランドに接続されている。
発光ダイオード M (X, 2)の n型電極 343 (X, 2)がグランドに接続されている。
[0188] また、発光ダイオード M (X, 2)の p型電極 345 (X, 2)と、発光ダイオード M (X, 4) の n型電極 343 (X, 4)と力 ワイヤ W3 (X, 2)を介して接続されている。
また、発光ダイオード M (X, 4)の p型電極 345 (X, 4)と、発光ダイオード M (X, 6) の n型電極 343 (X, 6)と力、ワイヤ W3 (X, 4)を介して接続されている。
発光ダイオード M (X, 6)の p型電極 345 (X, 6)が電極パッド 313 (X)に接続され ている。
[0189] 以上説明したように、 LED光源モジュール 311Rによれば、図 14に示すように、 2次 元形状である矩形の対角線に沿って n型電極 343 (X, Y)と p型電極 345 (X, Y)とが 位置した発光ダイオード M (X, Y)を用いた場合でも、第 4実施形態と同様に、高密 度実装を実現できる。
[0190] <第 5実施形態の変形例〉
本変形例では、上述した第 5実施形態において、発光ダイオード M (X, Y)を同じ 姿勢で配置した場合を説明する。
[0191] 図 15は、第 5実施形態の変形例に係わる LED光源モジュール 31 IRaの LEDチッ
[0192] 上述した第 5実施形態では、図 14に示すように、 Yが奇数の発光ダイオード M (X,
Y)と Yが偶数の発光ダイオード M (X, Y)とで、 n型電極 343 (X, Y)および p型電極
345 (X, Y)を逆位置にして配置した。
[0193] これに対して、本変形例に係わる LED光源モジュール 31 IRaでは、図 15に示すよ うに、全ての発光ダイオード M (X, Y)の n型電極 343 (X, Y)を Y方向プラス側に配 置し、 p型電極 345 (X, Y)を Y方向マイナス側に配置する。
[0194] また、発光ダイオード M (X, 1)の n型電極 343 (X, 1)がグランドレベルに保持され ている。 発光ダイオード M(X, 1)の p型電極 345(X, 1)が、発光ダイオード M(X, 3)の n型 電極 343 (X, 3)と接続されている。
発光ダイオード M(X, 3)の p型電極 345(X, 3)が、発光ダイオード M(X, 5)の n型 電極 343 (X, 5)と接続されている。
発光ダイオード M(X, 5)の p型電極 345(X, 5)は、電極パッド 313a(l), 313a(3 ), 313a(5), 313a(7), 313a(9), 313a(ll) ίこ接続されてレヽる。
[0195] また、発光ダイオード Μ (X, 2)の η型電極 343 (X, 2)がグランドレベルに保持され ている。
発光ダイオード Μ(Χ, 2)の ρ型電極 345(Χ, 2)が、発光ダイオード Μ(Χ, 4)の η型 電極 343 (X, 4)と接続されている。
発光ダイオード Μ(Χ, 4)の ρ型電極 345(Χ, 4)が、発光ダイオード Μ(Χ, 6)の η型 電極 343 (X, 6)と接続されている。
発光ダイオード Μ(Χ, 6)の ρ型電極 345(Χ, 6)は、電極パッド 313a(2), 313a(4 ), 313a(6), 313a(8), 313a(10), 313a (12) ίこ接続されてレヽる。
[0196] 本変形例に係わる LED光源モジュール 31 IRaによっても、第 2実施形態の LED 光源モジュール 311Rと同様の効果が得られる。
[0197] <第 6実施形態〉
上述した第 4および 5実施形態では、 R, G, Bをそれぞれ発光する 3つの LED光源 モジュールを用いる場合を例示したが、本実施形態では、 1つの LED光源モジユー ルを用いて R, G, B発光を行う場合を例示する。
[0198] 図 16は、本発明の第 6実施形態に係わるプロジェクタ 501の全体構成図である。
図 16に示すプロジェクタ 501は、例えば、第 1および第 2実施形態と同様に、 1チッ プ DLP (登録商標)方式であり、 DMD17を用いて、画像データに応じた画像をスクリ ーン 21に投影する。
[0199] 図 16に示すように、プロジェクタ 501は、例えば、 1個の LED光源モジュール 511、 ロッドインテグレータ 502、 DMD17および投影レンズ 19を有している。
図 16において、 DMD17、投影レンズ 19およびスクリーン 21は、第 1実施形態で 説明したものと同じである。 [0200] LED光源モジュール 511は、 R, G, Bの複数の LEDを後述する所定のレイアウト で高密度実装している。
[0201] ロッドインテグレータ 502は、 LED光源モジュール 511からの光の照度分布を均一 化して DMD17に出射する。
[0202] 以下、 LED光源モジュール 511の LEDチップレイアウトを説明する。
図 17は、図 16に示す LED光源モジュール 511の LEDチップレイアウトを説明する ための図である。
[0203] 図 17に示すように、 LED光源モジュール 511は、実装基板上の X方向に奇数番目 且つ Y方向に奇数番目の位置に R発光の発光ダイオード R(X, Y)が配置されている また、実装基板上の X方向で偶数番目且つ Y方向に奇数番目の位置に R発光の 発光ダイオード B (X, Y)が配置されている。
[0204] また、図 17に示すように、実装基板上の Y方向に偶数番目の位置に G発光の発光 ダイオード G (X, Y)が配置されている。
発光ダイオード R (X, Y) , B (X, Y)は、 η型電極 43 (Χ, Υ)を Υ方向プラス側に位 置させ、 ρ型電極 45 (Χ, Υ)を Υ方向マイナス側に位置させる。
発光ダイオード G (X, Y)は、 p型電極 45 (X, Y)を Y方向プラス側に位置させ、 n型 電極 43 (X, Y)を Y方向マイナス側に位置させる。
[0205] 本実施形態において、発光ダイオード R(X, Y) , G (X, Υ) , Β (Χ, Υ)は、その内 部構成等の相違から、外形形状 ·寸法が多少異なる。し力、し、当該相違は、本発明に V、う「外形が略同一」の範囲内である。
[0206] 図 17に示すように、 LED光源モジュール 511は、 R発光の発光ダイオード R(X, 1) の n型電極 43 (X, 1)がグランドに接続されている。
発光ダイオード R (X, 1)の p型電極 45 (X, 1)が、発光ダイオード R(X, 3)の n型電 極 43 (X, 3)にワイヤを介して接続されて!/、る。
発光ダイオード R (X, 3)の p型電極 45 (X, 3)が、発光ダイオード R(X, 5)の n型電 極 43 (X, 5)にワイヤを介して接続されて!/、る。
発光ダイオード R (X, 5)の p型電極 45 (X, 5)が、所定電位が印加される電極パッ ド 513(1), 513(3), 513(5)にワイヤを介して接続されている。
[0207] また、図 17に示すように、 LED光源モジュール 511は、 B発光の発光ダイオード B ( X, 1)の n型電極 43(X, 1)がグランドに接続されている。
発光ダイオード B(X, 1)の p型電極 45(X, 1)が、発光ダイオード B(X, 3)の n型電 極 43 (X, 3)にワイヤを介して接続されて!/、る。
発光ダイオード B(X, 3)の p型電極 45 (X, 3)が、発光ダイオード B(X, 5)の n型電 極 43 (X, 5)にワイヤを介して接続されて!/、る。
発光ダイオード B(X, 5)の p型電極 45 (X, 5)が、所定電位が印加される電極パッ ド 513 (2), 513(4), 513 (6)にワイヤを介して接続されている。
[0208] また、図 17に示すように、 LED光源モジュール 511は、 G発光の発光ダイオード G
(X, 2)の p型電極 45 (X, 2)が、所定電位が印加される電極パッド 523 (;!)〜 523 (6 )にワイヤを介して接続されている。
発光ダイオード G(X, 2)の n型電極 43(X, 2)が、発光ダイオード G (X, 4)の p型電 極 45 (X, 4)にワイヤを介して接続されて!/、る。
発光ダイオード G(X, 4)の n型電極 43(X, 4)が、発光ダイオード G (X, 6)の p型電 極 45(X, 6)にワイヤを介して接続されている。
発光ダイオード G(X, 6)の n型電極 43(X, 6)が、グランドに接続されている。
[0209] LED光源モジュール 511では、図 17に示すように発光ダイオード R(X, Y) , G(X , Υ), Β(Χ, Υ)を配置することで、発光領域内に R, G, Βの各々発光位置を略均等 に配置できる。
[0210] LED光源モジュール 511では、発光出力が小さい G発光の発光ダイオード G (X,
Y)の数を、発光ダイオード R(X, Y), B(X, Y)の 2倍にすることで、 R, G, Βの間の 発光出力を略同じにできる。
[0211] LED光源モジュール 511では、同一発光の発光ダイオード R(X, Y) , G(X, Y) ,
Β(Χ, Υ)を直列接続することで、各色の発光に適した駆動電圧を発光ダイオード R(
X, Y), G(X, Υ), Β(Χ, Υ)を印加できる。
[0212] また、 LED光源モジュール 511では、図 17に示すように発光ダイオード R(X, Y) ,
G(X, Υ), Β(Χ, Υ)を配置したことで、第 1および第 2実施形態と同様に、直列接続 される 2つの発光ダイオードの n型電極 43 (X, Y)と p型電極 45 (X, Y)との間に実装 上必要な距離を持たせることができる。
[0213] また、 LED光源モジュール 511では、上述したようにワイヤを配線したことで、 Y方 向で奇数番目の位置にある発光ダイオードの間の配線力 Y方向で偶数番目の位 置にある発光ダイオードの発光領域に重なり合うことがなぐ配線によって光が遮蔽さ れることを回避し、高い光取り出し効率を得ることができる。
[0214] また、 LED光源モジュール 511では、ワイヤによる接続を基板(実装面)に落とさず に実現している。これにより、実装基板上にワイヤを落とすスペースが不要になり、 36 個の発光ダイオードを実装基板上に密に (近接して)実装でき、単位面積当たりの発 光面積を大きくできる。
[0215] なお、本発明の実施形態の変形例として、例えば、図 18に示すように、電極パッド 539 (;!)〜 539 (6)を用いて、接続列の一端部において、図 11に示す発光ダイォー ド L (X, 1)の n型電極 43 (X, 1)と発光ダイオード L (X, 2)の p型電極 45 (X, 2)とを 接続してもよい。これにより、 6段の発光ダイオード L (X, Y)が直列接続される。
[0216] <第 7実施形態〉
図 19は本発明の第 7実施形態に係る LED光源モジュール 601の外観斜視図、図 20は図 19に示す LED光源モジュール 601を側面方向から見た図、図 21は図 19に 示す LED光源モジュール 601を平面方向から見た図である。
[0217] 図 19に示すように、 LED光源モジュール 601では、発光ダイオード L (X, Y)間をヮ ィャ接続ではなぐ発光ダイオード L (X, Y)の電極を接続することで、輝度を向上さ せる。このとき発光ダイオード L (X, Y)は最低でも 5個直列接続となる力 その 5直列 分を 1セットの発光ダイオード群とし、それを並列に複数配置する。また、発光ダイォ ード群の間にワイヤを通すことで、直列数を減らし、必要電圧を下げ、かつ複数の発 光ダイオード L (X, Y)を高密度に実装する。
[0218] さらには図 20に示すように積層された発光ダイオード L (X, Y)間を通すことにより、 ワイヤの高さが発光ダイオード L (X, Y)の最上部よりも低!/、位置とすること力 Sできる。 そのためレンズ等の次光学系を、より近づけて配置することが可能となる。
[0219] LED光源モジュール 601は、 10個の発光ダイオード群が行および列方向に所定 のパターンで実装基板上に配置されて構成される。
[0220] 各発光ダイオード群は、それぞれ 5つの発光ダイオード L(l, Y)〜L(5, Y)を直列 に接続して構成される。
[0221] すなわち、 LED光源モジュール 601は、図 21に示すように、 5直列 10並列で、発 光ダイオード L (X, Y)を配置および接続して!/、る。
[0222] 偶数行の発光ダイオード群が、奇数行の発光ダイオード群に対して列方向に、 1つ の発光ダイオード群の列方向の長さ以上ずれて配置されている。
[0223] 各発光ダイオード群は、奇数列の発光ダイオード L(l, Y), (3, Y), (5, Y)と偶数 列の発光ダイオード L(2, Y), (4, Y)とが表面の一部を対向させた姿勢で、奇数列 の発光ダイオード L(X, Y)の n型電極および p型電極と、偶数列の発光ダイオード L( X, Y)の p型電極および n型電極とが接続されている。
[0224] 奇数行目の発光ダイオード L(l, Y)〜L(5, Y)の接続関係は以下のようになる。
発光ダイオード L(l, Y)の n型電極 43(1, Y)にはワイヤ W(0、 Y)が接続されてい る。ワイヤ W(0、 Y)は接地されている。発光ダイオード L(l, Y)の p型電極 45(1, Y) は、発光ダイオード L(2, Y)の n型電極 43(2, Y)と対向した状態で接続されている。 発光ダイオード L(2, Y)の p型電極 45(2, Y)は、発光ダイオード L (3, Y)の n型電 極 43 (3, Y)と対向した状態で接続されている。発光ダイオード L(3, Y)の p型電極 4 5(3, Y)は、発光ダイオード L (4, Y)の n型電極 43 (4, Y)と対向した状態で接続さ れている。発光ダイオード L (4, Y)の p型電極 45 (4, Y)は、発光ダイオード L (5, Y) の n型電極 43 (5, Y)と対向した状態で接続されている。発光ダイオード L (5, Y)の p 型電極 45 (5, Y)にはワイヤ W (5、 Y)が接続されている。ワイヤ W (5、 Y)は、偶数番 目の発光ダイオード群の間を通って列方向に伸び、プラス電極に接続される。
[0225] 偶数行目の Yの発光ダイオード L(l, Y)〜L(5, Y)の接続関係は以下のようにな 発光ダイオード L(l, Y)の p型電極 45(1, Y)にはワイヤ W(0、 Y)が接続されてい る。ワイヤ W(0、 Y)は、奇数番目の発光ダイオード群の間を通って列方向に伸び、 プラス電極に接続される。発光ダイオード L(l, Y)の n型電極 43(1, Y)は、発光ダイ オード L(2, Y)の p型電極 45 (2, Y)と対向した状態で接続されている。発光ダイォ ード L (2, Y)の n型電極 43 (2, Y)は、発光ダイオード L (3, Y)の p型電極 45 (3, Y) と対向した状態で接続されている。発光ダイオード L (3, Y)の n型電極 43 (3, Y)は、 発光ダイオード L (4, Y)の p型電極 45 (4, Y)と対向した状態で接続されている。発 光ダイオード L (4, Y)の n型電極 43 (4, Y)は、発光ダイオード L (5, Y)の p型電極 4 5 (5, Y)と対向した状態で接続されている。発光ダイオード L (5, Y)の n型電極 43 ( 5, Y)にはワイヤ W(5、 Y)が接続されている。
[0226] 上述したように、 LED光源モジュール 601では、奇数番目の発光ダイオード群のヮ ィャ W (5、 Y)を偶数番目の発光ダイオード群の間を通って列方向に伸びるように配 置し、偶数番目の発光ダイオード群のワイヤ W (5、 Y)を奇数番目の発光ダイオード 群の間を通って列方向に伸びるように配置する。
また、 LED光源モジュール 601では、ワイヤの高さが発光ダイオード L (X, Y)の最 上部よりも低い位置とする。
[0227] これにより、発光ダイオード L (X, Y)を高密度に配置した場合でも、発光ダイオード L (X, Y)から光取り出し方向に向けて出射された光がワイヤによって遮光されてしま うことを防止できる。
[0228] また、レンズ等の次光学系を、発光ダイオード L (X, Y)の発光面に、従来より近づ けて配置することが可能となる。また、パッケージの低背化が可能になる。
[0229] <第 8実施形態〉
図 22は、本発明の実施形態に係る LED光源モジュール 701の平面側の構成を説 明するための図である。
図 22に示すように、 LED光源モジュール 701では、各々 3個の発光ダイオード L (X , Y)を直列接続して構成される 18個の発光ダイオード群を有する。
ここで、 6個の偶数行の発光ダイオード群力 個の奇数行の発光ダイオード群に対 して列方向に、 1つの発光ダイオード群の列方向の長さ以上ずれて配置されている。 また、上記 6個の偶数行の発光ダイオード群に対して、図 22中右側に、上記 6個の 奇数行の発光ダイオード群と同じ配置で 6個の奇数行の発光ダイオード群が配置さ れている。
[0230] 各発光ダイオード群は、それぞれ 3つの発光ダイオード L (l , Y)〜L (3, Y)あるい は発光ダイオード L (4, Y)〜L(6, Y)を直列に接続して構成される。
[0231] 各発光ダイオード群 L(l, Y)〜L(3, Y)は、奇数列の発光ダイオード L(l, Y) , (3 , Y)と偶数列の発光ダイオード L (2, Y)とが表面の一部を対向させた姿勢で、発光 ダイオード L(l, Y)の p型電極 45(1, Y)と発光ダイオード L (2, Y)の n型電極 43 (2 , Y)とが接続され、発光ダイオード L (2, Y)の p型電極 45 (2, Y)と発光ダイオード L (3, Y)の n型電極 43 (3, Y)とが接続されている。
[0232] また、各発光ダイオード群 L (4, Y)〜L(6, Y)は、奇数列の発光ダイオード L (3,
Y), (5, Y)と偶数列の発光ダイオード L (4, Y)とが表面の一部を対向させた姿勢で 、発光ダイオード L (4, Y)の p型電極 45 (4, Y)と発光ダイオード L (5, Y)の n型電極 43(5, Y)とが接続され、発光ダイオード L (5, Y)の p型電極 45 (5, Y)と発光ダイォ ード L(6, Y)の n型電極 43 (6, Y)とが接続されている。
[0233] 発光ダイオード L(l, Y)の n型電極 43(1, Y)は、ワイヤ W(0, Y)を介して接地さ れている。
また、発光ダイオード L (3, Y)の p型電極 45 (3, Y)は、ワイヤ W(3, Y)を介して発 光ダイオード L (4, Y)の n型電極 43 (4, Y)と接続されている。
発光ダイオード L(6, Y)の p型電極 45(6, Y)は、ワイヤ W(6, Y)を介してプラス電 極に接続されている。これにより、発光ダイオード L(l, Y)〜(6, Υ)によって 6段の 直列接続が形成される。
[0234] 一方、上記 6個の偶数行の発光ダイオード群の発光ダイオード L(l, Y)の n型電極
43(1, Y)はワイヤ W(0, Y)を介して接地されており、発光ダイオード L(3, Y)の p型 電極 45 (3, Y)はワイヤ W (3、 Y)を介してプラス電極に接続されている。これにより、 偶数行の発光ダイオード群は、発光ダイオード L(l, L)〜(3, L)によって 3段の直列 接続となる。
[0235] ここで、偶数行の発光ダイオード群のワイヤ W(0, Y)は、奇数行の発光ダイオード L(l, Y)〜(3, Υ)で構成される奇数行の隣接する発光ダイオード群の間に配設さ れている。
[0236] また、偶数行の発光ダイオード群のワイヤ W (3, Υ)は、奇数行の発光ダイオード L( 4, Y)〜(6, Υ)で構成される奇数行の隣接する発光ダイオード群の間に配設されて いる。
[0237] 図 22に示す LED光源モジュール 701によっても、第 4実施形態の LED光源モジュ ールと同様の効果が得られる。
[0238] 図 22に示す LED光源モジュール 701では、発光ダイオード(X, Y)の直列数を 3 個または 6個とした場合を例示した力 例えば、図 23に示すように、導電性の接続プ レート 601 , 602, 603を用いて偶数行の発光ダイオード群と奇数行の 2つの発光ダ ィオード群とを接続することで、発光ダイオードの直列数を 3個および 6個としてもよ!/ヽ
[0239] また、例えば、図 24に示すように、発光ダイオード L (X, Y)の直列数が全て 6個と なるように、偶数行の発光ダイオード群と奇数行の発光ダイオード群とをワイヤを介し て接続してもよい。
[0240] <第 9実施形態〉
本実施形態では、図 25に示すように、正方形の発光ダイオード L (X, Y)の間を長 方形の発光ダイオード C (X, Y)で接続する。このとき、長方形の発光ダイオード C (X , Y)で正方形の発光ダイオード L (X, Y)を跨ぐように配置する。
[0241] これにより、直列数を減らし、必要電圧を下げ、かつ複数の発光ダイオード L (X, Y ) , C (X, Y)を高密度に実装することができる。また、発光ダイオードを積層する構成 となるため、輝度を向上させること力 Sできる。さらにラインの端以外はワイヤを用いない ため発光エリアを覆うワイヤが少なくなり、これによつても輝度向上が図れる。
[0242] <第 10実施形態〉
本実施形態では、図 26に示すように、第 2実施形態で説明した発光ダイオード Μ ( X, Υ)を用いている。
[0243] 発光ダイオード Μ (Χ, Υ)は、その ρ側面 341 (X, Υ)側の 2次元形状である矩形の 対角線に沿って、 η型電極 343 (X, Υ)と ρ型電極 345 (Χ, Υ)とが位置している。
[0244] 図 26に示すように、同一行に属する 5つの発光ダイオード M (l , Υ)〜Μ (5, Υ)が 直列に接続されて発光ダイオード群が形成されている。
[0245] 偶数行の発光ダイオード群は、奇数行の発光ダイオード群に対して列方向に、発 光ダイオード群の列方向の長さ分ずれて配置されている。 [0246] 奇数行の発光ダイオード群の端部に位置する発光ダイオード M (5, Y)の p型電極 345 (5, Y)には、 X方向(列方向)に沿って延び、隣接する偶数行の発光ダイオード 群の間に位置するワイヤ W (5, Y)が配設されている。ワイヤ W (5, Y)はプラスで電 極に接続される。
[0247] また、奇数行の発光ダイオード群の端部に位置する発光ダイオード M (l , Y)の n 型電極 343 (0, Y)は接地されている。
[0248] 偶数行の発光ダイオード群の端部に位置する発光ダイオード M (l , Y)の n型電極
343 (X, 2)には X方向(列方向)に沿って延び、隣接する奇数行の発光ダイオード 群の間に位置するワイヤ W (0, Y)が配設されている。ワイヤ W (0, Y)は接地される。
[0249] また、偶数行の発光ダイオード群の端部に位置する発光ダイオード M (5, Y)の p型 電極 345 (5, Y)はプラス電極に接続されている。
[0250] 本実施形態によれば、前述した矩形の対角線に沿って n型電極 343 (X, Y)と p型 電極 345 (X, Y)とが位置する発光ダイオード M (X, Y)を用いた場合でも、第 4実施 形態と同様の効果が得られる。
[0251] <第 11実施形態〉
本実施形態においては、 図 1に示す LED光源モジュール 11R, 11G, 11Bが、 図 27以降で示される配列となっている。
図 27に示す発光ダイオード L (X, Y)が本発明に用いられる発光素子の一例であり、 X方向が本発明における列方向の一例であり、 Y方向が本発明における行方向の一 例である。
[0252] また、図 31に示す p型電極 43 (X, Y)が本発明に用いられる第 2の電極の一例であ り、 n型電極 45 (X, Y)が本発明に用いられる第 1の電極の一例である。
また、図 28に示す p用電極パッド 61 (X, Y)が本発明に用いられる電極パッドの一 例であり、第 1の矩形領域 61a (X, Y)が本発明における第 2の領域の一例であり、第 2の矩形領域 61b (X, Y)が本発明における第 1の領域の一例である。
[0253] LED光源モジュール 11R, 11G, 11Bは、発光ダイオード L (X, Y)をマトリクス状 に配置して構成されている。
発光ダイオード L (X, Y)は、後述するように、例えば、矩形の n側面 41 (X, Y)の一 辺を X方向に対して反時計回りに略 25° 傾けた姿勢で実装基板 31上に配置されて いる。このようにすることで、隣接する 4つの発光ダイオード L (X, Y)の間に、発光ダ ィオード L (X, Y)の一辺より短い辺で各辺が形成されたボンディング領域 (正方形に 近い領域)が生じる。そして、当該ボンディング領域に、隣接する発光ダイオード L (X , Y)の n型電極 45 (X, Y)とワイヤにより接続される p用電極パッド 61 (X, Y)を位置 させる。そのため、発光ダイオード L (X, Y)を傾けないで配置した場合に比べて、上 記ボンディング領域をワイヤーを接続できる限界まで小さくでき、発光ダイオード L (X , Y)をより高密度に実装でき、単位面積当たりの発光量を高めることができる。
[0254] 以下、本実施形態の LED光源モジュール 11Rについて詳細に説明する。
なお、 LED光源モジュール 11G, 11Bは、 G, B光を発光する発光ダイオードを用 いること以外は、 LED光源モジュール 11Rと同じ構成であるため、説明を省略する。
[0255] 図 27は図 1に示す LED光源モジュール 11Rの LEDチップレイアウトを説明するた めの図、図 28は発光ダイオード L (X, Y)の p型電極と接続される電極パッドのパター ンを説明するための図、図 29は LED光源モジュール 11Rを図 27に示す矢印 Aの向 きから見た図、図 30は LED光源モジュール 11Rの外観斜視図である。
[0256] ここで、図 27に示すように、 X方向および Y方向を規定する。また、 Y方向の位置が 同じ 5個の発光ダイオード Lの「X」として図 27中左端からの順番を割り当て、発光ダ ィオード Lの「Y」として当該発光ダイオード Lが属する行の図 27中上端からの順番を 割り当てる。
[0257] そして、発光ダイオード Lに、当該発光ダイオード Lに割り当てた「Χ」, 「Υ」を用いた インデックス (Χ、 Υ)を割り当てる。
本実施形態では、図 27に示す Υ方向の位置が同一の 5個の発光ダイオード L (X, Y)を直列接続した場合を例示する。
[0258] 図 27〜図 30に示すように、 LED光源モジュール 11Rは、 R発光の 25個の発光ダ ィオード L (X, Y)を実装基板 31上に配置している。
[0259] 図 31は、発光ダイオード L (X, Y)の外観斜視図である。
図 31に示すように、発光ダイオード L (X, Y)は、シングルワイヤ方式のダイオード である。 図 31に示すように、発光ダイオード L(X, Y)の表面側である n型半導体層側に、 2 次元形状が略矩形の n側面 41 (X, Y)を有している。 n側面 41(X, Y)が発光面とな る。複数の発光ダイオード L(X, Y)は、相互に同一外形を有している。
n側面 41(X, Y)の略中央に n型電極 45 (X, Y)が形成されている。 n側面 41の一 辺の長さは例えば、 320 m程度である。また、発光ダイオード L(X, Y)の厚みは、 180 m程度である。 n側面 41(X, Y)の領域のうち n型電極 45 (X, Y)が形成され て!/、な!/、領域が発光領域となる。
n側面 41(X, Y)と反対側の裏面には、その全面に p型電極 43 (X, Y)が形成され ている。
[0260] 以下、 LED光源モジュール 11Rの発光ダイオード L(X, Y)のレイアウトについて説 明する。
[0261] 図 27に示すように、 LED光源モジュール 11Rにおいては、実装基板 31上の Y方 向における異なる 5個の位置の各々に、 X方向に沿って 5個の発光ダイオード L(X, Y)が配置されている。
[0262] 発光ダイオード L(X, Y)は、例えば、矩形の n側面 41 (X, Y)の一辺を X方向に対 して反時計回りに略 25° 傾けた姿勢で実装基板 31上に配置されている。
LED光源モジュール 11Rでは、例えば、 2mm2程度の領域に約 25個の発光ダイ オード L(X, Y)が配置されている。
[0263] 本実施形態において、発光ダイオード L(X, 1)〜(X, 5)の X方向の位置は同じで ある。
また、発光ダイオード L(l, Y)〜(5, Υ)の Υ方向の位置は同じである。
[0264] 実装基板 31には、発光ダイオード L(X, Y)が載置される位置に対応して p用電極 ノ ッド 61 (X, Y)および n用電極パッド 63 (Y)が形成されている。
[0265] p用電極パッド 61 (X, Y)には、発光ダイオード L(X, Y)の p型電極 43(X, Y)がボ ンデイングにより接着される。
[0266] 図 28に示すように、 p用電極パッド 61 (2, Y) , 61 (3, Y) , 61 (4, Y) , 61 (5, Y) は、第 1の矩形領域 61a(2, Y), 61a(3, Y) , 61a(4, Υ) , 61a (5, Υ)と第 2の矩形 領域 61b(2, Y), 61b(3, Y) , 61b(4, Υ) , 61b(5, Υ)と有する。 [0267] 第 1の矩形領域 61a (2, Y) , 61a (3, Y) , 61a (4, Υ) , 61a (5, Υ)には、発光ダイ オード、 L(2, Y), L(3, Y), L(4, Y) , L(5, Υ)の裏面の ρ型電極 43 (2, Υ) , 43(3 , γ), 43(4, Υ), 43(5, Υ)がボンディングされる。第 1の矩形領域 61a (2, Y) , 61 a (3, Y), 61a (4, Y) , 61a (5, Υ)は、発光ダイオード L (2, Y) , L(3, Υ) , L(4, Υ ), L(5, Υ)の裏面より小さぐ発光ダイオード L (2, Y), L(3, Y) , L(4, Υ) , L(5, Υ)が載置された状態で、正面側からは見えない。
[0268] このように第 1の矩形領域 61a(2, Y) , 61a(3, Y) , 61a(4, Υ) , 61a(5, Υ)を形 成することで、発光ダイオード L(X, Y)を高密度実装した場合でも、隣接する p用電 極パッド 61 (X, Y)の間に所望の距離を持たせることができ、電気的な干渉を小さく できる。
[0269] p用電極パッド 61 (2, Y), 61(3, Y) , 61(4, Y) , 61(5, Y)の第 2の矩形領域 61 b(2, Y), 61b (3, Y), 61b (4, Y) , 61b (5, Υ)は、実装基板 31上に発光ダイォー ド L(X, Y)をボンディングした状態でも、発光ダイオード L(X, Y)によって占有されな い(表面側に露出している)。
[0270] 本実施形態では、図 27に示すように、発光ダイオード L(X, Y)を、その n側面 41 ( X, Y)の矩形の一辺を X方向に対して反時計回りに略 25° 傾けた姿勢で実装基板 31上に配置した。これにより、隣接する 4つの発光ダイオード L(X, Y)の間に、発光 ダイオード L(X, Y)の一辺より短い辺で各辺が形成された領域(正方形に近い領域) 力 S生じる。本実施形態では、当該領域に、上述した p用電極パッド 61 (2, Y), 61(3 , Y), 61(4, Y), 61(5, Y)の第 2の矩形領域 61b (2, Y) , 61b (3, Y) , 61b (4, Υ ), 61b(5, Υ)を配置している。その結果、発光ダイオード L(X, Y)を傾けないで配 置した場合に比べて、当該領域を小さくでき、単位面積当たりの発光量を高めること ができる。
[0271] 図 27に示すように、発光ダイオード L (5, Y)の図中右側には、 n用電極パッド 63 ( Y)が配置されている。
n用電極パッド 63 (Y)は、発光ダイオード L (5, Y)の n型電極 45 (5, Y)とワイヤ W (5, Y)を介して接続されている。
n用電極パッド 63 (Y)には、 LED光源モジュール 11Rの駆動時に所定の電圧が印 加される。
[0272] 以下、 LED光源モジュール 11Rにおける p用電極パッド 61 (X, Y)、 n用電極パッド
63 (Y)および発光ダイオード L (X, Y)の間の接続関係を説明する。
図 27において、発光ダイオード L(X, Y)の n型電極 45(X, Y)に接続されるワイヤ を W(X, Y)と表す。
[0273] LED光源モジュール 11Rでは、 X方向に沿って位置する 5個の発光ダイオード L(l , Y)〜L(5, Y)が順に直列接続されている。
すなわち、 ρ用電極パッド 61(1, Υ)がグランドに接続されている。
Ρ用電極パッド 61(1, Υ)は、発光ダイオード L(l, Y)の p型電極 43(1, Y)と直接 接続されている。
発光ダイオード L(l, Y)の n型電極 45(1, Y)は、 p用電極パッド 61(2, Y)の第 2 の矩形領域 61b(2, Y)にワイヤ W(l, Y)を介して接続されている。
P用電極パッド 61 (2, Y)の第 1の矩形領域 61a (2, Y)は、発光ダイオード L (2, Y )の 型電極43(2, Y)と直接接続されている。
[0274] 発光ダイオード L (2, Y)の n型電極 45 (2, Y)は、 p用電極パッド 61 (3, Y)の第 2 の矩形領域 61b(3, Y)にワイヤ W(2, Y)を介して接続されている。
P用電極パッド 61 (3, Y)の第 1の矩形領域 61a (3, Y)は、発光ダイオード L (3, Y )の 型電極43(3, Y)と直接接続されている。
発光ダイオード L (3, Y)の n型電極 45 (3, Y)は、 p用電極パッド 61 (4, Y)の第 2 の矩形領域 61b(4, Y)にワイヤ W(3, Y)を介して接続されている。
P用電極パッド 61 (4, Y)の第 1の矩形領域 61a (4, Y)は、発光ダイオード L (4, Y )の 型電極43(4, Y)と直接接続されている。
[0275] 発光ダイオード L (4, Y)の n型電極 45 (4, Y)は、 p用電極パッド 61 (5, Y)の第 2 の矩形領域 61b(5, Y)にワイヤ W(4, Y)を介して接続されている。
P用電極パッド 61 (5, Y)の第 1の矩形領域 61a (5, Y)は、発光ダイオード L (5, Y )の 型電極43(5, Y)と直接接続されている。
[0276] 発光ダイオード L (5, Y)の n型電極 45 (5, Y)は、ワイヤ W(5, Y)を介して、 n用電 極パッド 63 (Y)に接続されて!/、る。 [0277] 上述したように、 LED光源モジュール 11Rでは、図 27に示すように 25個の発光ダ ィオード L (X, Y)を X方向に対して反時計回りに略 25° 回転させた姿勢で実装基板 31に配置した。
[0278] これにより、隣接する 4つの発光ダイオード L (X, Y)の間に、発光ダイオード L (X, Y)の一辺より短い辺で各辺が形成された領域 (正方形に近い領域)、すなわち p用 電極パッド 61 (X, Y)の第 2の矩形領域 61b (X, Y)が生じる。その結果、発光ダイォ ード L (X, Y)を傾けないで配置した場合に比べて、当該領域を小さくでき、単位面 積当たりの発光量を高めることができる。
すなわち、 LED光源モジュール 11Rを、その製造工程を困難にすることなぐ小規 模にできる。
[0279] 以下、 LED光源モジュール 11Rの動作例を説明する。
LED光源モジュール 11Rにおいては、電源が投入されると、 n用電極パッド 63 (Y) が所定の電位に設定される。
[0280] これにより、直列に接続された発光ダイオード L (5, Y)の n型電極 45 (5, Y)と、発 光ダイオード L (X, 1)の p型電極 43 (X, 1)と間に、上記所定の電位に応じた電位差 が発生する。
[0281] その結果、発光ダイオード L (5, Y)の n型電極 45 (5, Y)から、発光ダイオード L (l
, Y)の p型電極 43 (1 , Y)に向けて駆動電流が流れ、発光ダイオード L (l , Y)〜L (
5, Y)の n側面 41 (1 , Y)〜(5, Υ)が発光する。
[0282] LED光源モジュール 11Rでは、発光ダイオード L (X, Y)のうち、同じ Yが割り当て られた発光ダイオード L (X, Y)は直列接続されるが、異なる Yが割り当てられた発光 ダイオード L (X, Y)との間では並列接続となる。
[0283] そのため、発光ダイオード L (X, Y)あるいはそのワイヤ Wl (X, Y)に欠陥が生じた 場合でも、異なる Yが割り当てられた発光ダイオード L (X, Y)の発光には影響がない
[0284] 以下、 LED光源モジュール 11Rの製造方法を説明する。
先ず、実装基板 31上に図 28に示すパターンで p用電極パッド 61 (X, Y)および n 用電極パッド 63 (Y)を形成する。 [0285] 次に、実装基板 31に形成された p用電極パッド 61 (1, Y)の端部、並びに p用電極 ノ /ド 61 (2, Y)〜(5, Υ)の第 1の矩形領域 61a (X, Y)上に接着剤を塗布し、その 上に発光ダイオード L(X, Y)をそれぞれ載置して固定する。
[0286] 次に、図 32に示すキヤビラリを用いたワイヤボンディングにより、図 27に示すように
、発光ダイオード L(l, Y)の n型電極 45(1, Y)と、 p用電極パッド 61 (2, Y)の第 2の 矩形領域 61b(2, Y)との間に、ワイヤ W(l, Y)を形成する。
[0287] また、キヤビラリを用いたワイヤボンディングにより、図 27に示すように、発光ダイォ ード L(2, Y)の n型電極 45 (2, Y)と、 p用電極パッド 61 (3, Y)の第 2の矩形領域 61 b(3, Y)との間に、ワイヤ W(2, Y)を形成する。
[0288] また、キヤビラリを用いたワイヤボンディングにより、図 27に示すように、発光ダイォ ード L(3, Y)の n型電極 45 (3, Y)と、 p用電極パッド 61 (4, Y)の第 2の矩形領域 61 b(4, Y)との間に、ワイヤ W(3, Y)を形成する。
[0289] また、キヤビラリを用いたワイヤボンディングにより、図 27に示すように、発光ダイォ ード L(4, Y)の n型電極 45 (4, Y)と、 p用電極パッド 61 (5, Y)の第 2の矩形領域 61 b(5, Y)との間に、ワイヤ W(4, Y)を形成する。
[0290] また、キヤビラリを用いたワイヤボンディングにより、図 27に示すように、発光ダイォ ード L(5, Y)の n型電極 45(5, Y)と、 n用電極パッド 63 (Y)との間に、ワイヤ W(5,
Y)を形成する。
[0291] 以上説明したように、プロジェクタ 1の LED光源モジュール 11R, 11G, 11Bでは、 p型電極 43(X, Y)と n型電極 45(X, Y)とが反対側の面に備えられた発光ダイォー ド L(X, Y)を実装する場合に、発光ダイオード L(X, Y)を X方向に対して反時計回り に略 25° 回転させた姿勢で実装基板 31に配置する。
[0292] これにより、隣接する 4つの発光ダイオード L(X, Y)の間に、発光ダイオード L(X, Y)の一辺より短い辺で各辺が形成されたボンディング領域 (正方形に近い領域)が 生じる。そして、当該ボンディング領域に、隣接する発光ダイオード L(X, Y)の n型電 極 45(X, Y)とワイヤにより接続される p用電極パッド 61 (X, Y)の第 2の矩形領域 61 b(X, Y)を位置させる。
[0293] そのため、発光ダイオード L (X, Y)を傾けな!/、で配置した場合に比べて、上記ボン デイング領域をワイヤーを接続できる限界まで小さくでき、発光ダイオード L (X, Y)を より高密度に実装でき、単位面積当たりの発光量を高めることができる。
[0294] すなわち、 LED光源モジュール 11Rを、その製造工程を困難にすることなく(従来 のワイヤーボンディングの精度を用いて)、発光量を小さくすることなぐ構成を小規 模にできる。
[0295] <第 11実施形態の変形例〉
図 33は、本実施形態の LED光源モジュール 111Rを説明するための図である。 上述した実施形態では、図 31に示すように、 n側面 41 (X, Y)と裏面とが略正方形 の発光ダイオード L (X, Y)を用いた場合を例示した。
[0296] 本変形例の LED光源モジュール 111Rは、図 33に示すように、 n側面 141 (X, Y) と裏面とが略長方形の発光ダイオード M (X, Y)を用いて!/、る。
なお、図 33に示す例では、 9個の発光ダイオード M (X, Y)を 3 X 3のマトリクス状に 配置した場合を例示したが、発光ダイオード M (X, Y)の数等は特に限定されない。
[0297] 図 33に示す LED光源モジュール 111Rにおいても、発光ダイオード M (X, Y)を X 方向に対して反時計回りに略 25° 回転させた姿勢で実装基板 31に配置している。
[0298] これにより、隣接する 4つの発光ダイオード M (X, Y)の間に、発光ダイオード M (X
, Y)の発光面の一辺より短い辺で各辺が形成されたボンディング領域 (正方形に近 い領域)が生じる。そして、当該ボンディング領域に、隣接する発光ダイオード M (X,
Y)の n型電極 145 (X, Y)に対してワイヤにより接続される p用電極パッド 161 (X, Y) の第 2の矩形領域 161b (X, Y)を位置させる。
[0299] そのため、発光ダイオード M (X, Y)を傾けな!/、で配置した場合に比べて、上記ボ ンデイング領域をワイヤーを接続できる限界まで小さくでき、発光ダイオード M (X, Y
)をより高密度に実装して単位面積当たりの発光量を高めることができる。
[0300] すなわち、 LED光源モジュール 111Rを、その製造工程を困難にすることなぐ且 つ発光量を小さくすることなぐ構成を小規模にできる。
[0301] <第 12実施形態〉
上述した第 11実施形態では、 R, G, Bをそれぞれ発光する 3つの LED光源モジュ ールを用いる場合を例示した力 S、本実施形態では、 1つの LED光源モジュールを用 いて R, G, B発光を行う場合を例示する。
[0302] 本実施形態にかかわるプロジェクタの全体構想図は図 16と同様である。
[0303] 以下、図 16における、本発明の LED光源モジュール 511の LEDチップレイアウト を説明する。
図 34は、図 16に示す LED光源モジュール 511の LEDチップレイアウトを説明する ための図である。 図 34に示すように、 LED光源モジュール 511は、赤発光する 4個 の発光ダイオード R(X, Y)、緑発光する 8個の発光ダイオード G(X, Y)、青発光す る 4個の発光ダイオード B(X, Y)の合計 16個の発光ダイオードを 4X4のマトリクス状 に配置している。
[0304] 図 34に示すように、 LED光源モジュール 511の実装基板上の Y方向における異な る 4個の位置の各々に、 X方向に沿って 4個の発光ダイオード R(X, Y), G(X, Y), Β(Χ, Υ)が配置されている。
発光ダイオード R(X, Y), G(X, Y), B(X, Y)は、図 31に示す発光ダイオード L( X, Y)と同様に、シングルワイヤ型であり、 n側面 41 (X, Y)に n型電極 45 (X, Y)を 備え、その裏面が p型電極 43 (X, Y)となっている。
発光ダイオード R(X, Y), G(X, Υ), Β(Χ, Υ)は、例えば、 η側面 41(Χ, Υ)の一 辺を X方向に対して反時計回りに略 25° 傾けた姿勢で実装基板上に配置されてい
LED光源モジュール 511では、例えば、 2mm2程度の領域に約 16個の発光ダイォ ード R(X, Y), G(X, Υ), Β(Χ, Υ)が配置されている。
[0305] 以下、 LED光源モジュール 511の ρ用電極パッド 261 (X, Y)および n用電極パッド
263 (Y)の配置パターンを説明する。
[0306] 図 35は、本発明の第 12実施形態に係わる LED光源モジュール 511における LE
D光源モジュール 511の p用電極パッド 261 (X, Y)および n用電極パッド 263 (Y)の 配置パターンを説明するための図である。
[0307] LED光源モジュール 511の実装基板上には、図 35に示すように、 p用電極パッド 2
61 (X, Y)と、 n用電極パッド 163 (Y)とが形成されている。
P用電極ノ ッド、 261 (2, 1), 261(3, 1), 261(4, 1), 261(1, 2), 261(2, 2), 2 61(3, 2), 261(4, 2), 261(2, 3), 261(3, 3), 261(1, 4), 261(2, 4), 261( 3, 4)の形状は、図 28に示す p用電極パッド 61 (X, Y)と略同じである。
[0308] p用電極ノ ッド、261 (2, 1), 261(3, 1), 261(4, 1), 261(1, 2), 261(2, 2), 2 61(3, 2), 261(4, 2), 261(2, 3), 261(3, 3), 261(1, 4), 261(2, 4), 261( 3, 4)は、 p用電極パッド 61 (X, Y)と同様に、第 1の矩形領域 261a (X、Y)と第 2の 矩形領域 26 lb (X, Y)と有する。
[0309] 第 1の矩形領域 261a (X, Y)には、発光ダイオードの裏面の p型電極 43 (X, Y)が ボンディングされる。第 1の矩形領域 261a(X, Y)は、発光ダイオードの裏面より小さ ぐ発光ダイオードが載置された状態で、正面側からは見えない。
[0310] このように第 1の矩形領域 261a(X, Y)を形成することで、発光ダイオードを高密度 実装した場合でも、隣接する p用電極パッド 261 (X, Y)の間に所望の距離を持たせ ること力 Sでき、電気的な干渉を小さくできる。
[0311] 第 2の矩形領域 261b (X, Y)は、実装基板上に発光ダイオードをボンディングした 状態でも、発光ダイオードによって占有されな!/、 (表面側に露出する)。
[0312] 本実施形態では、図 34に示すように、発光ダイオード R(X, Y), G(X, Y) , Β(Χ, Υ)を、その η側面 41(Χ, Υ)の一辺を X方向に対して反時計回りに略 25° 傾けた姿 勢で実装基板上に配置した。
[0313] これにより、隣接する 4つの発光ダイオード R(X, Y), G(X, Y) , Β(Χ, Υ)の間に、 発光ダイオード R(X, Y), G(X, Y), B(X, Y)の n側面 41(X, Y)の一辺より短い辺 で各辺が形成されたボンディング領域 (正方形に近い領域)が生じる。そして、当該 ボンディング領域に、隣接する発光ダイオード R(X, Y), G(X, Υ), Β(Χ, Υ)の η型 電極 145 (X, Υ)とワイヤにより接続される ρ用電極パッド 261 (X, Υ)の第 2の矩形領 域 261b (X, Y)を位置させる。
[0314] そのため、発光ダイオード R(X, Y) , G(X, Y) , Β(Χ, Υ)を傾けないで配置した場 合に比べて、上記ボンディング領域をボンディング可能な最小限の大きさまで小さく でき、発光ダイオード R(X, Y), G(X, Υ), Β(Χ, Υ)をより高密度に実装でき、単位 面積当たりの発光量を高めることができる。
[0315] すなわち、 LED光源モジュール 511を、その製造工程を困難にすることなぐ発光 量を小さくすることなく、構成を小規模にできる。
[0316] 以下、 LED光源モジュール 511における p用電極パッド 261 (X, Y)、 n用電極パッ ド 263 (Y)および発光ダイオード R(X, Y), G(X, Y) , Β(Χ, Υ)の間の接続関係を 説明する。
[0317] 図 34において、発光ダイオード R(X, Y), G(X, Y) , Β(Χ, Υ)の η型電極 45(Χ,
Υ)に接続されるワイヤを W(X, Y)と表す。
[0318] LED光源モジュール 511では、図 34に示すように、図 34中左上の R発光する 4つ の発光ダイオード R(l, 1), R(2, 1), R(2, 2), R(l, 2)が直列接続されている。
[0319] また、図 34中右下の B発光する 4つの発光ダイオード B (4, 4), B(3, 4), B(3, 3) , Β(4, 3)が直列接続されている。
また、図 34中右上の G発光する 4つの発光ダイオード G (4, 1), G(3, 1), G(3, 2 ), G(4, 2)が直列接続されている。
また、図 34中左下の G発光する 4つの発光ダイオード G(l, 3), G(2, 3), G(2, 4 ), G(l, 4)が直列接続されている。
[0320] R発光に関する接続関係は以下の通りである。
p用電極パッド 261(1, 1)がグランドに接続されている。
P用電極パッド 261(1, 1)は、発光ダイオード R(l, 1)の p型電極 43(1, 1)と直接 接続されている。
発光ダイオード R(l, 1)の n型電極 45(1, 1)は、 p用電極パッド 261 (2, 1)の第 2 の矩形領域 261b(2, 1)にワイヤ W2(l, 1)を介して接続されている。
P用電極パッド 261(2, 1)の第 1の矩形領域 261a(2, 1)は、発光ダイオード R(2,
1)の p型電極 43 (2, 1)に直接接続されている。
[0321] 発光ダイオード R(2, 1)の n型電極 45(2, 1)は、 p用電極パッド 261 (2, 2)の第 2 の矩形領域 261b (2, 2)にワイヤ W2 (2, 1)を介して接続されている。
P用電極パッド 261(2, 2)の第 1の矩形領域 261a(2, 2)は、発光ダイオード R(2,
2)の p型電極 43 (2, 2)に直接接続されている。
発光ダイオード R(2, 2)の n型電極 45(2, 2)は、 p用電極パッド 261 (1, 2)の第 2 の矩形領域 261b(l, 2)にワイヤ W2(2, 2)を介して接続されている。 p用電極パッド 261(1, 2)の第 1の矩形領域 261a(l, 2)は、発光ダイオード R(l, 2)の p型電極 43(1, 2)に直接接続されている。
発光ダイオード R(l, 2)の n型電極 45(1, 2)は、 n用電極パッド 263 (2)にワイヤ W 2(1, 2)を介して接続されている。
[0322] B発光に関する接続関係は以下の通りである。グランドに接続された p用電極パッド
261(4, 4)を備えた発光ダイオード B (4, 4)と、発光ダイオード B (3, 4)と、発光ダイ オード B(3, 3)と、発光ダイオード B (4, 3)とが直列に接続され、発光ダイオード B(4 , 3)の n型電極 45 (4, 3)が n用電極パッド 263 (3)に接続されている。
[0323] 図 34中右上の G発光に関する接続関係は以下の通りである。
グランドに接続された p用電極パッド 261(4, 2)を備えた発光ダイオード G (4, 2)と、 発光ダイオード B (3, 3)と、発光ダイオード B (3, 1)と、発光ダイオード B (4, 1)とが 直列に接続され、発光ダイオード B (4, 1)の n型電極 45(4, 1)が n用電極パッド 263 (1)に接続されている。
[0324] 図 34中左下の G発光に関する接続関係は以下の通りである。
グランドに接続された p用電極パッド 261(1, 3)を備えた発光ダイオード G(l, 3)と、 発光ダイオード B(2, 3)と、発光ダイオード B (2, 4)と、発光ダイオード B(l, 4)とが 直列に接続され、発光ダイオード B(l, 4)の n型電極 45(1, 4)が n用電極パッド 263 (4)に接続されている。
[0325] 以下、本実施形態の LED光源モジュール 511の動作例を説明する。
LED光源モジュール 511においては、電源が投入されると、 n用電極ノ クド 263(1 ), 263 (4)には G発光用の所定の電圧が印加される。 n用電極パッド 263 (2)には R 発光用の所定の電圧が印加される。 n用電極パッド 263 (3)には B発光用の所定の 電圧が印加される。
[0326] これにより、直列に接続された発光ダイオード R(l, 1), R(2, 1), R(2, 2), R(l, 2)の p型電極 43 (X, Y)と n型電極 45(X, Y)の間に R発光用の所定の電圧が印加 され、これらが R発光する。
[0327] また、直列に接続された発光ダイオード B (4, 4), B(3, 4), B(3, 3), B(4, 3)の p型電極 43(X, Y)と n型電極 45(X, Y)の間に B発光用の所定の電圧が印加され、 これらが B発光する。
[0328] また、直列に接続された発光ダイオード G (4, 2), G(3, 2), G(3, 1), G(4, 1)の p型電極 43(X, Y)と n型電極 45(X, Y)の間に G発光用の所定の電圧が印加され、 これらが G発光する。
[0329] また、直列に接続された発光ダイオード G(l, 3), G(2, 3), G(2, 4), G(l, 4)の p型電極 43(X, Y)と n型電極 45(X, Y)の間に G発光用の所定の電圧が印加され、 これらが G発光する。
[0330] 本実施形態において、発光ダイオード R(X, Y), G(X, Υ), Β(Χ, Υ)は、その内 部構成等の相違から、外形形状 ·寸法が多少異なる。し力、し、当該相違は、本発明に
V、う「外形が略同一」の範囲内である。
[0331] 以上説明したように、プロジェクタ 501では、 LED光源モジュール 511を用いること で、単数の光源モジュールで R, G、 B発光が可能である。
[0332] LED光源モジュール 211は、第 1実施形態と同様に、発光ダイオード R(X, Y) , G
(X, Y), B(X, Y)を X方向に対して反時計回りに略 25° 回転させた姿勢で実装基 板に配置する。そのため、高密度実装が可能になる。
[0333] また、 LED光源モジュール 511は、発光ダイオード R(X, Y) , B(X, Y)に比べて発 光輝度や略半分の発光ダイオード G(X, Y)を、発光ダイオード R(X, Y), B(X, Y) の 2倍の数配置することで、 R, G, Βの発光量を略同じにできる。
[0334] さらに、 LED光源モジュール 511では、同一発光の発光ダイオード R(X, Y), G(X
, Υ), Β(Χ, Υ)を直列接続することで、各色の発光に適した駆動電圧を発光ダイォ ード R(X, Y), G(X, Υ), Β(Χ, Υ)を印加できる。
[0335] 本発明は上述した実施形態には限定されない。
すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上 述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネー シヨン、並びに代替を行ってもよい。
[0336] 上述した実施形態では、図 27等に示すように複数の発光ダイオードを列方向に直 列に接続する場合を例示した力 例えば、行方向に直列に接続したり、斜め方向に 直列に接続してもよい。 [0337] また、上述した実施形態では、発光ダイオードを直列接続する場合を例示したが、 一部の発光ダイオードを並列接続しても良い。
[0338] 上述した実施形態では、発光ダイオードを 5 X 5、 3 X 3、 4 X 4のマトリクス状に配置 した場合を例示した力 S、複数の発光ダイオードをマトリクス状に配置するものであれば
、その数は特に限定されない。
[0339] また、上述した実施形態では、発光ダイオード L (X, Υ) , M (X, Y) , R(X, Y) , G (
X, Υ) , Β (Χ, Υ)として発光面(η側面)の略中央に η型電極 45 (X, Υ)が位置するも のを例示した力 発光面の端部に η型電極が位置する発光ダイオードを用いてもよい
[0340] また、発光面に ρ型電極を配置し、裏面に η型電極を配置してもよい。さらに、 ρ型電 極および η型電極の形状は特に限定されない。
[0341] また、上述した実施形態では、発光ダイオード L (X, Υ) , M (X, Y) , R(X, Y) , G ( X, Υ) , Β (Χ, Υ)の外形は、は直方体であれば特に限定されない。
[0342] また、上述した実施形態では、発光ダイオード L (X, Y) , R (X, Y) , G (X, Y) , B ( X, Υ)を X方向に対して反時計回りに略 25° 回転させた姿勢で実装基板に配置した 場合を例示したが、当該角度は、 0° , 90° 、 180° 以外であれば特に限定されな い。当該角度は、隣接する発光ダイオードとの間の距離、並びにボンディング領域と して必要な大きさ等を基に決定される。
[0343] また、上述した実施形態では、プロジェクタ 1 , 501の方式として、 DLP (登録商標) 方式を例示したが、 3LCD方式や LCOS(Liquid Crystal On Silicon)方式を用いても よい。ここで、 3LCDや LCOS方式を用いる場合は、 LED光源モジュールからの光を 、液晶パネルを用いて、画像データに応じて画素単位で反射あるいは透過を制御す
[0344] また、上述した実施形態では、本発明の発光素子として、 LEDを例示したが、半導 体レーザを用いてもよい。
[0345] また、上述した実施形態では、本発明の発光装置をプロジェクタに用いた場合を例 示したが、本発明の発光装置をプロジェクタ以外の車両のヘッドライト、照明装置、表 示装置のバックライト等に用いてもょレ、。 図面の簡単な説明
[図 1]図 1は、本発明の第 1実施形態に係わるプロジェクタの全体構成図である。
[図 2]図 2は、図 1に示す LED光源モジュールの LEDチップレイアウトを説明するた めの図である
[図 3]図 3は、図 2に示す LED光源モジュールを矢印 Aの向きから見た図である。
[図 4]図 4は、図 2に示す発光ダイオード L (X, Y)の外観斜視図である。
[図 5]図 5は、第 1実施形態の変形例に係わる LED光源モジュールの LEDチップレイ アウトを説明するための図である。
[図 6]図 6は、本発明の第 2実施形態に係わる LED光源モジュールの LEDチップレイ アウトを説明するための図である。
[図 7]図 7は、本発明の第 2実施形態の変形例に係わる LED光源モジュールの LED
[図 8]図 8は、第 3実施形態の変形例に係わる LED光源モジュールの LEDチップレイ アウトを説明するための図である。
[図 9]図 9は、本発明の第 3実施形態の変形例に係わる LED光源モジュールの LED
[図 10]図 10は、本発明の実施形態の変形例を説明するための図である。
[図 11]LED光源モジュールの LEDチップレイアウトを説明するための図である
[図 12]図 12は、図 11に示す LED光源モジュールを矢印 Aの向きから見た図である。
[図 13]図 13は、第 4実施形態の変形例に係わる LED光源モジュールの LEDチップ
[図 14]図 14は、本発明の第 5実施形態に係わる LED光源モジュールの LEDチップ
[図 15]第 5実施形態の変形例に係わる LED光源モジュールの LEDチップレイアウト を説明するための図である。
[図 16]本発明の第 6実施形態に係わるプロジェクタの全体構成図である。
[図 17]図 16に示す LED光源モジュール 511の LEDチップレイアウトを説明するため の図である。 園 18]本発明の実施形態の LED光源モジュール 511の変形例を説明するための図 である。
園 19]本発明の第 7実施形態に係る LED光源モジュールの外観斜視図である。
[図 20]図 19に示す LED光源モジュールを側面方向から見た図である。
[図 21]図 21は、図 19に示す LED光源モジュールを平面方向から見た図である。 園 22]本発明の第 8実施形態に係る LED光源モジュールの平面側の構成を説明す るための図である。
[図 23]図 23は、第 8実施形態に係る LED光源モジュールの変形例を説明するため の図である。
園 24]図 24は、第 8実施形態に係る LED光源モジュールのその他の変形例を説明 するための図である。
園 25]図 25は、本発明の第 9実施形態に係る LED光源モジュールの平面側の構成 を説明するための図である。
[図 26]図 26は、本発明の第 10実施形態に係る LED光源モジュールの平面側の構 成を説明するための図である。
[図 27]LED光源モジュールの LEDチップレイアウトを説明するための図である。
[図 28]LED光源モジュールの p用電極パッドおよび n用電極パッドのパターンを説明 するための図である。
[図 29]図 27に示す LED光源モジュール 11Rを矢印 Aの向き力も見た図である。 園 30]LED光源モジュールの LEDチップのレイアウトの外観斜視図である。
園 31]図 27に示す発光ダイオード L (X, Y)の外観斜視図である。
園 32]キヤビラリを用いたワイヤーボンディングを説明するための図である。
園 33]第 11実施形態の変形例に係わる LED光源モジュールの LEDチップレイァゥ トを説明するための図である。
[図 34]LED光源モジュールの LEDチップレイアウトを説明するための図である。
[図 35]図 34に示す LED光源モジュールの p用電極パッドおよび n用電極パッドのパ ターンを説明するための図である。
符号の説明 1…プロジェクタ、 11R, 11G, 11B, 11R, llRa, 411R, 511R…: LED光源モジュ ール、 13…光学系、 15…集光レンズ、 17---DMD, 19…投影レンズ、 21…スクリー ン、 L(X, Y), M(X, Y)…発光ダイオード、 Wl, W2, W3, W4, W5(X, Y)…ワイ ャ、 43 (X, Y) , 343 (X, Υ) · · ·η型電極、 45 (X, Υ) , 345 (X, Υ) · · ·ρ型電極
502···ロッドインテグレータ、 61a(X, Y) , 261a(X, Y)…第 1の矩形領域、 61b(X, Y), 261b(X,丫)' 第2の矩形領域、し , Y), N(X, Y) , R(X, Υ) , G(X, Υ) , Β (X, Υ)…発光ダイオード、

Claims

請求の範囲
[1] 第 1の電極と、当該第 1の電極と逆極性を有する第 2の電極とを同一表面側に備え 、面発光する前記表面側の 2次元形状が略矩形であり、相互に外形が略同一の複数 の発光素子を、互いに直交する列方向および行方向に其々複数配置した発光装置 であって、
前記列方向に隣接し且つ同じ姿勢で配置された前記発光素子の異極同士をワイ ャで接続して接続列を形成し、
前記行方向に前記接続列と同一の列が繰り返し複数配置され、
前記ワイヤは、前記列方向に対して非平行に配置されている発光装置。
[2] 前記接続列は、
前記行方向の位置が、
当該接続列に属する奇数番目の前記発光素子の前記行方向の位置が同じであり 当該接続列に属する偶数番目の前記発光素子の前記行方向の位置が相互に同じ であり、且つ、前記奇数番目の発光素子の行方向の位置とは異なる請求項 1に記載 の発光装置。
[3] 前記発光素子は、前記矩形の対角線に沿って前記第 1の電極と前記第 2の電極と が位置し、
前記複数の発光素子は、マトリクス状に配置されて!/、る請求項 1に記載の発光装置
[4] 相互に異なる色を時分割で発光する複数の発光手段と、
前記発光装置からの光を、画像データに応じて画素単位で反射あるいは透過して 投影方向に出射する光制御手段とを有し、
前記発光手段は、
第 1の電極と、当該第 1の電極と逆極性を有する第 2の電極とを同一表面側に備え 、面発光する前記表面側の 2次元形状が略矩形であり、相互に外形が略同一の複数 の発光素子を、互いに直交する列方向および行方向に其々複数配置した発光装置 であって、 前記列方向に隣接し且つ同じ姿勢で配置された前記発光素子の異極同士をワイ ャで接続して接続列を形成し、
前記行方向に前記接続列と同一の列が繰り返し複数配置され、
前記ワイヤは、前記列方向に対して非平行に配置されているプロジェクタ。
[5] 第 1の電極と、当該第 1の電極と逆極性を有する第 2の電極とを同一表面側に備え 、面発光する前記表面側の 2次元形状が略矩形であり、相互に外形が略同一の複数 の発光素子を、互いに直交する列方向および行方向に其々一定のピッチで複数配 置した発光装置であって、
前記列の各々において、奇数行と偶数行の前記発光素子ごとに、同じ姿勢で配置 された前記発光素子の異なる極が順次ワイヤでつながれて直列に接続されており、 前記ワイヤが前記行方向に隣接する前記発光素子の間に位置するように、偶数行 における前記発光素子は奇数行の前記発光素子に対して行方向にずれた位置に 配置されている発光装置。
[6] 前記ずれの量が前記行方向の各列のピッチの 1/2である請求項 5の発光装置。
[7] 前記第 1の電極および前記第 2の電極が矩形の対角方向にあり、
前記対角方向が前記列の方向と一致するように前記各素子が配置され、 奇数行と偶数行が、前記列方向に、各行のピッチの 1/2だけずれた位置にある請 求項 6の発光装置。
[8] 赤色、緑色および青色をそれぞれ発光する前記発光素子を有し、
同色を発光する複数の前記発光素子が直列に接続されている請求項 5に記載の 発光装置。
[9] 第 1の電極と当該第 1の電極と逆極性を有する第 2の電極とを同一表面側に備えた 複数の発光素子を列方向に直列に接続して構成される発光素子群が、偶数行の前 記発光素子群が奇数行の前記発光素子群に対して列方向に所定量ずれて位置す るように基板上に配置され、
前記発光素子群の各々は、奇数列の前記発光素子と偶数列の前記発光素子とが 前記表面の一部を対向させた姿勢で、奇数列の前記発光素子の前記第 1の電極と 偶数列の前記発光素子の前記第 2の電極とを接続させた積層構造を有し、 前記偶数行の発光素子群の端部の前記発光素子からのワイヤが、当該発光素子 群と行方向で隣接した前記奇数行の発光素子群の間に位置し、
前記奇数行の発光素子群の端部の前記発光素子からのワイヤが、当該発光素子 群と行方向で隣接した前記偶数行の発光素子群の間に位置する発光装置。
[10] 前記ワイヤは、前記積層した発光素子の光取り出し側の表面より、前記基板側に位 置する請求項 9に記載の発光装置。
[11] 相互に異なる色を時分割で発光する複数の発光手段と、
前記発光装置からの光を、画像データに応じて画素単位で反射あるいは透過して 投影方向に出射する光制御手段とを有し、
前記発光手段は、
第 1の電極と、当該第 1の電極と逆極性を有する第 2の電極とを同一表面側に備え 、面発光する前記表面側の 2次元形状が略矩形であり、相互に外形が略同一の複数 の発光素子を、互いに直交する列方向および行方向に其々一定のピッチで複数配 置した発光装置であって、 前記列の各々にお!/、て、奇数行と偶数行の前記発光素 子ごとに、同じ姿勢で配置された前記発光素子の異なる極が順次ワイヤでつながれ て直列に接続されており、
前記ワイヤが前記行方向に隣接する前記発光素子の間に位置するように、偶数行 における前記発光素子は奇数行の前記発光素子に対して行方向にずれた位置に 配置されているプロジェクタ。
[12] 発光面に形成された第 1の電極と、当該第 1の電極と逆極性を有し前記発光面と反 対側の面に形成された第 2の電極とを備えた略直方体を成し、外形が略同一の複数 の発光素子が実装基板上にマトリクス状に配置されており、
前記複数の発光素子の各々が、前記発光面の矩形の各辺を、前記マトリクスの列 方向あるいは行方向に対して傾斜して配置されており、
隣接した 4つの前記発光素子の間に形成された前記発光素子に占有されていない 前記実装基板上の領域に、当該 4つの発光素子の一つの前記発光素子の前記第 2 の電極に導通する電極パッドが位置し、
前記 4つの発光素子のうち前記一つの発光素子以外の発光素子の前記第 1の電 極と、前記占有されていない前記実装基板上の領域に位置する前記電極パッドとが ワイヤを介して接続されて!/、る発光装置。
[13] 前記電極パッドは、前記占有されていない実装基板上の領域に位置する第 1の領 域と、前記発光素子の前記第 2の電極と前記実装基板との間に介在する第 2の領域 とを有する請求項 12に記載の発光装置。
[14] 前記第 2の領域は、前記発光面に沿った 2次元方向において、前記発光素子によ つて占有される領域の内側に位置し、且つ当該領域より面積が小さい請求項 12に記 載の発光装置。
[15] 一方向に沿って位置する複数の前記発光素子がワイヤを介して直列接続されてい る請求項 12に記載の発光装置。
[16] 前記隣接した 4つの発光素子がワイヤを介して直列接続されている請求項 12に記 載の発光装置。
[17] 赤色、緑色および青色をそれぞれ発光する前記発光素子を有し、
同色を発光する複数の前記発光素子が直列に接続されている請求項 12に記載の 発光装置。
[18] 発光面に形成された第 1の電極と、当該第 1の電極と逆極性を有し前記発光面と反 対側の面に形成された第 2の電極とを備えた略直方体を成し、外形が略同一の複数 の発光素子が実装基板上にマトリクス状に配置されており、
第 1の前記発光素子の前記発光面に直交する第 1の側面の一部分が、前記第 1の 発光素子に隣接する第 2の前記発光素子の第 2の側面と対向し、
前記第 1の側面の前記一部分以外の部分に隣接し前記発光素子が配置されてい ない第 1の領域と、前記第 1の発光素子と実装基板との間で前記第 1の発光素子の 前記第 2の電極に接続された第 2の領域とからなる電極パターンを備え、
前記電極パターンの前記第 1の領域は、前記第 1の発光素子以外の前記発光素子 の前記第 1の電極とワイヤを介して接続されている発光装置。
[19] 相互に異なる色を時分割で発光する複数の発光手段と、
前記発光装置からの光を、画像データに応じて画素単位で反射あるいは透過して 投影方向に出射する光制御手段とを有し、 前記発光手段は、発光面に形成された第 1の電極と、当該第 1の電極と逆極性を有 し前記発光面と反対側の面に形成された第 2の電極とを備えた略直方体を成し、外 形が略同一の複数の発光素子が実装基板上にマトリクス状に配置されており、 前記複数の発光素子の各々が、前記発光面の矩形の各辺を、前記マトリクスの列 方向あるいは行方向に対して傾斜して配置されており、
隣接した 4つの前記発光素子の間に形成された、当該 4つの発光素子に占有され ていない前記実装基板上の領域に、当該 4つの発光素子の一つの前記発光素子の 前記第 2の電極に導通する電極パッドが位置し、当該電極パッドが、前記占有されて V、な!/、前記実装基板上の領域を介して、前記 4つの発光素子のうち前記一つの発光 素子以外の発光素子の前記第 1の電極にワイヤを介して接続されているプロジェクタ 相互に異なる色を時分割で発光する複数の発光手段と、
前記発光装置からの光を、画像データに応じて画素単位で反射あるいは透過して 投影方向に出射する光制御手段と有し、
前記発光手段は、
発光面に形成された第 1の電極と、当該第 1の電極と逆極性を有し前記発光面と反 対側の面に形成された第 2の電極とを備えた略直方体を成し、外形が略同一の複数 の発光素子が実装基板上にマトリクス状に配置されており、
第 1の前記発光素子の前記発光面に直交する第 1の側面の一部分が、前記第 1の 発光素子に隣接する第 2の前記発光素子の第 2の側面と対向し、
前記第 1の側面の前記一部分以外の部分に隣接し前記発光素子が配置されてい ない第 1の領域と、前記第 1の発光素子と実装基板との間で前記第 1の発光素子の 前記第 2の電極に接続された第 2の領域とからなる電極パターンを備え、 前記電極パターンの前記第 1の領域は、前記第 1の発光素子以外の前記発光素子 の前記第 1の電極とワイヤを介して接続されているプロジェクタ。
PCT/JP2007/073401 2006-12-04 2007-12-04 発光装置およびプロジェクタ WO2008069204A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008548291A JP5357549B2 (ja) 2006-12-04 2007-12-04 発光装置およびプロジェクタ

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006326408 2006-12-04
JP2006326409 2006-12-04
JP2006-326408 2006-12-04
JP2006-326409 2006-12-04
JP2006-326407 2006-12-04
JP2006326407 2006-12-04
JP2007203810 2007-08-06
JP2007-203810 2007-08-06

Publications (1)

Publication Number Publication Date
WO2008069204A1 true WO2008069204A1 (ja) 2008-06-12

Family

ID=39492090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073401 WO2008069204A1 (ja) 2006-12-04 2007-12-04 発光装置およびプロジェクタ

Country Status (3)

Country Link
JP (1) JP5357549B2 (ja)
TW (1) TW200845423A (ja)
WO (1) WO2008069204A1 (ja)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098457A1 (ja) * 2009-02-27 2010-09-02 東芝ライテック株式会社 発光モジュールおよび照明装置
JP2010205777A (ja) * 2009-02-27 2010-09-16 Toshiba Lighting & Technology Corp 発光モジュール
JP2010287657A (ja) * 2009-06-10 2010-12-24 Toshiba Lighting & Technology Corp 発光モジュール及びその製造方法
JP2011035431A (ja) * 2010-11-16 2011-02-17 Toshiba Lighting & Technology Corp 発光モジュール
JP2011060960A (ja) * 2009-09-09 2011-03-24 Toshiba Lighting & Technology Corp 発光モジュール
JP2011151268A (ja) * 2010-01-22 2011-08-04 Sharp Corp 発光装置
WO2011129203A1 (ja) * 2010-04-16 2011-10-20 日亜化学工業株式会社 発光装置
WO2011129202A1 (ja) * 2010-04-16 2011-10-20 日亜化学工業株式会社 発光装置および発光装置の製造方法
JP2013137986A (ja) * 2011-11-29 2013-07-11 Nichia Corp 発光装置、照明器具
CN103390613A (zh) * 2013-08-14 2013-11-13 中国科学院长春光学精密机械与物理研究所 高发光均匀性的密排列led面阵器件及制备方法
JP2013258161A (ja) * 2008-08-11 2013-12-26 Rohm Co Ltd 照明装置
JP2014027213A (ja) * 2012-07-30 2014-02-06 Ushio Inc 光源ユニット
JP2014042012A (ja) * 2012-07-27 2014-03-06 Nichia Chem Ind Ltd ライン光源用発光装置
WO2014049973A1 (ja) * 2012-09-26 2014-04-03 パナソニック株式会社 発光モジュール
JP2014103023A (ja) * 2012-11-21 2014-06-05 Kaneka Corp 有機elパネル及び有機elパネルの接続構造
JP2014103268A (ja) * 2012-11-20 2014-06-05 Kaneka Corp 有機el発光システム及び給電部材
JP2014140076A (ja) * 2014-04-17 2014-07-31 Sharp Corp 発光装置
EP2770244A1 (en) * 2013-02-25 2014-08-27 OSRAM GmbH Method for mounting light radiation sources and light source therefor
US8866166B2 (en) 2009-06-05 2014-10-21 Cree, Inc. Solid state lighting device
US8878217B2 (en) 2010-06-28 2014-11-04 Cree, Inc. LED package with efficient, isolated thermal path
JP2015019090A (ja) * 2014-08-22 2015-01-29 シャープ株式会社 発光装置
JP2015070242A (ja) * 2013-10-01 2015-04-13 シチズン電子株式会社 半導体発光装置
US9024334B2 (en) 2009-11-13 2015-05-05 Sharp Kabushiki Kaisha Light-emitting device having a plurality of concentric light transmitting areas
EP2643862A4 (en) * 2010-11-22 2015-05-27 Cree Inc LIGHT-EMITTING DEVICES AND METHOD THEREFOR
US9111778B2 (en) 2009-06-05 2015-08-18 Cree, Inc. Light emitting diode (LED) devices, systems, and methods
US9123874B2 (en) 2009-01-12 2015-09-01 Cree, Inc. Light emitting device packages with improved heat transfer
JP2015185810A (ja) * 2014-03-26 2015-10-22 豊田合成株式会社 発光装置及びその製造方法
US9194567B2 (en) 2011-02-16 2015-11-24 Cree, Inc. High voltage array light emitting diode (LED) devices and fixtures
US9300062B2 (en) 2010-11-22 2016-03-29 Cree, Inc. Attachment devices and methods for light emitting devices
EP2590216A3 (en) * 2011-11-01 2016-07-20 Nichia Corporation Light emitting device and lighting apparatus
EP2628196A4 (en) * 2010-10-13 2016-08-24 Cree Inc DEVICES AND METHODS FOR LIGHT EMISSION
US9490235B2 (en) 2010-11-22 2016-11-08 Cree, Inc. Light emitting devices, systems, and methods
US9755126B2 (en) 2012-07-30 2017-09-05 Ushio Denki Kabushiki Kaisha Light source unit
US9859471B2 (en) 2011-01-31 2018-01-02 Cree, Inc. High brightness light emitting diode (LED) packages, systems and methods with improved resin filling and high adhesion
USD823492S1 (en) 2016-10-04 2018-07-17 Cree, Inc. Light emitting device
JP2018121000A (ja) * 2017-01-27 2018-08-02 日亜化学工業株式会社 発光装置の製造方法
US10134961B2 (en) 2012-03-30 2018-11-20 Cree, Inc. Submount based surface mount device (SMD) light emitter components and methods
US10222032B2 (en) 2012-03-30 2019-03-05 Cree, Inc. Light emitter components and methods having improved electrical contacts
EP3483934A1 (en) * 2017-11-09 2019-05-15 LG Electronics Inc. Lamp for vehicle
JP2019114702A (ja) * 2017-12-25 2019-07-11 日亜化学工業株式会社 発光装置及び発光モジュール
IT201800004928A1 (it) * 2018-04-27 2019-10-27 Modulo di illuminazione multi-led-cob
IT201800004931A1 (it) * 2018-04-27 2019-10-27 Modulo di illuminazione multi-led-cob
US11004890B2 (en) 2012-03-30 2021-05-11 Creeled, Inc. Substrate based light emitter devices, components, and related methods
US11101408B2 (en) 2011-02-07 2021-08-24 Creeled, Inc. Components and methods for light emitting diode (LED) lighting
JP2022031370A (ja) * 2017-12-25 2022-02-18 日亜化学工業株式会社 発光装置及び発光モジュール
EP2342760B1 (en) * 2008-09-29 2023-03-15 Bridgelux, Inc. Efficient led array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338632A (ja) * 1993-05-31 1994-12-06 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体発光素子
JP2000056410A (ja) * 1998-06-05 2000-02-25 Seiko Epson Corp 光源装置および表示装置
JP2004014899A (ja) * 2002-06-10 2004-01-15 Para Light Electronics Co Ltd 発光ダイオードチップの直列構造
JP2005259724A (ja) * 2004-02-10 2005-09-22 Fuji Photo Film Co Ltd 発光素子の順方向電圧降下測定方法及び装置、並びに光源装置及びこれを用いた感熱プリンタ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782375U (ja) * 1980-11-05 1982-05-21
JP4491948B2 (ja) * 2000-10-06 2010-06-30 ソニー株式会社 素子実装方法および画像表示装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338632A (ja) * 1993-05-31 1994-12-06 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体発光素子
JP2000056410A (ja) * 1998-06-05 2000-02-25 Seiko Epson Corp 光源装置および表示装置
JP2004014899A (ja) * 2002-06-10 2004-01-15 Para Light Electronics Co Ltd 発光ダイオードチップの直列構造
JP2005259724A (ja) * 2004-02-10 2005-09-22 Fuji Photo Film Co Ltd 発光素子の順方向電圧降下測定方法及び装置、並びに光源装置及びこれを用いた感熱プリンタ

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013258161A (ja) * 2008-08-11 2013-12-26 Rohm Co Ltd 照明装置
US9303833B2 (en) 2008-08-11 2016-04-05 Rohm Co., Ltd. Lighting device
US10295126B2 (en) 2008-08-11 2019-05-21 Rohm Co., Ltd. Lighting device
US9587813B2 (en) 2008-08-11 2017-03-07 Rohm Co., Ltd. Lighting device
US9732916B2 (en) 2008-08-11 2017-08-15 Rohm Co., Ltd. Lighting device
JP2015092490A (ja) * 2008-08-11 2015-05-14 ローム株式会社 照明装置
US8915610B2 (en) 2008-08-11 2014-12-23 Rohm Co., Ltd. Lighting device
EP2342760B1 (en) * 2008-09-29 2023-03-15 Bridgelux, Inc. Efficient led array
US9123874B2 (en) 2009-01-12 2015-09-01 Cree, Inc. Light emitting device packages with improved heat transfer
EP2403017A1 (en) * 2009-02-27 2012-01-04 Toshiba Lighting & Technology Corporation Light-emitting module and illumination apparatus
EP2403017A4 (en) * 2009-02-27 2014-07-02 Toshiba Lighting & Technology LIGHT-EMITTING MODULE AND LIGHTING DEVICE
US8773612B2 (en) 2009-02-27 2014-07-08 Toshiba Lighting & Technology Corporation Light emitting module and illumination apparatus
CN102334202A (zh) * 2009-02-27 2012-01-25 东芝照明技术株式会社 发光模块及照明装置
WO2010098457A1 (ja) * 2009-02-27 2010-09-02 東芝ライテック株式会社 発光モジュールおよび照明装置
JP2010205777A (ja) * 2009-02-27 2010-09-16 Toshiba Lighting & Technology Corp 発光モジュール
US9111778B2 (en) 2009-06-05 2015-08-18 Cree, Inc. Light emitting diode (LED) devices, systems, and methods
US8866166B2 (en) 2009-06-05 2014-10-21 Cree, Inc. Solid state lighting device
JP2010287657A (ja) * 2009-06-10 2010-12-24 Toshiba Lighting & Technology Corp 発光モジュール及びその製造方法
JP2011060960A (ja) * 2009-09-09 2011-03-24 Toshiba Lighting & Technology Corp 発光モジュール
US9607970B2 (en) 2009-11-13 2017-03-28 Sharp Kabushiki Kaisha Light-emitting device having a plurality of concentric light transmitting areas
US9231023B2 (en) 2009-11-13 2016-01-05 Sharp Kabushiki Kaisha Light-emitting device having a plurality of concentric light transmitting areas
US9024334B2 (en) 2009-11-13 2015-05-05 Sharp Kabushiki Kaisha Light-emitting device having a plurality of concentric light transmitting areas
US9679942B2 (en) 2010-01-22 2017-06-13 Sharp Kabushiki Kaisha Light emitting device
JP2011151268A (ja) * 2010-01-22 2011-08-04 Sharp Corp 発光装置
US8723195B2 (en) 2010-01-22 2014-05-13 Sharp Kabushiki Kaisha Light emitting device with plurality of LED chips and/or electrode wiring pattern
US9093357B2 (en) 2010-01-22 2015-07-28 Sharp Kabushiki Kaisha Light emitting device
US9312304B2 (en) 2010-01-22 2016-04-12 Sharp Kabushiki Kaisha LED illuminating device comprising light emitting device including LED chips on single substrate
US9966367B2 (en) 2010-01-22 2018-05-08 Sharp Kabushiki Kaisha Light emitting device
US9425236B2 (en) 2010-01-22 2016-08-23 Sharp Kabushiki Kaisha Light emitting device
US9153561B2 (en) 2010-04-16 2015-10-06 Nichia Corporation Light-emitting device comprising a metal film on a substrate and manufacturing method for the same
WO2011129203A1 (ja) * 2010-04-16 2011-10-20 日亜化学工業株式会社 発光装置
WO2011129202A1 (ja) * 2010-04-16 2011-10-20 日亜化学工業株式会社 発光装置および発光装置の製造方法
US8878217B2 (en) 2010-06-28 2014-11-04 Cree, Inc. LED package with efficient, isolated thermal path
EP2628196A4 (en) * 2010-10-13 2016-08-24 Cree Inc DEVICES AND METHODS FOR LIGHT EMISSION
JP2011035431A (ja) * 2010-11-16 2011-02-17 Toshiba Lighting & Technology Corp 発光モジュール
US9490235B2 (en) 2010-11-22 2016-11-08 Cree, Inc. Light emitting devices, systems, and methods
US9300062B2 (en) 2010-11-22 2016-03-29 Cree, Inc. Attachment devices and methods for light emitting devices
EP2643862A4 (en) * 2010-11-22 2015-05-27 Cree Inc LIGHT-EMITTING DEVICES AND METHOD THEREFOR
US9859471B2 (en) 2011-01-31 2018-01-02 Cree, Inc. High brightness light emitting diode (LED) packages, systems and methods with improved resin filling and high adhesion
US11101408B2 (en) 2011-02-07 2021-08-24 Creeled, Inc. Components and methods for light emitting diode (LED) lighting
US9194567B2 (en) 2011-02-16 2015-11-24 Cree, Inc. High voltage array light emitting diode (LED) devices and fixtures
EP2590216A3 (en) * 2011-11-01 2016-07-20 Nichia Corporation Light emitting device and lighting apparatus
JP2013137986A (ja) * 2011-11-29 2013-07-11 Nichia Corp 発光装置、照明器具
US10222032B2 (en) 2012-03-30 2019-03-05 Cree, Inc. Light emitter components and methods having improved electrical contacts
US11004890B2 (en) 2012-03-30 2021-05-11 Creeled, Inc. Substrate based light emitter devices, components, and related methods
US10134961B2 (en) 2012-03-30 2018-11-20 Cree, Inc. Submount based surface mount device (SMD) light emitter components and methods
JP2014042012A (ja) * 2012-07-27 2014-03-06 Nichia Chem Ind Ltd ライン光源用発光装置
JP2014027213A (ja) * 2012-07-30 2014-02-06 Ushio Inc 光源ユニット
US9755126B2 (en) 2012-07-30 2017-09-05 Ushio Denki Kabushiki Kaisha Light source unit
WO2014049973A1 (ja) * 2012-09-26 2014-04-03 パナソニック株式会社 発光モジュール
US9634211B2 (en) 2012-09-26 2017-04-25 Panasonic Intellectual Property Management Co., Ltd. Light-emitting module
JPWO2014049973A1 (ja) * 2012-09-26 2016-08-22 パナソニックIpマネジメント株式会社 発光モジュール
JP2014103268A (ja) * 2012-11-20 2014-06-05 Kaneka Corp 有機el発光システム及び給電部材
JP2014103023A (ja) * 2012-11-21 2014-06-05 Kaneka Corp 有機elパネル及び有機elパネルの接続構造
EP2770244A1 (en) * 2013-02-25 2014-08-27 OSRAM GmbH Method for mounting light radiation sources and light source therefor
US9273834B2 (en) 2013-02-25 2016-03-01 Osram Gmbh Method for mounting light radiation sources and light source therefor
CN103390613A (zh) * 2013-08-14 2013-11-13 中国科学院长春光学精密机械与物理研究所 高发光均匀性的密排列led面阵器件及制备方法
CN103390613B (zh) * 2013-08-14 2016-08-10 中国科学院长春光学精密机械与物理研究所 高发光均匀性的密排列led面阵器件及制备方法
JP2015070242A (ja) * 2013-10-01 2015-04-13 シチズン電子株式会社 半導体発光装置
JP2015185810A (ja) * 2014-03-26 2015-10-22 豊田合成株式会社 発光装置及びその製造方法
JP2014140076A (ja) * 2014-04-17 2014-07-31 Sharp Corp 発光装置
JP2015019090A (ja) * 2014-08-22 2015-01-29 シャープ株式会社 発光装置
USD823492S1 (en) 2016-10-04 2018-07-17 Cree, Inc. Light emitting device
JP2018121000A (ja) * 2017-01-27 2018-08-02 日亜化学工業株式会社 発光装置の製造方法
EP3483934A1 (en) * 2017-11-09 2019-05-15 LG Electronics Inc. Lamp for vehicle
JP2019114702A (ja) * 2017-12-25 2019-07-11 日亜化学工業株式会社 発光装置及び発光モジュール
JP7007569B2 (ja) 2017-12-25 2022-02-10 日亜化学工業株式会社 発光装置
JP2022031370A (ja) * 2017-12-25 2022-02-18 日亜化学工業株式会社 発光装置及び発光モジュール
JP7227531B2 (ja) 2017-12-25 2023-02-22 日亜化学工業株式会社 発光装置及び発光モジュール
US11355481B2 (en) 2018-04-27 2022-06-07 Osram Gmbh Multi-COB-LED lighting module
WO2019207533A1 (en) * 2018-04-27 2019-10-31 Osram Gmbh Multi-cob-led lighting module
WO2019207537A1 (en) * 2018-04-27 2019-10-31 Osram Gmbh Multi-cob-led lighting module
IT201800004931A1 (it) * 2018-04-27 2019-10-27 Modulo di illuminazione multi-led-cob
IT201800004928A1 (it) * 2018-04-27 2019-10-27 Modulo di illuminazione multi-led-cob

Also Published As

Publication number Publication date
TW200845423A (en) 2008-11-16
JP5357549B2 (ja) 2013-12-04
JPWO2008069204A1 (ja) 2010-03-18
TWI369790B (ja) 2012-08-01

Similar Documents

Publication Publication Date Title
WO2008069204A1 (ja) 発光装置およびプロジェクタ
JP7004777B2 (ja) シリコン上のカラーiledディスプレイ
JP7149939B2 (ja) マルチカラーマイクロledアレイ光源
TWI747958B (zh) 具有整合微反射器之微顯示面板
US8238112B2 (en) Sub-mount, light emitting device including sub-mount and methods of manufacturing such sub-mount and/or light emitting device
US20060139580A1 (en) Illumination system using multiple light sources with integrating tunnel and projection systems using same
CN107390465B (zh) 光源装置及投影仪
US7452736B2 (en) Surface emitting device, manufacturing method thereof and projection display device using the same
TW200422714A (en) Light source device and projection type display unit using the same
JP2013247369A (ja) 複数の方向に出光可能な発光ダイオードチップを形成するためのサファイア基板、発光ダイオードチップ、及び発光装置
JP6880855B2 (ja) 光源装置およびプロジェクター
CN109389910B (zh) 微型发光二极管显示面板
US8733950B2 (en) LED projector
JP2007003914A (ja) 発光モジュールとこれを用いた投映型表示装置用光源ユニット
JP2021522558A (ja) ライトフィールドディスプレイにおける発光素子のための構造
JP2005228695A (ja) 照明装置及びプロジェクタ
JP6411572B1 (ja) 発光装置および当該発光装置を含む光照射装置
US8562142B2 (en) Projector for micro projection surfaces and use of a multicolour LED in a projector
KR100628125B1 (ko) Led를 이용한 조명장치와 이를 이용한 투사 표시장치
JP2000332962A (ja) 画像読み取り装置
JP2002289924A (ja) 発光素子および照明装置ならびに表示装置
WO2024129316A1 (en) TRANSPARENT STRUCTURE ON pcLED TO INCREASE LIGHT FLUX
CN113517266A (zh) 一种光色均匀的半导体光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548291

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850049

Country of ref document: EP

Kind code of ref document: A1