WO2008069192A1 - 樹脂組成物およびその用途 - Google Patents

樹脂組成物およびその用途 Download PDF

Info

Publication number
WO2008069192A1
WO2008069192A1 PCT/JP2007/073380 JP2007073380W WO2008069192A1 WO 2008069192 A1 WO2008069192 A1 WO 2008069192A1 JP 2007073380 W JP2007073380 W JP 2007073380W WO 2008069192 A1 WO2008069192 A1 WO 2008069192A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
polymer
resin composition
film
Prior art date
Application number
PCT/JP2007/073380
Other languages
English (en)
French (fr)
Inventor
Naoyuki Kawashima
Yasuaki Mutsuga
Soichi Yoshida
Hiraku Shibata
Yuichi Ueda
Ichiro Kajiwara
Takeshi Matsumura
Michitaka Kaizu
Motoki Okaniwa
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007079670A external-priority patent/JP2008163287A/ja
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2008069192A1 publication Critical patent/WO2008069192A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to a resin composition containing a styrene copolymer and a norbornene polymer and use thereof. Specifically, the present invention relates to a resin composition comprising a styrene copolymer and a norbornene polymer, having excellent transparency and suitable for production of an optical film, etc., and a molded article and an optical film obtained from the resin composition As well as the optical film
  • the present invention relates to V, a stretched film, a polarizing plate, and a liquid crystal display device.
  • films such as polycarbonate and polyester that have been used as optical films have a large photoelastic coefficient, so that the phase difference changes due to the development of a phase difference in transmitted light due to a small change in stress. There is a problem to do.
  • films such as triacetyl cellulose have problems such as low heat resistance and water absorption deformation.
  • Thermoplastic norbornene-based resins have low birefringence compared to conventional optical films due to low glass transition temperature, high light transmittance, and low refractive index anisotropy. It has attracted attention as a transparent thermoplastic resin with excellent heat resistance, transparency, and optical properties. And using such features, for example, in fields such as optical disks, optical lenses, optical fibers, transparent plastic substrates, electronic materials such as low dielectric materials, sealing materials such as optical semiconductor sealing, etc. Application of cyclic olefin resin is being considered!
  • Patent Documents 1 and 2 describe retardation plates using a film of a cyclic olefin-based resin.
  • Patent Documents 3 to 5 describe the use of a cyclic olefin-based resin film as a protective film for a polarizing plate.
  • Patent Document 6 describes a liquid crystal display element substrate made of a film of a cyclic olefin-based resin.
  • a retardation film has a function of imparting a retardation (birefringence) to transmitted light obtained by stretching and orientation. The retardation of transmitted light (birefringence) increases as the wavelength of the transmitted light becomes longer.
  • phase difference such as 1/4 wavelength to transmitted light in all visible light region (400-800nm). It was difficult.
  • the function of 1/4 wavelength in the wide wavelength range (400 to 800 nm) of the phase difference is required for reflective and transflective liquid crystal displays and optical disk pickups.
  • a liquid crystal projector requires a half phase difference, and conventional optical films made of a cyclic olefin-based resin are difficult except for laminating films. When laminating films, it becomes difficult to reduce the thickness of the optical film that can be obtained simply by complicating the processes such as laminating, cutting and adhering the films.
  • Patent Document 7 and Patent Document 8 propose a retardation film made of a specific cellulose acetate resin, a blend of a polycarbonate resin or a styrene resin.
  • the film made of cellulosic resin has problems in terms of changes in properties due to water absorption, heat resistance, etc., and the polycarbonate film requires stretching at a high glass transition temperature. As the film has a large photoelastic coefficient, optical distortion due to stress occurs.
  • a highly volatile solvent such as methylene chloride, which has good film-forming properties during film formation, causes phase separation in most cases.
  • a specific solvent must be selected. Therefore, it takes time to dry the solvent, the productivity is extremely lowered, and it is difficult to easily obtain a highly transparent film.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-2108
  • Patent Document 2 Japanese Patent Laid-Open No. 5-64865
  • Patent Document 3 JP-A-5-212828
  • Patent Document 4 JP-A-6-51117
  • Patent Document 5 Japanese Patent Laid-Open No. 7-77608
  • Patent Document 6 Japanese Patent Laid-Open No. 5-61026
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2000-137116
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2001-337222
  • the present invention is a composition comprising a styrene copolymer and a norbornene polymer, and has excellent compatibility and does not phase separate! / It is an object to provide an easy resin composition. Another object of the present invention is to provide an optical film having the resin composition as a main component and having excellent transparency, an optical film exhibiting reverse wavelength dispersion, and its application.
  • the present invention relates to the following inventions [1] to [; 16].
  • R represents a hydrogen atom or a methyl group.
  • R ° represents a hydrogen atom; a halogen atom; an oxygen atom, a sulfur atom, a nitrogen atom, or It may have a linking group containing a silicon atom! /, A substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms; or a polar group).
  • the styrene copolymer (A) is characterized in that the weight average molecular weight Mw measured by gel permeation chromatography (GPC) is from 30,000 to 1,000,000.
  • GPC gel permeation chromatography
  • the styrene copolymer (A) is characterized in that the yellowness (YI) of a 10 wt% toluene solution measured with a colorimeter is 5.0 or less [1] ]
  • the resin composition as described in above.
  • R represents a hydrogen atom or a methyl group
  • R ° represents a hydrogen atom; a halogen atom; oxygen.
  • R 14 represents any one of a group represented by a acetyl group, a t-butyl group, a t-butoxycarbonyl group, CH (OR 15 ) (R 16 ), or —SiR 15 .
  • R 15 and R 16 each independently represent an alkyl group having 1 to 6 carbon atoms, and R 15 and R 16 , or R 15 , are bonded to each other to form a heterocyclic ring having 2 to 12 carbon atoms; May be. ).
  • the styrenic copolymer (A) performs a step of converting an OR 14 group in the structural unit derived from the monomer (4) into an OH group in the presence of an acid, and then a base.
  • the resin composition according to [4] which is obtained by a method comprising a step of adding a reactive substance to react with an acid in the system.
  • the norbornene polymer (B) is a (co) polymer having a structural unit derived from a monomer (6) represented by the following formula (6): [1] the resin composition according to [1];
  • R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 1Q , R U , R 12 , and R 13 may each independently have a linking group containing a hydrogen atom; a halogen atom; an oxygen atom, a sulfur atom, a nitrogen atom, or a silicon atom! / Represents a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms; or a polar group .
  • R 1Q and R u , or R 12 and R 13 may be integrated to form a divalent hydrocarbon group.
  • R 1Q or R 11 and R 12 or R 13 are bonded to each other. It may form a carbocycle or a heterocycle (these carbocycles or heterocycles may be monocyclic structures or other rings may be condensed to form a polycyclic structure). ).
  • the norbornene polymer (B) has a structural unit represented by the following formula (i) (co-polymer):
  • the resin composition according to [1] which is a polymer.
  • ⁇ ⁇ 4 each independently has a hydrogen atom; a halogen atom; an oxygen atom, a sulfur atom, a nitrogen atom, or a linking group containing a nitrogen atom, A non-substituted hydrocarbon group having 1 to 30 carbon atoms; or a polar group, and at least one of ⁇ ⁇ 4 is a group represented by — (CH 2) COOA 5 ( ⁇ 5 is an oxygen atom, a sulfur atom , Nitrogen atom or
  • the norbornene polymer ( ⁇ ) has the structural unit represented by the formula (i) in an amount of 10 to 70 mol% in 100 mol% of all structural units of the norbornene polymer (B). And [7] the resin composition.
  • composition ratio ((A) / (B)) between the styrene copolymer (A) and the norbornene polymer (B) is 5/95 to 70/30 by weight.
  • the resin composition according to [1] which is in a range.
  • a molded article comprising the resin composition according to [1] as a main component.
  • a liquid crystal display device comprising the optical film according to [12].
  • phase separation can be suppressed even with a solvent such as methylene chloride used in film formation, which is suitable for optical film applications, and has reverse wavelength dispersibility and excellent transparency.
  • a solvent such as methylene chloride used in film formation
  • the resin composition which can manufacture easily the optical film which has this can be provided.
  • the present invention by controlling the content of each structural unit of the styrenic copolymer contained in the resin composition, good compatibility is exhibited even during heating, and at high temperatures. It is possible to provide a resin composition excellent in film moldability, which can maintain transparency even if it is!
  • a resin composition exhibiting low birefringence can be provided by controlling the composition ratio between the styrene copolymer and the norbornene polymer.
  • the optical film obtained from the resin composition of the present invention is also useful as a stretched film, a polarizing plate using the stretched film, a liquid crystal display device, and an optical component.
  • FIG. 1 shows the IR spectrum of the styrene polymer (1A) obtained in Synthesis Example 1.
  • FIG. 2 shows a 13 C-NMR spectrum of the styrene polymer (1 A) obtained in Synthesis Example 1.
  • FIG. 3 shows an IR spectrum of the styrene polymer (4A) obtained in Synthesis Example 4.
  • FIG. 4 shows a 13 C-NMR spectrum of the styrene polymer (4A) obtained in Synthesis Example 4.
  • FIG. 5 shows an IR spectrum of the styrene polymer (5A) obtained in Synthesis Example 5.
  • FIG. 6 shows a 13 C-NMR spectrum of the styrene polymer (5A) obtained in Synthesis Example 5.
  • FIG. 7 shows a chart in Tg measurement of Blend resin obtained in Example 10.
  • FIG. 8 shows a chart in Tg measurement of Blend resin obtained in Example 11.
  • the resin composition according to the present invention comprises a styrene copolymer (A) and a norbornene polymer (B).
  • the (co) polymer means a polymer or a copolymer.
  • the styrene copolymer (A) contained in the resin composition according to the present invention comprises a structural unit (1) represented by the following formula (1) and a structural unit (2) represented by the following formula (2): Have
  • R represents a hydrogen atom or a methyl group.
  • R ° may be a hydrogen atom; a halogen atom; a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom, or a silicon atom! /, Substituted or unsubstituted carbon number 1 to 30 hydrocarbon groups; or polar groups.
  • the content of the structural unit (2) is usually 0.;! To 50 mol%, preferably 0.2 to 40 mol%, more preferably 1 to 20 mol% in 100 mol% of all structural units. Within the above numerical range, there is a solvent in which both the styrene copolymer (A) and the norbornene polymer (B) contained in the resin composition according to the present invention exhibit good solubility. In addition, it is preferable because it can maintain transparency without phase separation even at high temperatures.
  • the styrene copolymer (A) may have a structural unit (3) represented by the following formula (3). [0049] [Chemical 6]
  • ⁇ ⁇ Each independently has a hydrogen atom; a halogen atom; an oxygen atom, a sulfur atom, a nitrogen atom, or a linking group containing a nitrogen atom, and a substituted or unsubstituted carbon atom having 1 to 30 carbon atoms Represents a hydrocarbon group; or a polar group.
  • R 1 and R 2 are bonded to each other to form a carbocyclic or heterocyclic ring (these carbocyclic or heterocyclic rings may be monocyclic structures!), And other rings may be condensed to form a polycyclic structure. May also be formed.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, and a fluorine atom.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms include alkyl groups such as a methyl group, an ethyl group and a propyl group; cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group; a vinyl group and an aryl group. And alkenyl groups such as a propenyl group.
  • the substituted or unsubstituted hydrocarbon group may be directly bonded to the ring structure, or may be bonded via a linkage.
  • the linking group for example, a divalent hydrocarbon group having 1 to 10 carbon atoms (for example, — (CH 2) ⁇ (where m is;! To 1
  • a linking group containing oxygen, nitrogen, iodo or silicon for example, a carbonyl group (—CO—), an oxycarbonyl group (— ⁇ (CO) —), carbon Luoxy group (one coo-), sulfone group (one so-),
  • Examples of the polar group include a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, a carbonyloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, a cyano group, an amide group, an imide group, and a trionole.
  • Examples thereof include ganosyloxy group, triorganosilyl group, amino group, asinole group, alkoxysilyl group, sulfonyl group, and carboxyl group.
  • alkoxy group examples include, for example, a methoxy group, an ethoxy group, and the like
  • carbonyloxy group include, for example, an alkylcarbonyloxy group, such as an acetoxy group, a propionyloxy group, and an arylcarbonyloxy group, such as a benzoyloxy group.
  • alkoxycarbonyl group for example, a methoxycarbonyl group, an ethoxycarbonyl group, etc .; an aryloxycarbonyl group, for example, a phenoxycarbonyl group, a naphthyloxycarbonyl group, a fluorenyloxycarbonyl group, a biphenylyl group;
  • trimethylsiloxy group, triethylsiloxy group, etc . for triorganosilyl group, trimethylsilyl group, triethylsilyl group, etc .
  • amino group primary amine
  • alkoxysilyl group include a trimethoxysilyl group and a triethoxysilyl group.
  • the monomer for deriving the structural unit represented by the formula (3) include (meth) acrylamide, (meth) acrylic acid and derivatives thereof, maleic anhydride, maleimides, and maleic acid. And its derivatives, fumaric acid and its derivatives, p-methoxystyrene and the like.
  • the structural unit derived from the styrene derivative represented by the formula (4) remains without being converted by the deprotection reaction described later, the styrene monomer represented by the formula (4), etc. Is also included in the monomer.
  • the content of the structural unit (3) is usually 20 mol% or less, preferably 15 mol% or less, more preferably 10 mol% or less, in 100 mol% of all structural units.
  • the styrenic copolymer (A) used in the present invention has a 30 ° C black mouth benzene solution (having a logarithmic viscosity () measured in a concentration of 0.5 g / dU of 0.; OdL / g is preferable, and weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) Mw force S Usually 30,000—1, 000, 000, preferably ⁇ is 40, 000-800, 000, more preferably 50,000-500, 000. If the molecular weight is too high, the strength of the resulting molded product such as a film may be lowered. If the viscosity becomes too high, the productivity and workability of the resin composition used in the present invention may deteriorate.
  • the molecular weight distribution (Mw / Mn) of the styrenic copolymer (A) is usually 1.0-10, preferably (1.2 to 5.0, more preferably (1.2). ⁇ 4.0.
  • the styrene copolymer (A) has excellent transparency with little coloration such as yellowing. Those are preferred.
  • the yellowness (YI) power of a 10% by weight toluene solution measured using a colorimeter is preferably usually 5.0 or less, more preferably 4.0 or less, and even more preferably 0.05-3. A range of 0 is desirable. The yellowness is usually 0.2 and colorless.
  • the styrenic copolymer (A) used in the present invention is a butylphenol in which R 14 of the monomer (4) represented by the following formula (4) is substituted with a hydrogen atom and styrene and / or ⁇ -methylolstyrene. That can be obtained by direct copolymerization with S, styrene and / or ⁇ -methylstyrene, a monomer (4) represented by the following formula (4), and a formula (5 ) In the presence of an appropriate polymerization initiator, and then converting the OR 14 group in the structural unit derived from monomer (4) to a ⁇ group. May be manufactured.
  • a radical polymerization initiator which is preferably a radical polymerization initiator, a cation polymerization catalyst, a coordination polymerization catalyst, a cationic polymerization catalyst or the like.
  • R and R ° are synonymous with the formula (2).
  • R 14 represents any of a group represented by a acetyl group, a t-butyl group, a t-butoxycarbonyl group, CH (OR 15 ) (R 16 ), or —SiR 15 .
  • R 15 and R 16 each independently represent an alkyl group having 1 to 6 carbon atoms, and R 15 and R ] 6 , or R 15 , are bonded to each other to form a heterocyclic ring having 2 to 12 carbon atoms; May be.
  • R 14 is particularly preferably a acetyl group or a tert-butyl group.
  • the styrene and / or ⁇ -methylstyrene is preferably styrene only. [0064] [Chemical 8] One (5)
  • the styrene copolymer (A) according to the present invention includes styrene and / or ⁇ -methylolstyrene, a monomer (4 ') represented by the following formula (4'), Accordingly, the monomer represented by the above formula (5) can also be suitably produced by a step of copolymerizing the monomer. In this case, it is possible to produce the styrene-based copolymer ( ⁇ ⁇ ⁇ ) used in the present invention without passing through the conversion reaction step to ⁇ group described later.
  • Each of these monomers can be suitably used at the same ratio as the desired content of each structural unit derived from each monomer.
  • radical initiator used in the polymerization reaction known organic peroxides that generate free radicals or azobis-based radical polymerization initiators can be used.
  • a polyfunctional initiator or an initiator that easily causes a hydrogen abstraction reaction is preferable because the linearity of the resulting styrene-based copolymer may be lowered.
  • organic peroxides include diacetyl peroxide, dibenzoyl peroxide, diisoptyroyl peroxide, di (2,4 dichlorobenzoyl) peroxide, di ( 3, 5, 5-trimethylhexanoyl) peroxide, dioctanoyl peroxide, dilauroyl peroxide, distearoyl peroxide, bis ⁇ 4 (m-toluoyl) benzoylleoxide, etc.
  • diacetyl peroxide dibenzoyl peroxide, diisoptyroyl peroxide, di (2,4 dichlorobenzoyl) peroxide, di ( 3, 5, 5-trimethylhexanoyl) peroxide, dioctanoyl peroxide, dilauroyl peroxide, distearoyl peroxide, bis ⁇ 4 (m-toluoyl) benzoylleoxide, etc.
  • kind
  • Ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, methylcyclohexanone peroxide, and acetylethylacetone peroxide;
  • t-butinoreperoxyacetate t-butinoreperoxypivalate, t-hexenorepa monooxybivalate, 1, 1, 3, 3, 3-tetramethinolevbutinolevoxy 2-ethinorehexanoate, 2, 5 Dimethinole 2, 5 Bis (2 ethinorehexanoreperoxy) hexane, 1-cyclohexenore 1-methinoreethinoreno 1-year-old 2-ethinorehexanoate, t-hexinoreno 1-year-old xynorehexanoate 1-year-old xyl-2-ethylenohexanoate, 2-butinoleperoxyisobutyrate, 2-butinoleperoxymaleate, t-butylperoxy 3, 5, 5-trimethylhexanoate, t-butylper Oxylaurate, 2,5 dimethyl-2,5 bis (m-toluoylper
  • GS sec butinoreperoxy dicarbonate GE propinolever oxydicarbonate, diisopropinolever oxydicarbonate, bis (4 tert-butinorecyclohexylinole) peroxydicarbonate, G-2-etoxychetinoreperoxydicarbonate, G2-Ethenorehexinoleperoxydicarbonate, G-2-methoxybutinolevoxydicarbonate, di (3-methinore-3-methoxybutinole) peroxy Peroxydicarbonates such as dicarbonate;
  • azo radical polymerization initiators include azobisisobutyronitrile, azobisisovalero nitrinole, 2,2,1azobis (4 methoxy-1,2,4 dimethylvaleronitrile), 2,2,1 Zobis (2,4 dimethylvaleronitrile), 2,2, -azobis (2 methylbutyronitrile), 1,1, -azobis (cyclohexane-1 carbonitryl), 2- (force rubamoylazo) isobutyronitrile, 2, 2,2-azobis [2-methyl-N—U, 1-bis (hydroxymethyl) 2-hydroxyethinole ⁇ propionamide], 2,2, -azobis [2-methyl-N— ⁇ 2— (1-hydroxybutynole) ⁇ Propionamide], 2, 2, -azobis [2-methinolay N— (2-Hydrochichechinole) Propionamide], 2, 2, -azobis [N— (2-propeninole) -2-me Tylpropionamide], 2, 2, -azobis (N-butyroni
  • Preferred initiators are 1, 1' —Azobis (aqueous hexane 1 carbonitryl), 2— (force rubamoylazo) isobutyronitrile, 2, 2, -azobis (N-butyl-2-methylpropionamide), and a high molecular weight with a weight average molecular weight of 85,000 or more Styrene copolymer is obtained.
  • the azobis radical polymerization initiator used in the present invention is not limited to these exemplified compounds.
  • Cationic polymerization initiators include Bronsted acids such as hydrochloric acid, sulfuric acid, P-toluenesulfonic acid, phosphoric acid, boron trifluoride complex, aluminum trichloride, ethylarmum dichloride, tetrachloride.
  • Bronsted acids such as hydrochloric acid, sulfuric acid, P-toluenesulfonic acid, phosphoric acid, boron trifluoride complex, aluminum trichloride, ethylarmum dichloride, tetrachloride.
  • Lewis acids such as titanium, titanium tetraisopropoxide, and tungsten chloride.
  • anion polymerization initiator examples include organolithiums such as butyl lithium and phenyl lithium, metal amides such as lithium amide and sodium amide, Grignard reagents such as ethyl magnesium bromide and phenyl magnesium chloride, Examples thereof include metal alkoxides such as sodium methoxide and sodium metoxide.
  • the amount of these polymerization initiators used is usually 0.0;! To 5 mol%, preferably 0.03 to 3 mol%, more preferably 0.05 %.
  • a catalyst may be used in the polymerization reaction of the styrene monomer.
  • the medium is not particularly limited, and examples thereof include a known cation polymerization catalyst, coordination polymerization catalyst, and cation polymerization catalyst.
  • the polymerization reaction of the styrene monomer is carried out by subjecting the styrene monomer to a bulk polymerization method, a solution polymerization method, a precipitation polymerization method, an emulsion polymerization method, a suspension in the presence of the polymerization initiator or a catalyst.
  • the copolymerization is carried out by a conventionally known method such as a turbid polymerization method or a bulk suspension polymerization method.
  • the solvent used in carrying out the solution polymerization is not particularly limited as long as it dissolves the monomer and the polymer, but a hydrocarbon solvent such as cyclohexane, and an aromatic such as toluene. A group hydrocarbon solvent is preferred.
  • the amount of the solvent used is preferably 0 to 3 times (weight ratio) with respect to the total amount of the styrene monomer.
  • a chain transfer agent may be added as necessary to obtain a polymer having a desired molecular weight.
  • the chain transfer agent is not particularly limited, and can use conventionally known chain transfer agents. More specifically, the following can be listed. Dodecantiol, mercaptoethanol, mercaptopropanol, mercaptoacetic acid, mercaptopropionic acid, and the like. These chain transfer agents may be used alone or as a mixture of plural kinds.
  • the polymerization reaction time is usually;! To 30 hours, preferably 3 to 20 hours, and the polymerization reaction temperature is not particularly limited because it depends on the type of the radical initiator used, but usually 40 to; 180. C, preferably 50-; 120. C.
  • the styrene copolymer (A) used in the present invention is obtained by polymerizing the styrene monomer and further converting the OR 14 group in the structural unit derived from the monomer (4) into an OH group. By, you can get power S. As a result, for example, R 14 of the styrene monomer represented by the formula (4) is eliminated to form the structural unit represented by the formula (2) contained in the styrene copolymer (A). Will be.
  • the conversion reaction includes a method of conversion by alcoholysis or hydrolysis in the presence of an acid or a base, a method of conversion by heating under acidic conditions, a method of conversion only by heating, and a fluoride. and a method of using ion can be mentioned, the O-R 14
  • the preferred method that can be adopted depends on the structure of R 14 in the group. It is preferable to convert the group represented by OR 14 in the structural unit derived from the monomer (4) to an OH group in the presence of acid.
  • a method of conversion by alcoholysis or hydrolysis in the presence of oxalic acid, or a method of conversion by heating under acidic conditions is preferably employed.
  • R 14 in the OR 14 group is, for example, a acetyl group (COCH 3), t-butoxy
  • R 14 in the OR 14 group is, for example, a acetyl group (COCH 3), t-butoxy
  • a method of hydrolysis or alcoholysis under basic conditions is preferably employed.
  • R 14 in the OR 14 group to which a method of conversion by heating under acidic conditions or a method of conversion only by heating is applicable
  • R 14 in the OR 14 group examples include a t-butyl group (one 3 ⁇ 4 ⁇ ), a t-butoxycarbonyl group (one COOtBu) can be used, and examples of R 14 that can be converted using fluoride ions include silyl groups (SiR 15 ).
  • Acids used for hydrolysis and alcoholysis include hydrogen halides such as hydrochloric acid and odorous acid, carboxylic acids such as formic acid, oxalic acid, acetic acid, and trifluoroacetic acid, sulfuric acid, P-tonolenesulfonic acid, and benzenesulfonic acid.
  • Sulfonic acids such as methanesulfonic acid and trifluoromethanesulfonic acid, Bronsted acids such as nitric acid or phenols, heteropoly acids such as phosphotandastenoic acid and phosphomolybdic acid, solid acids such as sulfated zircoure and zeolite, Ion exchange resins, polymer acids such as polyelectrolytes, and Lewis acids such as halogenated, alkylated, and / or alkoxylated aluminum, titanium, tungsten, or boron compounds, and known immobilized Lewis acids. . Of these acids, sulfuric acid is particularly preferably used.
  • the amount of acid used is the molar specific force with the amount of styrene monomer represented by formula (4).
  • acid / styrene monomer represented by formula (4) 1/1000 ⁇ : 1/1, preferably 1/300 to 1/5.
  • Examples of the base include potassium hydroxide, sodium hydroxide, lithium hydroxide, hydroxide. And ammonium, tetramethylammonium hydroxide and tetraptylammonium hydroxide.
  • the same acid as the above acid can be used.
  • a water-soluble base such as potassium hydroxide, sodium hydroxide, lithium hydroxide or other metal hydroxide
  • quaternary ammonium salts quaternary phosphonium salts, crown ethers, Poly (oligo) ethylene glycol may be used.
  • the reaction temperature is usually 0 to 180 ° C, preferably 30 to 150 ° C, more preferably 40 to 120 ° C.
  • the reaction time is usually 1 to 30 hours, preferably 1 to 25 hours, more preferably;! To 20 hours.
  • the reaction solvent is not particularly limited as long as the polymer before the conversion reaction and the polymer after the conversion reaction are dissolved, but the same solvent as the polymerization reaction is preferable. Further, the amount of the solvent used is preferably 1 to 5 times the weight of the solvent used in the polymerization reaction, preferably S, and more preferably 1 to 3 times the weight.
  • the addition amount of water or alcohol is preferably 1 to 30 times mol of OR 14 groups; more preferably! To 20 times mol.
  • the alcohol to be used is not particularly limited, but an alcohol having a carbon number of !! to 4 is preferable.
  • the acid that can be used in the heat conversion reaction under acidic conditions, the amount added, the reaction temperature, the reaction time, the solvent type, and the amount of solvent used are the same as those mentioned above in ⁇ Hydrolysis and alcoholysis ''. Conditions can be applied. However, in this method, water or alcohol may or may not be added.
  • the conversion reaction for converting the OR 14 group into an OH group is carried out using an acid or a base
  • the conversion reaction for converting the —OR 14 group in the structural unit derived from the monomer (4) into an OH group is performed in the presence of an acid
  • the conversion reaction is performed in the presence of a base, it is preferable to add an acidic substance and react with the base in the system.
  • the OR 14 group in the structural unit derived from the monomer (4) is converted to an OH group is performed in the presence of an acid, and then a basic substance is added to react with the acid in the system.
  • the acid in the system means an acid remaining in the system without being consumed in the conversion reaction among the acids used in the conversion reaction for converting the OR 14 group into an OH group.
  • metal hydroxides, metal alkoxides, carboxylates, phenol salts, carbonates, amines and the like are preferably used, and more preferably basic physical properties metal hydroxide Or at least one selected from the group consisting of metal alkoxides, carboxylates and phenol salts, and the counter cation is any one of lithium, sodium, potassium and calcium.
  • these basic substances may be used alone or in combination of two or more.
  • Such basic substances include metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide; sodium methoxide, sodium ethoxide, sodium-t.
  • Metal alkoxides such as butoxide; carboxylates such as sodium acetate, sodium propionate, sodium lactate, sodium 2-ethylhexanoate and sodium benzoate; phenol salts such as sodium phenoxide; carbonic acid Carbonates such as sodium, potassium carbonate and sodium hydrogen carbonate, and amines such as triethylamine and pyridine can be used. These bases may be used either alone or in combination.
  • the reaction temperature between the basic substance and the remaining acid is 15 to 100 ° C, preferably 20 to 90 ° C, more preferably 30 to 80 ° C. If the reaction temperature is exceeded, the hue of the polymer may deteriorate. If the reaction temperature is lower than the above reaction temperature range, the reaction may not proceed sufficiently.
  • the reaction time is 5 to 120 minutes, preferably 10 to 100 minutes, more preferably 15 to 80 minutes.
  • productivity decreases, and when it is less than the reaction time range, the reaction does not proceed sufficiently! / There may be cases.
  • the amount of the basic substance to be added may be an amount that can sufficiently neutralize the remaining acid
  • the product A of the number of moles of the acid used in the step of converting the group represented by OR 14 into the OH group and the valence of the acid, and the number of moles of the basic substance to be added and the valence of the base Product B and force It is desirable to satisfy the following formula.
  • reaction conditions the same conditions as the reaction conditions when the base is added can be applied.
  • R 14 in the O-R 14 group depicted in formula (4) is, if capable eliminated by thermal energy alone, child pyrolysis at a temperature of the polymer chain does not exceed greatly decomposed temperature Thus, a styrene copolymer (A) can be obtained.
  • Such temperatures are usually 100-350. C, preferred ⁇ is 120-300. C.
  • Examples of the reagent that can be used in the conversion reaction using fluoride ions include tetramethyl ammonium fluoride, tetrabutyl ammonium fluoride, potassium fluoride, sodium fluoride, hydrogen fluoride, and the like. it can.
  • the amount of fluoride ion used is the molar ratio between the amount of fluoride ion used and the amount of styrene monomer used in formula (4) (fluoride ion / expressed in formula (4)).
  • Styrene-based monomer is usually 1 / ;! to 5/1, preferably 1 / ;! to 3/1.
  • the styrenic copolymer (A) is obtained by purification.
  • a conventionally known method can be used. For example, after diluting the obtained reaction solution with a good solvent such as toluene or tetrahydrofuran, methanol, water, or a mixed solution thereof is added to form a polymer. A method of agglomerating them appropriately and extracting them. In the extraction process, the weight ratio of the good solvent to the polymer (good solvent / polymer), which is the sum of the solvent used as the reaction solvent and the solvent added for dilution, is 0.5 /; / 1, preferably 0.7 / ;! to 4/1.
  • the amount of poor solvent such as methanol, water, or a mixed solution thereof used for extraction is 0.3 to 5, preferably 0.5 to 3, in weight ratio (poor solvent / good solvent).
  • the extraction temperature is usually 40 to 120 ° C, preferably 50 to 100 ° C.
  • the solution is cooled and separated into light multi-layers, and the light layers are removed with a centrifuge or the like. After these extraction operations are repeated 1 to 10 times, the heavy liquid is concentrated and desolubilized with a demolition apparatus such as a devolatilizer or ruder.
  • the temperature during desorption is 150 to 350 ° C, preferably (200 to 350 ° C, vacuum (0.1 to 50mmHg, preferably (!; 40 to 40mmHg).
  • the filter medium has a pore size of 0.1 to; a filter of 100 m can be used alone, or multiple filters with different pore sizes can be installed in stages.
  • the polymer melt may be purified by filtering after the desorption, and the pore size of the polymer filter is preferably 0.
  • the norbornene-based polymer (B) contained in the resin composition according to the present invention is a (co) polymer having a structural unit derived from the monomer (6) represented by the following formula (6): Specifically, there are ring-opening polymers of monomer (6), ring-opening copolymers of monomer (6) and copolymerizable monomers, or hydrogenated products of these! / , Is a single type or two or more types of monomer (6) powerful addition type (co) polymer, and addition type (co) polymer of monomer (6) and a bull compound
  • a and b independently represent 0 or 1
  • c and d independently represent an integer of 0 to 2.
  • R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 1Q , R U , R 12 , and R 13 each independently have a hydrogen atom; a halogen atom; an oxygen atom, a sulfur atom, a nitrogen atom, or a linking group containing a nitrogen atom / Represents a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms; or a polar group R 1Q and R U , or R 12 and R 13 are combined to form a divalent hydrocarbon group.
  • R 10 or R 11 and R 12 or R 13 may be bonded to each other to form a carbocyclic or heterocyclic ring (the carbocyclic or heterocyclic ring may have a monocyclic structure or other ring May be condensed to form a polycyclic structure.
  • halogen atom examples include a fluorine atom, a chlorine atom and a bromine atom.
  • hydrocarbon group having 1 to 30 carbon atoms examples include alkyl groups such as a methyl group, an ethyl group and a propyl group; cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group; a vinyl group and an aryl group. And alkenyl groups such as a propenyl group.
  • the substituted or unsubstituted hydrocarbon group may be directly bonded to the ring structure, or may be bonded via a linkage.
  • the linking group for example, a divalent hydrocarbon group having 1 to 10 carbon atoms (for example, — (CH 2) — (wherein m is 1 to 10).
  • An linking group for example, a carbonyl group (one CO—), an oxycarbonyl group (—0 (CO) —), carbo Ninoxy group (one COO-), sulfone group (one so-), ether bond (-O-I), thioether bond (-S-), imino group (-NH-), amide bond (-NHCO-, -CONH-), a siloxane bond (one OSi (R)-(wherein R is an alkyl group such as methyl, ethyl, etc.)), and the like may be a linking group containing a plurality of these.
  • Examples of the polar group include a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, a carbonyloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, a cyano group, an amide group, an imide group, and a trionole.
  • Examples thereof include ganosyloxy group, triorganosilyl group, amino group, asinole group, alkoxysilyl group, sulfonyl group, and carboxyl group.
  • examples of the alkoxy group include methoxy group and ethoxy group;
  • examples of the carbonyloxy group include alkylcarbonyloxy groups such as acetoxy group and propionyloxy group, and benzoyloxy groups and the like.
  • examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group;
  • examples of the aryloxycarbonyl group include a phenoxycarbonyl group, a naphthyloxycarbonyl group, and a fluorenyloxycarbonyl.
  • triorganosiloxy group for example, trimethylsiloxy group, triethylsiloxy group, etc .
  • triorganosilyl group trimethylsilyl group, triethylsilyl group, etc .
  • amino group and Te is a primary Amino group
  • the alkoxysilyl group for example, trimethoxysilyl groups, triethoxysilyl group, and the like.
  • n is usually 0 or an integer of 1 to 5
  • R 17 is a hydrocarbon group having 1 to 15 carbon atoms, and the specific monomer represented by This is preferable in terms of maintaining a good balance between the heat resistance and moisture (water) resistance of the resulting resin composition and optical film.
  • n is usually 0 or a force that is an integer of 1 to 5, preferably 0 or 1
  • R 17 is usually a force S that is a hydrocarbon group having 1 to 15 carbon atoms, preferably Is preferably an alkyl group having 1 to 4 carbon atoms.
  • the above monomer in which an alkyl group is further bonded to the carbon atom to which the polar group represented by the above formula (I) is bonded is a resin composition and optical This is preferred because it maintains a good balance between heat resistance and moisture (water) resistance of the film!
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 2, and particularly preferably 1.
  • Other preferable examples of the monomer (6) represented by the formula (6) include bicyclo [2.2.1] hepto-2en, tricyclo [5 ⁇ 2. 1. 0 2 ' 6 ] —Deca 3, 8 Gen, 5 Ethylidenebicyclo [2 ⁇ 2.1] Hepto-2, 5 Phenylbicyclo [2 ⁇ 2.1] Hepto-2, 5— ⁇ Butylbicyclo [2.2.1] Hepto2 5 ⁇ Deshirubishikuro [2.2.1] hept-2- I can raise S.
  • Examples of the norbornene-based polymer (B) obtained by ring-opening polymerization of the monomer (6) described above include a polymer having a structural unit represented by the following general formula ( ⁇ ).
  • a, b, c, d and R 4 to R ⁇ are respectively defined as a, b, c, d and R 4 to R 13 in the above formula (6).
  • X is a group represented by the formula: —CH ⁇ CH— or a group represented by the formula: —CH 2 CH 1, and a plurality of Xs are the same or different.
  • the norbornene polymer (B) obtained by ring-opening polymerization of the monomer (6) is preferably a (co) polymer having a structural unit represented by the following formula (i): Desire to be! /
  • Ai ⁇ A 4 are each independently a hydrogen atom, a halogen atom, an oxygen atom, a sulfur A substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms which may have a linking group containing an atom, a nitrogen atom or a key atom; or a polar group, wherein at least one of AA 4 is — (CH 3) a group represented by COOA 5 (A 5 is an oxygen atom, a sulfur atom, a nitrogen atom or
  • the norbornene polymer (B) contains the structural unit represented by the above formula (i), it is represented by the above formula (i) in 100 mol% of all the structural units of the norbornene polymer ( ⁇ ).
  • the structural unit is usually contained in an amount of 5 mol% or more, preferably 10 to 70 mol%, more preferably 20 to 50 mol%.
  • the structural unit represented by the formula (i) is obtained by ring-opening copolymerizing and hydrogenating a monomer represented by the following formula (ia) among the monomers (6). It is a structural unit that can be suitably obtained.
  • a preferred monomer is 5 methoxycarbonylbicyclo [2.2.1] hept-2-ene.
  • Such monomers (i-a) is at least one of one (CH) CO of Ai ⁇ A 4 in the formula (i-a)
  • COOR 5 is a group represented by OA 5 (a group having an ester bond)
  • the other atom or group bonded to the carbon atom to which the group is bonded is an atom or group other than a hydrogen atom.
  • a 1 is one (CH) COOA !
  • examples of the monomer (i a) include a compound (i a ') represented by the following formula.
  • a 5 may have a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom or a silicon atom, and has a substituted or unsubstituted carbon number of 1 to 30
  • a 6 represents a halogen atom; a substituted or unsubstituted carbon atom having 1 to 30 carbon atoms which may have a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom or a silicon atom Represents a hydrogen group; or a polar group.
  • A is more preferably a hydrocarbon group having 1 to 10 carbon atoms.
  • Examples of such a monomer (1-a ') include the following.
  • At least one of c and d in the above formula (6) is a compound which is not SO, preferably a monomer wherein at least one of c and d is 1 (hereinafter referred to as "monomer")
  • the monomer (i_a ') is copolymerized with the monomer (i_a')
  • the reactivity of the monomer (ia ') is low. If the body (ia ') remains in the reaction system in a large amount, a polymer chain derived only from the monomer (ia') may be generated! /.
  • the polymer chain derived only from the monomer (ia ′) is unlikely to undergo a hydrogenation reaction described later, it is preferable to suppress the formation of this polymer chain.
  • a method for solving this problem there is a method in which polynuclear substances are added successively or continuously and polymerized. Specifically, batch polymerization of a part of the polynuclear compound and the monomer (ia '), the method of adding the polynuclear compound sequentially or continuously, the polynuclear compound and the monomer (ia ')) Or a continuous addition method.
  • the copolymerization reactivity ratio can be calculated by a publicly known method, the curve fitting method using the Fineman-Ross method or the integral formula using the Mayo-Lewis method (Takayuki Otsu ⁇ Masashita Kinoshita, Chemistry Dojin, No. 12, Experimental method for polymer synthesis, ppl 83-; 189). Particularly preferred specific examples are as follows.
  • the polynuclear is 8-methyl-8 methoxycarbonyltetracyclo [4 ⁇ 4 ⁇ 0 ⁇ 1 2 ' 5 ⁇ 1 7 ' 1 () ] -3 dodecene, monomer (i -a ') is 5 methoxycarbonyl
  • the copolymerizable reactivity ratio at 80 ° C determined by the Fineman-Ross method is 8-methyl-8-methoxycarbonyltetracyclo [4 ⁇ 4 ⁇ 0 ⁇ 1 2 ' 5 ⁇ 1 7 ' 1 () ] 1 3
  • Dodecene is 2.1, 5 Methoxycarbonylbicyclo [2.2.1] heptoe-2-en is 1.0.
  • the monomer (6) may be ring-opening polymerized alone, or may be further ring-opening copolymerized with the monomer (1) and another copolymerizable monomer.
  • cycloolefin such as cyclobutene, cyclopentene, cycloheptene, and cyclootaten.
  • the number of carbons of cycloolefin is preferably 4 to 20 forces S, more preferably 4 to 12;
  • the monomer (6) may be subjected to ring-opening polymerization.
  • the obtained ring-opening copolymer and the hydrogenated copolymer thereof are useful as raw materials for a resin composition having high impact resistance.
  • the ring-opening polymer (a (co) polymer having a structural unit represented by the formula ( ⁇ )) is optionally used in the presence of a ring-opening polymerization catalyst and a molecular weight modifier and a solvent for ring-opening polymerization. Is used to obtain one or more of the above-mentioned monomer (6) and, if necessary, a copolymerizable monomer by ring-opening (co) polymerization by a conventionally known method.
  • the above copolymerizable monomer in a total of 100% by weight, the above monomer) is usually 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, and 100%. It is desirable to copolymerize the copolymerizable monomer in an amount of not more than% by weight and not less than 0% by weight, usually not more than 50% by weight, preferably not more than 40% by weight, more preferably not more than 30% by weight.
  • the ring-opening polymer used in the present invention is most preferably a homopolymer of monomer (6) or a copolymer of two or more monomers (6)! /.
  • the catalyst for ring-opening (co) polymerization used in the present invention is a catalyst described in Olefin Metathesis and Metathesis Polymerization (.J.IVIN, JCMOL, Academic Press 1997).
  • a medium is preferably used.
  • a catalyst for example, (a) at least one compound power of W, Mo, Re, V and Ti was also selected, and (b) Li, Na, K, Mg, Ca , Zn, Cd, Hg, B, Al, Si, Sn, Pb, etc., and at least one of the elements having a carbon bond is at least one selected from those having the element hydrogen bond.
  • a metathesis polymerization catalyst comprising a combination of these. This catalyst may be added with an additive (c) described later in order to enhance the activity of the catalyst.
  • Other catalysts include (d) a metathesis catalyst comprising a group 4 to group 8 transition metal carbene complex or a metallacyclobutane complex without using a promoter.
  • Typical examples of W, Mo, Re, V and Ti compounds suitable as the component (a) include WCI, MoCl, ReOCl, VOC1, TiCl and the like described in JP-A-1240517.
  • JP-A-1-240517 such as (C 2 H 5 ) A1CK methylalumoxane and LiH.
  • component (c) which is an additive alcohols, aldehydes, ketones, amines and the like can be suitably used, and further, compounds shown in JP-A-1-240517 can be used. Compound can be used.
  • the amount of the metathesis catalyst used is the above component (a), the total amount of all monomers (monomer), and other copolymerizable monomers.
  • the following is the same): “(a) component: total monomer” is usually in the range of 1: 500—1: 500,000, preferably 1: 1,000—1: 100,000. desirable.
  • the ratio of the component (a) to the component (b) is in the range of “(a): (b) j ⁇ i: 1-1: 100, preferably 1: 2 to; 1:50 in terms of metal atomic ratio.
  • the ratio of the component (a) to the component (c) is “(c): (a)” is 0.
  • the amount of the catalyst (d) used is a range in which the molar ratio of the component (d) to the total monomer is “(d) component: total monomer” 1S usually 1:50 to 1: 100,000, preferably Is preferably in the range of 1: 100-1: 50,000.
  • the molecular weight of the ring-opening (co) polymer can be adjusted depending on the polymerization temperature, the type of catalyst, and the type of solvent, but in the present invention, it can be adjusted by allowing a molecular weight regulator to coexist in the reaction system.
  • Suitable molecular weight regulators include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-year-old octene, 1-nonene, 1-decene, etc.
  • ⁇ -olefins styrenes such as styrene and butyltoluene, and aryl compounds such as allylic acetic acid and allylbenzene, among which 1-butene, 1-hexene, and 1-otaten are particularly preferable.
  • These molecular weight regulators can be used alone or in admixture of two or more.
  • the molecular weight regulator is used in an amount of 0.001 to 0.6 mol, preferably 0.02 to 0.5 mol, based on 1 mol of all monomers subjected to the ring-opening (co) polymerization reaction. Is desirable.
  • Examples of the solvent used in the ring-opening (co) polymerization reaction that is, the solvent for dissolving the norbornene-based monomer, the metathesis catalyst, and the molecular weight regulator include petroleum ether, pentane, hexane, heptane, octane, nonane, Hydrocarbons such as decane; Cyclic hydrocarbons such as cyclopentane, cyclohexane, methinorecyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons; halogenated hydrocarbons such as dichloromethane, dichloroethane, chlorobutane, chloroform, tetrachloroethylene; esters such as methyl acetate, ethyl acetate, ⁇ -butyl acetate, isobutyl acetate, methyl propionate; Ethers such as benzene,
  • the amount of solvent used is usually "solvent: total monomer (weight ratio)" of 0.5:;! To 20: 1.
  • the amount is preferably 0.5:;! To 10: 1.
  • the norbornene-based polymer (B) may be produced only by the ring-opening polymerization, but it is preferable to further hydrogenate the ring-opening polymer obtained by the ring-opening polymerization.
  • a ring-opened polymer is a force that can be used as it is.
  • the above-mentioned olefinic unsaturated group is hydrogenated to convert the X to a group represented by —CH 2 —CH 1.
  • a hydrogenated product is preferred.
  • the hydrogenated product in the present invention is a product in which the above-mentioned olefinic unsaturated group is hydrogenated, and the side chain aromatic ring based on the norbornene monomer is not substantially hydrogenated. It is.
  • the proportion of hydrogenation is desirably 90 mol% or more, preferably 95% or more, and more preferably 97% or more of X in the structural unit ( ⁇ ).
  • the hydrogenation reaction needs to be performed under the condition that the side chain aromatic ring based on the monomer (6) is not substantially hydrogenated. For this reason, it is usually carried out by adding a hydrogenation catalyst to the solution of the ring-opening polymer and allowing it to react with hydrogen at atmospheric pressure to 30 MPa, preferably 2 to 20 MPa, more preferably 3 to 18 MPa. Desire! /
  • the hydrogenation catalyst those used in the usual hydrogenation reaction of olefinic compounds can be used. Any known heterogeneous catalyst and homogeneous catalyst can be used as the hydrogenation catalyst.
  • the heterogeneous catalyst include a solid catalyst in which a noble metal catalytic material such as noradium, platinum, nickel, rhodium, or ruthenium is supported on a carrier such as carbon, silica, alumina, or titania.
  • homogeneous catalysts include nickel naphthenate / triethylaluminum, bis (acetylacetonato) nickel ( ⁇ ) / triethylaluminum, cobalt oxalate / n butyllithium, titanocene dichloride / jetylaluminum mono Chloride, rhodium acetate, chlorotris (triphenylenophosphine) rhodium, dichlorotris (triphenylenophosphine) norethene, chlorohydrocarbonyltris (triphenylphosphine) ruthenium, dichlorocarbonyltris (tri And phenylphosphine) ruthenium.
  • the form of the catalyst may be powder or granular. This hydrogenation reaction catalyst can be used alone or in combination of two or more.
  • the norbornene-based polymer (B) in addition to the ring-opening (co) polymer and the hydrogenated polymer thereof, an addition type composed of one kind or two or more kinds of the monomer (6) is used.
  • (Co) polymers and addition type (co) polymers of the above monomer (6) and unsaturated double bond-containing compounds can be used.
  • An addition type (co) polymer produced by a (co) polymerization reaction of one kind or two or more monomers (6) can be obtained by a conventionally known method.
  • the monomer (6) and the unsaturated double bond-containing compound are usually contained in an amount of 50 to 90% by weight, preferably 60 to 90%, based on 100% by weight of the total amount of these monomers (6).
  • Examples of the unsaturated double bond-containing compound include olefin-based compounds having 2 to 12 carbon atoms, preferably 2 to 8 carbon atoms, such as ethylene, propylene, and butene.
  • Examples of the catalyst used in the copolymerization reaction of the monomer (6) and the unsaturated double bond-containing compound include a catalyst comprising a vanadium compound and an organoaluminum compound.
  • Vanadium compounds include VO (OR) X or V (OR) X (where R is a hydrocarbon group,
  • An electron donor adduct may be mentioned.
  • electron donors oxygen-containing electrons such as alcohols, phenols, ketones, aldehydes, carboxylic acids, esters of organic or inorganic acids, ethers, acid amides, acid anhydrides, alkoxysilanes, etc.
  • donors nitrogen-containing electron donors such as ammonia, amine, nitrile, and isocyanate.
  • organoaluminum compound include at least one organic aluminum compound selected from compounds having at least one aluminum carbon bond or an ano-remium monohydrogen bond.
  • the ratio of the vanadium compound and the organic aluminum compound in the catalyst is usually 2 or more, preferably 2 to 50, and particularly preferably 3 to 20 in terms of the ratio of aluminum atom to vanadium atom (A1 / V).
  • Examples of the solvent used in the copolymerization reaction include hydrocarbons such as pentane, hexane, heptane, octane, nonane, and decane; cyclic hydrocarbons such as cyclohexane and methylcyclohexane; benzene Aromatic hydrocarbons such as toluene and xylene and their halogen derivatives. Of these, cyclohexane and methylcyclohexane are preferred.
  • the norbornene-based polymer (B) used in the present invention has a black mouth benzene solution at 30 ° C (having a logarithmic viscosity () measured in a concentration of 0.5 g / dU of 0.3 to 2. OdL
  • the polystyrene-equivalent number average molecular weight (Mn) of the norbornene polymer (B) measured by gel permeation chromatography (GPC) is usually 1,000-500,500.
  • Mw weight average molecular weight
  • the molecular weight distribution (Mw / Mn) of the norbornene polymer (B) is usually 1 ⁇ 5-10, preferably 2-8, and more preferably 2-6.
  • the glass transition temperature (Tg) of the norbornene polymer (B) is usually 100 to 250 ° C, preferably 110 to 220 ° C, more preferably 115 to 200 ° C. If the Tg is too low, the heat distortion temperature will be low, which may cause problems with heat resistance, and the resulting molding There may be a problem that the change in optical characteristics due to the temperature of the product or film becomes large. On the other hand, if Tg is too high, it is necessary to increase the processing temperature, which may cause thermal deterioration of the resin composition.
  • the resin composition and the optical film according to the present invention have a composition ratio ((A) / (B)) force / weight ratio of the styrene copolymer (A) to the norbornene polymer (B).
  • Polymer / nonoleponolene-based polymer 5/95 to 70/30, preferably 15/85 to 60/40, more preferably 20/80 to 50/50.
  • the blending amount of the styrene copolymer ( ⁇ ) is in the above range, it is possible to obtain an optical film having reverse wavelength dispersion by stretching after film formation. In addition, the strength of the film is improved.
  • the stretched film obtained from the resin composition may not exhibit reverse wavelength dispersibility.
  • the blending amount of the styrene copolymer ( ⁇ ) exceeds the above upper limit, the heat resistance of the resulting resin composition or optical film is reduced, or the strength of the optical film is reduced.
  • the resin composition and the optical film may further contain a hydrocarbon resin.
  • hydrocarbon resins include C-based resins, C-based resins, C-based / C-based mixed resins, cyclopentagen-based resins, copolymer resins of olefin / bulu-substituted aromatic compounds, cyclopentagen-based compounds / bulu-substituted Examples include copolymer resins of aromatic compounds, hydrogenated products of these resins, and hydrogenated products of butyl-substituted aromatic resins.
  • the content of the hydrocarbon resin is usually 0.0;! To 50 parts by weight, preferably 0.;! To 25 parts by weight, per 100 parts by weight of the norbornene polymer (B).
  • the resin composition may contain the following antioxidants, ultraviolet absorbers and the like.
  • the amount of these additives to be added is usually 0.0;! To 5 parts by weight, preferably 0.05 to 4 parts by weight, with respect to 100 parts by weight of the resin composition.
  • additives such as a lubricant can be added for the purpose of improving processability.
  • the resin composition according to the present invention can be obtained, for example, by the following methods (i) to (iii):
  • Solvents used at this time include polymerization solvents used in the production of the styrene copolymer (A) or the calebornene polymer (B), and general solvents used in the solvent casting method of optical films. Can be used. Since the resin composition obtained by the above method contains a high molecular weight polymer, an optical film excellent in film strength can be obtained.
  • the resin composition solution obtained in (ii), (iii) and the like is introduced into an extruder, and after removing volatile components in the resin composition solution in the extruder, From a die in the form of a strand, a molded product or an optical film can be obtained by performing melt extrusion molding (hereinafter also simply referred to as extrusion molding) described later.
  • extrusion molding melt extrusion molding
  • the optical film of the present invention can be obtained by molding the above resin composition into a film by a melt molding method, a solution casting method (solvent casting method) or the like.
  • the solvent casting method for example, the above-described resin composition according to the present invention is dissolved or dispersed in a solvent to obtain a liquid having an appropriate concentration, and then poured or applied onto an appropriate carrier. And a method of peeling off the carrier from the carrier.
  • the concentration of the resin composition is usually 1 to 90% by weight, preferably 5 to 50% by weight, and more preferably 10 to 35 wt%. If the concentration of the resin is less than the above, it becomes difficult to secure the thickness of the film, and problems such as obtaining the surface smoothness of the film due to foaming due to solvent evaporation and the like arise. On the other hand, if the concentration exceeds the above, the solution viscosity becomes too high, and the thickness and surface of the resulting optical film are difficult to be uniform, which is not preferable.
  • the viscosity of the above solution at room temperature is usually 1 to 1,000,000 (111? & '3), preferably 10 to 500,000 (11 11 ⁇ 2-3), more preferably 100. ⁇ 200,000 (11 11 ⁇ 2-3), particularly preferably 1,000 ⁇ ; 100,000 (mPa's).
  • Solvents used here include hydrocarbon solvents such as cyclohexane, cyclopentane and methylcyclohexane, aromatic solvents such as benzene, toluene and xylene, methyl cellosolve, ethyl acetate sorb, 1-methoxyl Cellosolve solvents such as 2-propanol, diacetone alcohol, acetone, cyclohexanone, methyl ethyl ketone, 4-methylone ketone solvents such as 2-pentanone, methyl isobutyl ketone, methyl lactate, methyl acetate Ester solvents such as Nole, ethyl acetate and butyl acetate, halogen-containing solvents such as methylene chloride and chloroform, ether solvents such as tetrahydrofuran, dioxane, dimethoxyethane, 1,3-dioxolane, 1-butanol, 1 pen List
  • the SP value is usually 10 to 30 (MPa 1/2 ), preferably 10 to 25 (MPa 1/2 ), more preferably 15 to 25 (MPa 1 / 2 ), particularly preferably by using a solvent in the range of 17 to 20 (MPa 1/2 ), it is possible to obtain an optical film with good surface uniformity and optical properties with a force S.
  • the above solvents may be used alone or in combination of two or more.
  • the range of the SP value as a mixture is within the above range.
  • the SP value as a mixture can be obtained from the weight ratio.
  • the weight fraction of each solvent is W and W, and the SP values are SP and SP.
  • the power s is obtained as the straightness calculated by
  • the temperature when the thermoplastic resin composition according to the present invention is dissolved in a solvent may be room temperature or high. A uniform solution can be obtained by thorough stirring.
  • a coloring agent such as a dye or pigment
  • a leveling agent may be added to improve the surface smoothness of the optical film.
  • Any general leveling agent can be used.
  • fluorine-based nonionic surfactants, special acrylic resin leveling agents, silicone leveling agents and the like can be used.
  • the above solution is used in a metal drum, steel belt, polyethylene terephthalate (P
  • a surface-treated film may be used.
  • a hydrophilic treatment method generally used, for example, a method of laminating an acrylic resin or a sulfonate group-containing resin by coating or lamination, or a hydrophilic property of the film surface by corona discharge treatment or the like. The method of improving
  • the drying (solvent removal) step of the solvent casting method is not particularly limited and can be carried out by a generally used method, for example, a method of passing through a drying furnace through a number of rollers. If bubbles are generated in the process due to evaporation of the solvent, the characteristics of the film will be significantly reduced.To avoid this, the drying process is divided into two or more stages, and the temperature in each process is! / It is preferable to control the air volume!
  • the amount of residual solvent in the optical film is usually 10% by weight or less, preferably 5% by weight or less, more preferably 2% by weight or less, and particularly preferably 1% by weight or less.
  • the amount of residual solvent is 10% by weight or more, the dimensional change with the lapse of time becomes large when the optical film is actually used. Further, the residual solvent is not preferable because Tg is lowered and heat resistance is also lowered.
  • the residual solvent amount is usually 10 to 0.1% by weight, preferably 5 to 0.1% by weight, more preferably; ! ⁇ 0.1% by weight.
  • the thickness of the optical film of the present invention is usually from 0.;! To 3,000 m, preferably from 0.1 to 1,00 0 m, more preferably from! To 500 ⁇ m, most preferably 5. ⁇ 300 ⁇ m.
  • the thickness is less than 0. l ⁇ m, handling becomes substantially difficult.
  • it is more than 3,000 m, it is difficult to wind it into a roll.
  • the thickness distribution of the optical film of the present invention is preferably within ⁇ 20% of the average value. Or within ⁇ 10%, more preferably within ⁇ 5%, and particularly preferably within ⁇ 3%.
  • the thickness variation per 1 cm is usually 10% or less, preferably 5% or less, more preferably 1% or less, and particularly preferably 0.5% or less.
  • a resin is melted by an extruder, and a fixed amount is supplied by a gear pump, and impurities are removed by filtration with a metal filter, and then shaped into a film shape with a die.
  • a method of cooling a film using a winder and winding it using a winder is generally used.
  • any of a single screw, a twin screw, a planetary type, a coader, a Banbury single mixer type and the like may be used, but a single screw extruder is preferably used.
  • the screw shape of the extruder includes vent type, tip dull mage type, double fright type, full flight type, nori type, etc., and compression types include forces such as slow compression type and rapid compression type, A full flight type slow compression type or a barrier type is preferred.
  • the resin returned from the downstream side between the gears has an internal lubrication system that enters the system and an external lubrication system that drains it to the outside.
  • Thermal stability is not good
  • an external lubrication method is preferable.
  • the gear tooth cutting method of the gear pump is preferable from the viewpoint of stabilizing the helical type force measurement rather than the direction parallel to the shaft.
  • the force S which includes leaf disc type, candle filter type, leaf type, screen mesh, etc., and the filtration area with relatively small residence time distribution can be increased.
  • the leaf disc type is preferred.
  • the filter element include a metal fiber sintered type, a metal powder sintered type, and a metal fiber / powder laminated type.
  • the shape of the center pole of the filter includes the external flow type, hexagonal column internal flow type, and circular column internal flow type. Any shape can be selected as long as the shape of the retention part is small It is.
  • the melted resin is discharged from the die and is tightly solidified on the cooling drum. Molded into rum.
  • the die shape it is essential to make the resin flow uniform within the die, and in order to maintain the uniformity of the film thickness, the pressure distribution inside the die near the die outlet is constant in the width direction. It is essential.
  • the flow rate of resin in the width direction is almost constant, and fine adjustment of the flow rate at the die outlet is constant within a range that can be adjusted by the lip opening. It is a requirement.
  • the manifold shape is not preferable for the straight manifold type and the fish tail type, which are preferable for the coat hanger type, because the flow distribution in the width direction is likely to occur.
  • the temperature distribution at the die exit is preferably ⁇ 1 ° C or less. More preferably, it is ⁇ 0.5 ° C or less. If temperature unevenness occurs in the width direction exceeding ⁇ 1 ° C, a difference in melt viscosity of the resin occurs, resulting in thickness unevenness, stress distribution unevenness, and so on. Phase difference unevenness is likely to occur!
  • the lip opening amount of the die outlet (hereinafter referred to as "lip gap”) is usually 0.3 to 1.5 mm, preferably 0.3 to 1.2 mm, and more preferably Is 0 ⁇ 35 ⁇ 1. Omm. If the lip gap is less than 0.3 mm, the resin pressure inside the die becomes too high, and the resin is liable to cause resin leakage from places other than the lip of the die. On the other hand, if the lip gap exceeds 1.5 mm, it is difficult to increase the resin pressure of the die, which is not preferable because the thickness uniformity in the width direction of the film is deteriorated.
  • Examples of methods for tightly solidifying a film extruded from a die include a nip roll method, an electrostatic application method, an air knife method, a vacuum chamber method, a calendar method, and the like. Is selected.
  • the surface of the cooling roll for solidifying the film extruded from the die is preferably subjected to various surface treatments as in the case of the extruder cylinder and the inner surface of the die.
  • the material of the extruder (cylinder 'screw, etc.) and the die includes forces such as SCM steel and stainless steel such as SUS.
  • the inner surface of the extruder cylinder, the die and the screw surface of the extruder are coated with chrome, Eckenole, titanium, etc., PVD (Physical Vapor D mark osition) method, etc.
  • Such a surface treatment is preferable in that a uniform molten state of the resin can be obtained because the coefficient of friction with the resin is small.
  • the resin temperature (extruder cylinder temperature) for producing the optical film of the present invention is usually 200 to 350. C, preferred ⁇ is 220-320. C. Resin temperature power 00. If it is less than C, the resin composition cannot be uniformly melted.On the other hand, if it exceeds 350 ° C, it is difficult to produce a high-quality film with excellent surface properties due to thermal degradation of the resin composition during melting. become. Furthermore, it is particularly preferable that the temperature is within the above-mentioned temperature range and within the range of Tg + 120 ° C. to Tg + 160 ° C. with respect to the glass transition temperature (Tg) of the resin composition.
  • Tg glass transition temperature
  • the Tg of the resin composition is 130 ° C
  • a particularly preferable temperature range for film production is 250 ° C to 290 ° C.
  • the resin composition of the present invention can suppress the crystallization (white turbidity) of the film even at the high temperature as described above, and has excellent compatibility, and therefore has good extrusion moldability.
  • the melt flow rate (MFR) force at 260 ° C of the resin composition to be used is 10 to 200 g / 10 min, preferably (15 to 150 g / 10 min, particularly preferably 30 to 120 g / 10 min.
  • melt flow rate value be constant throughout the resin composition, and the variation is preferably within ⁇ 10%, particularly preferably within ⁇ 5%. By doing so, pressure fluctuations during extrusion can be suppressed, and a film excellent in film thickness uniformity can be obtained.
  • the shear rate during melt extrusion is usually 1 to 500 (l / sec), preferably 2 to
  • the shear rate at the time of extrusion is less than 1 (1 / sec), the resin composition cannot be uniformly melted, so an extruded film with a small thickness unevenness cannot be obtained, while it exceeds 500 (l / sec). If the shear force is too large, the resin and additives may be decomposed and deteriorated, resulting in defects such as foaming, die lines, and attachments on the surface of the extruded film.
  • the thickness of the optical film of the present invention is usually 10 to 800 111, preferably 20 to 500 111, more preferably 40 to 500 Hm. If the thickness is less than 10 m, there may be difficulties in post-processing such as stretching due to insufficient mechanical strength. In the case of exceeding the thickness, if it is difficult to produce a film having uniform thickness, surface properties, etc., it may be difficult to wind up the resulting film with force, strength and strength.
  • the thickness distribution of the raw film of the present invention is usually within ⁇ 5%, preferably within ⁇ 3%, and more preferably within ⁇ 1% of the average value. When the thickness distribution exceeds ⁇ 5%, retardation unevenness tends to occur when an optical film is formed by stretching.
  • the stretched film according to the present invention can be obtained by further heating and stretching the optical film of the present invention obtained by the above method, and can be used as a film that gives a retardation to transmitted light.
  • the production force S can be achieved by a known uniaxial stretching method, biaxial stretching method, or Z-axis stretching method. That is, the horizontal uniaxial stretching method using the tenter method, the inter-roll compression stretching method, the longitudinal uniaxial stretching method using rolls with different circumferential speeds, the biaxial stretching method combining horizontal uniaxial and longitudinal uniaxial, and the stretching method using the inflation method. Etc. can be used.
  • the stretching speed is usually 1 to 5,000% / min, preferably 50 to 1,000% / min, more preferably 100 to 1; 1,000% / min. It is.
  • stretching may be performed in two directions at the same time, or in a direction different from the first stretching direction after uniaxial stretching.
  • the intersecting angle of the two stretching axes for controlling the shape of the refractive index ellipsoid is not particularly limited because it is determined by the desired characteristics, but is usually in the range of 120 to 60 degrees.
  • the stretching speed may be the same in each stretching direction, and may be different. Usually, it is ;! to 5,000% / min, preferably 50 to 1,000% / min, more preferably 100 to 1,000% / min, particularly preferably 100 to 500% / min.
  • the drawing processing temperature is not particularly limited, but the drawing processing temperature is determined based on the glass transition temperature Tg of the resin composition containing the styrene polymer (A) and the norbornene polymer (B). Usually, Tg ⁇ 30 ° C, preferably Tg ⁇ 15 ° C, more preferably Tg ⁇ 5 to Tg + 15 ° C. By setting it within the above range, it is possible to suppress the occurrence of phase difference unevenness.
  • the glass transition temperature of the resin composition in the present specification means an extrapolated glass transition start temperature determined according to Japanese Industrial Standard K7121, and the resin composition of the present invention is styrene.
  • the resin composition of the present invention can control the content of each structural unit constituting the styrene copolymer (A) even in such a stretching process at a high temperature.
  • the film can be prevented from declining in transmittance and turbidity due to crystallization and phase separation, imparted with excellent compatibility, and has good heat stretch processability.
  • the draw ratio is not particularly limited because it is determined by the desired properties, but is usually 1
  • the stretched film may be cooled as it is, but it is kept in a temperature atmosphere of Tg—20 ° C. to Tg for at least 10 seconds, preferably 30 seconds to 60 minutes, more preferably 1 minute to 60 minutes. It is preferable to hold and heat set. As a result, a stable optical film can be obtained with little change over time in the retardation of transmitted light.
  • the dimensional shrinkage due to heating of the optical film of the present invention which is not stretched is usually 5% or less, preferably 3% or less, more preferably when heated at 100 ° C for 500 hours. 1% or less, particularly preferably 0.5% or less.
  • the dimensional shrinkage ratio of the stretched film of the present invention when heated is 5 at 100 ° C.
  • the stretched film obtained as described above has a force that aligns molecules by stretching and gives a phase difference to transmitted light.
  • This phase difference is controlled by a stretching ratio, a stretching temperature, or a film thickness. be able to.
  • the stretching ratio the larger the stretching ratio, the larger the absolute value of the retardation of transmitted light tends to increase. Therefore, by changing the stretching ratio, the desired retardation can be obtained.
  • the ability to obtain an optical film for transmitted light can be achieved.
  • the draw ratio is the same, the absolute value of the retardation of transmitted light tends to increase as the thickness of the film before stretching increases. By changing the thickness, it is possible to obtain an optical film that imparts a desired phase difference to transmitted light.
  • the absolute value of the retardation of the transmitted light tends to increase as the stretching temperature is lowered. Therefore, an optical film that gives the desired retardation to the transmitted light by changing the stretching temperature. Obtainable.
  • the value of the retardation imparted to the transmitted light by the stretched film is determined according to its use and is not particularly limited.
  • the layer having a liquid crystal display element or an electoluminescence display element is a laser optical device.
  • a system wave plate usually l to lo, OOOnm, preferably
  • the phase difference of the light transmitted through the stretched film is preferably highly uniform.
  • the variation in the phase difference at a wavelength of 550 nm is usually ⁇ 20% or less, preferably 10% or less. Preferably, it is ⁇ 5% or less. That is, the phase difference at a wavelength of 550 nm is usually ⁇ 20% or less, preferably 10% or less, more preferably ⁇ 5% or less with respect to the average value. If the dispersion of the phase difference exceeds ⁇ 20%, when used in a liquid crystal display device, color unevenness may occur and the performance of the display body may deteriorate.
  • the optical film according to the present invention has a ratio (Re (650) / Re (450)) force between the phase difference Re (650) at a wavelength of 650 nm and the phase difference Re (450) at a wavelength of 45 Onm. It is desirable that it is in the range of 1.8 to;!, Preferably 1.7 to 1; more preferably 1.6 to 1.
  • Re () / can be made almost constant in the entire wavelength region of 400 to 800 nm. It becomes.
  • the optical film of the present invention can be used alone as a polarizing plate by being bonded to a transparent substrate or the like.
  • the polarizing plate can be used by being laminated on other films, sheets, and substrates.
  • an adhesive or an adhesive can be used.
  • these pressure-sensitive adhesives and adhesives that are excellent in transparency are natural rubber, synthetic rubber, butyl acetate / butyl chloride copolymer, polybutyl ether, acrylic, modified polyolefin, and These include curable adhesives with added curing agents such as isocyanate, adhesives for dry laminates that mix polyurethane resin solutions and polyisocyanate resin solutions, synthetic rubber adhesives, and epoxy adhesives. It is done.
  • the polarizing plate may be previously laminated with an adhesive layer or an adhesive layer in order to improve the workability of lamination with other film sheets, substrates, and the like.
  • the above-mentioned pressure-sensitive adhesive or adhesive can be used as the pressure-sensitive adhesive or adhesive.
  • the optical film of the present invention can be used in a liquid crystal display device and can further improve the display characteristics of the liquid crystal display device.
  • liquid crystal display devices include various liquid crystal displays such as mobile phones, digital information terminals, pagers, navigation, in-vehicle liquid crystal displays, liquid crystal monitors, light control panels, displays for office automation equipment, and displays for AV equipment. Apparatus.
  • optical components by injection molding using the resin composition of the present invention.
  • optical components include various special lenses such as conical lenses, spherical and cylindrical lenses, dielectric mirrors or gold mirrors, and wave plates.
  • the resin composition of the present invention is heated and kneaded in a heating cylinder, melted, and injected from the heating cylinder into a mold under a caloric pressure. Thereafter, it is cooled and solidified in a mold and extruded by an extrusion device to obtain a molded product.
  • the melting temperature of the resin at this time is preferably the same as the melting temperature in the extrusion molding.
  • the polymerization reaction solution weighed in an aluminum container was placed on a hot plate heated to 300 ° C. After heating to constant temperature and removing the residual monomer and solvent, the weight of the remaining polymer was measured, and the reaction rate was determined from the ratio with the theoretical polymer production.
  • the infrared spectrometer (IR) was measured using FT / IR-420 manufactured by JASCO Corporation.
  • a black mouth benzene solution having a concentration of 0.5 g / 100 ml was prepared and used as a sample, and the measurement was carried out using a Ubbelohde viscometer at 30 ° C.
  • glass transition temperature (Tg) was determined according to Japanese Industrial Standard K7121.
  • TSK gel G2000H is sequentially connected, solvent: tetrahydrofuran, flow rate: lmL / min, sun
  • a ring-opened polymer solution in toluene or methylene chloride (concentration: 25%) was cast on a smooth glass plate and dried to give a colorless film with a thickness of 50 to 200 111 and a residual solvent of 0.5 to 0.8%.
  • a transparent film was obtained.
  • the film was stretched uniaxially or freely constrained by a width of 1.2 to 3.0 times at a temperature 5 to 10 ° C higher than the glass transition temperature (Tg) of the film.
  • Tg glass transition temperature
  • the thickness of the cast film, stretching ratio, and stretching method are as described in each Example and Table 1 described later. It is.
  • the retardation of the stretched film was measured using a letter determination measuring instrument (manufactured by Oji Scientific Instruments, trade name: KOBRA21DH).
  • Tetrahydrofuran flow rate: LML / min, sample concentration: 0, 7-0, 8 wt 0/0, injection volume: 1 00 Les Measurement temperature: 40 ° C, Detector: was obtained using UV (254 nm))
  • the styrene-based polymer in the resin composition was quantified from the area intensity of the spectrum, and the blend ratio was calculated.
  • the threshold value of a film having a thickness of 100 ⁇ m was measured according to ASTM D1925.
  • a resin sample (30 mg) was dissolved in 5 mL of toluene, and the presence or absence of insoluble matter was visually observed. The case where there was no insoluble matter was evaluated as A, and the case where it was partially insoluble was evaluated as B.
  • MFR Melt flow rate
  • the bow I crack strength of the film was measured according to JIS K6772.
  • the mixed resin of component A and component B is dehumidified and dried for 4 hours under nitrogen at a drying temperature of 100 ° C. Then, the resin is introduced into a 800 kg stainless container in a clean room, and a positive pressure of 8 kPa is applied. Stored for 15 days.
  • the above stainless steel container is made of washed paper (manufactured by Asahi Kasei Kogyo Co., Ltd.) after the inside air is replaced with dry nitrogen in advance before the resin is introduced, and then moistened with water that has been cleaned through a 0.2 m PVDF filter. The product with the internal dust removed under the trade name “Bencot”) was used.
  • the resin is introduced into an extruder (GM Engineering Co., Ltd .: GM 65), melted at 260 ° C, and fed in a fixed amount using a gear pump, and foreign matter is removed using a 5 mm leaf disc filter.
  • Extrusion was performed from a T-die heated by an aluminum-incorporated heater set at 260 ° C to obtain a resin film.
  • This film was rolled up 10m 2 and placed on black paper, and the fluctuation of reflected light was confirmed under the lOOw fluorescent lamp. The spot where the reflected light fluctuated was regarded as a point defect, and the portion was marked. Thereafter, the surface of the film was observed with a 50 ⁇ optical microscope, and the number of point defects having a diameter of 30 m or more was found.
  • phase difference (letter decision) at a wavelength of 550 nm was measured using an automatic birefringence meter (manufactured by Oji Scientific Instruments, KOBRA-21ADH).
  • FIG. 1 and FIG. 2 show the IR spectrum and 13 C-NMR spectrum of the obtained polymer, respectively.
  • the copolymer composition ratio determined by NMR was as prepared, and the caromethanol decomposition rate was 99% or more.
  • the obtained styrene copolymer is referred to as 1A.
  • FIG. 5 and FIG. 6 show the IR spectrum and 13 C-NMR spectrum of the obtained polymer, respectively.
  • the copolymer composition ratio determined by NMR was as prepared, and the conversion rate to OH groups was 99% or more.
  • the obtained styrene copolymer is referred to as 5A.
  • the anti- ⁇ 50 weight 0/0 of the night? 5. 267g (0. 0235mol) was added and stirring was continued at 60 ° C for 30 minutes. A small amount of the reaction solution was applied to a pH test paper (Whatman CS type, 0.2 interval) and the pH was measured to find pH 3.8. The yield determined in the same manner as in the example was 91%.
  • a ring-opening polymer was obtained by adding 0.86 mL of a solution (0 ⁇ 025 monole / L) and reacting for 1 hour at 80 ° C. Next, the resulting ring-opening polymer solution was a hydrogenation reaction catalyst. Add 0 ⁇ 04g of RuHCl (CO) [P (CH)] and set the hydrogen gas pressure to 9 ⁇ ;! OMPa, 16
  • the obtained hydrogenated ring-opened polymer is designated as 1B.
  • Formula (la) are shown 8 methoxycarbonyl two routes 8-methyl-tetracyclo [4 ⁇ 4. 0. I 2 ' 5 1 "°.] - 3 -dodecene 135 g, tricyclo [5 ⁇ 2 of the following formula (3a).
  • 1. 0 2 ' 6 ] Deca-3,8-gen 15 g, molecular weight regulator 1 hexene 20.5 g, and toluene 225 g were charged into a nitrogen-substituted reaction vessel and heated to 80 ° C. Chill aluminum (0.3 mol of 0.6 mol / U toluene solution, and methanol-modified WC1 toluene solution (0.0
  • This film was cut into a width of 10 mm and a length of 70 mm, and heated and stretched with a tensile tester (Instron Corporation model 5567) equipped with a thermostatic layer to prepare a free-width uniaxially stretched film.
  • a tensile tester Instron Corporation model 5567
  • the film thickness of the obtained film was 104 m, and the phase difference (Re) was measured.
  • Re450 125 belly
  • Re550 141 belly
  • Re650 149 nm.
  • Re450, Re550, and Re650 are wavelengths 450, 550, and Represents the phase difference (Re) at 650 nm.
  • the stretching direction is the x-axis
  • the axis perpendicular to the x-axis in the film plane is the y-axis
  • the film thickness direction is the z-axis (direction perpendicular to both the X-axis and y-axis).
  • a free-width uniaxially stretched film was produced in the same manner as in Example 1.
  • the maximum stress during stretching was 68 kgf / cm 2 .
  • the film thickness of the obtained film was 43 m, and the phase difference (Re) was measured.
  • the NZ coefficient is
  • a free-width uniaxially stretched film was produced in the same manner as in Example 1.
  • the maximum stress during stretching was 60 kgf / cm 2 .
  • the film thickness of the obtained film was 65 m, and the phase difference (Re) was measured.
  • the NZ coefficient was 1.
  • a film of a mixture of 7 g of the polymer 5A obtained in Production Example 5 and 13 g of the polymer 4B obtained in Production Example 14 was cast in the same manner as in Example 1, and the thickness was 180 m.
  • the maximum stress during stretching was 3 kgf / cm 2 .
  • the film thickness of the obtained film was 83 ⁇ m, and the phase difference (Re) was measured.
  • the NZ coefficient was 1.38. The results are shown in Table 1.
  • the styrene copolymer 7A before solvent removal obtained in Production Example 7 and the norbornene resin 5B before solvent removal obtained in Production Example 15 were 6/14 (Example 10) and 9/11 by weight ratio. (Example 11)
  • the solid content was adjusted to 20%.
  • Each polymer solution was filtered through a 0.211 m pore size PTFE filter. Thereafter, the solvent was removed under the conditions of 260 ° C. and l.Otor, and the mixture was passed through a 5 m filter to obtain Blend resin pellets.
  • a chart for Tg measurement in Example 10 is shown in FIG. 7
  • a chart for Tg measurement in Example 11 is shown in FIG.
  • the phase differences at 550 nm and 650 nm were 140 nm and 145 nm, respectively, and the phase difference ratio (wavelength dispersion) between 650 nm and 550 nm was 1.036.
  • the birefringences at 550 nm and 650 nm were calculated from the phase difference / film thickness, and were 0.00175 and 0.00181, respectively.
  • the NZ coefficient was 1.025. The results are shown in Table 1.
  • a mixture of polymer 1B obtained in Production Example 11 was cast in the same manner as Example 1 except that PS Japan Co., Ltd. polystyrene was used instead of Polymer 1A. As a result, a transparent film could not be obtained regardless of the solvent used.
  • a mixture of polymer 1B obtained in Production Example 11 was prepared in the same manner as Example 1 except that Nova chemicals maleic anhydride / styrene copolymer (D YLARK232) was used instead of Polymer 1 A. Cast film formation was performed. As a result, when methylene chloride was used as a solvent, a transparent film could not be obtained. On the other hand, when toluene was used as a solvent, the force that was able to obtain a transparent film was slow and the drying speed was slow, making it unsuitable for industrial production.
  • Nova chemicals maleic anhydride / styrene copolymer D YLARK232
  • a polymer was synthesized in the same manner as in Production Example 1 except that p-isopropylenephenol was used in place of acetyloxystyrene.
  • the maximum stress during stretching was 40 kgf / cm 2 .
  • the film thickness of the obtained film was 100 ⁇ m, and the phase difference (Re) was measured.
  • the NZ coefficient was 1. The results are shown in Table 2.
  • Resin pellet 7A obtained in Production Example 7 is 5 kg
  • Polymer 5B obtained in Production Example 15 is 3 kg
  • And 7 kg of toluene was added and mixed uniformly.
  • 50 blend resin solutions Using a twin-screw extruder of ⁇ (L / D 13.2), the resin pellet 1 was obtained by demelting and pelletizing at 280 ° C. and 20 mmHg.
  • the presence or absence of insoluble matter in the obtained resin pellet 1 and the evaluation result of the solution filterability are not shown in Table ⁇ 3.
  • a resin solution was prepared in the same manner as in Example 13 except that the resin pellet 8A obtained in Production Example 8 was used in place of the resin pellet 7A.
  • Table 3 shows the presence or absence of insoluble matter in the obtained resin pellet 2 and the evaluation results of the solution filterability.
  • Example 11 a resin solution was prepared in the same manner as in Example 1, except that the resin pellet 9A obtained in Production Example 9 was used instead of the resin pellet 7A.
  • 5 ⁇ 6
  • Mw 150751
  • Mw / Mn 3.66
  • Tg 119.
  • residual toluene 2890 ppm.
  • Table 3 shows the presence or absence of insoluble matter in the obtained resin pellet 3 and the results of evaluation of the solution filterability.
  • the resin composition of the present invention can be made into a resin composition that is excellent in compatibility and excellent in transparency, hardly causes coloration even when heated, and includes a high molecular weight styrene copolymer.
  • the resin composition of the present invention can be suitably used for molding of various optical materials, and since it is excellent in film forming properties, it can be suitably used particularly for optical film applications, thereby obtaining an optical film excellent in strength. be able to.
  • the optical film obtained from the resin composition of the present invention is stretched, the phase difference increases as the incident light wavelength becomes longer,
  • V and so-called reverse wavelength dispersibility can be expressed, it can be used for various liquid crystal display devices and polarizing plates.
  • the composition ratio between the styrene copolymer (A) and the norbornene polymer (B) it is possible to easily control the magnitude of the phase difference and the wavelength dispersion, so that the low compound. It can be used for optical components that require refraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、スチレン系共重合体とノルボルネン系重合体からなり、優れた相溶性を有して相分離せず、かつフィルム化が容易な樹脂組成物を提供することを課題とする。またこの樹脂組成物を主成分とし、優れた透明性を有する光学フィルム、さらに逆波長分散性を示す光学フィルム、ならびにその用途を提供することを課題とする。  本発明の樹脂組成物は、(A)下記式(1)で表される構造単位(1)および下記式(2)で表される構造単位(2)を有するスチレン系共重合体と、(B)ノルボルネン系重合体とを含有することを特徴としている。

Description

明 細 書
樹脂組成物およびその用途
技術分野
[0001] 本発明は、スチレン系共重合体とノルボルネン系重合体とを含有する樹脂組成物 およびその用途に関する。詳しくは、本発明は、スチレン系共重合体とノルボルネン 系重合体とを含み、透明性に優れ、光学フィルムなどの製造に適した樹脂組成物、 該樹脂組成物から得られる成形体および光学フィルム、ならびに該光学フィルムを用
V、た延伸フィルム、偏光板および液晶表示装置に関する。
背景技術
[0002] 従来から光学フィルムとして使用されているポリカーボネート、ポリエステル等のフィ ルムは、光弾性係数が大きいために微小な応力の変化などにより透過光に位相差が 発現したりして位相差が変化する問題がある。また、トリァセチルセルロース等のフィ ルムには、耐熱性が低く吸水変形等の問題がある。
[0003] 熱可塑性ノルボルネン系樹脂(環状ォレフィン系樹脂)は、ガラス転移温度、光線 透過率が高ぐし力、も屈折率の異方性が小さいことによる従来の光学フィルムに比べ 低複屈折性を示すなどの特長を有しており、耐熱性、透明性、光学特性に優れた透 明熱可塑性樹脂として注目されている。そしてこのような特徴を利用して、例えば、光 ディスク、光学レンズ、光ファイバ一、透明プラスチック基盤、低誘電材料などの電子 •光学材料、光半導体封止などの封止材料などの分野において、環状ォレフィン系 樹脂を応用することが検討されて!/、る。
[0004] 上記の環状ォレフィン系樹脂の特性は、光学フィルム用の樹脂としてみても、前記 従来の樹脂の問題点を改善できるものであり、このため、環状ォレフィン系樹脂から なるフィルムが光学用の各種フィルムとして提案されて!/、る。
[0005] 例えば、特許文献 1、 2には、環状ォレフィン系樹脂のフィルムを用いた位相差板が 記載されている。また、特許文献 3〜 5には、環状ォレフィン系樹脂のフィルムを、偏 光板の保護フィルムに使用することが記載されている。さらに、特許文献 6には、環状 ォレフィン系樹脂のフィルムからなる液晶表示素子用基板が記載されている。 [0006] 一般的に位相差フィルムは、延伸配向させて得られる透過光に位相差 (複屈折)を 与える機能が、透過光の波長が長波長になるにつれて透過光の位相差 (複屈折)の 絶対値が小さくなるという特性(正の波長分散性)を有するため、可視光領域 (400〜 800nm)全てにおいて、例えば 1/4波長等の特定の位相差を透過光に与えること が非常に困難であった。実際に位相差が広範囲な波長領域 (400〜800nm)にお いて 1/4波長としての機能が反射型や半透過型の液晶ディスプレイや光ディスク用 ピックアップなどに必要とされている。また、液晶プロジェクターでは、 1/2えの位相 差が必要であり、従来の環状ォレフィン系樹脂からなる光学フィルムでは、フィルムを 積層化させる以外困難であった。フィルムの積層化では、フィルムの貼り合わせ、切り 出し、接着などの工程が複雑化するだけでなぐ得られる光学フィルムの厚みも低減 させることが困難になる。
[0007] この課題を解決するためには、波長が長波長になるにつれて透過光の位相差の絶 対値が大きくなる特性、すなわち、逆波長分散性を示す光学フィルムが必要である。 この逆波長分散性を示す光学フィルムとしては、特許文献 7および特許文献 8におい て、特定のセルロースアセテート系樹脂からなる位相差フィルム、ポリカーボネート系 樹脂やスチレン系樹脂のブレンドが提案されている。し力、しながら、セルロース系樹 脂からなるフィルムでは、吸水による特性変化や耐熱性等の点において問題点があ り、ポリカーボネート系では、ガラス転移温度が高ぐ高温での延伸加工が必要にな るだけでなぐフィルムの光弾性係数が大きいために応力による光学ひずみが生じる
[0008] また、スチレン系樹脂と環状シクロォレフイン系樹脂とのブレンド組成物では、フィル ム化の際に製膜性の良い塩化メチレンなどの揮発性の高い溶媒は、ほとんどの場合 相分離が生じるために使用できず、特定の溶剤を選定しなければならない。そのた めに溶剤の乾燥時間がかかり、生産性が極端に低下し、透明度の高いフィルムを容 易に得ることが困難であるという問題があった。
[0009] このため、相分離を抑え、透明な光学フィルムを容易に得ることができる樹脂組成 物、およびその樹脂組成物を主成分とする、逆波長分散性を示し、透明性の高い光 学フィルムの出現が強く望まれていた。 特許文献 1:特開平 5— 2108号公報
特許文献 2:特開平 5— 64865号公報
特許文献 3 :特開平 5— 212828号公報
特許文献 4:特開平 6— 51117号公報
特許文献 5:特開平 7— 77608号公報
特許文献 6:特開平 5— 61026号公報
特許文献 7:特開 2000 - 137116号公報
特許文献 8 :特開 2001— 337222号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、スチレン系共重合体とノルボルネン系重合体からなる組成物であって、 優れた相溶性を有して相分離しな!/、ため透明性に優れ、かつフィルム化が容易な樹 脂組成物を提供することを課題としている。また本発明は、この樹脂組成物を主成分 とした透明性に優れた光学フィルム、さらに逆波長分散性を示す光学フィルム、なら びにその用途を提供することを課題としてレ、る。
課題を解決するための手段
[0011] 本発明者は上記実情に鑑みて鋭意検討した結果、特定の構造単位を特定の量で 有するスチレン系共重合体と、ノルボルネン系重合体とを含有する樹脂組成物、該 樹脂組成物を主成分とした光学フィルムおよびその製造方法ならびにその用途によ り、上記課題が解決されることを見出した。
[0012] すなわち本発明は、以下の〔1〕〜〔; 16〕の発明に関する。
[0013] 〔1〕(A)下記式(1)で表される構造単位(1)および下記式(2)で表される構造単位
(2)を有し、当該構造単位(2)の含有率が全構造単位 100mol%中 0. ;!〜 50mol% であるスチレン系共重合体と、
(B)ノルボルネン系重合体とを含有することを特徴とする樹脂組成物;
[0014] [化 1]
Figure imgf000006_0001
… (2 )
[0015] (式(1)および式(2)中、 Rは水素原子またはメチル基を示す。式(2)中、 R°は水素 原子;ハロゲン原子;酸素原子、硫黄原子、窒素原子、またはケィ素原子を含む連結 基を有してもよ!/、置換または非置換の炭素数 1〜30の炭化水素基;または極性基を 示す。)。
[0016] 〔2〕前記スチレン系共重合体(A) 1 ゲルパーミエーシヨンクロマトグラフィー(GPC )で測定した重量平均分子量 Mwが 30, 000〜; 1 , 000, 000であることを特徴とする 〔1〕に記載の樹脂組成物。
[0017] 〔3〕前記スチレン系共重合体 (A)が、色測計を用いて測定した 10重量%トルエン 溶液の黄色度 (YI)が 5. 0以下であることを特徴とする〔1〕に記載の樹脂組成物。
[0018] 〔4〕 前記スチレン系共重合体(A) 1 スチレンおよび/または α—メチルスチレン と、下記式 (4)で表される単量体 (4)とを重合反応させた後、単量体 (4)由来の構造 単位における OR14基を ΟΗ基に変換する工程を含む方法により得られることを 特徴とする〔1〕に記載の樹脂組成物;
[0019] [化 2]
Figure imgf000006_0002
一 (4 )
(式 (4)中、 Rは水素原子またはメチル基を示し、 R°は水素原子;ハロゲン原子;酸素 原子、硫黄原子、窒素原子、またはケィ素原子を含む連結基を有してもよい置換ま たは非置換の炭素数 1〜30の炭化水素基;または極性基を示す。 R14はァセチル基 、 t ブチル基、 t ブトキシカルボニル基、 CH (OR15) (R16)、または— SiR15で表 される基のいずれかを示す。 R15および R16はそれぞれ独立に炭素数 1〜6のアルキ ル基を示し、 R15と R16、あるいは R15同士は、相互に結合して炭素数 2〜; 12の複素環 を形成してもよい。)。
[0021] 〔5〕前記スチレン系共重合体 (A)が、前記単量体 (4)由来の構造単位における OR14基を OH基に変換する工程を酸の存在下で行い、その後、塩基性物質を添 カロして系内の酸と反応させる工程を含む方法により得られたものであることを特徴と する〔4〕に記載の樹脂組成物。
[0022] 〔6〕前記ノルボルネン系重合体(B)が、下記式(6)で表される単量体(6)から導か れる構造単位を有する(共)重合体であることを特徴とする〔1〕に記載の樹脂組成物;
[0023] [化 3]
Figure imgf000007_0001
(式(6)中、 aおよび bは独立に 0または 1を示し、 cおよび dは独立に 0〜2の整数を示 す。 R4、 R5、 R6、 R7、 R8、 R9、 R1Q、 RU、 R12、および R13は、それぞれ独立に水素原子; ハロゲン原子;酸素原子、硫黄原子、窒素原子、またはケィ素原子を含む連結基を 有してもよ!/、置換または非置換の炭素数 1〜30の炭化水素基;または極性基を示す 。 R1Qと Ru、または R12と R13とは一体化して 2価の炭化水素基を形成してもよぐ R1Qま たは R11と R12または R13とは相互に結合して炭素環または複素環 (これらの炭素環また は複素環は単環構造でもよいし、他の環が縮合して多環構造を形成してもよい。)を 形成してもよレヽ。)。
[0025] 〔7〕前記ノルボルネン系重合体 (B)が、下記式 (i)で表される構造単位を有する(共
)重合体であることを特徴とする〔1〕に記載の樹脂組成物。
[0026] [化 4]
Figure imgf000008_0001
[0027] (式 (i)中、 Α Α4は、それぞれ独立に、水素原子;ハロゲン原子;酸素原子、硫黄 原子、窒素原子もしくはケィ素原子を含む連結基を有してもよい、置換もしくは非置 換の炭素原子数 1〜30の炭化水素基;または極性基を表し、 Α Α4の少なくとも一 つは—(CH ) COOA5で表される基 (Α5は、酸素原子、硫黄原子、窒素原子もしくは
2 η
ケィ素原子を含む連結基を有してもよい、置換もしくは非置換の炭素数 1〜30の炭 化水素基)であり、 ηは 0または 1〜5の整数である。 )
〔8〕前記ノルボルネン系重合体(Β)が、前記式(i)で表される構造単位を、ノルボル ネン系重合体(B)の全構造単位 100mol%中、 10〜70mol%有することを特徴とす る〔7〕に記載の樹脂組成物。
[0028] 〔9〕前記スチレン系共重合体(A)と前記ノルボルネン系重合体(B)との組成比((A ) / (B) )が、重量比で 5/95〜70/30の範囲であることを特徴とする〔1〕に記載の 樹脂組成物。
[0029] 〔10〕〔1〕に記載の樹脂組成物を主成分とすることを特徴とする成形体。
[0030] 〔11〕溶融押出成形により得られることを特徴とする〔10〕に記載の成形体。
[0031] 〔12〕〔1〕に記載の樹脂組成物を主成分とすることを特徴とする光学フィルム。 [0032] 〔13〕キャスト法により製膜して得られることを特徴とする〔12〕に記載の光学フィルム
[0033] 〔14〕押出し法により製膜して得られることを特徴とする〔12〕に記載の光学フィルム
[0034] 〔15〕〔12〕に記載の光学フィルムを加熱延伸して得られる延伸フィルム。
[0035] 〔16〕〔12〕に記載の光学フィルムを含む偏光板。
[0036] 〔17〕〔12〕に記載の光学フィルムを含む液晶表示装置。
発明の効果
[0037] 本発明によれば、フィルム成形の際に用いられる塩化メチレンなどの溶媒を用いて も相分離を抑制することができ、光学フィルム用途に好適で、逆波長分散性と優れた 透明性を有する光学フィルムを容易に製造できる樹脂組成物を提供することができる
[0038] また、本発明によれば、樹脂組成物に含有されるスチレン系共重合体の各構造単 位の含有率をコントロールすることで、加熱時にも良好な相溶性を示し、かつ高温下 にお!/、ても透明性を保持することができる、フィルム成形性に優れた樹脂組成物を提 供すること力 Sでさる。
[0039] さらに本発明によれば、スチレン系共重合体と、ノルボルネン系重合体との組成比 をコントロールすることにより、低複屈折性を示す樹脂組成物を提供することができる
[0040] また、本発明の樹脂組成物から得られる光学フィルムは、延伸フィルム、該延伸フィ ルムを用いた偏光板、液晶表示装置、光学部品としても有用である。
図面の簡単な説明
[0041] [図 1]図 1は、合成例 1で得たスチレン系重合体(1A)の IRスペクトルを示す。
[図 2]図 2は、合成例 1で得たスチレン系重合体( 1 A)の13 C-NMRスペクトルを示す。
[図 3]図 3は、合成例 4で得たスチレン系重合体(4A)の IRスペクトルを示す。
[図 4]図 4は、合成例 4で得たスチレン系重合体(4A)の13 C-NMRスペクトルを示す。
[図 5]図 5は、合成例 5で得たスチレン系重合体(5A)の IRスペクトルを示す。
[図 6]図 6は、合成例 5で得たスチレン系重合体(5A)の13 C-NMRスペクトルを示す。 [図 7]図 7は、実施例 10で得た Blend樹脂の Tg測定におけるチャートを示す。
[図 8]図 8は、実施例 11で得た Blend樹脂の Tg測定におけるチャートを示す。
発明を実施するための最良の形態
[0042] 本発明に係る樹脂組成物は、スチレン系共重合体 (A)と、ノルボルネン系重合体(
B)とを含有している。以下、これらについて説明する。
[0043] なお、本明細書中において (共)重合体とは、重合体もしくは共重合体を意味する。
[0044] <スチレン系共重合体 (A)〉
本発明に係る樹脂組成物に含有されるスチレン系共重合体 (A)は、下記式(1)で 表される構造単位(1)および下記式(2)で表される構造単位(2)を有する。
[0045] [化 5]
Figure imgf000010_0001
[0046] 式(1)および式(2)中、 Rは水素原子またはメチル基を示す。式(2)中、 R°は水素 原子;ハロゲン原子;酸素原子、硫黄原子、窒素原子、またはケィ素原子を含む連結 基を有してもよ!/、置換または非置換の炭素数 1〜30の炭化水素基;または極性基を 示す。
[0047] 構造単位(2)の含有率は、全構造単位 100mol%中、通常 0.;!〜 50mol%、好ま しくは 0. 2〜40mol%、より好ましくは l〜20mol%である。上記数値範囲内であると 、本発明に係る樹脂組成物に含有されるスチレン系共重合体 (A)と、ノルボルネン系 重合体 (B)との双方が良好な溶解性を示す溶媒が存在することに加え、高温下にお V、ても相分離することなく透明性を保持できるので、好ましレ、。
[0048] さらにスチレン系共重合体 (A)は、下記式(3)で表される構造単位(3)を有してい てもよい。 [0049] [化 6]
Figure imgf000011_0001
[0050] 式(3)中、!^〜 はそれぞれ独立に、水素原子;ハロゲン原子;酸素原子、硫黄原 子、窒素原子もしくはケィ素原子を含む連結基を有していてもよい、置換もしくは非 置換の炭素原子数 1〜30の炭化水素基;または極性基を表す。また、 R1と R2は相互 に結合して炭素環または複素環 (これらの炭素環または複素環は単環構造でもよ!/ヽ し、他の環が縮合して多環構造を形成しても良い。)を形成してもよい。
[0051] 前記式(1)〜(3)において、ハロゲン原子としては、フッ素原子、塩素原子及び臭 素原子が挙げられる。
[0052] 炭素原子数 1〜30の炭化水素基としては、たとえば、メチル基、ェチル基、プロピ ル基等のアルキル基;シクロペンチル基、シクロへキシル基等のシクロアルキル基;ビ ニル基、ァリル基、プロぺニル基等のアルケニル基などが挙げられる。
[0053] また、上記の置換または非置換の炭化水素基は、直接環構造に結合していてもよ いし、あるいは連結基(linkage)を介して結合していてもよい。連結基としては、たとえ ば、炭素原子数 1〜; 10の 2価の炭化水素基 (たとえば、— (CH ) - (式中、 mは;!〜 1
2 m
0の整数)で表されるアルキレン基);酸素、窒素、ィォゥまたはケィ素を含む連結基( たとえば、カルボニル基(— CO— )、ォキシカルボニル基(—〇(CO)―)、カルボ二 ルォキシ基(一 coo—)、スルホン基(一 so—)、エーテル結合(一 o—)、チォェ 一テル結合(― S— )、ィミノ基(― NH— )、アミド結合(― NHCO—、— CONH―)、 シロキサン結合(一 OSi (R)—(式中、 Rはメチル、ェチル等のアルキル基))等が挙 げられ、これらを複数含む連結基であってもよい。
[0054] 極性基としては、例えば、水酸基、炭素原子数 1〜; 10のアルコキシ基、カルボ二ノレ ォキシ基、アルコキシカルボニル基、ァリーロキシカルボニル基、シァノ基、アミド基、 イミド基、トリオノレガノシロキシ基、トリオルガノシリル基、アミノ基、アシノレ基、アルコキ シシリル基、スルホニル基、およびカルボキシル基など挙げられる。さらに具体的には 、上記アルコキシ基としては、たとえば、メトキシ基、エトキシ基等;カルボニルォキシ 基としては、たとえば、ァセトキシ基、プロピオニルォキシ基等のアルキルカルボニル ォキシ基、およびベンゾィルォキシ基等のァリールカルボニルォキシ基;アルコキシ カルボニル基としては、たとえば、メトキシカルボニル基、エトキシカルボニル基等;ァ リーロキシカルボニル基としては、たとえば、フエノキシカルボニル基、ナフチルォキ シカルボニル基、フルォレニルォキシカルボニル基、ビフエ二リルォキシカルボニル 基等;トリオルガノシロキシ基としては、たとえば、トリメチルシロキシ基、トリェチルシロ キシ基等;トリオルガノシリル基としては、トリメチルシリル基、トリェチルシリル基等;ァ ミノ基としては、第 1級ァミノ基;アルコキシシリル基としては、例えば、トリメトキシシリル 基、トリエトキシシリル基等が挙げられる。
[0055] 式(3)で表される構造単位を誘導する単量体の具体例としては、(メタ)アクリルアミ ド、(メタ)アクリル酸およびその誘導体、無水マレイン酸、マレイミド類、マレイン酸お よびその誘導体、フマル酸およびその誘導体、 p—メトキシスチレンなどが挙げられる 。また、後述する脱保護反応で変換されずに部分的に式 (4)で表されるスチレン誘 導体由来の構造単位が残存する場合など、式 (4)で表されるスチレン系単量体など も、当該単量体に含まれる。構造単位(3)の含有率は、全構造単位 100mol%中、 通常 20mol%以下、好ましくは 15mol%以下、より好ましくは 10mol%以下である。
[0056] 本発明に用いられるスチレン系共重合体 (A)は、 30°Cのクロ口ベンゼン溶液 (濃度 0. 5g/dU中で測定した対数粘度( )が、 0. ;!〜 3. OdL/gであることが好ましい 。また、ゲルパーミエーシヨンクロマトグラフィー(GPC)で測定されるポリスチレン換算 の重量平均分子量 Mw力 S通常 30, 000—1 , 000, 000、好まし <は 40, 000—800 , 000、より好ましくは 50, 000-500, 000である。分子量カ J、さすぎると、得られる フィルム等の成形品の強度が低くなることがある。分子量が大きすぎると、溶液粘度 が高くなりすぎて本発明に用いる樹脂組成物の生産性や加工性が悪化することがあ
[0057] さらに、スチレン系共重合体(A)の分子量分布(Mw/Mn)は、通常 1. 0-10,好 ましく (ま 1. 2〜5. 0、より好ましく (ま 1. 2〜4. 0である。
[0058] またスチレン系共重合体 (A)としては、黄変などの着色が少なぐ透明性に優れた ものが好ましい。具体的には、色測計を用いて測定した 10重量%トルエン溶液の黄 色度 (YI)力 好ましくは通常 5. 0以下、より好ましくは 4. 0以下、さらに好ましくは 0. 05-3. 0の範囲であるのが望ましい。なお、黄色度は通常、 0. 2で無色である。
[0059] [スチレン系共重合体 (A)の製造方法]
本発明に用いられるスチレン系共重合体 (A)は、スチレンおよび/または α -メチ ノレスチレンと下記式 (4)で表される単量体(4)の R14を水素原子で置換したビュルフ ェノール類とを直接共重合して得る事もできる力 S、スチレンおよび/または α—メチ ルスチレンと、下記式(4)で表される単量体(4)と、必要に応じて下記式(5)で表され る単量体とを適当な重合開始剤の存在下で重合反応させた後、単量体 (4)由来の 構造単位における OR14基を ΟΗ基に変換する工程を含む方法により製造しても 良い。重合開始剤としては、ラジカル重合開始剤、ァユオン重合触媒、配位重合触 媒、カチオン重合触媒等を用いるのが好ましぐラジカル重合開始剤を用いるのが特 に好ましい。
[0060] [化 7]
Figure imgf000013_0001
[0061] 式(4)中、 Rおよび R°は式(2)と同義である。 R14はァセチル基、 t ブチル基、 t— ブトキシカルボニル基、 CH (OR15) (R16)、または— SiR15で表される基のいずれ かを示す。 R15および R16はそれぞれ独立に炭素数 1〜6のアルキル基を示し、 R15と R] 6、あるいは R15同士は、相互に結合して炭素数 2〜; 12の複素環を形成してもよい。
[0062] Rおよび R°としては水素原子が好ましい。 R14として、なかでもァセチル基、 tーブチ ル基が好ましい。
[0063] また、前記スチレンおよび/または α—メチルスチレンは、スチレンのみであるのが 好ましい。 [0064] [化 8]
Figure imgf000014_0001
一 ( 5 )
[0065] 式(5)中、!^〜 は式(3)における I^〜R3と同義である
[0066] なお、本発明に係るスチレン系共重合体 (A)は、スチレンおよび/または α—メチ ノレスチレンと、下記式 (4 ' )で表される単量体 (4 ' )と、必要に応じて上記式(5)で表さ れる単量体とを、共重合反応させる工程とによっても好適に製造することができる。こ の場合には後述する ΟΗ基への変換反応工程を経ずに本発明で用いるスチレン 系共重合体 (Α)を製造すること力 Sできる。
[0067] [化 9]
Figure imgf000014_0002
… (4,)
[0068] (式(4 ' )中、 Rおよび R°は前記式(2)で定義のとおりである。 )
このような各単量体は、各単量体から導かれる各構造単位の所望の含有率と同様 の割合で好適に用いることができる。
[0069] 〈重合反応〉
重合反応に用いられるラジカル開始剤としては、フリーラジカルを発生する公知の 有機過酸化物、またはァゾビス系のラジカル重合開始剤を用いることができる。なお 、多官能開始剤または水素引き抜き反応を起こし易い開始剤は、得られるスチレン系 共重合体の線状性が低下するおそれがあるので、好ましくなレ、。
[0070] 有機過酸化物としては、ジァセチルパーオキサイド、ジベンゾィルパーオキサイド、 ジイソプチロイルパーオキサイド、ジ(2, 4 ジクロロべンゾィル)パーオキサイド、ジ( 3, 5, 5—トリメチルへキサノィル)パーオキサイド、ジォクタノィルパーォキサォド、ジ ラウロイルパーオキサイド、ジステアロイルパーオキサイド、ビス { 4一(m トルオイル) ベンゾィルレ 一オキサイドなどのジァシルバーオキサイド類;
メチルェチルケトンパーオキサイド、シクロへキサノンパーオキサイド、メチルシクロへ キサノンパーオキサイド、ァセチルアセトンパーオキサイドなどのケトンパーオキサイド 類;
過酸化水素、 t ブチルハイド口パーオキサイド、 a クメンハイド口パーオキサイド、 p メンタンハイド口パーオキサイド、ジイソプロピルベンゼンハイド口パーオキサイド、 1 , 1 , 3, 3—テトラメチルブチルハイド口パーオキサイド、 t一へキシルハイド口バーオ キサイドなどのハイド口パーオキサイド類;
ジー t ブチルパーオキサイド、ジクミルパーオキサイド、ジラウリルパーオキサイド、 α , α ' ビス(t ブチルパーォキシ)ジイソプロピルベンゼン、 2, 5 ジメチルー 2, 5 ビス(t ブチルパーォキシ)へキサン、 t ブチルタミルパーオキサイド、 2 , 5— ジメチル 2 , 5 ビス(t ブチルパーォキシ)へキシン 3などのジアルキルバーオ キサイド類;
tーブチノレパーォキシアセテート、 tーブチノレパーォキシピバレート、 t一へキシノレパ 一ォキシビバレート、 1 , 1 , 3, 3—テトラメチノレブチノレバーォキシ 2—ェチノレへキサノ エート、 2, 5 ジメチノレー 2 , 5 ビス(2 ェチノレへキサノィノレパーォキシ)へキサン 、 1ーシクロへキシノレ 1ーメチノレエチノレノ 一才キシ 2—ェチノレへキサノエート、 t へキシノレノ 一才キシ 2—ェチノレへキサノエート、 tーブチノレノ 一才キシ 2—ェチノレへ キサノエート、 tーブチノレパーォキシイソブチレート、 tーブチノレパーォキシマレエート 、 t ブチルパーォキシ 3, 5, 5—トリメチルへキサノエ一ト、 t ブチルパーォキシラ ゥレート、 2, 5 ジメチルー 2, 5 ビス(m—トルオイルパーォキシ)へキサン、 a , a '一ビス(ネオデカノィルパーォキシ)ジイソプロピルベンゼン、タミルパーォキシネオ 口へキシノレ 1ーメチノレエチノレパー才キシネ才デカノエート、 t一へキシノレパー才キシ ネオデカノエート、 tーブチノレパーォキシネオドデカノエート、 tーブチノレパーォキシ ベンゾエート、 t一へキシルパーォキシベンゾエート、ビス(t ブチルパーォキシ)イソ フタレート、 2, 5 ジメチルー 2, 5 ビス(ベンゾィルパーォキシ)へキサン、 tーブチ ノレパーォキシ m トルオイルべンゾエート、 3, 3 ' , 4, 4 '—テトラ(t ブチルパーォ キシカルボニル)ベンゾフエノンなどのパーォキシエステル類;
1 , 1—ビス(t へキシルバーォキシ)3, 3, 5—トリメチルシクロへキサン、 1 , 1—ビス (t一へキシルバーォキシ)シクロへキサン、 1 , 1 ビス(t ブチルパーォキシ)3, 3, 5—トリメチルシクロへキサン、 1 , 1 ビス(t ブチルパーォキシ)シクロへキサン、 1 , 1 ビス(t ブチルパーォキシ)シクロドデカン、 2, 2—ビス(t ブチルパーォキシ) ブタン、 n ブチル 4, 4 ビス(t ブチルパーォキシ)ビバレート、 2, 2 ビス(4, 4 ージー t ブチルパーォキシシクロへキシル)プロパンなどのパーォキシケタール類; t へキシノレパーォキシイソプロピノレモノカーボネート、 t ブチノレパーォキシイソプロ ピノレモノカーボネート、 tーブチノレパーォキシ 2—ェチノレへキシノレモノカーボネート、 t ーブチノレパーォキシァリルモノカーボネートなどのパーォキシモノカーボネート類; ジー sec ブチノレパーォキシジカーボネート、ジー n プロピノレバーオキシジカーボ ネート、ジイソプロピノレバーオキシジカーボネート、ビス(4 tーブチノレシクロへキシ ノレ)パーォキシジカーボネート、ジー 2—ェトキシェチノレパーォキシジカーボネート、 ジー 2—ェチノレへキシノレパーォキシジカーボネート、ジー 2—メトキシブチノレバーオ キシジカーボネート、ジ(3—メチノレ 3ーメトキシブチノレ)パーォキシジカーボネート などのパーォキシジカーボネート類;
その他、 t プチルトリメチルシリルパーオキサイドなどが挙げられる力 本発明に用 いられる有機過酸化物はこれらの例示化合物に限定されるものではない。
ァゾ系ラジカル重合開始剤としては、ァゾビスイソブチロニトリル、ァゾビスイソバレロ 二トリノレ、 2, 2,一ァゾビス(4 メトキシ一 2, 4 ジメチルバレロニトリル)、 2, 2,一ァ ゾビス(2, 4 ジメチルバレロニトリル)、 2, 2,ーァゾビス(2 メチルブチロニトリル)、 1 , 1,ーァゾビス(シクロへキサン一 1 カルボ二トリル)、 2—(力ルバモイルァゾ)イソ ブチロニトリノレ、 2, 2,ーァゾビス [2—メチルー N—U, 1—ビス(ヒドロキシメチル) 2—ヒドロキシェチノレ}プロピオンアミド]、 2, 2,ーァゾビス [2—メチルー N—{ 2— (1 ーヒドロキシブチノレ) }プロピオンアミド]、 2, 2,ーァゾビス [2—メチノレー N— (2—ヒド ロキシェチノレ) プロピオンアミド]、 2, 2,ーァゾビス [N— (2—プロぺニノレ)ー2—メ チルプロピオンアミド]、 2, 2,ーァゾビス(N ブチルー 2—メチルプロピオンアミド)、 2, 2, 一ァゾビス(N シクロへキシル 2—メチルプロピオンアミド)、 2, 2 '—ァゾビ ス [2— (5 メチルー 2 イミダゾリンー2 ィル)プロパン]ジハイド口クロライド、 2, 2 ' —ァゾビス [2— (2—イミダゾリン一 2—ィル)プロパン]ジハイド口クロライド、 2, 2 ' - ァゾビス [2—(2—イミダゾリン 2—ィル)プロパン]ジサルフェート'ジハイドレート、 2 , 2, 一ァゾビス [2— (3, 4, 5, 6 テトラヒドロピリミジン一 2 ィル)プロパン]ジハイド 口クロライド、 2, 2, 一ァゾビス [2— { 1— (2—ヒドロキシェチル)一2—イミダゾリン一 2 —ィル }プロパン]ジハイド口クロライド、 2, 2, 一ァゾビス [2— (2—イミダゾリン一 2— ィル)プロパン]、 2, 2 '—ァゾビス(2—メチルプロピオンアミジン)ジハイド口クロライド 、 2, 2,ーァゾビス [N— (2—カルボキシェチル)ー2—メチループロピオンアミジン]、 2, 2 '—ァゾビス(2—メチルプロピオンアミドキシム)、ジメチル 2, 2 '—ァゾビスブチ レート、 4, 4,一ァゾビス(4 シァノペンタノイツクアシッド)、 2, 2,一ァゾビス(2, 4, 4—トリメチルペンタン)などが挙げられる力 好ましい開始剤は 1 , 1 '—ァゾビス(シク 口へキサン 1 カルボ二トリル)、 2—(力ルバモイルァゾ)イソブチロニトリル、 2, 2, ーァゾビス(N ブチルー 2 メチルプロピオンアミド)であり、重量平均分子量が 850 00以上の高分子量体のスチレン系共重合体が得られる。本発明に用いられるァゾビ ス系ラジカル重合開始剤はこれらの例示化合物に限定されるものではない。
[0072] カチオン重合開始剤としては、塩酸、硫酸、 P-トルエンスルホン酸、リン酸、等のブ レンステッド酸、三フッ化ホウ素錯体、三塩化アルミニウム、ェチルアルムニゥムジクロ リド、四塩化チタン、チタンテトライソプロポキシド、塩化タングステン、等のルイス酸が 挙げられる。
[0073] ァニオン重合開始剤としては、ブチルリチウム、フエニルリチウム、等の有機リチウム 類、リチウムアミド、ナトリウムアミド、等の金属アミド類、ェチルマグネシウムブロマイド 、フエニルマグネシウムクロライド、等のグリニャール試薬、ナトリウムメトキシド、ナトリウ ムェトキシド、等の金属アルコキシド、等が挙げられる。
[0074] これらの重合開始剤の使用量は、前記単量体全量 100mol%中、通常 0. 0;!〜 5 mol%、好ましくは 0. 03〜3mol%、より好ましくは 0· 05〜2mol%である。
[0075] さらに、前記スチレン系単量体の重合反応には、触媒が用いられてもよい。この触 媒は、特に限定されず、たとえば、公知のァユオン重合触媒、配位重合触媒、カチォ ン重合触媒などが挙げられる。
[0076] 前記スチレン系単量体の重合反応は、上記重合開始剤や触媒の存在下で、上記 スチレン系単量体を、塊状重合法、溶液重合法、沈殿重合法、乳化重合法、懸濁重 合法または塊状 懸濁重合法などの従来公知の方法で共重合させることにより行な われる。
[0077] 溶液重合を実施する際に使用する溶剤としては、前記単量体および重合体を溶解 するものであれば特に限定されないが、シクロへキサン等の炭化水素系溶剤、トルェ ン等の芳香族炭化水素系溶剤が好ましい。溶剤の使用量は、前記スチレン系単量 体全量に対し、 0〜3倍(重量比)の量であるのが望ましい。ラジカル重合を用いる場 合には、所望の分子量を有する重合体を得るために必要に応じて連鎖移動剤を添 加しても良い。連鎖移動剤としては特に限定なく従来公知の連鎖移動剤を使用する ことができる力 より具体的には下記のようなものを列挙する事が出来る。ドデカンチ オール、メルカプトエタノール、メルカプトプロパノール、メルカプト酢酸、メルカプトプ ロピオン酸、等。これらの連鎖移動剤は単独で使用しても良ぐ複数種を混合して用 いても良い。
[0078] 重合反応時間は、通常;!〜 30時間、好ましくは 3〜20時間であり、重合反応温度 は、使用するラジカル開始剤の種類に依存するため、特に限定されないが、通常 40 〜; 180。C、好ましくは 50〜; 120。Cである。
[0079] 〈OH基への変換反応〉
本発明に用いられるスチレン系共重合体 (A)は、前記スチレン系単量体を重合さ せた後、さらに単量体 (4)由来の構造単位における OR14基を OH基に変換する ことによって、得ること力 Sできる。これにより、たとえば、式(4)に表されるスチレン系単 量体の R14が脱離して、スチレン系共重合体 (A)に含有される式(2)に表される構造 単位を形成することとなる。
[0080] 上記変換反応としては、酸または塩基の存在下で加アルコール分解または加水分 解で変換する方法、酸性条件下で加熱して変換する方法、加熱のみによって変換す る方法、およびフッ化物イオンを用いて変換する方法などが挙げられ、前記 O— R14 基における R14の構造によって採用し得る好ましい方法が異なる力 酸の存在下で単 量体 (4)に由来する構造単位中の OR14で表される基を OH基に変換するのが 好ましぐ酸の存在下で加アルコール分解または加水分解で変換する方法、あるい は酸性条件下で加熱して変換する方法が好ましく採用される。
[0081] 前記 OR14基における R14が、例えば、ァセチル基( COCH )、 t—ブトキシカル
3
ボニル基(一じ00 11)、シリル基(SiR15 )、酸素原子と結合してァセタール基を形
3
成し得るアルコキシアルキル基(一 CH (OR15) (R16) )などの場合、酸性条件下で加 水分解または加アルコール分解する方法が好ましく採用される。
[0082] 前記 OR14基における R14が、例えば、ァセチル基( COCH )、 t—ブトキシカル
3
ボニル基(一じ00 11)などの場合、塩基性条件下で加水分解または加アルコール 分解する方法が好ましく採用される。
[0083] 酸性条件下で加熱して変換する方法または加熱のみによって変換する方法が適用 できる前記 OR14基における R14としては、例えば、 t ブチル基(一 ¾ιι)、 tーブトキ シカルボニル基(一 CO〇tBu)を挙げることができ、フッ化物イオンを用いて変換させ る方法が適用できる R14としてはシリル基(SiR15 )を挙げることができる。
3
[0084] 《加水分解および加アルコール分解》
加水分解および加アルコール分解に用いられる酸としては、塩酸、臭酸等のハロゲ ン化水素、蟻酸、シユウ酸、酢酸、トリフルォロ酢酸等のカルボン酸類、硫酸、 P-トノレ エンスルホン酸、ベンゼンスルホン酸、メタンスルホン酸、トリフルォロメタンスルホン 酸等のスルホン酸類、硝酸、またはフエノール類等のブレンステッド酸、りんタンダス テン酸、りんモリブデン酸等のへテロポリ酸、硫酸化ジルコユア、ゼォライト等の固体 酸、イオン交換樹脂、高分子電解質等の高分子酸、およびハロゲン化、アルキル化、 および/またはアルコキシ化されたアルミニウム、チタン、タングステン、またはホウ素 化合物等のルイス酸、公知の固定化ルイス酸が挙げられる。これらの酸のうちでは、 特に硫酸が好ましく用いられる。酸の使用量は、式 (4)に表されるスチレン系単量体 の使用量とのモル比力 通常、酸/式(4)に表されるスチレン系単量体 = 1/1000 〜: 1/1、好ましくは 1/300〜; 1/5である。
[0085] また、塩基としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化ァ ンモニゥム、テトラメチルアンモニゥムヒドロキシド、テトラプチルアンモニゥムヒドロキシ ド等が挙げられる。塩基の使用量は、式 (4)に表されるスチレン系単量体のモル数以 上のモル数を要し、通常、式(4)に表されるスチレン系単量体の使用量とのモル比が 、塩基/式 (4)に表されるスチレン系単量体 = 1/;!〜 5/1である。さらに、加水分 解後または加アルコール分解後に酸によって中和する必要がある。中和に用いられ る酸としては、前記酸と同様の酸を用いることができる。塩基として、水酸化カリウム、 水酸化ナトリウム、水酸化リチウム等の金属ヒドロキシドのような水溶性塩基を用いる 場合には、さらに相関移動触媒として、 4級アンモニゥム塩、 4級ホスホニゥム塩、クラ ゥンエーテル、ポリ(オリゴ)エチレングリコール等を使用してもよレ、。
[0086] 反応温度としては通常 0〜; 180°C、好ましくは 30〜; 150°C、更に好ましくは 40〜; 12 0°Cである。反応時間としては通常 1〜30時間、好ましくは 1〜25時間、より好ましく は;!〜 20時間である。反応溶媒としては、変換反応前の重合体および変換反応後の 重合体が溶解するものであれば特に限定されないが、重合反応と同じ溶媒であるの が好ましい。また、溶媒の使用量としては、重合反応に使用する溶媒の 1〜5倍の重 量であること力 S好ましく、 1〜3倍の重量であるのがより好ましい。水またはアルコール の添加量としては、 OR14基の 1〜30倍モルであることが好ましぐ;!〜 20倍モルで あることがより好ましい。使用するアルコールは特に限定されないが、炭素数;!〜 4の アルコールが好ましい。
[0087] 《酸性条件下での加熱変換反応》
酸性条件下での加熱変換反応に用いることができる酸およびその添加量、反応温 度、反応時間、溶媒種、溶媒使用量に関して、上記《加水分解および加アルコール 分解》で挙げたものと同様の条件を適用することができる。但し、本方法では水また はアルコールは添加しても良いし添加しなくても良い。
[0088] 《変換反応後の中和》
本発明で用いられるスチレン系共重合体 (A)の製造にお!/、て、 - OR14基を OH基 に変換する変換反応を、酸あるいは塩基を用いて行った場合には、変換反応後の系 内に残存する酸あるいは塩基の少なくとも一部を、塩基または酸で中和する工程を 有していてもよい。 [0089] スチレン系共重合体 (A)の製造において、単量体 (4)由来の構造単位における— OR14基を OH基に変換する変換反応を酸の存在下で行った場合には、次いで塩 基性物質を添加して、系内の酸と反応させる工程を行うのが好ましい。また、変換反 応を塩基の存在下で行った場合には、次いで酸性物質を添加して、系内の塩基と反 応させる工程を行うのが好ましい。
[0090] 以下、単量体 (4)由来の構造単位における OR14基を OH基に変換する変換 反応を酸の存在下で行い、次いで塩基性物質を添加して、系内の酸と反応させる場 合について詳述する。ここで、系内の酸とは、 OR14基を OH基に変換する変換 反応で用いた酸のうち、変換反応で消費されずに系内に残存する酸を意味する。
[0091] 塩基性物質としては、金属水酸化物、金属アルコキシド類、カルボン酸塩類、フエノ ール塩類、炭酸塩類およびアミン類等が好ましく用いられ、より好ましくは、塩基性物 質力 金属水酸化物、金属アルコキシド類、カルボン酸塩類、フエノール塩類よりなる 群から選ばれる少なくとも 1種であって、その対カチオンが、リチウム、ナトリウム、カリ ゥム、カルシウムの何れかである。これらの塩基性物質は、単独で用いても 2種以上 組み合わせて用いてもよい。
[0092] このような塩基性物質としては、具体的には、水酸化ナトリウム、水酸化カリウム、水 酸化リチウム、水酸化カルシウム、等の金属水酸化物;ナトリウムメトキシド、ナトリウム ェトキシド、ナトリウム—tーブトキシド、等の金属アルコキシド類;酢酸ナトリウム、プロ ピオン酸ナトリウム、乳酸ナトリウム、 2—ェチルへキサン酸ナトリウム、安息香酸ナトリ ゥム、等のカルボン酸塩類;ナトリウムフヱノキシド等のフエノール塩類;炭酸ナトリウム 、炭酸カリウム、炭酸水素ナトリウム、等の炭酸塩類、トリェチルァミン、ピリジン、等の アミン類を用いる事が出来る。これらの塩基は何れを用いても良ぐまた、単独でも複 数を同時に用いても良いが、入手性および価格面から水酸化ナトリウム、水酸化カリ ゥム、水酸化リチウム、ナトリウムメトキシド、酢酸ナトリウム、乳酸ナトリウム、安息香酸 ナトリウム、炭酸ナトリウム、炭酸カリウムが好ましい。これらのうち、酢酸ナトリウム、乳 酸ナトリウム、安息香酸ナトリウム、炭酸ナトリウム、炭酸カリウム等を用いると、後述す る弱酸性物質を加える工程を行わなくても、 OH基が安定に保たれるため、特に好ま しい。 [0093] 塩基性物質と残存する酸との反応温度は 15〜100°C、好ましくは 20〜90°C、更に 好ましくは 30〜80°Cである。上記反応温度範囲を超えると重合体の色相が悪化する 場合がある。また、上記反応温度範囲未満であると反応が十分に進行しない場合が ある。
[0094] 反応時間は 5〜; 120分間、好ましくは 10〜; 100分間、更に好ましくは 15〜80分間 である。上記反応時間範囲を超えると生産性が低下し、上記反応時間範囲未満であ ると反応が十分に進行しな!/、場合がある。
[0095] 添加する塩基性物質の量は、残存する酸が充分に中和される量であればよいが、
OR14で表される基を OH基に変換する工程で用いた酸のモル数と、その酸の価 数との積 Aと、添加する塩基性物質のモル数とその塩基の価数との積 Bと力 下記式 を満たすことが望ましい。
[0096] A≤B≤[AX 3]
また、上記の塩基性物質のうち、その共役酸の酸性度が重合体中に含まれるフエノ ール部位の酸性度よりも低い場合には、単量体 (4)由来の構造単位における OR1 4基から変換された OH基が不安定になるおそれがあるため、当該塩基を用レ、ると 同時または用いた後に重合体中に含まれるフエノール部位よりは酸性度の高い弱酸 性物質を加えて反応系内を弱酸性とすることが好ましい。このような弱酸性物質とし てはフエノーノレ、 ニトロフエノーノレ、シァノフエノーノレ、ハロゲン化フエノーノレ、等のフエ ノール類;酢酸、プロピオン酸、乳酸、 2—ェチルへキサン酸、安息香酸、等のカルボ ン酸類;炭酸を挙げることができる力 価格および反応溶液への相溶性から酢酸、乳 酸、安息香酸が好ましい。
[0097] 反応条件としては前記塩基を添加した際の反応条件と同じ条件を適用することが できる。
[0098] 反応系内を弱酸性とすることで、より色相が良好で耐熱安定性に優れたスチレン系 共重合体 (A)を得ること力 Sできる。
[0099] 《加熱のみによる変換反応》
式 (4)に表される O— R14基における R14が、熱エネルギーのみによって脱離し得る 場合は、重合体鎖が分解する温度を大きく超えない温度条件下にて熱分解をするこ とにより、スチレン系共重合体 (A)を得ることができる。このような温度は通常 100〜3 50。C、好まし <は 120〜300。Cである。
[0100] 《フッ化物イオンを用いた変換反応》
フッ化物イオンを用いた変換反応に用いることができる試剤としては、テトラメチルァ ンモニゥムフルオリド、テトラプチルアンモニゥムフルオリド、フッ化カリウム、フッ化ナト リウム、フッ化水素等を挙げることができる。フッ化物イオンの使用量としては、フッ化 物イオンの使用量と式(4)に表されるスチレン系単量体の使用量とのモル比(フッ化 物イオン/式 (4)に表されるスチレン系単量体)が、通常、 1/;!〜 5/1、好ましくは 1 /;!〜 3/1である。
[0101] 〈精製〉
上記変換反応後、精製することによってスチレン系共重合体 (A)が得られる。精製 には、従来公知の方法を用いることができ、たとえば、得られた反応物溶液をトルェ ンまたはテトラヒドロフラン等の良溶媒で希釈後、メタノール、水、またはこれらの混合 溶液を添加して重合体を適度に凝集させ、抽出処理する方法が挙げられる。抽出処 理の際、反応溶媒として使用した溶媒および希釈のために添加した溶媒を合計した 良溶媒量と重合体との重量比(良溶媒/重合体)は、 0. 5/;!〜 6/1、好ましくは 0. 7/;!〜 4/1である。また、抽出に使用するメタノール、水、またはこれらの混合溶液 等の貧溶媒の使用量は重量比(貧溶媒/前記良溶媒)で、 0. 3〜5、好ましくは 0. 5 〜3である。抽出温度としては、通常 40〜; 120°C、好ましくは 50〜; 100°Cである。
[0102] 前記のように抽出した後、溶液を冷却して軽重層に分離させ、遠心分離機等で軽 層を除去する。これらの抽出操作を 1〜; 10回繰り返した後、重液を濃縮してデボラチ ライター、ルーダー等の脱溶装置で脱溶する。脱溶時の温度は 150〜350°C、好ま しく (ま 200〜350°C、真空度 (ま 0. l~50mmHg,好ましく (ま;!〜 40mmHgである。 また、脱溶前に希釈して循環濾過を実施してもよい。濾過の際、濾剤の孔径は 0. 1 〜; 100 mのものを 1種単独で使用してもよぐ孔径の異なるフィルターを段階的に 複数設置してもよい。また、脱溶後の溶融ポリマーを濾過することにより精製してもよ い。この際のポリマーフィルターの孔径は 0. ;!〜 100〃 mであるのが望ましい。
[0103] <ノルボルネン系重合体(B) > 本発明に係る樹脂組成物に含有されるノルボルネン系重合体 (B)は、下記式(6) で表される単量体(6)から導かれる構造単位を有する(共)重合体であり、具体的に は、単量体 (6)の開環重合体、単量体 (6)と共重合性単量体との開環共重合体、ま たはこれらの水素添加物、ある!/、は 1種単独または 2種以上の単量体(6)力 なる付 加型(共)重合体、および単量体(6)とビュル系化合物との付加型(共)重合体である
[0104] [化 10]
Figure imgf000024_0001
[0105] (式(6)中、 aおよび bは独立に 0または 1を示し、 cおよび dは独立に 0〜2の整数を 示す。 R4、 R5、 R6、 R7、 R8、 R9、 R1Q、 RU、 R12、および R13は、それぞれ独立に水素原 子;ハロゲン原子;酸素原子、硫黄原子、窒素原子、またはケィ素原子を含む連結基 を有してもよ!/、置換または非置換の炭素数 1〜30の炭化水素基;または極性基を示 す。 R1Qと RU、または R12と R13とは一体化して 2価の炭化水素基を形成してもよぐ R10 または R11と R12または R13とは相互に結合して炭素環または複素環 (これらの炭素環ま たは複素環は単環構造でもよいし、他の環が縮合して多環構造を形成してもよい。 ) を形成してもよい。)。
[0106] ハロゲン原子としては、フッ素原子、塩素原子及び臭素原子が挙げられる。
[0107] 炭素原子数 1〜30の炭化水素基としては、たとえば、メチル基、ェチル基、プロピ ル基等のアルキル基;シクロペンチル基、シクロへキシル基等のシクロアルキル基;ビ ニル基、ァリル基、プロぺニル基等のアルケニル基などが挙げられる。 [0108] また、上記の置換または非置換の炭化水素基は直接環構造に結合していてもよい し、あるいは連結基(linkage)を介して結合していてもよい。連結基としては、たとえば 、炭素原子数 1〜; 10の 2価の炭化水素基(たとえば、— (CH ) —(式中、 mは 1〜10
2 m
の整数)で表されるアルキレン基);酸素、窒素、ィォゥまたはケィ素を含む連結基 (た とえば、カルボニル基(一CO—)、ォキシカルボニル基(ー〇(CO)—)、カルボ二ノレ ォキシ基(一 COO—)、スルホン基(一 so—)、エーテル結合(ー〇一)、チォエーテ ル結合(— S— )、ィミノ基(— NH―)、アミド結合(― NHCO -、 - CONH―)、シロ キサン結合(一 OSi (R)—(式中、 Rはメチル、ェチル等のアルキル基))等が挙げら れ、これらを複数含む連結基であってもよい。
[0109] 極性基としては、例えば、水酸基、炭素原子数 1〜; 10のアルコキシ基、カルボ二ノレ ォキシ基、アルコキシカルボニル基、ァリーロキシカルボニル基、シァノ基、アミド基、 イミド基、トリオノレガノシロキシ基、トリオルガノシリル基、アミノ基、アシノレ基、アルコキ シシリル基、スルホニル基、およびカルボキシル基など挙げられる。さらに具体的には 、上記アルコキシ基としては、たとえば、メトキシ基、エトキシ基等;カルボニルォキシ 基としては、たとえば、ァセトキシ基、プロピオニルォキシ基等のアルキルカルボニル ォキシ基、およびベンゾィルォキシ基等のァリールカルボニルォキシ基;アルコキシ カルボニル基としては、たとえば、メトキシカルボニル基、エトキシカルボニル基等;ァ リーロキシカルボニル基としては、たとえば、フエノキシカルボニル基、ナフチルォキ シカルボニル基、フルォレニルォキシカルボニル基、ビフエ二リルォキシカルボニル 基等;トリオルガノシロキシ基としては、たとえば、トリメチルシロキシ基、トリェチルシロ キシ基等;トリオルガノシリル基としては、トリメチルシリル基、トリェチルシリル基等;ァ ミノ基としては、第 1級ァミノ基;アルコキシシリル基としては、例えば、トリメトキシシリル 基、トリエトキシシリル基等が挙げられる。
[0110] 前記式(6)で表される単量体(6)の具体例としては、次のような化合物が挙げられ
[0111] ビシクロ [2.2.1]ヘプトー 2—ェン、
トリシクロ [4.3.0.12'5]— 3—デセン、
トリシクロ [5· 2. 1. 02'6 ]—デカ一 3, 8—ジェン、 テトラシクロ [4·4·0· 12'5.17'10]— 3 ドデセン、
ペンタシクロ [6·5· 1· 13'6·02'7·09'13]— 4 ペンタデセン、
ペンタシクロ [7.4.O. I2'5.19'12.08'13] - 3 ペンタデセン、
5 メチルビシクロ [2.2.1]ヘプトー 2 ェン、
5 ェチノレビシクロ [2.2.1]ヘプトー 2 ェン、
5 メトキシカルボ二ルビシクロ [2.2.1]ヘプトー 2 ェン、
5 メチルー 5 メトキシカルボ二ルビシクロ [2.2.1]ヘプトー 2 ェン
5 シァノビシクロ [2· 2.1]ヘプトー 2 ェン、
8—メトキシカルボ二ルテトラシクロ [4·4·0· 12,5.17,1°] 3—ドデセン、
8—エトキシカルボ二ルテトラシクロ [4·4·0· 12,5.17,10] 3—ドデセン、
8 -η-:ズロポ:キシカノレポニノレテトラ-シクロ [4.4.0.12'5.17,10] 3—ドデセン、
8—イソ:: 7°ロポ: ¥シカノレポニノレテトラ:ンクロ [4.4.0.12'5.17,10] 3—ドデセン、
8 -η-: 7、、トキ、:メカノレボニノレテトラシ ロ [4.4.0.12'5.17'10]— 3—ドデセン
8—フエノキシ; ノレボニノレテトラシク!: 1 [4.4.0.12'5.17'10]— 3 ドデセン、
8—(1 ナフトキシ)カルボ二ルテトラシクロ [4·4·0· 12,5.17,1°]— 3 ドデセン、
8—(2—ナフト 'キシ)カノレポニノレテト」ラシクロ [4·4·0· 12,5.17,1°]— 3 ドデセン、
8—〈4—フエ-ルフエノキシ〉カルボ二ルテトラシクロ [4·4·0· 12,5.17,10]— 3—ドデセ ン、
8—メチノ 'レー 8ーメトキシカルボ二ル-テトラシクロ [4·4·0· 12'5.17'10] 3—ドデセン、
8—メチノ 'レー 8ーエトキシカノレポニノレ 'テトラシクロ [4.4.0.12,5.17,1°] 3—ドデセン、
8—メチノ 'レー 8 η プロポキシ力ノレボニルテトラシクロ [4·4·0· 12,5.17,1°] 3—ドデ セン、
8—メチノ 'レー 8 イソプロポキシ力ノレボニルテトラシクロ [4·4·0· I2'5.17'10] 3—ドデ セン、
8—メチノ 'レー 8 η ブトキシカルボ二ルテトラシクロ [4·4·0· 12,5.17,10] 3—ドデセ 8—メチル 8—フエノキシカルボ二ルテトラシクロ [4.4.0.12'5.17'10] 3—ドデセン 8 メチルー 8— (1 ナフトキシ)カルボ二ルテトラシクロ [4·4·0· I2'5. !7'10] 3 ド デセン
8 メチルー 8— (2 ナフトキシ)カルボ二ルテトラシクロ [4.4.O. I2'5.1 ''10]— 3 ド デセン
88——メメチチルルーー 88 --〈〈44——フフエエユユルルフフェェノノキキシシ〉〉カカルルボボ二二ルルテテトトララシシククロロ [[44..44..00..1122,,55..1177,,1100]] -- 33——ドドデデセセンン、、
ペペンンタタシシククロロ [[88..44..00..1122''55..1199''1122..0088''1133]] 33 へへキキササデデセセンン、、
ヘヘププタタシシククロロ ァァ ..;;!!33''66..;;!!11。。''1177..;;!!1122''1155..。。22''77..。。1111''1166]]—— 44——エエイイココセセンン、、
ヘヘププタタシシククロロ [[88..88..00..1144''77..1111UU88..111133''1166..0033''88..001122''1177]]—— 55 ヘヘンンエエイイココセセンン、、
55 ェェチチリリデデンンビビシシククロロ [[22..22..11]]ヘヘププトトーー 22 ェェンン、、
88——ェェチチリリデデンンテテトトララシシククロロ [[44··44··00·· II22..55·· ll77''1100]]—— 33——ドドデデセセンン、、
55 フフエエ二二ルルビビシシククロロ [[22·· 22..11]]ヘヘププトトーー 22 ェェンン、、
55——フフエエ二二ノノレレ 55——メメチチルルビビシシククロロ [[22..22..11]]ヘヘププトトーー 22 --ェェンン、、
88——フフエエ二二ルルテテトトララシシククロロ [[44··44··00·· II22''55..11""。。]]—— 33——ドドデデセセンン、、
55—— ηη ブブチチルルビビシシククロロ [[ 22 ·· 22 ·· 11 ]]ヘヘププトトーー 22——ェェンン、、
55—— ηη へへキキシシノノレレビビシシクク口口 [[22..22..11]]ヘヘププトトーー 22 ェェンン、、
55 シシククロロへへキキシシルルビビシシククロロ [[22..22..11]]ヘヘププトトーー 22 ェェンン、、
55——((22 シシククロロへへキキセセニニノノレレ))ビビシシククロロ [[22..22..11]]ヘヘププトトーー 22 ェェンン、、
55—— ηη ォォククチチルルビビシシククロロ [[22..22..11]]ヘヘププトトーー 22 ェェンン、、
55—— ηη デデシシルルビビシシククロロ [[22..22..11]]ヘヘププトト 22 ェェンン、、
Figure imgf000027_0001
5 - (1 -ナフチル)ビシクロ [2· 2.1]ヘプト—2 ェン、
5 - (2—ナフチル)ビシクロ [2· 2.1]ヘプト- —2 ェン、
5 - (2—ナフチル) 5—メチルビシクロ [2 :•2.1]ヘプトー 2 -ェン、
5 - (4 -ビフエこニノレ)ビシクロ [ 2 · 2 · 1 ]ヘプ]卜ー2 ェン、
5 - (4 -ビフエこニル) 5 メチルビシクロ [ :2.2.1]ヘプトー 2 —ェン
5 -ァミノ 'メチル 1 シクロ [2· 2.1]ヘプトー 2 —ェン、 5 トリメトキシシリノレビシクロ [ 2 · 2 · 1 ]ヘプトー 2 ェン、
5 トリエトキシシリルビシクロ [2.2.1]ヘプトー 2 ェン、
5 トリ n-プロポキシシリノレビシクロ [2.2.1]ヘプト 2 ェン、
5 トリ n-ブトキシシリノレビシクロ [2.2.1]ヘプト 2 ェン、
5 クロロメチルビシクロ [2.2.1]ヘプトー 2 ェン、
5 ヒドロキシメチルビシクロ [2.2.1]ヘプトー 2 ェン、
5 シクロへセニルビシクロ [2.2.1]ヘプトー 2 ェン、
5 フルォロビシクロ [2· 2.1]ヘプトー 2 ェン、
5 フルォロメチルビシクロ [2· 2.1]ヘプトー 2 ェン、
5 トリフルォロメチルビシクロ [2.2.1]ヘプトー 2 ェン、
5.5 ジフルォロビシクロ [2.2.1]ヘプトー 2 ェン、
5.6 ジフルォロビシクロ [2.2.1]ヘプトー 2 ェン、
5 メチルー 5 トリフルォロメチルビシクロ [2.2.1]ヘプトー 2 ェン、 5,5,6 トリフルォロビシクロ [2.2.1]ヘプトー 2 ェン、
5,5,6,6 テトラフノレオロビシクロ [2.2.1]ヘプトー 2 ェン、
8—フルォロテトラシクロ [4·4·0· 12'5.17'10] 3—ドデセン、
8,8 ジフルォロテトラシクロ [4·4·0· 12'5.17'10]— 3 ドデセン、
スピロ [フルオレン一 9,8' トリシクロ [4·3·0· I2'5] [3]デセン]
などを挙げること力 Sできる。
[0112] これらの化合物は、 1種単独でまたは 2種以上を組み合わせて単量体(6)として用 いること力 Sでさる。
[0113] これらの単量体(6)のうち、上記式(6)における R1Q〜R13のうちの少なくとも 1つ力 下記式 (I)
(CH ) COOR17 (I)
2 n (式中、 nは通常、 0または 1〜5の整数、 R17は炭素数 1〜; 15の炭化水素基である。 ) で表される特定の極性基である上記特定単量体が、得られる樹脂組成物および光 学フィルムの耐熱性と耐湿 (水)性とが良好なバランスを保つ点で好ましレ、。
[0114] 上記式 (I)において、 nの値が小さいほど、また、 R17の炭素数が小さいほど、得ら れる樹脂組成物のガラス転移温度が高くなり、耐熱性が向上する点で好ましい。すな わち、 nは通常、 0または 1〜5の整数である力 好ましくは 0または 1であり、また、 R17 は通常、炭素数 1〜; 15の炭化水素基である力 S、好ましくは炭素数 1〜4のアルキル基 が望ましい。
[0115] さらに、上記式(6)において、上記式 (I)で表される極性基が結合した炭素原子に さらにアルキル基が結合している上記単量体は、得られる樹脂組成物および光学フ イルムの耐熱性と耐湿(水)性とが良好なバランスを保つ点で好まし!/、。このアルキル 基の炭素数は 1〜5であることが好ましぐさらに好ましくは 1〜2、特に好ましくは 1で ある。
[0116] このような単量体(6)のうち、 8 メチルー 8 メトキシカルボ二ルテトラシクロ〔4.4.0 .12,5.17,1°]— 3 ドデセン、 8 -メチル 8 エトキシカルボ二ルテトラシクロ〔4.4.0.12, 5.1?,10]— 3 ドデセン、 8 メチル 8 ブトキシカルボ二ルテトラシクロ〔4·4·0· I2,5.1 7,10] 3 ドデセン、および 8—メチルー 8—メトキシカルボ二ルテトラシクロ〔4·4·0· 12' 5· 17'1()〕一 3 ドデセンと 5 メチル 5 メトキシカルボニル一ビシクロ [2·2· 1]ヘプト 2—ェンとの併用は、得られる樹脂組成物および光学フィルムが耐熱性に優れる 点で好ましぐ特に、 8 メチル 8 メトキシカルボ二ルテトラシクロ〔4·4·0· 12'5· 17'1()〕 — 3 ドデセンおよび 8 メチル 8 メトキシカルボ二ルテトラシクロ〔4.4.0.12'5.17'10 〕一 3 ドデセンと 5 メチル 5 メトキシカルボニル ビシクロ [2.2.1]ヘプトー 2— ェンとの併用は、スチレン系共重合体 (Α)との相溶性に優れたカレボルネン系重合 体 (Β)が得られる点で好まし!/、。
[0117] その他の式(6)で表される単量体(6)の内で好ましい例としては、ビシクロ [2.2.1] ヘプトー 2 ェン、トリシクロ [5· 2. 1. 02'6 ]—デカー 3, 8 ジェン、 5 ェチリデンビ シクロ [2· 2.1]ヘプトー 2 ェン、 5 フエ二ルビシクロ [2· 2.1]ヘプトー 2 ェン、 5— ηブチルビシクロ [2.2.1]ヘプト 2 ェン、 5 ηデシルビシクロ [2.2.1]ヘプト 2— ェン等を挙げること力 Sできる。
[01 18] [開環 (共)重合体]
上述した単量体(6)を開環重合して得られるノルボルネン系重合体 (B)としては、 例えば下記一般式 (Π)で表される構造単位を有する重合体が挙げられる。
[01 19] [化 1 1]
Figure imgf000030_0001
[0120] (式(Π)中、 a、 b、 c、 dおよび R4〜R^は、それぞれ上記式(6)における a、 b、 c、 dおよ び R4〜R13の定義と同義である。 Xは式:—CH = CH—で表される基または式:—C H CH一で表される基であり、複数存在する Xは同一または異なる。)。
[0121] 上述した単量体(6)を開環重合して得られるノルボルネン系重合体 (B)としては、 好ましくは、下記式 (i)で表される構造単位を有する(共)重合体であることが望まし!/、
[0122] [化 12]
Figure imgf000030_0002
[0123] (式 (i)中、 Ai〜A4は、それぞれ独立に、水素原子;ハロゲン原子;酸素原子、硫黄 原子、窒素原子もしくはケィ素原子を含む連結基を有してもよい、置換もしくは非置 換の炭素原子数 1〜30の炭化水素基;または極性基を表し、 A A4の少なくとも一 つは—(CH ) COOA5で表される基 (A5は、酸素原子、硫黄原子、窒素原子もしくは
2 n
ケィ素原子を含む連結基を有してもよい、置換もしくは非置換の炭素数 1〜30の炭 化水素基)であり、 nは 0または 1〜5の整数である。)。
[0124] ノルボルネン系重合体 (B)が、前記式 (i)で表される構造単位を含む場合、ノルボ ルネン系重合体(Β)の全構造単位 100mol%中、前記式 (i)で表される構造単位を 、通常 5mol%以上、好ましくは 10〜70mol%、より好ましくは 20〜50mol%含有す るのが望ましい。
[0125] 前記式(i)で表される構造単位は、前記単量体(6)のうち、下記式(i a)で表され る単量体を開環共重合し、水素添加することにより好適に得られる構造単位である。
[0126] [化 13]
Figure imgf000031_0001
[0127] 式(i— a)中、 ^〜A4は、上記式(i)において定義のとおりである。
[0128] このような単量体(i a)としては、たとえば
5 メトキシカルボ二ルビシクロ [2.2.1 ]ヘプトー 2 ェン、
5 エトキシカルボ二ルビシクロ [2.2.1 ]ヘプトー 2 ェン、
5 プロポキシカルボ二ルビシクロ [2.2.1 ]ヘプト 2 ェン、
5 フエノキシカルボ二ルビシクロ [2.2. 1 ]ヘプトー 2 ェン、
5 ベンジルォキシカルボ二ルビシクロ [2.2. 1 ]ヘプト 2 ェン
などが挙げられる。好ましい単量体は 5 メトキシカルボ二ルビシクロ [2.2.1 ]ヘプト 2—ェンである。
[0129] このような単量体(i— a)は、式(i— a)中の Ai〜A4の少なくとも一つが一(CH ) CO
2 n OA5で表される基(エステル結合を有する基)である力 一(CH ) COOR5で表され
2 n
る基が結合する炭素原子に結合するもう一つの原子もしくは基が、水素原子以外の 原子もしくは基であること力 S好ましい。具体的には、たとえば、 A1が一 (CH ) COOA!
2 n で表される基であって、 A2が水素原子以外の原子もしくは基である構造単位が好ま しい。
[0130] より好ましくは、単量体 (i a)としては、下記式で表される化合物(i a' )が挙げら れる。
[0131] [化 14]
Figure imgf000032_0001
a ,)
[0132] 式 (i— a' )中、 A5は、酸素原子、硫黄原子、窒素原子もしくはケィ素原子を含む連 結基を有してもよい、置換もしくは非置換の炭素数 1〜30の炭化水素基を表し、 A6は 、ハロゲン原子;酸素原子、硫黄原子、窒素原子もしくはケィ素原子を含む連結基を 有してもよい、置換もしくは非置換の炭素原子数 1〜30の炭化水素基;または極性基 を表す。ここで Aは、より好ましくは炭素数 1〜; 10の炭化水素基である。
[0133] このような単量体(1— a' )としては、たとえば、以下のようなものを例示することがで きる。
5 メチルー 5 メトキシカルボ二ルビシクロ [2· 2. 1]ヘプトー 2 ェン
[0134] [化 15]
Figure imgf000032_0002
[0135] 5 メチル 5 エトキシカルボ二ルビシクロ [2· 2. 1]- - 2—ェン
[0136] [化 16]
Figure imgf000033_0001
[0137] 5 メチノレー 5 フエ 2. 1]ヘプトー 2—ェン
[0138] [化 17]
Figure imgf000033_0002
[0139] 単量体(6)のうち、上記式(6)における cおよび dの少なくともひとつ力 SOでない化合 物、好ましくは cおよび dの少なくともひとつが 1を示す化合物である単量体(以下「多 核体」ともいう)と、単量体 (i_a' )とを共重合させる場合、単量体 (i-a ' )の反応性が低 いため、重合コンバージョンが低くなつたり、重合後期に単量体 (i-a' )が反応系に多 く残留し、単量体 (i-a ' )のみに由来する重合鎖が生成したりすると!/、うおそれがある 。単量体 (i-a ' )のみに由来する重合鎖は後述する水素添加反応が進行し難いため 、この重合体鎖の生成を抑制することが好ましい。この問題を解決する方法として、 多核体を逐次添加または連続添加し重合する方法が挙げられる。具体的には、多核 体の一部と単量体 (i-a' )とをバッチ重合させながら、多核体を逐次添加または連続 添加する方法、反応の開始から終わりまで多核体と単量体 (i-a' )との混合物を逐次 添加または連続添加する方法などが挙げられる。共重合反応性比は公知の方法、 Fi neman— Ross法による曲線合致法や Mayo— Lewis法による積分式により算出す ることができる(大津隆行 ·木下雅悦教書、化学同人、第 12印、高分子合成の実験法 、 ppl 83〜; 189)。特に好ましい具体例としては、下記の通りである。多核体が 8—メ チル— 8 メトキシカルボ二ルテトラシクロ〔4·4·0· 12'5· 17'1()〕—3 ドデセン、単量体(i -a ' )が 5 メトキシカルボ二ルビシクロ [2.2.1]ヘプト 2 ェンの場合、 Fineman- Ross法により求めた 80°Cでの共重合性反応性比は 8—メチルー 8—メトキシカルボ 二ルテトラシクロ〔4·4·0· 12'5· 17'1()〕一3 ドデセンは 2. 1、 5 メトキシカルボ二ルビシ クロ [2.2.1 ]ヘプトー 2—ェンが 1. 0。つまり、多核体は単量体(i-a' )より 2. 1倍の速 度で消費されるため、仕込み組成は、単量体(i-a ' ):多核体 = 1 : 2. 1 (mol%)にす ることが特に好ましく、好ましい範囲として、単量体(i-a' ) lmolに対して、多核体;!〜 4molである。反応の開始から終わりまでこの範囲の組成を維持するように多核体を 添加することが好ましい。
[0140] [共重合性単量体]
上記単量体(6)は単独で開環重合してもよいが、さらに、上記単量体 ½)と他の共 重合性単量体とを開環共重合させてもょレ、。
[0141] 上記共重合性単量体として、具体的には、シクロブテン、シクロペンテン、シクロへ プテン、シクロオタテンなどのシクロォレフインを挙げることができる。シクロォレフイン の炭素数は、 4〜20力 S好ましく、さらに好ましくは 4〜; 12である。
[0142] さらに、ポリブタジエン、ポリイソプレン、スチレン ブタジエン共重合体、エチレン 非共役ジェン共重合体、ポリノルボルネンなどの、主鎖に炭素 炭素間二重結合 を含む不飽和炭化水素系ポリマーなどの存在下で、上記単量体(6)を開環重合させ てもよい。この場合、得られる開環共重合体およびその水素添加共重合体は、耐衝 撃性の大きい樹脂組成物の原料として有用である。
[0143] 上記開環重合体 (式 (Π)で表される構造単位を有する (共)重合体)は、開環重合 触媒の存在下、必要に応じて分子量調節剤および開環重合用溶媒を用いて、上記 単量体(6)の 1種以上、および必要に応じて共重合性単量体を、従来公知の方法で 開環 (共)重合させることにより得ること力でさる。
[0144] また、上記単量体 (6)と上記共重合性単量体とを共重合させる場合、上記単量体(
6)と上記共重合性単量体との合計 100重量%に対して、上記単量体 ½)を通常 50 重量%以上、好ましくは 60重量%以上、より好ましくは 70重量%以上、かつ 100重 量%以下、上記共重合性単量体を、 0重量%以上、通常 50重量%以下、好ましくは 40重量%以下、より好ましくは 30重量%以下の割合で共重合させることが望ましい。
[0145] 本発明で用いる開環重合体としては、単量体(6)の単独重合体、または 2種以上の 単量体(6)の共重合体が最も好まし!/、。
[0146] 〈開環 (共)重合触媒〉
本発明に用いられる開環(共)重合用の触媒としては、 Olefin Metathesis and Metat hesis Polymerization( .J.IVIN,J.C.MOL, Academic Press 1997)に記載されている触 媒が好ましく用いられる。
[0147] このような触媒としては、たとえば、(a)W、 Mo、 Re、 Vおよび Tiの化合物力も選ば れた少、なくとも 1種と、(b) Li、 Na、 K、 Mg、 Ca、 Zn、 Cd、 Hg、 B、 Al、 Si、 Sn、 Pbな どの化合物であって、少なくとも 1つの当該元素 炭素結合あるレ、は当該元素 水 素結合を有するものから選ばれた少なくとも 1種との組合せからなるメタセシス重合触 媒が挙げられる。この触媒は、触媒の活性を高めるために、後述の添加剤(c)が添カロ されたものであってもよい。また、その他の触媒として(d)助触媒を用いない周期表第 4族〜 8族遷移金属 カルベン錯体ゃメタラシクロブタン錯体などからなるメタセシス 触媒が挙げられる。
[0148] 上記(a)成分として適当な W、 Mo、 Re、 Vおよび Tiの化合物の代表例としては、 W CI、 MoCl、 ReOCl、 VOC1、 TiClなど特開平 1 240517号公報に記載の化合
6 5 3 3 4
物を挙げること力 Sでさる。
[0149] 上記(b)成分としては、 n— C H Li、(C H ) Al、(C H ) A1C1、(C H ) A1C1 、
4 9 2 5 3 2 5 2 2 5 1.5 1.5
(C2H5)A1CKメチルアルモキサン、 LiHなど特開平 1— 240517号公報に記載の化 合物を挙げること力 Sできる。
[0150] 添加剤である(c)成分の代表例としては、アルコール類、アルデヒド類、ケトン類、ァ ミン類などが好適に用いることができ、さらに特開平 1— 240517号公報に示される化 合物を使用することができる。
[0151] 上記触媒(d)の代表例としては、 W( = N— 2,6— C H iPr )( = CH tBu)(0 tBu)、
6 3 2 2
Mo( = N— 2,6— C H iPr )( = CH tBu)(0 tBu)、 Ru( = CHCH = CPh )(PPh ) CI
6 3 2 2 2 3 2
、Ru( = CHPh)(PC H ) CIなどが挙げられる。
2 6 11 2 2
[0152] メタセシス触媒の使用量としては、上記(a)成分と、全単量体(単量体 ½)の全量お よび他の共重合可能な単量体。以下、同じ)とのモル比で「(a)成分:全単量体」が、 通常 1: 500—1: 500,000となる範囲、好ましくは 1: 1,000—1: 100,000となる範囲 であるのが望ましい。 (a)成分と (b)成分との割合は、金属原子比で「(a): (b) j ^i : 1-1 : 100,好ましくは 1 : 2〜; 1 : 50の範囲であるのが望ましい。また、このメタセシス 触媒に上記 (c)添加剤を添加する場合、 (a)成分と(c)成分との割合は、モル比で「( c): (a)」が 0. 005 :;!〜 15 : 1、好ましくは 0. 05:;!〜 7: 1の範囲であるのが望ましい 。また、触媒 (d)の使用量は、(d)成分と全単量体とのモル比で「(d)成分:全単量体 」 1S 通常 1: 50〜1: 100,000となる範囲、好ましくは 1: 100-1: 50,000となる範囲 であるのが望ましい。
[0153] 〈分子量調節剤〉
開環 (共)重合体の分子量の調節は重合温度、触媒の種類、溶媒の種類によって も行うことができるが、本発明においては、分子量調節剤を反応系に共存させること により調節することが好ましい。ここに、好適な分子量調節剤としては、たとえば、ェチ レン、プロピレン、 1—ブテン、 1—ペンテン、 1—へキセン、 1—ヘプテン、 1—才クテ ン、 1—ノネン、 1—デセンなどの α—ォレフイン類、スチレン、ビュルトルエンなどの スチレン類、ァリル酢酸、ァリルベンゼンなどァリル化合物類を挙げることができ、これ らのうち、 1ーブテン、 1一へキセン、 1—オタテンが特に好ましい。これらの分子量調 節剤は、単独であるいは 2種以上を混合して用いることができる。分子量調節剤の使 用量としては、開環(共)重合反応に供される全単量体 1モルに対して 0. 001-0. 6 モル、好ましくは 0. 02—0. 5モルであるのが望ましい。
[0154] 〈開環 (共)重合反応用溶媒〉
開環(共)重合反応において用いられる溶媒、すなわち、ノルボルネン系単量体、メ タセシス触媒および分子量調節剤を溶解する溶媒としては、たとえば、石油エーテル 、ペンタン、へキサン、ヘプタン、オクタン、ノナン、デカンなどの炭化水素類;シクロ ペンタン、シクロへキサン、メチノレシクロへキサン、シクロヘプタン、シクロオクタン、デ カリン、ノルボルナンなどの環状炭化水素類;ベンゼン、トルエン、キシレン、ェチル ベンゼン、タメン、クロ口ベンゼンなどの芳香族炭化水素類;ジクロロメタン、ジクロロェ タン、クロロブタン、クロ口ホルム、テトラクロロエチレンなどのハロゲン化炭化水素類; 酢酸メチル、酢酸ェチル、酢酸 η ブチル、酢酸 iso ブチル、プロピオン酸メチルな どのエステル類;ジブチルエーテル、テトラヒドロフラン、ジメトキシェタン、ジォキサン などのエーテル類; N, N— 11ジメチルホルムアミド、 N, N ジメチルァセトアミド、 N メチルピロリドンなどを挙げることができ、これらは単独であるいは混合して用いるこ とができる。本発明では、これらのうち、芳香族炭化水素が好ましい。
[0155] 溶媒の使用量としては、「溶媒:全単量体(重量比)」が、通常 0. 5 :;!〜 20 : 1となる 量とされ、好ましくは 0. 5 :;!〜 10 : 1となる量であるのが望ましい。
[0156] [水素添加]
本発明では、上記の開環重合のみによりノルボルネン系重合体 (B)を製造してもよ いが、開環重合で得た開環重合体をさらに水素添加することが好ましい。開環重合 のみでは、得られるノルボルネン系重合体は、上述の式 (Π)で表される構造単位(II) 中の Xが、いずれも、式: CH = CH で表されるォレフィン性不飽和基の状態であ る。かかる開環重合体は、そのまま使用することもできる力 耐熱安定性の観点から、 上記のォレフィン性不飽和基が水素添加されて前記 Xがー CH -CH一で表される 基に転換された水素添加物であることが好ましい。ただし、本発明でいう水素添加物 とは、上記のォレフィン性不飽和基が水素添加されたものであり、ノルボルネン系単 量体に基づく側鎖の芳香環は実質的に水素添加されていないものである。
[0157] なお、水素添加する割合としては、上記構造単位(Π)における Xの 90モル%以上、 好ましくは 95%以上、さらに好ましくは 97%以上であるのが望ましい。水素添加する 割合が高レ、ほど、熱による着色や劣化が抑制することができるため好ましレ、。
[0158] この製造方法では、水素添加反応は、単量体(6)に基づく側鎖の芳香環が実質的 に水素添加されない条件で行われる必要がある。このため通常は、開環重合体の溶 液に水素添加触媒を添加し、これに常圧〜 30MPa、好ましくは 2〜20MPa、更に好 ましくは 3〜 18MPaで水素を作用させることによって行うのが望まし!/、。
[0159] 水素添加触媒としては、通常のォレフィン性化合物の水素添加反応に用いられるも のを使用することができる。この水素添加触媒としては、公知の不均一系触媒および 均一系触媒をいずれも用いることができる。不均一系触媒としては、ノ ラジウム、白金 、ニッケル、ロジウム、ルテニウムなどの貴金属触媒物質を、カーボン、シリカ、アルミ ナ、チタニアなどの担体に担持させた固体触媒を挙げることができる。また、均一系 触媒としては、ナフテン酸ニッケル/トリェチルアルミニウム、ビス(ァセチルァセトナト )ニッケル(Π) /トリェチルアルミニウム、オタテン酸コバルト /n ブチルリチウム、チ タノセンジクロリド/ジェチルアルミニウムモノクロリド、酢酸ロジウム、クロロトリス(トリフ ェニノレホスフィン)ロジウム、ジクロロトリス(トリフエニノレホスフィン)ノレテニゥム、クロロヒ ドロカルボニルトリス(トリフエニルホスフィン)ルテニウム、ジクロロカルボニルトリス(トリ フエニルホスフィン)ルテニウムなどを挙げることができる。触媒の形態は粉末でも粒 状でもよい。また、この水素添加反応触媒は、 1種単独でも 2種以上を組み合わせて あ使用すること力でさる。
[0160] これらの水素添加触媒は、単量体(6)もしくは他の単量体に基づく側鎖の芳香環が 実質的に水素添加されないようにするために、その添加量を調整する必要がある力 通常は、「開環 (共)重合体:水素添加触媒 (重量比)」が、 1 : 1 X 10— 6〜; 1 : 2となる割 合で使用するのが望ましい。
[0161] 精製方法としてはスチレン系共重合体 (A)と同様の方法を採用することができる。
[0162] [付加型 (共)重合体]
本発明では、ノルボルネン系重合体 (B)として、上記開環(共)重合体およびその 水素添加重合体の他に、 1種単独または 2種以上の上記単量体(6)からなる付加型 (共)重合体、および上記単量体 (6)と不飽和二重結合含有化合物との付加型 (共) 重合体を使用することができる。 1種単独または 2種以上の上記単量体(6)の(共)重 合反応により生成する付加型 (共)重合体は、従来公知の方法により得ることができる 。また、上記単量体(6)と不飽和二重結合含有化合物は、これらの合計量 100重量 %に対して、上記単量体(6)を通常 50〜90重量%、好ましくは 60〜90重量%、より 好ましくは 70〜90重量%、不飽和二重結合含有化合物を通常 10〜50重量%、好 ましくは 10〜40重量%、より好ましくは 10〜30重量%の割合で共重合させることが 望ましい。
[0163] 上記不飽和二重結合含有化合物としては、たとえば、エチレン、プロピレン、ブテン などの炭素数 2〜 12、好ましくは 2〜8のォレフイン系化合物を挙げることができる。
[0164] 上記単量体(6)と不飽和二重結合含有化合物との共重合反応に用いられる触媒と しては、バナジウム化合物と有機アルミニウム化合物とからなる触媒が挙げられる。バ ナジゥム化合物としては、 VO (OR) Xまたは V (OR) X (ただし、 Rは炭化水素基、
a b c d
0≤a≤3, 0≤b≤3, 2≤a + b≤3, 0≤c≤4, 0≤d≤4, 3≤c + d≤4)で表される バナジウム化合物、あるいはこれらの電子供与体付加物が挙げられる。電子供与体 としてはアルコール、フエノール類、ケトン、アルデヒド、カルボン酸、有機酸または無 機酸のエステル、エーテル、酸アミド、酸無水物、アルコキシシラン等の含酸素電子 供与体、アンモニア、ァミン、二トリル、イソシアナート等の含窒素電子供与体などが 挙げられる。上記有機アルミニウム化合物としては、アルミニウム 炭素結合またはァ ノレミニゥム一水素結合を少なくとも 1つ有する化合物から選ばれた少なくとも 1種の有 機アルミニウム化合物が挙げられる。上記触媒におけるバナジウム化合物と有機アル ミニゥム化合物との割合は、バナジウム原子に対するアルミニウム原子の比 (A1/V) で、通常 2以上、好ましくは 2〜50、特に好ましくは 3〜20である。
[0165] 上記共重合反応に用いられる溶媒としては、たとえば、ペンタン、へキサン、ヘプタ ン、オクタン、ノナン、デカン等の炭化水素類;シクロへキサン、メチルシクロへキサン 等の環状炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素およびその ハロゲン誘導体を挙げることができる。これらのうち、シクロへキサン、メチルシクロへ キサンが好ましい。
[0166] 精製方法としては、上記スチレン系共重合体 (A)と同様の方法を採用することがで きる。
[0167] 本発明に用いられるノルボルネン系重合体(B)は、 30°Cのクロ口ベンゼン溶液(濃 度 0. 5g/dU中で測定した対数粘度( )が、 0. 3〜2. OdL/gであることが好まし い。また、ノルボルネン系重合体(B)のゲルパーミエーシヨンクロマトグラフィ(GPC) で測定されるポリスチレン換算の数平均分子量(Mn)は、通常 1 , 000-500, 000、 好まし <は 3, 000—300, 000、さらに好まし <は 5, 000— 100, 000であり、重量平 均分子量(Mw)は、通常 10, 000— 1 , 000, 000、好まし <は 20, 000— 500, 000 、さらに好ましくは 30, 000-200, 000であることカ望ましい。
[0168] 分子量が小さすぎると、得られる成形品やフィルムの強度が低くなることがある。分 子量が大きすぎると、溶液粘度が高くなりすぎて本発明に用いる樹脂組成物の生産 性や加工性が悪化することがある。
[0169] また、ノルボルネン系重合体(B)の分子量分布(Mw/Mn)は、通常 1 · 5—10,好 ましくは 2〜8、さらに好ましくは 2〜6であることが望ましい。
[0170] ノルボルネン系重合体(B)のガラス転移温度(Tg)は、通常 100〜250°Cであり、 好ましくは 110〜220°C、さらに好ましくは 115〜200°Cである。 Tgが低すぎると、熱 変形温度が低くなるため、耐熱性に問題が生じるおそれがあり、また、得られる成形 品やフィルムの温度による光学特性の変化が大きくなるという問題が生じることがある 。一方、 Tgが高すぎると、加工温度を高くする必要があり、これにより樹脂組成物が 熱劣化することがある。
[0171] <樹脂組成物および光学フィルム〉
本発明に係る樹脂組成物および光学フィルムは、上記スチレン系共重合体 (A)とノ ルボルネン系重合体 (B)との組成比( (A) / (B) )力 重量比でスチレン系共重合体 /ノノレポノレネン系重合体 = 5/95〜70/30、好ましく ίま 15/85〜60/40、より好 ましくは 20/80〜50/50の範囲である。スチレン系共重合体 (Α)の配合量が上記 範囲にあると、製膜後、延伸することにより逆波長分散性を有する光学フィルムを得る こと力 Sできる。また、フィルムの強度も向上する。スチレン系共重合体 (Α)の配合量が 上記下限未満になると、樹脂組成物から得られる延伸フィルムが逆波長分散性を示 さないことがある。また、スチレン系共重合体 (Α)の配合量が上記上限を超えると、得 られる樹脂組成物や光学フィルムの耐熱性が低下したり、光学フィルムの強度が低 下したりすること力 Sfcる。
[0172] 上記樹脂組成物および光学フィルムは、さらに炭化水素樹脂を含有していてもよい 。この炭化水素樹脂としては、 C系樹脂、 C系樹脂、 C系/ C系混合樹脂、シクロ ペンタジェン系樹脂、ォレフイン/ビュル置換芳香族系化合物の共重合体系樹脂、 シクロペンタジェン系化合物/ビュル置換芳香族系化合物の共重合体系樹脂、これ らの樹脂の水素添加物およびビュル置換芳香族系樹脂の水素添加物などを挙げる こと力 Sできる。炭化水素樹脂の含有量は、ノルボルネン系重合体 (B) 100重量部に 対して、通常 0. 0;!〜 50重量部、好ましくは 0. ;!〜 25重量部である。
[0173] 上記樹脂組成物は、耐熱劣化性ゃ耐光性の改良のために下記に示す酸化防止剤 、紫外線吸収剤等を添加しても良い。
[0174] 酸化防止剤としては、
2,6 ジー tーブチノレー 4ーメチノレフエノーノレ、 2,2' ジォキシー 3,3' ジー tーブ チルー 5,5'—ジメチルジフエニルメタン、テトラキス [メチレンー3—(3, 5—ジ tーブ チルー 4ーヒドロキシフエ二ノレ)プロピオネート]メタン、 1 , 1 ,3 トリス(2 メチルー 4 ヒドロキシー 5— t ブチルフエニル)ブタン、 1 ,3,5 トリメチルー 2,4,6 トリス(3, 5 ージ tーブチルー 4ーヒドロキシベンジル)ベンゼン、ステアリル β一(3,5—ジ t ーブチルー 4ーヒドロキシフエニル)プロビオネート、 2, 2 ' ジォキシ 3,3' ジー t ブチルー 5,5' ジェチルフエニルメタン、 3,9 ビス [1,1 ジメチルー 2—(/3—(3 —tーブチルー 4ーヒドロキシ 5 メチルフエニル)プロピオニルォキシ)ェチル]、 2, 4,8,10 テトラオキサスピロ [5· 5]ゥンデカン、トリス(2,4 ジ一 t ブチルフエニル) ホスファイト、サイクリックネオペンタンテトライルビス(2,4 ジー t ブチルフエニル) ホスファイト、サイクリックネオペンタンテトライルビス(2,6 ジ一 t ブチル 4 メチ ノレフエ二ノレ)ホスファイト、 2,2—メチレンビス(4,6—ジ一 t ブチルフエ二ノレ)オタチル ホスファイトが挙げられる。
[0175] 紫外線吸収剤としては、
2,4 ジヒドロキシベンゾフエノン、 2 ヒドロキシ一 4 メトキシベンゾフエノン、 2— ( 2H べンゾトリアゾール -2-ィル) -4,6-ビス(卜メチル _;!-フエ二ルェチノレ)フエノー ノレ、 2—(2H べンゾトリアゾール -2-ィル) -4,6-ジ -tert-ペンチルフエノーノレ、 2-ベ ンゾトリアゾール -2-ィル 4,6-ジ -tert-ブチルフエノール、 2,2'-メチレンビス〔4- (1,1, 3,3-テトラメチルブチル) -6-[ (2H べンゾトリアゾール -2-ィル)フエノール]〕などが 挙げられる。
[0176] これらの添加剤の添加量は、本樹脂組成物 100重量部に対して、通常、 0. 0;!〜 5 重量部、好ましくは 0. 05〜4重量部である。
さらに、加工性を向上させる目的で滑剤などの添加剤を添加することもできる。
[0177] <樹脂組成物の製造方法〉
本発明に係る樹脂組成物は、例えば、下記 (i)〜(iii)の方法により得ることができる
(i)スチレン系共重合体 (A)とノルボルネン系重合体 (B)と任意成分とを、二軸押出 機またはロール混練機などを用いて混合する方法。
(ii)ノルボルネン系重合体 (B)を適当な溶媒に溶解した溶液に、スチレン系共重合 体 (A)を添加、混合する方法。
(iii)スチレン系共重合体 (A)またはその溶液とノルボルネン系重合体 (B)またはその 溶液とを混合溶解し、デボラチライターやルーダー等を用いて脱溶する方法。 [0178] この際に使用する溶剤としては、スチレン系共重合体 (A)またはカレボルネン系重 合体 (B)の製造に使用する重合溶媒や、光学フィルムの溶剤キャスト法で用いる一 般的な溶剤を用いることができる。上記方法により得られる樹脂組成物は、高分子量 の重合体を含有するため、フィルム強度に優れた光学フィルムを得ることができる。
[0179] また、上記 (ii)、(iii)などで得られる樹脂組成物溶液を、押出機に導入し、押出機 内で該樹脂組成物溶液中の揮発分を除去した後、フィルム状またはストランド状にダ ィより、後述する溶融押出成形(以下、単に押出成形ともいう)を行って、成形体また は光学フィルムを得ることもできる。
[0180] <光学フィルムの製造方法〉
本発明の光学フィルムは、上述の樹脂組成物を溶融成形法、溶液流延法 (溶剤キ ヤスト法)などによりフィルムに成形することにより得ることができる。
[0181] 溶剤キャスト法としては、たとえば、上述した本発明に係る樹脂組成物を溶媒に溶 解または分散させて適度の濃度の液にし、適当なキヤリヤー上に注ぐ力、、または塗布 し、これを乾燥した後、キヤリヤーから剥離させる方法が挙げられる。
[0182] 本発明に係る樹脂組成物を溶媒に溶解または分散させる際には、該樹脂組成物 の濃度を、通常は 1〜90重量%、好ましくは 5〜50重量%、さらに好ましくは 10〜35 重量%にする。該樹脂の濃度を上記未満にすると、フィルムの厚みを確保することが 困難になる、また、溶媒蒸発にともなう発泡等によりフィルムの表面平滑性が得に《 なる等の問題が生じる。一方、上記を超えた濃度にすると溶液粘度が高くなりすぎて 得られる光学フィルムの厚みや表面が均一になりにくくなるために好ましくない。
[0183] また、室温での上記溶液の粘度は、通常は1〜1,000,000 (111?& ' 3)、好ましくは1 0〜500,000 (11 1½ - 3)、さらに好ましくは100〜200,000 (11 1½ - 3)、特に好ましくは 1,000〜; 100,000 (mPa ' s)である。
[0184] ここで使用する溶媒としては、シクロへキサン、シクロペンタン、メチルシクロへキサ ン等の炭化水素系溶媒、ベンゼン、トルエン、キシレンなどの芳香族系溶媒、メチル セロソルブ、ェチルセ口ソルブ、 1ーメトキシー2—プロパノール等のセロソルブ系溶 媒、ジアセトンアルコール、アセトン、シクロへキサノン、メチルェチルケトン、 4—メチ ルー 2—ペンタノン、メチルイソブチルケトン等のケトン系溶媒、乳酸メチル、酢酸メチ ノレ、酢酸ェチル、酢酸ブチル等のエステル系溶媒、塩化メチレン、クロ口ホルム等の ハロゲン含有溶媒、テトラヒドロフラン、ジォキサン、ジメトキシェタン、 1 , 3—ジォキソ ラン等のエーテル系溶媒、 1ーブタノール、 1 ペンタノール等のアルコール系溶媒 を挙げること力 Sでさる。
[0185] また、上記以外でも、 SP値 (溶解度パラメーター)が通常 10〜30 (MPa1/2)、好まし くは 10〜25 (MPa1/2)、さらに好ましくは 15〜25 (MPa1/2)、特に好ましくは 17〜20 ( MPa1/2)の範囲の溶媒を使用すれば、表面均一性と光学特性の良好な光学フィルム を得ること力 Sでさる。
[0186] 上記溶媒は単独であるいは 2種以上併用して使用することができる。溶媒を 2種以 上併用する場合には、混合物としての SP値の範囲を上記範囲内とすることが好まし い。このとき、混合物としての SP値は、その重量比から求めることができ、例えば二種 の混合物の場合は、各溶媒の重量分率を W 、 W、また、 SP値を SP , SPとすると
1 2 1 2 混合溶媒の SP値は下記式:
SP値 =W - SP +W - SP
1 1 2 2
により計算したィ直として求めること力 sでさる。
[0187] 樹脂溶液の調製にお!/、て、本発明に係る熱可塑性樹脂組成物を溶媒で溶解する 場合の温度は、室温でも高温でもよい。十分に撹拌することにより均一な溶液が得ら れる。なお、必要に応じて着色する場合には、溶液に染料、顔料等の着色剤を適宜 添カロすることあでさる。
[0188] また、光学フィルムの表面平滑性を向上させるためにレべリング剤を添加してもよい 。一般的なレべリング剤であれば何れも使用できる力 たとえば、フッ素系ノニオン界 面活性剤、特殊アクリル樹脂系レべリング剤、シリコーン系レべリング剤などが使用で きる。
[0189] 本発明の光学フィルムを溶剤キャスト法により製造する方法としては、上記溶液をダ イスゃコーターを使用して金属ドラム、スチールベルト、ポリエチレンテレフタレート(P
ET)やポリエチレンナフタレート(PEN)等のポリエステルフィルム、ポリテトラフルォロ エチレン製ベルトなどの基材の上に塗布し、その後溶剤を乾燥 ·除去して基材よりフ イルムを剥離する方法が一般に挙げられる。また、スプレー、ハケ、ロールスピンコー ト、デイツビングなどの手段を用いて,樹脂組成物溶液を基材に塗布し、その後溶剤 を乾燥 ·除去して基材よりフィルムを剥離することにより製造することもできる。なお、 塗布の繰り返しにより厚みや表面平滑性等を制御してもよい。
[0190] また、基材としてポリエステルフィルムを使用する場合には、表面処理されたフィル ムを使用してもよい。表面処理の方法としては、一般的に行われている親水化処理 方法、例えばアクリル系樹脂ゃスルホン酸塩基含有樹脂をコーティングやラミネート により積層する方法、あるいは、コロナ放電処理等によりフィルム表面の親水性を向 上させる方法等が挙げられる。
[0191] 上記溶剤キャスト法の乾燥 (溶剤除去)工程については、特に制限はなく一般的に 用いられる方法、例えば多数のローラーを介して乾燥炉中を通過させる方法等で実 施できるが、乾燥工程において溶媒の蒸発に伴い気泡が発生すると、フィルムの特 性を著しく低下させるので、これを避けるために、乾燥工程を 2段以上の複数工程と し、各工程での温度ある!/、は風量を制御することが好まし!/、。
[0192] また、光学フィルム中の残留溶媒量は、通常は 10重量%以下、好ましくは 5重量% 以下、さらに好ましくは 2重量%以下、特に好ましくは 1重量%以下である。ここで、残 留溶媒量が 10重量%以上であると、実際に該光学フィルムを使用したときに経時に よる寸法変化が大きくなり好ましくない。また、残留溶媒により Tgが低くなり、耐熱性も 低下することから好ましくない。
[0193] なお、後述する延伸工程を好適に行うためには、上記残留溶媒量を上記範囲内で 適宜調節する必要がある場合がある。具体的には、延伸配向時の位相差を安定して 均一に発現させるために、残留溶媒量を通常は 10〜0. 1重量%、好ましくは 5〜0. 1重量%、さらに好ましくは;!〜 0. 1重量%にすることがある。溶媒を微量残留させる ことで、延伸加工が容易になる、あるいは位相差の制御が容易になる場合がある。
[0194] 本発明の光学フィルムの厚さは、通常は 0. ;!〜 3,000 m、好ましくは 0. 1— 1 ,00 0〃 m、さらに好ましくは;!〜 500 μ m、最も好ましくは 5〜300 μ mである。 0. l ^ m 未満の厚みの場合実質的にハンドリングが困難となる。一方、 3,000 m以上の場 合、ロール状に巻き取ることが困難になる。
[0195] 本発明の光学フィルムの厚み分布は、通常は平均値に対して ± 20%以内、好まし くは ± 10%以内、さらに好ましくは ± 5%以内、特に好ましくは ± 3%以内である。ま た、 1cmあたりの厚みの変動は、通常は 10%以下、好ましくは 5%以下、さらに好ま しくは 1 %以下、特に好ましくは 0. 5%以下であることが望ましい。かかる厚み制御を 実施することにより、均質な光学フィルムとすることができるとともに、延伸配向した際 の透過光の位相差ムラを防ぐことができる。
[0196] 押出成形法としては、押出機により、樹脂を溶融し、ギアポンプにより定量供給し、 これを金属フィルターでろ過により不純物を除去して、ダイにてフィルム形状に賦型し 、引き取り機を用いてフィルムを冷却し、巻き取り機を用いて巻き取る方法が一般的 に使用される。
[0197] 押出成形に使用される押出機としては、単軸、二軸、遊星式、コエーダー、バンバリ 一ミキサータイプなど、いずれを用いても良いが、好ましくは単軸押出機が用いられ る。また、押出機のスクリュウ形状としては、ベント型、先端ダルメージ型、ダブルフラ イト型、フルフライト型、ノ リア型などがあり、圧縮タイプとしては、緩圧縮タイプ、急圧 縮タイプなどがある力、フルフライト型緩圧縮タイプまたはバリア型が好ましい。
[0198] 計量に使用するギアポンプに関しては、ギアの間で下流側より戻される樹脂が、系 内に入る内部潤滑方式と、外部に排出される外部潤滑方式がある力 熱安定性が良 好でないノルボルネン系重合体の場合には、外部潤滑方式が好ましい。ギアポンプ のギア歯の切り方は、軸に対して、平行な方向よりも、ヘリカルタイプの方力 計量の 安定化の点から好ましい。
[0199] 異物のろ過に使用するフィルターに関しては、リーフディスクタイプ、キャンドルフィ ルタータイプ、リーフタイプ、スクリーンメッシュなどが挙げられる力 S、比較的滞留時間 分布が小さぐろ過面積を大きくすることが可能な、リーフディスクタイプのものが好ま しい。フィルターエレメントとしては、金属繊維焼結タイプ、金属粉末焼結タイプ、金属 繊維/粉末積層タイプなどが挙げられる。
[0200] フィルターのセンターポールの形状には、外流タイプ、六角柱内部流動タイプ、円 柱内部流動タイプなどが挙げられる力 滞留部が小さい形状であれば、いずれの形 状を選択することも可能である。
[0201] 溶融された樹脂は、ダイから吐出され、冷却ドラムに密着固化されて目的とするフィ ルムに成形される。ダイ形状に関しては、ダイ内部の樹脂流動を均一にすることが必 須であり、フィルムの厚みの均一性を保っためには、ダイ出口近傍でのダイ内部の圧 力分布が幅方向で一定であることが必須である。また、幅方向での樹脂の流量がほ ぼ一定であり、ダイの出口での流量の微調整をリップ開度により調整可能な範囲で一 定であることが厚みの均一性を得るために必須用件である。上記、条件を満たすた めにはマ二ホールド形状は、コートハンガータイプが好ましぐストレートマ二ホールド 、フィッシュテールタイプなどは、幅方向での流量分布などが発生しやすくなるために 好ましくない。
[0202] また、上記のフィルムの厚み分布を均一にするためには、ダイ出口での温度分布を 幅方向において一定にすることが重要であり、温度分布は好ましくは ± 1°C以下であ り、さらに好ましくは ± 0. 5°C以下である。 ± 1°Cを超えて幅方向に温度ムラが生じて いると、樹脂の溶融粘度差が生じ、厚みムラ、応力分布ムラなどが生じるため、延伸 操作を実施する過程にぉレ、て、位相差ムラが発生しやすくなり好ましくな!/、。
[0203] さらに、ダイ出口のリップ開き量(以下、「リップギャップ」という。)は、通常、 0. 3〜1 . 5mmであり、好ましくは 0. 3〜; 1. 2mmであり、さらに好ましくは 0· 35~ 1. Ommで ある。リップギャップが 0. 3mm未満であると、ダイ内部の樹脂圧力が高くなり過ぎて、 樹脂がダイのリップ以外の場所から樹脂漏れを起こしやすくなるため好ましくない。一 方、リップギャップが 1. 5mmを超えると、ダイの樹脂圧力が上がりにくくなるため、フ イルムの幅方向の厚みの均一性が悪くなり好ましくない。
[0204] ダイから押出されたフィルムを密着固化させる方法としては、ニップロール方式、静 電印加方式、エアーナイフ方式、バキュームチャンバ一方式、カレンダー方式などが 挙げられ、フィルムの厚さ、用途に従って、適切な方式が選択される。
[0205] ダイから押出されたフィルムを固化するための冷却ロール表面についても、押出機 シリンダー、ダイスの内面などと同様に、各種の表面処理が行われることが好ましい。
[0206] 押出機(シリンダー 'スクリューなど)、ダイスの材質としては、 SCM系の鋼鉄、 SUS などのステンレス材などが挙げられる力 これらに限定されるものではない。また、押 出機シリンダー、ダイスの内面ならびに押出機スクリュー表面には、クロム、エッケノレ、 チタンなどのメツキが施されたもの、 PVD (Physical Vapor D印 osition)法などにより、 TiN、 TiAlN、 TiCN、 CrN、 DLC (ダイァモンド状カーボン)などの被膜が形成され たもの、 WCなどのタングステン系物質、サーメットなどのセラミックが溶射されたもの、 表面が窒化処理されたものなどを用いることが好ましい。このような表面処理は、樹脂 との摩擦係数が小さいため、均一な樹脂の溶融状態が得られる点で好ましい。
[0207] 本発明の光学フィルムを製造する際の樹脂温度(押出機シリンダー温度)としては、 通常、 200〜350。C、好まし <は 220〜320。Cである。樹脂温度力 00。C未満では、 樹脂組成物を均一に溶融させることができず、一方、 350°Cを超えると、溶融時に樹 脂組成物が熱劣化して表面性に優れた高品質なフィルムの製造が困難になる。さら に、上記温度範囲内であって、樹脂組成物のガラス転移温度 (Tg)に対して、 Tg+ 1 20°C〜Tg+ 160°Cの範囲内の温度であることが特に好ましい。例えば、樹脂組成 物の Tgが 130°Cであれば、フィルム製造にとって特に好ましい温度範囲は 250°C〜 290°Cである。本発明の樹脂組成物は、上記のような高温下においてもフィルムの結 晶化(白濁)を抑制することができ、優れた相溶性を有するため、押出成形性が良好 である。押出特性の指標としては、用いる樹脂組成物の 260°Cにおけるメルトフロー レート(MFR)力 10〜200g/10min、好ましく (ま 15〜; 150g/10min、特に好ましく は 30〜; 120g/10minである。また、メルトフローレート値は樹脂組成物全体におい て一定であることが好ましぐそのバラツキは、好ましくは ± 10%以内、特に好ましく は ± 5%以内である。メルトフローレート値を一定にすることで押出加工時の圧力変 動を抑えることができ、膜厚均一性に優れたフィルムを得ることが出来る。
[0208] また、溶融押出時のせん断速度としては、通常、 l〜500(l/sec)、好ましくは 2〜
350(l/sec)、より好ましくは 5〜200(l/sec)である。押出時のせん断速度が 1(1/ sec)未満では、樹脂組成物を均一に溶融させることができないため厚み斑が小さい 押出フィルムを得ることができず、一方、 500(l/sec)を超えると、せん断力が大きす ぎて樹脂および添加物が分解 ·劣化し、押出フィルムの表面に発泡、ダイライン、付 着物などの欠陥が生じてしまうことがある。
[0209] 本発明の光学フィルムの厚みは、通常、 10〜800 111、好ましくは、20〜500 111 、より好ましくは 40〜 500 H mである。 10 m未満の厚みの場合、機械的強度不足 などにより延伸加工などの後加工する場合に難があることがあり、一方、 800 mを 超える厚みの場合、厚みや表面性などが均一なフィルムを製造することが難しいば 力、り力、、得られたフィルムを巻き取ることが困難になることがある。
[0210] 本発明の原反フィルムの厚み分布は、通常、平均値に対して ± 5%以内、好ましく は ± 3%以内、より好ましくは ± 1 %以内である。厚み分布が ± 5%を超えると、延伸 処理を行って光学フィルムとした場合に位相差ムラが発生しやすくなることがある。
[0211] <延伸フィルム〉
本発明に係る延伸フィルムは、上記方法によって得た本発明の光学フィルムをさら に加熱延伸加工することにより得ることができ、透過光に位相差を与えるフィルムとし て用いること力 Sできる。具体的には、公知の一軸延伸法、二軸延伸法、 Z軸延伸法に より製造すること力 Sできる。すなわち、テンター法による横一軸延伸法、ロール間圧縮 延伸法、円周の速度の異なるロールを利用する縦一軸延伸法等あるいは横一軸と 縦一軸を組み合わせた二軸延伸法、インフレーション法による延伸法等を用いること ができる。
[0212] 一軸延伸法の場合、延伸速度は通常は 1〜5,000%/分であり、好ましくは 50〜1 ,000%/分であり、さらに好ましくは 100〜; 1 , 000%/分である。
[0213] 二軸延伸法の場合、同時 2方向に延伸を行う場合や一軸延伸後に最初の延伸方 向と異なる方向に延伸処理する場合がある。この時、屈折率楕円体の形状を制御す るための 2つの延伸軸の交わり角度は、所望する特性により決定されるため特に限定 はされないが、通常は 120〜60度の範囲である。また、延伸速度は各延伸方向で同 じであってもよく、異なっていてもよぐ通常は;!〜 5,000%/分であり、好ましくは 50 〜; 1,000%/分であり、さらに好ましくは 100〜; 1,000%/分であり、特に好ましくは 100〜500%/分である。
[0214] 延伸加工温度は、特に限定されるものではないが、スチレン系重合体 (A)とノルボ ルネン系重合体 (B)とを含有する樹脂組成物のガラス転移温度 Tgを基準として、通 常は Tg± 30°C、好ましくは Tg± 15°C、さらに好ましくは Tg— 5〜Tg+ 15°Cの範囲 である。前記範囲内とすることで、位相差ムラの発生を抑えることが可能となる。なお 、本明細書における樹脂組成物のガラス転移温度とは、 日本工業規格 K7121に従 つて求めた補外ガラス転移開始温度のことを言い、本発明の樹脂組成物はスチレン 系重合体 (A)とノルボルネン系重合体 (B)の相溶性に優れるために測定が可能な値 である。また、本発明の樹脂組成物は、このような高温による延伸加工においても、ス チレン系共重合体 (A)を構成する各構造単位の含有率をコントロールすることにより
、フィルムの結晶化や相分離によるフィルムの透過率低下および白濁を抑制すること ができ、優れた相溶性が付与され、加熱延伸加工性が良好である。
[0215] 延伸倍率は、所望する特性により決定されるため特に限定はされないが、通常は 1
. 01〜; 10倍、好ましくは 1. 03〜5倍、さらに好ましくは 1. 03〜3倍である。延伸倍率 が 10倍以上の場合、位相差の制御が困難になる場合がある。
[0216] 延伸したフィルムは、そのまま冷却してもよいが、 Tg— 20°C〜Tgの温度雰囲気下 に少なくとも 10秒以上、好ましくは 30秒〜 60分間、さらに好ましくは 1分〜 60分間保 持してヒートセットすることが好ましい。これにより、透過光の位相差の経時変化が少 なく安定した光学フィルムが得られる。
[0217] 延伸加工を施さない本発明の光学フィルムの加熱による寸法収縮率は、 100°Cに おける加熱を 500時間行った場合に、通常 5%以下、好ましくは 3%以下、さらに好ま しくは 1 %以下、特に好ましくは 0. 5%以下である。
[0218] また、本発明の延伸フィルムの加熱による寸法収縮率は、 100°Cにおける加熱を 5
00時間行った場合に、通常 10%以下、好ましくは 5%以下、さらに好ましくは 3%以 下、特に好ましくは 1 %以下である。
[0219] 寸法収縮率を上記範囲内にするためには、本発明中の単量体(6)の選択やその 他の共重合性単量体の選択に加え、延伸方法の条件を調整することも有力な手段 である。
[0220] 上記のようにして得られる延伸フィルムは、延伸により分子が配向し透過光に位相 差を与えるようになる力 この位相差は、延伸倍率、延伸温度あるいはフィルムの厚さ 等により制御することができる。例えば、延伸前のフィルムの厚さが同じである場合、 延伸倍率が大きいフィルムほど透過光の位相差の絶対値が大きくなる傾向があるの で、延伸倍率を変更することによって所望の位相差を透過光に与える光学フィルムを 得ること力 Sできる。一方、延伸倍率が同じである場合、延伸前のフィルムの厚さが厚 いほど透過光の位相差の絶対値が大きくなる傾向があるので、延伸前のフィルムの 厚さを変更することによって所望の位相差を透過光に与える光学フィルムを得ること 力 Sできる。また、上記延伸加工温度範囲においては、延伸温度が低いほど透過光の 位相差の絶対値が大きくなる傾向があるので、延伸温度を変更することによって所望 の位相差を透過光に与える光学フィルムを得ることができる。
[0221] 延伸フィルムが透過光に与える位相差の値は、その用途により決定されるものであ り特に限定はされなレ、が、液晶表示素子やエレクト口ルミネッセンス表示素子あるレ、 はレーザー光学系の波長板に使用する場合は、通常は l〜lo,OOOnm、好ましくは
10〜2,000應、さらに好ましくは 1 5〜; 1,000應である。
[0222] また、延伸フィルムを透過した光の位相差は均一性が高いことが好ましぐ波長 550 nmにおける位相差のバラツキは、通常 ± 20 %以下であり、好ましくは 10 %以下、さ らに好ましくは ± 5 %以下である。すなわち、波長 550nmにおける位相差は、通常平 均値に対して ± 20 %以下であり、好ましくは 10 %以下、さらに好ましくは ± 5 %以下 の範囲内にある。位相差のバラツキが ± 20 %を超えると、液晶表示素子等に用いた 場合、色ムラ等が発生し、ディスプレイ本体の性能が悪化する場合がある。
[0223] さらに、本発明に係る光学フィルムは、波長 650nmでの位相差 Re (650)と波長 45 Onmでの位相差 Re (450)との比(Re (650) /Re (450) )力 1 . 8〜;!、好ましくは 1 . 7〜; 1、さらに好ましくは 1 . 6〜1の範囲にあることが望ましい。このような条件を満た す光学フィルムでは、ある波長 λでの位相差を Re ( λ )としたとき、 400〜800nmの 全波長領域で、 Re ( ) / の値をほぼ一定とすることが可能となる。
[0224] <偏光板〉
本発明の光学フィルムは単独で用いられるだけでなぐ透明基板等に貼り合わせて 、偏光板として用いること力できる。また、偏光板を他のフィルム、シート、基板に積層 して使用すること力できる。積層する場合には、粘着剤や接着剤を用いることができ る。これらの粘着剤、接着剤としては、透明性に優れたものが好ましぐ具体例として は天然ゴム、合成ゴム、酢酸ビュル/塩化ビュルコポリマー、ポリビュルエーテル、ァ クリル系、変性ポリオレフイン系、及びこれらにイソシアナートなどの硬化剤を添加した 硬化型粘着剤、ポリウレタン系樹脂溶液とポリイソシアナート系樹脂溶液を混合するド ライラミネート用接着剤、合成ゴム系接着剤、エポキシ系接着剤などが挙げられる。 [0225] また、上記偏光板は、他のフィルムシート、基板などとの積層の作業性を向上させる ために、あらかじめ、粘着剤層、又は接着剤層を積層することができる。積層する場 合には、粘着剤や接着剤としては前述のような粘着剤あるいは接着剤を用いることが できる。
[0226] <液晶表示装置その他光学部品〉
本発明の光学フィルムは、液晶表示装置に用いることができ、液晶表示装置の表 示特性をより改善することができる。液晶表示装置としては、たとえば、携帯電話、デ イジタル情報端末、ポケットベル、ナビゲーシヨン、車載用液晶ディスプレイ、液晶モ 二ター、調光パネル、 OA機器用ディスプレイ、 AV機器用ディスプレイ等の各種液晶 表示装置が挙げられる。
[0227] また、本発明の樹脂組成物を用い、射出成形することにより、種々の光学部品を得 ること力 Sできる。光学部品としては、円錐レンズや球面 ·円筒レンズなどの各種特殊レ ンズ、誘電体ミラーまたは金ミラー、波長板などが挙げられる。
[0228] 射出成形には、従来公知の方法を用いることができる。たとえば、本発明の樹脂組 成物を加熱シリンダの中で加熱 ·混練して溶融し、該加熱シリンダより金型内へ、カロ 圧下射出する。その後、金型内で冷却'固化され、押出装置によって押し出され、成 形品が得られる。用いる金型構造を変えることにより、種々の形状を有する光学部品 とすること力 Sできる。この際における樹脂の溶融温度は、上記押出成形の際における 溶融温度と同様であるのが好ましい。
実施例
[0229] 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの 実施例に限定されるものではない。なお、以下の実施例および比較例において、「部 」および「%」は、特に断りのない限り、「重量部」および「重量%」を意味する。また、 室温とは 25°Cである。さらに、試薬は全て乾燥窒素でパブリングを行い、脱水し、水 分含有量 lppm以下として用いた。
[0230] 以下の実施例、比較例において、各種測定および評価は以下のようにして行った。
[0231] [重合反応率]
アルミニウム製容器中に秤量した重合反応溶液を、 300°Cに熱したホットプレートで 恒温となるまで加熱し、残留モノマーおよび溶媒を除去した後、残留した重合体重量 を計測し、理論上の重合体生成量との比から反応率を求めた。
[0232] [重合体分子構造]
超伝導核磁気共鳴吸収装置 (NMR、 Bruker社製、商品名: AVANCE500)を用 い、重水素化クロ口ホルム中で13 C— NMRを測定し、共重合組成比およびァセトキシ 基またはブトキシ基の OH基への変換率(変換率)を算出した。
赤外分光計 (IR)は日本分光社製 FT/IR— 420を用いて測定した。
[0233] [固有粘度 ·対数粘度]
濃度 0. 5g/100mlのクロ口ベンゼン溶液を調製して試料とし、 30°Cの条件でゥッ ベローデ型粘度計を用いて測定した。
[0234] [ガラス転移温度 (Tg) ]
示差走査熱量計 (セイコーインスツルメンッ社製、商品名: DSC6200)を用いて、 日本工業規格 K7121に従って補外ガラス転移開始温度(以下、単にガラス転移温 度 (Tg)という)を求めた。
[0235] [重量平均分子量(Mw)および分子量分布(Mw/Mn) ]
ゲルパーミエーシヨンクロマトグラフィー(東ソ一(株)製 HLC— 8220GPC、カラム: 東ソー(株)製ガードカラム H — H g el GMH 2本、
XL 、TSK el G7000H Kg
XL、 TS
XL
TSK gel G2000H を順次連結、溶媒:テトラヒドロフラン、流速: lmL/min、サン
XL
プル濃度: 0. 7〜0. 8重量%、注入量: 70 し、測定温度: 40°Cとし、検出器: RI (4 0°C)、標準物質:東ソー(株)製 TSKスタンダードポリスチレン)を用い、重量平均分 子量(Mw)および分子量分布(Mw/Mn)を測定した。なお、前記 Mnは数平均分 子重でめる。
[0236] [位相差評価]
開環重合体のトルエンまたは塩化メチレン溶液 (濃度: 25%)を平滑なガラス板上 にキャストした後、乾燥して、厚さ50〜200 111、残留溶媒 0. 5〜0. 8%の無色透明 なフィルムを得た。このフィルムのガラス転移温度(Tg)よりも 5〜; 10°C高い温度で、 1 . 2〜3. 0倍に自由幅一軸延伸または幅拘束一軸延伸した。なお、キャストフィルム の厚さ、延伸倍率および延伸方法は、後述する各実施例および表 1に記載のとおり である。この延伸フィルムの位相差を、レターデーシヨン測定器(王子計測機器製、商 品名: KOBRA21DH)を用いて測定した。
[0237] [樹脂組成物中の重合体ブレンド比]
樹脂組成物をテトラヒドロフランに溶解し、ゲルパーミエーシヨンクロマトグラフ装置( 東ソー(株)製 HLC— 8220GPC、カラム:東ソー(株)製ガードカラム H — H、 TSK
XL
gel G7000H 、 TSK gel GMH 2本、 TSK gel G2000H を順次連結、溶媒:
XL XL XL
テトラヒドロフラン、流速: lmL/min、サンプル濃度: 0· 7〜0· 8重量0 /0、注入量: 1 00 レ測定温度: 40°C、検出器: UV(254nm) )を用いて得られたスペクトルの面 積強度から樹脂組成物中のスチレン系重合体を定量し、ブレンド比を算出した。
[0238] [樹脂のイェローインデックス (YI、黄色度) ]
スガ試験機(株)製 SMカラーコンピューター SM— 7— CHを用い、 C光 2°視野透 過測定を 3回行いその平均値を求めた (測定試料: 10重量%の樹脂を含むトルエン 溶液 20g、測定用セル:内径 60mm、高さ 30mmの円筒型ガラスセル)。
[0239] [フィルムのイェローインデックス(YI、黄色度) ]
スガ試験機(株)製 SMカラーコンピューター SM— 7— CHを用い、 ASTM D192 5に従って膜厚 100 μ mのフィルムの ΥΙ値を測定した。
[0240] [加熱下における相溶性の評価]
(株)神藤金属工業所製シントー式 SFA— 37型加熱 &冷却二段成形機を用い、 2 80〜300°Cの加熱下で厚さ約 lOO mのフィルムを成型し、フィルムのヘイズ(Haz e)を測定して評価した。
[0241] [樹脂中の不溶物の有無]
樹脂サンプル 30mgをトルエン 5mLに溶解して、不溶物の有無を目視で観察した。 不溶物無しの場合を A、一部不溶の場合を Bと評価した。
[0242] [溶液濾過性]
樹脂サンプル 30mgをテトラヒドロフラン 5mLに溶解し、孔径 0· 45 ^ 111、直径 lcm の PTFE製フィルターを用いたろ過性を評価した。 目詰まりを生じず全量濾過可能で あった場合を A、 目詰まりを生じ一部濾過出来な力、つた場合を Bと評価した。
[0243] [メルトフローレート(MFR) ] JIS K7210に準拠して、 98N荷重、 260°Cでの MFRを測定した。
[0244] [全光線透過率(Haze) ]
村上色彩技術研究所 (株)製ヘーズメーター HM— 150型を用いて測定した。
[0245] [引き裂き強度]
フィルムの弓 Iき裂き強度を JIS K6772に準じて測定した。
[0246] [点状欠陥測定]
A成分と B成分の混合樹脂を乾燥温度 100°Cで、窒素下で 4時間の除湿乾燥を行 つた後、クリーンルーム内で、 800kgのステンレスコンテナに当該樹脂を導入し、 8kP aの陽圧にした状態で 15日間保存した。なお、上記ステンレスコンテナは、樹脂導入 前に予め内部の空気を乾燥窒素で置換した後に、 0. 2 mの PVDF製フィルタを通 して清浄にした水で湿らせた洗浄紙 (旭化成工業製;商品名「ベンコット」)により内部 の塵芥などを除去したものを用いた。その後、当該樹脂を押出機 (ジーェムェンジニ ァリング社製: GM 65)に導き 260°Cで溶融し、ギアポンプを用いて定量で送液し、 5〃mリーフディスクフィルターを用いて、異物を除去し、 260°Cに設定したアルミ铸 込みヒーターにより加熱された Tダイから押出を実施し、樹脂フィルムを得た。このフィ ルムを 10m2巻きだして黒紙の上に置き、 lOOwの蛍光灯の下で反射光の揺らぎを確 認した。反射光の揺らぐところを点状欠陥として、その部分をマーキングした。その後 、 50倍の光学顕微鏡でフィルム表面を観察し、直径 30 m以上の点状欠陥の個数 を致えた。
[0247] [位相差測定]
波長 550nmにおける位相差 (レターデーシヨン)を自動複屈折計(王子計測機器( 株)製、 KOBRA— 21ADH)を用いて測定した。
[0248] [製造例 1]スチレン系共重合体(1A)の製造
攪拌機、コンデンサー、温度計を備えたガラス製フラスコにスチレン 127· 87g(l . 2 3mol)、 p ァセトキシスチレン 22. 13g(0. 136mol)、溶媒としてトノレエン 75g、およ びラジカル開始剤として 1 , 1 'ーァゾビス(シクロへキサン— 1 カルボ二トリル) 0. 67 g(2. 7mmol)を加え、 90°Cにカロ熱し、 15時間反応させた。この重合液の一部を取り 出し、反応率を測定したところ 85%であった。また、分子量を測定したところ Mw= l 29, 935、Mw/Mn = 2. 00であった。
[0249] 得られた重合反応溶液中にトルエン 150gを添加して希釈した後、メタノール 43. 6 g(l . 36mol)、ァセトキシスチレン量の 1/100等量である濃硫酸 1. 338g (0. 013 6mol)を添加して 60°Cに加熱して 2時間反応させた。得られた反応液をテトラヒドロ フランで希釈し、大量のメタノール中に凝固させることにより重合体を回収 '精製し、 8 0°Cの真空乾燥機で 2日間乾燥させた。得られた重合体の分子量、対数粘度をそれ ぞれ測定したところ Mw= 131 , 910 (Mw/Mn= l . 88)、対数粘度 =0· 44dL /g、収率は 80%であった。図 1および図 2に得られた重合体の IRスペクトルおよび13 C-NMRスペクトルをそれぞれ示した。 NMRにより求めた共重合組成比は仕込み値 通りであり、カロメタノール分解率は 99%以上であった。以後、得られたスチレン系共 重合体を 1Aとする。
[0250] [製造例 2]スチレン系共重合体(2A)の製造
スチレン 146. 53g(l . 407mol)、 p ァセ卜キシスチレン 3. 47g(0. 0214mol)、 溶媒としてトルエン 75g、およびラジカル開始剤として 1 , 1 'ーァゾビス(シクロへキサ ンー1 カルボ二トリル) 0. 35g(l . 4mmol)を使用して重合を行った以外は、製造 例 1と同様にして、重合反応、加アルコール分解、精製、および乾燥を行い、スチレ ン系共重合体を得た。得られた重合体の Mw= 199, 200 (Mw/Mn= l . 96)であ り、収率は 80%であった。以後、得られたスチレン系共重合体を 2Aとする。
[0251] [製造例 3]スチレン系共重合体(3A)の製造
スチレン 117. 66g(l . 13mol)、 p ァセトキシスチレン 32. 34g(0. 199mol)、溶 媒としてトルエン 75g、およびラジカル開始剤として 1 , 1 'ーァゾビス(シクロへキサン 1 カルボ二トリル) 0. 65g(2. 65mmol)を使用して重合を行った以外は、製造例 1と同様にして、重合反応、加アルコール分解、精製、および乾燥を行い、スチレン 系共重合体を得た。得られた重合体の Mw= 120, 553 (Mw/Mn= l . 97)であり 、収率は 80%であった。以後、得られたスチレン系共重合体を 3Aとする。
[0252] [製造例 4]スチレン系共重合体 (4A)の製造
スチレン 84. 17g(0. 808mol)、 p— t ブ卜キシスチレン 15. 83g(0. 0898mol)、 溶媒としてトルエン 75g、およびラジカル開始剤として 1 , 1 'ーァゾビス(シクロへキサ ンー1 カルボ二トリル) 0. 44g(l . 8mmol)を使用して重合を行った以外は、製造 例 1と同様にして、重合反応、酸触媒による変換、精製、および乾燥を行い、スチレン 系共重合体を得た。得られた重合体の Mw= 112, 000 (Mw/Mn = 2. 73)であり 、収率は 80%であった。図 3および図 4に得られた重合体の IRスペクトルおよび13 C- NMRスペクトルをそれぞれ示した。 NMRにより求めた共重合組成比は仕込み値通 りであり、 OH基への変換率は 50%であった。以後、得られたスチレン系共重合体を 4Aとする。
[0253] [製造例 5]スチレン系共重合体(5A)の製造
スチレン 78. 44g(0. 753mol)、 p— t ブ卜キシスチレン 21. 56g(0. 133mol)、溶 媒としてトルエン 50g、およびラジカル開始剤として 1 , 1'ーァゾビス(シクロへキサン 1 カルボ二トリル) 0. 43g(l . 8mmol)を使用して重合を行った以外は、製造例 1 と同様にして重合反応を行った。その後、トルエン 50gを加えて希釈し、 n ブタノー ル 20gおよび硫酸 0. 26gを添加し 80°Cで 8時間反応を行った。精製、および乾燥を 製造例 1と同様にして行い、スチレン系共重合体を得た。得られた重合体の Mw= 2 19, 000 (Mw/Mn = 2. 45)であり、収率は 85%であった。図 5および図 6に得ら れた重合体の IRスペクトルおよび13 C-NMRスペクトルをそれぞれ示した。 NMRによ り求めた共重合組成比は仕込み値通りであり、 OH基への変換率は 99%以上であつ た。以後、得られたスチレン系共重合体を 5Aとする。
[0254] [製造例 6]スチレン系重合体(6A)の製造
攪拌機、コンデンサー、温度計を備えたガラス製フラスコにスチレン 117· 66g (l . 13mol)、 p ァセトキシスチレン 32· 34g (0. 199mol)、溶媒としてトノレエン 75g、お よびラジカル開始剤として 1 , 1'ーァゾビス(シクロへキサン一 1 カルボ二トリル) 0. 6 5g(2. 65mmol)を加え、 90°Cにカロ熱し、 15時間反応させた。この重合液の一部を 取り出し、反応率を測定したところ 85%であった。
[0255] 得られた重合反応溶液中にトルエン 150gを添加して希釈した後、メタノール 43. 6 g (l . 36mol)、濃石) ¾酸 1. 338g (0. 0136mol)を添カロして 60。Cにカロ熱して 2日寺間 反応させた。得られた反応液をテトラヒドロフランで希釈し、大量のメタノール中に凝 固させることにより重合体を回収 '精製し、 80°Cの真空乾燥機で 2日間乾燥させ、ス チレン系重合体 6Aを得た。得られた重合体 6Aは、 Mw= 120, 553 (Mw/Mn= l . 97)であり、収率は 80%であった。
[0256] [製造例 7]スチレン系重合体(7A)の製造
攪拌機、コンデンサー、温度計を備えたガラス製フラスコにスチレン 392· 3g (3. 7 66mol)、 p— *プ、トキシスチレン 57. 72g (0. 3275mol)、溶媒としてトノレエン 21 lg、 およびラジカル開始剤として 1 , 1 'ーァゾビス(シクロへキサン一 1 カルボ二トリル) 1 . 50g (6. 141mmol)を加え、 90°Cにカロ熱し、 10時間反応させた後、 1 , 1, 一ァゾビ ス(シクロへキサン一 1 カルボ二トリル) 0· 50g (2. 047mmol)を追添加して 90°C で更に 10時間反応を行った。この重合液の一部を取り出し、反応率を測定したところ 92%であった。また、分子量を測定したところ、 Mw= 126, 700、 Mw/Mn = 2. 0 0であった。
[0257] 得られた重合反応溶液中にトルエン 225gを添加して希釈した後、メタノール (硫酸 の拡散剤) 90g、濃硫酸 1. 15g (0. 0117mol)を添加して 60°Cに加熱して 8時間反 応させた。その後、 50· 5重量%の乳酸ナトリウム水溶液 3· 03g (0. 027mol)を添 カロして 60°Cで 30分間攪拌を継続した。反応溶液を pH試験紙 (Whatman社製 CSタイ プ、 0. 2間隔)に少量塗布して pH測定したところ pH=3. 8であった。
[0258] この反応液にトルエン 449gを添加して均一に混合した後、メタノール 899gを添加 して 60°Cで 1時間抽出を行った。これを 30°C以下に冷却して 1時間静置して重合体 を含む下層溶液と重合体を殆ど含まなレ、上層溶液に分離した。この上層溶液のみを 分離して取り除!/、た。残った下層溶液にトルエン 440gを添加して均一に混合した後 、メタノール 617gを添加して再度 60°Cで 1時間抽出を行った。これを 30°C以下に冷 却して 1時間静置して重合体を含む下層溶液と重合体を殆ど含まない上層溶液に分 離した。トルエン 440gおよびメタノール 617gを添加して冷却静置後に上層を分離除 去する操作をさらに 2回繰り返して重合体、トルエン、およびメタノールを含む重合体 溶液を得た。この重合体溶液中の重合体濃度を測定したところ 30重量%であり、得 られた溶液重量から算出した収率は 90%であった。この溶液の一部を乾燥して分析 した結果、 Mw= 129, 208、 Mw/Mn= l . 90、 Tg= 111。C、 NMRにより求めた 共重合組成比は仕込み比通りでありブトキシ基の OH基への変換率は 98%であった 〇
[0259] 同様にして抽出精製した重合体溶液(重合体濃度 30重量%)を lOKg作成して酸 化防止剤としてテトラキス [メチレンー3—(3,5—ジ tーブチルー 4ーヒドロキシフ ェニル)プロピオネート]メタン 9gを加えて均一に混合した(以下この樹脂溶液をドー プ 1と呼ぶ)。この溶液を 50mm φ (L/D = 13. 2)の二軸押出し機を用い、 220°C、 20mmHgで脱溶してペレット化し、ペレット状の樹脂 7Aを得た。得られた樹脂ペレツ 卜 7Aを分析した結果、 YI = 0. 8、 Mw= 119369、 Mw/Mn= l . 98、Tg= l l l。C 、残留トルエン = 900ppmであった。樹脂 7A中の不溶物の有無および溶液濾過性 の評価結果を表 3に示す。
[0260] [製造例 8]スチレン系重合体(8A)の製造
製造例 7と同様にして得たスチレン/ p ブトキシスチレン共重合体のトルエン溶液 に卜ノレェン 225gを添カロして希釈した後、メタノーノレ 90g、濃石) ¾酸 1. 15g (0. 0117m ol)を添加して 60°Cに加熱して 8時間反応させた。その後 5重量%の水酸化リチウム 水溶液 39. 3g (0. 0469mol)を添加して 60°Cで 30分間攪拌を継続した。反応溶液 を pH試験紙 (Whatman社製 CSタイプ、 0. 2間隔)に少量塗布して pH測定したところ pH=8. 6であった。この反応溶 ί夜に 50重量0 /0の?し酸水溶 ί夜 5. 267g (0. 0235mol )を添加して 60°Cで 30分間攪拌を継続した。反応溶液を pH試験紙 (Whatman社製 CSタイプ、 0. 2間隔)に少量塗布して pH測定したところ pH=3. 8であった。実施例と 同様にして求めた収率は 91 %であった。
[0261] 製造例 7と同様にして、得られた重合体溶液の抽出精製を行い、重合体濃度が 30 重量%の重合体溶液を得た。この溶液の一部を乾燥して分析した結果、 Mw= 130 、 050、 Mw/Mn= l . 91、Tg= l l l°C、 NMRにより求めた共重合組成比は仕込 み比通りでありブトキシ基の OH基への変換率は 98%であった。
[0262] 上記と同様にして抽出精製した重合体溶液(重合体濃度 30重量%)を lOKg作成 して、酸化防止剤としてテトラキス [メチレン 3—(3,5—ジ tーブチルー 4ーヒドロ キシフエニル)プロピオネート]メタン 9gを加えて均一に混合した(以下この樹脂溶液 をドープ 2と呼ぶ)。この溶液を 50mm φ (L/D = 13. 2)の二軸押出し機を用い、 2 20°C、 20mmHgで脱溶してペレット化し、ペレット状の樹脂 8Aを得た。得られた樹 脂ペレット 8Aを分析した結果、 ΥΙ = 0· 9、Mw= 120, 000, Mw/Mn= l . 96、 T g= l l l°C、残留トルエン = 900ppmであった。樹脂 8A中の不溶物の有無および溶 液濾過性の評価結果を表 3に示す。
[0263] [製造例 9]スチレン系重合体(9A)の製造
塩基を使用しな力、つたこと以外は製造例 11と同様にして合成した重合体溶液を 50 πιπι (L/D= 13. 2)の二軸押出し機を用い、 220°C、 20mmHgで脱溶してペレ ット化し、ペレット 9Aを得た。得られたペレット 9Aを分析した結果、有機溶媒に不溶 の成分を生じており、可溶部の分析を行ったところ、 YI = 5. 8、 Mw = 244, 410、 M w/Mn = 3. 62、 Tg= 115。C、残留トルエン = lOOOppmであった。得られた樹脂 9 A中の不溶物の有無および溶液濾過性の評価結果を表 3に示す。
[0264] [製造例 10]スチレン系重合体( 1 OA)の製造
攪拌機、コンデンサー、温度計を備えたガラス製フラスコにスチレン 340· 8g (3. 2 75mol)、 p イソプロぺニノレフエノーノレ 54. 83g (0. 409mol)、アタリノレ酸メチノレ 35 . 21g (0. 409mol)溶媒としてトルエン 215g、およびラジカル開始剤として 1 , 1 ' ァゾビス(シクロへキサン一 1—カルボ二トリル) 1 · 50g (6. 141mmol)をカロえ、 90°C に加熱し、 10時間反応させた後、 1 , 1 'ーァゾビス(シクロへキサン— 1 カルボ二トリ ノレ) 0. 50g (2. 047mmol)を追添加して 90°Cで更に 10時間反応を行った。この重 合液の一部を取り出し、反応率を測定したところ 92%であった。また、分子量を測定 したところ、 Mw= 57, 000、 Mw/Mn = 2. 00であった。
[0265] [製造例 11]ノルボルネン系重合体(IB)の製造
単量体として下記式(la)に示す 8—メトキシカルボ二ルー 8—メチルテトラシクロ [4 • 4. 0. I2'5. 1"°]— 3—ドデセン 100g、分子量調節剤として 1—へキセン 3. 6g、お よびトルエン 200gを窒素置換した反応容器に仕込み、 80°Cに加熱した。これにトリ ェチルアルミニウム(0. 6mol/Uのトルエン溶液 0. 21mL、およびメタノール変性 WC1トルエン溶液(0· 025モノレ/ L) 0. 86mLを加え、 80°Cで 1時間反応させること により開環重合体を得た。次いで、得られた開環重合体溶液に水素添加反応触媒で ある RuHCl (CO) [P (C H ) ]を 0· 04g添カロし、水素ガス圧を 9〜; !OMPaとし、 16
0〜165°Cの温度で、 3時間反応させた。反応終了後、得られた生成物を多量のメタ ノール中で沈殿させることにより水素添加物を得た [ガラス転移温度 (Tg) = 167°C、 重量平均分子量(Mw) = 14. 4 Χ 1θ\分子量分布(Mw/Mn) = 5. 0、対数粘度 0. 79dL/g、収量 90g (収率 90%) ]。 NMR測定により求めたこの水素添加物の水 素添加率は 99. 0%以上であった。以後、得られた開環重合体水素添加物を 1Bとす
[化 18]
Figure imgf000060_0001
[0267] [製造例 12]ノルボルネン系重合体(2B)の製造
前記式(la)に示す 8—メトキシカルボ二ルー 8—メチルテトラシクロ [4· 4. 0. I2'5. 17'1()]—3—ドデセン 144g、下記式(2a)に示すビシクロ [2· 2. 1]ヘプトー 2—ェン 6 g、分子量調節剤として 1—へキセン 14. 4g、およびトルエン 225gを窒素置換した反 応容器に仕込み、 80°Cに加熱した。これにトリェチルアルミニウム(0· 6mol/Uのト ルェン溶液 0· 34mL、およびメタノール変性 WC1トルエン溶液(0· 025モル/ L) 1
. 37mLを加え、 80°Cで 1時間反応させることにより開環重合体を得た。次いで、得ら れた開環重合体溶液に水素添加反応触媒でぁる1¾«じ1 (じ0) [? (じ^1 ) ]を 0. 0
6g添加し、水素ガス圧を 9〜; !OMPaとし、 160〜; 165°Cの温度で、 3時間反応させ た。反応終了後、得られた生成物を多量のメタノール中で沈殿させることにより水素 添加物を得た [ガラス転移温度 (Tg) = 154°C、重量平均分子量 (Mw) = 7. 4 X 104 、分子量分布(Mw/Mn) =4. 2、対数粘度 0. 55dL/g、収量 90g (収率 90%) ]。 NMR測定により求めたこの水素添加物の水素添加率は 99. 0%以上であった。以 後、得られた開環重合体水素添加物を 2Bとする。
[0268] [化 19]
Figure imgf000061_0001
[0269] [製造例 13]ノルボルネン系重合体(3B)の製造
前記式(la)に示す 8 メトキシカルボ二ルー 8 メチルテトラシクロ [4· 4. 0. I2'5. 1"°]— 3 ドデセン 135g、下記式(3a)に示すトリシクロ [5· 2. 1. 02'6]デカ— 3, 8 ジェン 15g、分子量調節剤として 1一へキセン 20. 5g、およびトルエン 225gを窒 素置換した反応容器に仕込み、 80°Cに加熱した。これにトリェチルアルミニウム(0. 6mol/Uのトルエン溶液 0. 34mL、およびメタノール変性 WC1トルエン溶液(0. 0
6
25モル /L) l . 39mLを加え、 80°Cで 1時間反応させることにより開環重合体を得た 。次いで、得られた開環重合体溶液に水素添加反応触媒である RuH(OCO_Ar-C H CH CH CH CH ) (CO) [P (C H ) ] (式中 Arはパラフエ二レン基を表す)を 0
2 2 2 2 3 6 5 3 2
. 06g添カロし、 90。Cに昇温した後、水素ガス圧を 9〜; !OMPaとし、更に 160〜; 165。C まで昇温して 3時間反応させた。反応終了後、得られた生成物を多量のメタノール中 で沈殿させることにより水素添加物を得た [ガラス転移温度 (Tg) = 160°C、重量平均 分子量(Mw) =4. 4 X 104、分子量分布(Mw/Mn) = 5. 5、対数粘度 0. 41dL/ g、収量 90g (収率 90%) ]。 NMR測定により求めたこの水素添加物の水素添加率は 99. 0%以上であった。以後、得られた開環重合体水素添加物を 3Bとする。
[0270] [化 20]
Figure imgf000061_0002
[製造例 14]カレボルネン系重合体 (4B)の製造
前記式(la)に示す 8 メトキシカルボ二ルー 8 メチルテトラシクロ [4· 4. 0. I2'5. l7'10]— 3 ドデセン 12· 46Kg、前記式(2a)に示すビシクロ [2· 2. 1]ヘプトー 2— ェン 0. 14Kg、前記式(3a)に示す卜リシクロ [5. 2. 1. 02'6]デカ— 3, 8 ジェン 1. 4 Kg、分子量調節剤として 1一へキセン 1. 214Kg、およびトルエン 21Kgを窒素置換 した反応容器に仕込み、 80°Cに加熱した。これにトリェチルアルミニウム(0. 6mol/ L)のトルエン溶液 37. 7mL、およびメタノール変性 WC1トルエン溶液(0. 025モル
6
/L) 131. 44mLを加え、 80°Cで 1時間反応させることにより開環重合体を得た。次 いで、得られた開環重合体溶液をトルエン 17. 7Kgで希釈し、水素添加反応触媒で ある RuH(OCO_Ar- CH CH CH CH CH ) (CO) [P (C H ) ] (式中 Arはパラフ
2 2 2 2 3 6 5 3 2
ェニレン基を表す)を 4. 69g添加し、 90°Cに昇温した後、水素ガス圧を 9〜10MPa とし、更に 160〜; 165°Cまで昇温して 3時間反応させた。反応終了後、得られた生成 物を多量のメタノール中で沈殿させることにより水素添加物を得た [ガラス転移温度( Tg) = 159°C、重量平均分子量(Mw) = 8. 8 X 104、分子量分布(Mw/Mn) = 3. 0、対数粘度 0. 65dL/g、収量 13Kg (収率 93%) ]。 NMR測定により求めたこの水 素添加物の水素添加率は 99. 0%以上であった。以後、得られた開環重合体水素 添加物を 4Bとする。
[0272] [製造例 15]ノルボルネン系重合体(5B)の製造
前記式(la)に示す 8 メチルー 8 カルボキシメチルテトラシクロ [4. 4. 0. I2'5. 1"°]— 3 ドデセン(以下、「DNM」ともいう) 50重量部、下記式 (4a)に示す 5 メチ ノレ 5 メトキシカルボ二ルビシクロ [2· 2. 1]ヘプトー 2 ェン(以下、「NM」ともいう ) 25重量部、トルエン 150重量部、 1一へキセン 3.18重量部を仕込み、 80°Cに昇温した 。 トリェチルアルミゥム 0.030重量部、メタノール変性 WC1 (無水メタノール: PhPOC12
6
: WC1 = 103 : 630 : 427 (重量比)) 0.0510重量部加え反応を開始した。 2分後に DN
6
M25重量部を 10分かけて滴下し、さらに 1時間反応させた。 NM,DNMのコンパージョ ンはそれぞれ反応開始後 2分後が、 52%、 61%、反応終了後が 96.2%、 97.2%であ つた。
[0273] トルエン 110重量部、 RuH(OCOPh-C H )(CO)(PPh )ルテニウム水素化触媒 0.0
5 11 3 2
418重量部を加え、水素置換を 3回行い 8MPaに昇圧した。その後反応機の内温を 16 0°Cに上げて、 lOMPaに圧力を設定し、 3hの水添反応を行なった。水添後の1 H-NMR 分析により 99.9%以上の水添率であった。
[0274] 反応終了後、トルエン 100重量部を加え希釈して、蒸留水 3重量部、乳酸 0. 72重 量部、過酸化水素 0. 00214重量部をカロえ 60°C、 30分力口熱した。その後メタノール 2 34重量部を加え 60°C、 30分加熱した。 25°Cまで冷却すると 2層に分離した。上澄み 液 333重量部を除去し、トルエン 202重量部、水 3重量部を加え 60°C、 30分加熱した 。その後メタノール 132重量部を加え 60°C、 30分加熱した。 25°Cまで冷却すると 2層 に分離した。再度、上澄み液 333重量部を除去し、トルエン 202重量部、水 3重量部を カロえ 60°C、 30分力口熱した。その後メタノール 132重量部を加え 60°C、 30分加熱した 。 25°Cまで冷却すると 2層に分離した。最後に上澄み液 333重量部を除去後、下層 部のポリマー溶液を固形分濃度 20%に希釈し、 2. O ^ m, 1. O ^ m, 0. 2 mの 3 段の濾過を行った。これを乾燥して重合体 5Bを得た。ポリマー収率 = 92%、 10%ト ルェン溶液の ΥΙ=0·31、 7] =0.64, Mw=101450、 Mn=36658、 Tg=137°Cであった。
[0275] [化 21]
Figure imgf000063_0001
… (4 a )
[0276] [実施例 1]
製造例 1で得られた重合体 1A 7gと製造例 11で得られた重合体 IB 13gとを塩 化メチレン 200gに溶解し、減圧濾過(ろ剤: ADVANTEC製 GA200)した溶液を平 滑な硝子製浴槽にキャストした。このフィルムを浴槽から剥離後、 100°Cの真空乾燥 機で 12時間乾燥して厚さ 145 mのフィルムを得た。得られた組成物(フィルム)の 対数粘度、ガラス転移温度をそれぞれ測定したところ、対数粘度 7] =0. 68dL/g、 Tg= 141°Cであった。また、フィルムの Hazeは 0· 3であった。
[0277] このフィルムを幅 10mm、長さ 70mmに切り出し、恒温層を備えた引っ張り試験機( インストロンコーポレーション製モデル 5567)で加熱延伸して自由幅 1軸延伸フィル ムを作製した。 146°Cにおいて 220%/分の速度で 2倍に延伸したところ、延伸時の 最大応力は 73Kgf/cm2であった。得られたフィルムの膜厚は 104 mであり、位相 差(Re)を測定したところ、 Re450 = 125腹、 Re550 = 141腹、 Re650 = 149nm であった。ここで Re450、 Re550、および Re650はそれぞれ波長 450、 550、および 650nmにおける位相差 (Re)を表す。また、延伸方向を x軸、フィルム面内の x軸と直 交する軸を y軸、フィルムの厚み方向を z軸(X軸および y軸の両方と直交する方向)と し、各軸方向の屈折率をそれぞれ n 、 n、および nとした時、 NZ= (n -n ) / (n -n ) x y z x z x y で表される NZ係数は 1であった。
[0278] 延伸前の樹脂組成物フィルムの加熱下における相溶性の評価を行ったところ、 28
0〜300°Cの加熱下においても透明性は維持され、熱処理後の Haze = 0. 3であつ た。結果を表 1に示す。
[0279] [実施例 2]
製造例 2で得られた重合体 2A 2. 9gと製造例 11で得た重合体 1B 5. 4gとの混 合物フィルムを実施例 1と同様にしてキャスト製膜し、厚さ 59 mのフィルムを得た。 得られた組成物(フィルム)のガラス転移温度を測定したところ、 Tg=134°Cであった。 また、フィルムの Hazeは 0. 3であった。
[0280] このフィルムを実施例 1と同様にして、自由幅 1軸延伸フィルムを作成した。 142°C において 220%/分の速度で 2倍に延伸したところ、延伸時の最大応力は 68Kgf/ cm2であった。得られたフィルムの膜厚は 43 mであり、位相差 (Re)を測定したとこ ろ、 Re450 = 62應、 Re550 = 66腹、 Re650 = 68nmであった。また、 NZ係数は
1であった。
[0281] 延伸前の樹脂組成物フィルムの加熱下における相溶性の評価を行ったところ、 28
0°Cの加熱下においてミクロ相分離が認められ、 Haze = 50であった。結果を表 1に 示す。
[0282] [実施例 3]
製造例 3で得られた重合体 3A 2. 9gと製造例 12で得られた重合体 2B 5. 4gと の混合物フィルムを実施例 1と同様にしてキャスト製膜し、厚さ 100 [I m、 Haze = 0.
3のフィルムを得た。
[0283] このフィルムを実施例 1と同様にして、自由幅 1軸延伸フィルムを作成した。 135°C において 220%/分の速度で 2倍に延伸したところ、延伸時の最大応力は 61Kgf/ cm2であった。得られたフィルムの膜厚は 79 mであり、位相差 (Re)を測定したとこ ろ、 Re450 = 80應、 Re550 = 93腹、 Re650 = 99nmであった。また、 NZ係数は 1であった。
[0284] この樹脂組成物フィルムの加熱下における相溶性の評価を行ったところ、 280〜3
00°Cの加熱下においても透明性は維持され、熱処理後の Haze = 0. 3であった。結 果を表 1に示す。
[0285] [実施例 4]
製造例 3で得られた重合体 3A 2. 9gと製造例 13で得た重合体 3B 5. 4gとの混 合物フィルムを実施例 1と同様にしてキャスト製膜し、厚さ 91 111、 Haze = 0. 3のフ イノレムを得た。
[0286] このフィルムを実施例 1と同様にして、自由幅 1軸延伸フィルムを作成した。 142°C において 220%/分の速度で 1. 9倍に延伸したところ、延伸時の最大応力は 89Kg f/cm2であった。得られたフィルムの膜厚は 67 mであり、位相差 (Re)を測定した ところ、 Re450 = 72應、 Re550 = 86應、 Re650 = 92腹であった。また、 NZ係 数は 1であった。
[0287] この樹脂組成物フィルムの加熱下における相溶性の評価を行ったところ、 280〜3
00°Cの加熱下においても透明性は維持され、熱処理後の Haze = 0. 3であった。結 果を表 1に示す。
[0288] [実施例 5]
製造例 4で得られた重合体 4A 2. 9gと製造例 11で得られた重合体 1B 5. 4gと の混合物フィルムを実施例 1と同様にしてキャスト製膜し、厚さ 90 111、 Haze = 0. 3 のフィルムを得た。
[0289] このフィルムを実施例 1と同様にして、自由幅 1軸延伸フィルムを作成した。 145°C において 220%/分の速度で 2倍に延伸したところ、延伸時の最大応力は 60Kgf/ cm2であった。得られたフィルムの膜厚は 65 mであり、位相差 (Re)を測定したとこ ろ、 Re450 = 77應、 Re550 = 86腹、 Re650 = 90nmであった。また、 NZ係数は 1であった。
[0290] この樹脂組成物フィルムの加熱下における相溶性の評価を行ったところ、 280°Cの 加熱下においても透明性は維持され、熱処理後の Haze = 0. 3であった。結果を表 1 に示す。 [0291] [実施例 6]
製造例 5で得られた重合体 5A 2. 9gと製造例 13で得られた重合体 3B 5. 4gと の混合物フィルムを実施例 1と同様にしてキャスト製膜し、厚さ 92 111、 Haze = 0. 3 のフィルムを得た。
[0292] このフィルムを実施例 1と同様にして、自由幅 1軸延伸フィルムを作成した。 147°C において 220%/分の速度で 1. 9倍に延伸したところ、延伸時の最大応力は 35Kg f/cm2であった。得られたフィルムの膜厚は 72 H mであり、位相差 (Re)を測定した ところ、 Re450 = 88應、 Re550 = 96應、 Re650 =皿腹であった。また、 NZ係 数は 1であった。
[0293] この樹脂組成物フィルムの加熱下における相溶性の評価を行ったところ、 300°Cの 加熱下においても透明性は維持され、熱処理後の Haze = 0. 3であった。結果を表 1 に示す。
[0294] [実施例 7]
製造例 5で得られた重合体 5A 7gと製造例 14で得られた重合体 4B 13gとの混 合物フィルムを実施例 1と同様にしてキャスト製膜し、厚さ 93 111、 Haze = 0. 3のフ イノレムを得た。
[0295] このフィルムを実施例 1と同様にして、自由幅 1軸延伸フィルムを作成した。 147°C において 220%/分の速度で 2. 8倍に延伸したところ、延伸時の最大応力は 65Kg f/cm2であった。得られたフィルムの膜厚は 58 H mであり、位相差 (Re)を測定した ところ、 Re450 = 99應、 Re550 = l l l應、 Re650 = 118腹であった。また、 NZ 係数は 1であった。
[0296] この樹脂組成物フィルムの加熱下における相溶性の評価を行ったところ、 300°Cの 加熱下においても透明性は維持され、熱処理後の Haze = 0. 3であった。結果を表 1 に示す。
[0297] [実施例 8]
製造例 5で得られた重合体 5A 7gと製造例 14で得られた重合体 4B 13gとの混 合物フィルムを実施例 1と同様の手法でキャスト製膜し、厚さ 180 m、 Haze = 0. 3 のフィルムを得た。 [0298] 得られたフィルムを 10cm四方に切り出し、(株)東洋精機製作所製 油圧サーボ式 二軸延伸試験装置 X6H-Sを用い、 145°Cにおいて 300%/分の速さで 2. 4倍に幅 拘束 1軸延伸した。延伸時の最大応力は 4Kgf /cm2であった。得られたフィルムの 膜厚は 75 mであり、位相差(Re)を測定したところ、 Re450 = 86nm、 Re550 = 95 nm、 Re650 = 99nmであった。また、 NZ係数は 1 · 44であった。結果を表 1に示す
[0299] [実施例 9]
製造例 5で得られた重合体 5Α 6. 6gと製造例 14で得られた重合体 4Β 13. 4gと の混合物フィルムを実施例 1と同様の手法でキャスト製膜し、厚さ 189 H m、 Haze = 0. 3のフイノレムを得た。
[0300] 得られたフィルムを実施例 8と同様にして 147°Cで 2. 3倍に幅拘束 1軸延伸した。
延伸時の最大応力は 3Kgf/cm2であった。得られたフィルムの膜厚は 83 μ mであり 、位相差(Re)を測定したところ、 Re450 = 98腹、 Re550 = 104應、 Re650 = 10 8nmであった。また、 NZ係数は 1. 38であった。結果を表 1に示す。
[0301] [実施例 10、 11]
製造例 7で得た脱溶媒前のスチレン系共重合体 7Aと、製造例 15で得た脱溶媒前 のノルボルネン系樹脂 5Bとを、重量比で 6/14 (実施例 10)および 9/11 (実施例 1 1)の割合で調製し固形分を 20%に調整した。それぞれのポリマー溶液を 0.211 mポ ァサイズの PTFEフィルターで濾過を行った。その後、 260°C、 l.Otorの条件で溶媒除 去を行い、 5 mフィルターを通過させて Blend樹脂ペレットを得た。実施例 10の Tg測 定におけるチャートを図 7に、実施例 11の Tg測定におけるチャートを図 8にそれぞれ 示す。何れも、単独ポリマー由来の Tgは消失し、単一ピークが確認され,スチレン系 共重合体 7Aと、ノルボルネン系樹脂 5Bとは何れの組成でも相溶化して!/、ること力 S判 つた。実施例 10における Tgは 128°C、実施例 11における Tgは 124°Cであった。
[0302] 実施例 10の組成物を 5 ,1 mポリマーフィルターを有す溶融押し出し装置にて 260°C で 10m/minの速度で成膜した結果、フィルター通過前と通過後の差圧は 2MPaと低く 、幅 500mm , 250 m膜厚のフィルムを得た。 ΗΑΖΕ=0·3, ΥΙ=0·3と着色性が小さく、 透明なフィルムであった。フィルムの Tg=128°Cのシングルピークな事から、スチレン系 共重合体 7Aとノルボルネン系樹脂 5Bはフィルム成形後も分離して!/、な!/、ことが判つ た。このフィルムを 10cm X 10cmに切り出し、横方向の幅を 10cmのまま変化させな ぃ幅拘延伸を行なった。延伸条件:延伸温度 =133°C (Tg+5°C)、延伸スピード =300m m/min、縦方向の延伸倍率 =3.0倍。延伸後膜厚 =80 m。 550nm、 650nmの位相差は それぞれ、 140nm、 145nmであり、 650nmと 550nmの位相差比(波長分散性) =1.036で あった。 550nm、 650nmの複屈折は位相差/膜厚より算出しそれぞれ、 0.00175, 0.001 81であった。また NZ係数 =1.025であった。結果を表 1に示す。
[0303] また、実施例 11の組成物を用い射出成形機を用い、 280°Cにて 3mm厚の成型品を 作成した。成型品の位相差は最大 2nmと非常に小さぐ低複屈折性, YI=0.7と着色性 が少ないことが判った。
[0304] [実施例 12]
製造例 10で合成したスチレン系共重合体 1 OAと、製造例 15で得た脱溶媒前のノ ルボルネン系樹脂 5Bとを、 6g/14gの割合で調製し調整し実施例 1と同様の手法で キャスト製膜し、厚さ 190 111、 Haze = 0. 3のフィルムを得た。結果を表 1に示す。
[0305] [比較例 1]
重合体 1 Aの代わりに PSジャパン (株)製ポリスチレンを用いた以外は、実施例 1と 同様にして、製造例 11で得られた重合体 1Bとの混合物のキャスト製膜を行った。そ の結果、使用溶媒によらず、透明なフィルムを得ることができなかった。
[0306] また、加熱下における相溶性の評価を行ったところ、 280°Cにおいて海島構造様の 相分離が観測された。結果を表 2に示す。
[0307] [比較例 2]
重合体 1 Aの代わりに Nova chemicals製無水マレイン酸/スチレン共重合体 (D YLARK232)を用いた以外は、実施例 1と同様にして、製造例 11で得られた重合体 1Bとの混合物のキャスト製膜を行った。その結果、塩化メチレンを溶媒として使用す ると、透明なフィルムを得ることができなかった。一方、トルエンを溶媒に用いると、透 明なフィルムを得ることができた力 乾燥速度が遅く工業的生産には不向きであった
[0308] また、トルエンを用いて得たキャストフィルムの加熱下における相溶性の評価を行つ たところ、 280°Cにおいてミクロ相分離が観測された。
[0309] さらに、二軸押出機を用いた溶融混練による相溶化を検討したところ、 290°Cにお いて白濁したペレットしか得ることができなかった。結果を表 2に示す。
[0310] [比較例 3]
ァセトキシスチレンの代わりに p—イソプロぺユルフェノールを用いたこと以外は、製 造例 1と同様にして、重合体を合成した。得られた重合物の分子量は Mw= 20, 000 (Mw/Mn = 2. 2)であり、反応率は 57%であった。得られた重合物と製造例 5で得 られた重合体 1Bとの混合物のキャスト製膜を行ったところ、フィルムの強度が低ぐ特 性評価に至らなかった。結果を表 2に示す。
[0311] [比較例 4]
製造例 11で得られた重合体 IB 20gを実施例 1と同様の手法でキャスト製膜し、厚 さ 140〃πι、 Haze = 0. 3のフイノレムを得た。
[0312] 得られたフィルムを実施例 1と同様にして 177°Cで 2. 0倍に自由端 1軸延伸した。
延伸時の最大応力は 40Kgf/cm2であった。得られたフィルムの膜厚は 100 μ mで あり、位相差(Re)を測定したところ、 Re450 = 396腹、 Re550 = 388應、 Re650 = 384nmであった。また、 NZ係数は 1であった。結果を表 2に示す。
[0313] [表 1]
Figure imgf000070_0001
Re (χ) :波長 χ nmでの位相差 (nm)
表 2]
Figure imgf000071_0001
[実施例 13]
製造例 7で得た樹脂ペレット 7Aを 5Kgに、製造例 15で得た重合体 5Bを 3Kg、テト ラキス [メチレンー3—(3,5—ジ tーブチルー 4ーヒドロキシフエニル)プロピオネート ]メタン 9g、およびトルエン 7Kgを加えて均一に混合した。このブレンド樹脂溶液を 50 πιπι (L/D= 13. 2)の二軸押出し機を用い、 280°C、 20mmHgで脱溶してペレ ット化して、樹脂ペレット 1を得た。得られたペレット 1を分析した結果、 ΥΙ= 1 · 1、 Μ w= 132, 000、Mw/Mn = 2. 96、 Tg= 136。C、残留トルエン = lOOOppmであつ た。また、得られた樹脂ペレット 1中の不溶物の有無および溶液濾過性の評価結果を 表《3に不す。
[0316] [実施例 14]
樹脂ペレット 7Aに代えて、製造例 8で得た樹脂ペレット 8Aを用いたこと以外は、実 施例 13と同様にして樹脂溶液を調製した。このブレンド樹脂溶液を 50mm φ (L/D = 13. 2)の二軸押出し機を用い、 280°C、 20mmHgで脱溶してペレット化して、樹 脂ペレット 2を得た。得られたペレット 2を分析した結果、 ΥΙ= 1 · 0、 Mw= 131 , 000 、 Mw/Mn = 2. 86、 Tg= 136。C、残留トルエン = lOOOppmであった。また、得ら れた樹脂ペレット 2中の不溶物の有無および溶液濾過性の評価結果を表 3に示す。
[0317] [実施例 15]
実施例 11において、樹脂ペレット 7Aに代えて、製造例 9で得た樹脂ペレット 9Aを 用いたこと以外は、実施例 1と同様にして樹脂溶液を調製した。このブレンド樹脂溶 液を 50mm φ (L/D= 13. 2)の二軸押出し機を用い、 280°C、 20mmHgで脱溶し てペレット化して、樹脂ペレット 3を得た。得られたペレット 3を分析した結果、 ΥΙ = 5· 6、 Mw= 150751、 Mw/Mn = 3. 66、Tg= 119。C、残留トルエン = 2890ppmで あった。また、得られた樹脂ペレット 3中の不溶物の有無および溶液濾過性の評価結 果を表 3に示す。
[0318] [表 3]
【表 3】
Figure imgf000073_0001
産業上の利用の可能性
本発明の樹脂組成物は、相溶性に優れるとともに透明性に優れ、加熱時にも着色 を生じにくぐしかも高分子量のスチレン系共重合体を含む樹脂組成物とすることが できる。本発明の樹脂組成物は、各種光学材料の成形用途に好適に用いることがで き、製膜性に優れることから特に光学フィルム用途に好適に用いることができ、強度 に優れた光学フィルムを得ることができる。また、本発明の樹脂組成物から得られる 光学フィルムを延伸すると、入射光波長が長波長になるに従い位相差が増大する、
V、わゆる逆波長分散性を発現させることもできるため、各種液晶表示装置や偏光板 等に使用すること力できる。また、スチレン系共重合体 (A)とノルボルネン系重合体( B)との組成比をコントロールすることにより、位相差の大きさや波長分散性を容易に コントロールすることが可能であるため、低複屈折性を要求される光学部品等にも使 用すること力 Sでさる。

Claims

請求の範囲
(A)下記式(1)で表される構造単位(1)および下記式(2)で表される構造単位(2) を有し、当該構造単位(2)の含有率が全構造単位 100mol%中 0. ;!〜 50mol%で あるスチレン系共重合体と、
(B)ノルボルネン系重合体とを含有することを特徴とする樹脂組成物;
[化 1]
Figure imgf000074_0001
(式(1)および式(2)中、 Rは水素原子またはメチル基を示す。式(2)中、 R°は水素 原子;ハロゲン原子;酸素原子、硫黄原子、窒素原子、またはケィ素原子を含む連結 基を有してもよ!/、置換または非置換の炭素数 1〜30の炭化水素基;または極性基を 示す。)。
[2] 前記スチレン系共重合体 (A)力 ゲルパーミエーシヨンクロマトグラフィー(GPC)で 測定した重量平均分子量 Mwが 30, 000-1 , 000, 000であることを特徴とする請 求項 1に記載の樹脂組成物。
[3] 前記スチレン系共重合体 (A) 、色測計を用いて測定した 10重量%トルエン溶液 の黄色度 (YI)が 5. 0以下であることを特徴とする請求項 1に記載の樹脂組成物。
[4] 前記スチレン系共重合体 (A)が、スチレンおよび/または α—メチルスチレンと、 下記式 (4)で表される単量体 (4)とを重合反応させた後、単量体 (4)由来の構造単 位における OR14基を ΟΗ基に変換する工程を含む方法により得られることを特 徴とする、請求項 1に記載の樹脂組成物;
[化 2]
Figure imgf000075_0001
(式 (4)中、 Rは水素原子またはメチル基を示し、 R°は水素原子;ハロゲン原子;酸素 原子、硫黄原子、窒素原子、またはケィ素原子を含む連結基を有してもよい置換ま たは非置換の炭素数 1〜30の炭化水素基;または極性基を示す。 R14はァセチル基 、 t ブチル基、 t ブトキシカルボニル基、 CH (OR15) (R16)、または— SiR15で表 される基のいずれかを示す。 R15および R16はそれぞれ独立に炭素数 1〜6のアルキ ル基を示し、 R15と R16、あるいは R15同士は、相互に結合して炭素数 2〜; 12の複素環 を形成してもよい。)。
[5] 前記スチレン系共重合体 (A)が、前記単量体 (4)由来の構造単位における OR1' 基を OH基に変換する工程を酸の存在下で行い、その後、塩基性物質を添加して 系内の酸と反応させる工程を含む方法により得られたものであることを特徴とする請 求項 4に記載の樹脂組成物。
[6] 前記ノルボルネン系重合体 (B)が、下記式(6)で表される単量体(6)から導かれる 構造単位を有する(共)重合体であることを特徴とする請求項 1に記載の樹脂組成物
[化 3]
Figure imgf000076_0001
(式(6)中、 aおよび bは独立に 0または 1を示し、 cおよび dは独立に 0〜2の整数を示 す。 R4、 R5、 R6、 R7、 R8、 R9、 R1Q、 RU、 R12、および R13は、それぞれ独立に水素原子; ハロゲン原子;酸素原子、硫黄原子、窒素原子、またはケィ素原子を含む連結基を 有してもよ!/、置換または非置換の炭素数 1〜30の炭化水素基;または極性基を示す 。 R1Qと RU、または R12と R13とは一体化して 2価の炭化水素基を形成してもよぐ R1Qま たは R11と R12または R13とは相互に結合して炭素環または複素環 (これらの炭素環また は複素環は単環構造でもよいし、他の環が縮合して多環構造を形成してもよい。)を 形成してもよレヽ。)。
前記ノルボルネン系重合体 (B)が、下記式 (i)で表される構造単位を有する(共)重 合体であることを特徴とする請求項 1に記載の樹脂組成物。
[化 4]
Figure imgf000076_0002
(式 (i)中、 Α Α4は、それぞれ独立に、水素原子;ハロゲン原子;酸素原子、硫黄 原子、窒素原子もしくはケィ素原子を含む連結基を有してもよい、置換もしくは非置 換の炭素原子数 1 30の炭化水素基;または極性基を表し、 A A4の少なくとも一 つは—(CH ) COOA5で表される基 (A5は、酸素原子、硫黄原子、窒素原子もしくは
2 n
ケィ素原子を含む連結基を有してもよい、置換もしくは非置換の炭素数 1 30の炭 化水素基)であり、 nは 0または 1 5の整数である。)。
[8] 前記ノルボルネン系重合体(B)力 前記式(i)で表される構造単位を、ノルボルネ ン系重合体(B)の全構造単位 100mol%中、 10 70mol%有することを特徴とする 請求項 7に記載の樹脂組成物。
[9] 前記スチレン系共重合体 (A)と前記ノルボルネン系重合体(B)との組成比( (A) /
(B) )が、重量比で 5/95 70/30の範囲であることを特徴とする請求項 1に記載 の樹脂組成物。
[10] 請求項 1に記載の樹脂組成物を主成分とすることを特徴とする成形体。
[11] 溶融押出成形により得られることを特徴とする請求項 10に記載の成形体。
[12] 請求項 1に記載の樹脂組成物を主成分とすることを特徴とする光学フィルム。
[13] キャスト法により製膜して得られることを特徴とする請求項 12に記載の光学フィルム
[14] 押出し法により製膜して得られることを特徴とする請求項 12に記載の光学フィルム
[15] 請求項 12に記載の光学フィルムを加熱延伸して得られる延伸フィルム。
[16] 請求項 12に記載の光学フィルムを含む偏光板。
[17] 請求項 12に記載の光学フィルムを含む液晶表示装置。
PCT/JP2007/073380 2006-12-05 2007-12-04 樹脂組成物およびその用途 WO2008069192A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-328250 2006-12-05
JP2006328250 2006-12-05
JP2007047941 2007-02-27
JP2007-047941 2007-02-27
JP2007-079670 2007-03-26
JP2007079670A JP2008163287A (ja) 2006-12-05 2007-03-26 樹脂組成物、光学フィルムおよびその製造方法ならびにその用途

Publications (1)

Publication Number Publication Date
WO2008069192A1 true WO2008069192A1 (ja) 2008-06-12

Family

ID=39492079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073380 WO2008069192A1 (ja) 2006-12-05 2007-12-04 樹脂組成物およびその用途

Country Status (2)

Country Link
KR (1) KR20090095638A (ja)
WO (1) WO2008069192A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096815A (ja) * 2007-10-12 2009-05-07 Jsr Corp 樹脂組成物
JP2009126961A (ja) * 2007-11-26 2009-06-11 Jsr Corp 樹脂組成物およびそれからなるフィルムならびにその用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6743651B2 (ja) * 2016-10-27 2020-08-19 コニカミノルタ株式会社 光学フィルム、偏光板及び画像表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323098A (ja) * 1998-05-11 1999-11-26 Jsr Corp 熱可塑性樹脂組成物
JP2001240729A (ja) * 2000-02-25 2001-09-04 Jsr Corp 熱可塑性樹脂組成物
JP2003292639A (ja) * 2002-03-29 2003-10-15 Jsr Corp 光学用フィルムおよびその製造方法並びに偏光板
WO2006038478A1 (ja) * 2004-10-01 2006-04-13 Jsr Corporation 熱可塑性樹脂組成物、光学フィルムおよび位相差フィルム
WO2006070820A1 (ja) * 2004-12-27 2006-07-06 Jsr Corporation 熱可塑性樹脂組成物、光学フィルムおよび延伸フィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323098A (ja) * 1998-05-11 1999-11-26 Jsr Corp 熱可塑性樹脂組成物
JP2001240729A (ja) * 2000-02-25 2001-09-04 Jsr Corp 熱可塑性樹脂組成物
JP2003292639A (ja) * 2002-03-29 2003-10-15 Jsr Corp 光学用フィルムおよびその製造方法並びに偏光板
WO2006038478A1 (ja) * 2004-10-01 2006-04-13 Jsr Corporation 熱可塑性樹脂組成物、光学フィルムおよび位相差フィルム
WO2006070820A1 (ja) * 2004-12-27 2006-07-06 Jsr Corporation 熱可塑性樹脂組成物、光学フィルムおよび延伸フィルム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096815A (ja) * 2007-10-12 2009-05-07 Jsr Corp 樹脂組成物
JP2009126961A (ja) * 2007-11-26 2009-06-11 Jsr Corp 樹脂組成物およびそれからなるフィルムならびにその用途

Also Published As

Publication number Publication date
KR20090095638A (ko) 2009-09-09

Similar Documents

Publication Publication Date Title
JP5407108B2 (ja) 熱可塑性樹脂組成物、光学フィルムおよびフィルム製造方法
JP5135799B2 (ja) 熱可塑性樹脂組成物、光学フィルムおよび延伸フィルム
JP6823899B2 (ja) 位相差フィルム、円偏光板及び画像表示装置
KR102306920B1 (ko) 위상차 필름, 원편광판 및 화상 표시 장치
TWI379861B (ja)
JP2015212818A (ja) 位相差フィルム、円偏光板及び画像表示装置
JP6911972B2 (ja) 重縮合系樹脂及びそれよりなる光学フィルム
KR102278717B1 (ko) 중축합계 수지 및 그것으로 이루어지는 광학 필름
JP2008163287A (ja) 樹脂組成物、光学フィルムおよびその製造方法ならびにその用途
JP2008102498A (ja) 位相差フィルムの製造方法、位相差フィルムおよびその用途
JP5374820B2 (ja) 熱可塑性樹脂組成物およびそれからなる光学フィルム
KR20080037537A (ko) 광학 필름, 광학 필름의 제조 방법, 위상차 필름, 편광판및 액정 패널
JP2006188671A (ja) 光学用フィルムおよびその用途
WO2008069192A1 (ja) 樹脂組成物およびその用途
JP2009251011A (ja) 積層光学フィルムの製造方法、積層光学フィルムおよびその用途
JP5050730B2 (ja) 樹脂組成物成形体の製造方法
KR20080027203A (ko) 위상차 필름의 제조 방법, 위상차 필름 및 그의 용도
TWI425024B (zh) A retardation film, a method for manufacturing the same, and a polarizing plate
JP2006131898A (ja) 熱可塑性樹脂フィルム
JP5266733B2 (ja) 樹脂組成物およびそれからなるフィルムならびにその用途
JP4701715B2 (ja) 光学フィルムの製造方法および光学フィルム
JP2008239957A (ja) 樹脂組成物およびその用途
WO2020262337A1 (ja) 熱可塑性樹脂、それよりなる光学フィルム、ジオール化合物、ジエステル化合物
JP2009096815A (ja) 樹脂組成物
TW200838917A (en) Resin composition and use thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044670.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097013972

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07850030

Country of ref document: EP

Kind code of ref document: A1