WO2008069165A1 - アンテナ装置と、これを用いた電子機器 - Google Patents

アンテナ装置と、これを用いた電子機器 Download PDF

Info

Publication number
WO2008069165A1
WO2008069165A1 PCT/JP2007/073290 JP2007073290W WO2008069165A1 WO 2008069165 A1 WO2008069165 A1 WO 2008069165A1 JP 2007073290 W JP2007073290 W JP 2007073290W WO 2008069165 A1 WO2008069165 A1 WO 2008069165A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna conductor
antenna
length
frequency band
conductor
Prior art date
Application number
PCT/JP2007/073290
Other languages
English (en)
French (fr)
Inventor
Motoyuki Okayama
Akihiro Ozaki
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to EP07832917A priority Critical patent/EP2081250A4/en
Priority to US12/516,616 priority patent/US20100066615A1/en
Priority to CN2007800448425A priority patent/CN101548428B/zh
Priority to JP2008548271A priority patent/JP4692635B2/ja
Publication of WO2008069165A1 publication Critical patent/WO2008069165A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to an antenna device and an electronic device using the same.
  • the conventional electronic device 1 includes a first antenna device 2 for communicating using a first frequency band, and a second antenna device 3 for communicating using a second frequency band different from the first frequency band.
  • the first antenna device 2 and the second antenna device 3 are formed in the ground forming body 4 and have an antenna length which is approximately 1 ⁇ 4 of the wavelength on the antenna conductor of each frequency band signal. Conductors 5 and 6 respectively.
  • Patent Document 1 As prior art document information related to the present invention, for example, Patent Document 1 is known.
  • the electronic device 1 has been miniaturized, and the first antenna device 2 and the second antenna device 3 have become very close to each other. As a result, there is a problem that the isolation between the antenna conductors 5 and 6 is reduced and the reception quality is degraded.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 261363
  • the present invention is to improve reception quality in an electronic device provided with a plurality of antenna devices.
  • the electronic device of the present invention includes a first antenna device for communicating using a first frequency band, and a second antenna device for communicating using a second frequency band different from the first frequency band.
  • the first antenna device includes a ground forming body, a feeding portion provided to the ground forming body, a first antenna conductor whose one end is connected to the feeding portion, and a branch connection to the other end of the first antenna conductor.
  • the sum of the length of the first antenna conductor and the length of the second antenna conductor represents the wavelength of the signal on the first frequency band on the antenna conductor (l / 4 + n / 2) (where n is an integer greater than or equal to 0) and the length of the second antenna conductor
  • the sum of the length and the length of the third antenna conductor is approximately (l / 2 + m / 2) times (m is an integer of 0 or more) times the wavelength of the signal of the second frequency band on the antenna conductor.
  • FIG. 1 is a schematic view of an electronic device according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the electronic device in the first embodiment.
  • FIG. 3 is another schematic view of the electronic device in the first embodiment.
  • FIG. 4 is a Smith chart in the first embodiment.
  • FIG. 5 is another schematic view of the electronic device in the first embodiment.
  • FIG. 6 is a Smith chart in the first embodiment.
  • FIG. 7 is another schematic view of the electronic device in the first embodiment.
  • FIG. 8 is a Smith chart in the first embodiment.
  • FIG. 9 is a circuit diagram of the electronic device in the first embodiment.
  • FIG. 10 is a perspective view of another electronic device in the first embodiment.
  • FIG. 11 is a perspective view of another electronic device in the first embodiment.
  • FIG. 12 is a perspective view of an antenna conductor in the first embodiment.
  • FIG. 13 is another perspective view of the antenna conductor in the first embodiment.
  • FIG. 14 is another perspective view of the electronic device in the first embodiment.
  • FIG. 15 is another perspective view of the electronic device in the first embodiment.
  • FIG. 16 is another perspective view of the antenna conductor in the first embodiment.
  • FIG. 17 is a schematic view of a conventional electronic device.
  • FIG. 1 is a schematic view of the electronic device in the first embodiment.
  • FIG. 2 is a perspective view of the electronic device in the first embodiment.
  • the electronic device 7 communicates with a first antenna device 8 which is a first communication unit that communicates using a first frequency band, and a second communication that uses a second frequency band different from the first frequency band.
  • a second antenna device 9 which is
  • the first antenna device 8 includes a ground forming body 10, a feeding portion 11 provided to the ground forming body 10, a first antenna conductor 12 having one end connected to the feeding portion 11, and the first antenna device 8 It has a second antenna conductor 13 and a third antenna conductor 14 which are branch-connected to the other end of the first antenna conductor 12.
  • the sum of the length of the first antenna conductor 12 and the length of the second antenna conductor 13 is the wavelength of the signal of the first frequency band on the antenna conductor, that is, the wavelength due to the influence of members around the antenna conductor, the ground forming body, etc. It is approximately 1 ⁇ 4 of the wavelength after shortening.
  • the second antenna device 9 has a fourth antenna conductor 15 having a length of about 1 ⁇ 4 of the wavelength of the signal of the second frequency band on the antenna conductor.
  • At least a part of the second antenna conductor 13 or the third antenna conductor 14 has a meander shape, a helical shape, a spiral shape, or a zigzag shape. That is, the distance from the feeding point end of the first antenna conductor 12 to the tip of the third antenna conductor 14 is shorter than half the wavelength of the signal of the second frequency band on the antenna conductor.
  • the above configuration is considered.
  • the locus of the impedance on the Smith chart at a frequency of 100 MHz to 1 GHz on the Smith chart, which allows for the antenna conductor including the first antenna conductor 12, is indicated by the arrow in FIG.
  • F470, F750, Fresl and Fantil indicate the frequencies of 470 MHz, 750 MHz, 700 MHz and 839 MHz, respectively.
  • ⁇ / 4 resonance point that is, a point Fresl at which the impedance changes to capacitive power inductive
  • the ⁇ / 2 resonance point that is, the impedance is inductive to capacitance.
  • the impedance is inductive to capacitance.
  • sexuality Fantil it is E / 2 resonance near the second frequency band, and the impedance in anticipation of the antenna conductor becomes very large. Therefore, the resonant current hardly flows to the ground formation body, and most of the current is distributed only to the antenna conductor.
  • first antenna conductor 12 and the second antenna conductor 13 which form this antenna conductor
  • the antenna conductor 14 Since the antenna conductor 14 has a meander shape or the like, the radiation resistance in the antenna conductors 12, 13, 14 is reduced, and the influence of the loss resistance is increased. As a result, in the first antenna device 8, it is possible to attenuate received power in the second frequency band which is an interference wave band, and it is possible to improve the reception quality in the first antenna device 8. Attenuation of the received power due to such a reduction in radiation resistance occurs continuously at frequencies near Fantil. That is, even if Fantil is outside the second frequency band, a certain amount of attenuation can be obtained in the second frequency band.
  • the antenna conductor not including the first antenna conductor 12 is viewed.
  • Figure 6 shows the locus at frequencies from 100 MHz to 1 GHz on the Smith chart of the intricate impedance.
  • Fres2 and Fanti2 indicate frequencies of 720 MHz and 885 MHz, respectively.
  • the impedance of the antenna conductor from the position indicated by the arrow in FIG. 5 is the position at which Fresl and Fantil showed in FIG. 4 for the length of the first antenna conductor 12 as shown in FIG. Shift from Then, ⁇ / 2 resonance occurs at ⁇ / 4 resonance 1S Fanti2 at Fres2.
  • the second antenna conductor is adjusted to a frequency (Fanti2) higher than Fanti 1 by considering the length of the first antenna conductor 12.
  • Fanti2 the frequency to be attenuated most in the interference band
  • the first antenna conductor 12 may include a leaf spring, a pogo pin, etc., mounted on the substrate of the ground forming body and used for feeding.
  • FIG. Figure 7 shows the locus of Fig. 8 with the third antenna conductor 14 omitted
  • Fig. 8 shows the locus of the impedance from 100 MHz to 1 GHz of impedance from the feed point to the antenna side on the Smith chart at that time.
  • Fresl is shifted approximately 4 MHz from the resonance point / 4 resonance point
  • Fantil is shifted from the position of FIG. 4 about 12 MHz from the ⁇ / 2 resonance point.
  • the length of the third antenna conductor 14 in which the frequency shift of the second frequency band which is the interference band is larger than the frequency shift of the first frequency band which is the desired wave band is ⁇ / 2 It can be seen that the resonance frequency is greatly affected.
  • the first antenna device 8 has a length of about 2k (k is an integer of 1 or more) times the wavelength of the signal of the second frequency band on the antenna conductor of the signal of the first frequency band on the antenna conductor. And the length of the third antenna conductor 14 may be zero. In this case, using the first antenna conductor 12 and the second antenna conductor 13, the first antenna device 8 resonates in the first frequency band by (2n + 1) l / 4 (1 is an integer of 0 or more), (M + 1) .lambda.
  • the first antenna device 8 uses the first antenna conductor 12 and the second antenna conductor 13 to resonate in the first frequency band by (2 + + 1) ⁇ / 4 ( ⁇ is an integer of 0 or more)
  • (m + 1) / 2 (m is an integer of 0 or more) may be resonated in the second frequency band using the second antenna conductor 13 and the third antenna conductor 14.
  • the sum of the length of the first antenna conductor 12 and the length of the second antenna conductor 13 is approximately (l / 4 + n / 2) times the wavelength of the signal of the first frequency band on the antenna conductor, Even if the sum of the length of the second antenna conductor 13 and the length of the third antenna conductor 14 is approximately (l / 2 + m Z 2) times the wavelength of the signal of the second frequency band on the antenna conductor, The same effect can be obtained.
  • n 0 for downsizing.
  • the band of the desired wave in the second frequency band is considered as a digital television band when the electronic device 7 is mounted on the mobile phone in this way, the assumed interference wave becomes the band for cellular communication, so m It is desirable to set the value of m to 2 in the cellular band.
  • the sum of the length of the first antenna conductor 12 and the length of the second antenna conductor 13 and the sum of the length of the second antenna conductor 13 and the length of the third antenna conductor 14 are strictly the first frequency band, respectively.
  • the wavelength of the signal on the antenna conductor of (1/4 + n / 2) times on the antenna conductor and the wavelength of the signal on the second frequency band on the antenna conductor of (l / 2 + m / 2) times may not be required. That is, (l / 4 + n / 2) times the wavelength of the signal of the first frequency band on the antenna conductor and (l / 2 + m / 2) of the wavelength on the antenna conductor of the signal of the second frequency band
  • the received power in the second frequency band can be attenuated if it is in the range of about 15% around the double length, and the same effect as the above can be obtained.
  • the first antenna device 8 may use the first antenna conductor 12 and the third antenna conductor 14 to attenuate received power in the second frequency band, which is an interference wave band. That is, the sum of the length of the first antenna conductor 12 and the length of the third antenna conductor 14 is approximately (l / 2 + m / 2) times (m is 0) the wavelength of the signal of the second frequency band on the antenna conductor. Even if it is the above integer, the same effect as the above can be obtained. In this case, at least a part of the first antenna conductor 12 or the third antenna conductor 14 has a meander shape, a helical shape or a zigzag shape.
  • the distance from the feeding part 11 to the tip of the third antenna conductor 14 is shorter than the length (m + 1) / 2 times the wavelength of the signal of the second frequency band on the antenna conductor! Become.
  • the electronic device 7 has a gate G connected to the feeding portion 11 and a source-grounded or drain-grounded field effect transistor 16, a feeding portion 11, and a field effect transistor. It is desirable to have a notch filter 17 grounded between the shunt 16 and the shunt and for attenuating the signal of the second frequency band.
  • the impedance is also large.
  • the antenna conductors 12, 13 and 14 and the notch filter 17 and the notch filter 17 and the field effect transistor A large impedance difference occurs between 16s.
  • the interference band removing effect of the notch filter 17 it is possible to obtain a large filter effect S.
  • the same effect can be obtained by using a collector grounded transistor (not shown) instead of the field effect transistor 16.
  • the field effect transistor 16 and the notch filter 17 be disposed between the antenna conductors 12, 13 and 14 and the ground forming body 10.
  • the distance D1 from the ground formation body 10 to the farthest point of the second antenna conductor 13 and the distance D2 from the ground formation body 10 to the farthest point of the third antenna conductor 14 And a length ⁇ 1 approximately four times the sum of the length of the first antenna conductor 12 and the length of the second antenna conductor 13 and the sum of the length of the first antenna conductor 12 and the length of the third antenna conductor 14 It is desirable that the relation with the length ⁇ 2 of about 4 times satisfies the condition D1 / 1 1D2 / 2.
  • the third antenna conductor 14 and the ground will be close to each other. Thereby, in the frequency band of a signal having a wavelength approximately four times the length of the first antenna conductor 12 and the third antenna conductor 14 Radiation efficiency is reduced. As a result, unnecessary waves that adversely affect the circuit connected to the feeding unit 11 can be reduced.
  • the width of the third antenna conductor 14 may be nonuniform. For example, by tapering the third antenna conductor 14, resonance occurs at various wavelengths in the second frequency band. This makes it possible to widen the second frequency band, which is the interference removal band, and enables stable communication.
  • the main polarization direction of the second antenna conductor 13 and the main polarization direction of the third antenna conductor 14 may be substantially orthogonal to each other.
  • the traveling directions of the currents on the second antenna conductor 13 and the third antenna conductor 14 are orthogonal to each other, and the electromagnetic coupling between them is weakened.
  • the design independence of the second antenna conductor 13 and the third antenna conductor can be enhanced, which facilitates the adjustment.
  • the fixing member 19 for fixing the first antenna conductor 12, the second antenna conductor 13, and the third antenna conductor 14 contains at least one material of a dielectric and a magnetic body. Dielectrics and magnetics are lossy materials. As a result, as shown in FIG. 14, in the disturbance band (second frequency band), current concentrates in the area 32 and the radiation is mainly from only the antenna conductor, so the loss component of the loss material is Significantly affects. This reduces the radiation efficiency in the interference band. On the other hand, in the desired wave band (first frequency band), the current distribution becomes antinode at the feeding portion 11. Therefore, as shown in FIG.
  • the influence of the loss material of the fixing member 19 can suppress the decrease of the radiation efficiency in the desired wave band which is small.
  • a conductor is printed on one side of the dielectric film. It may be a film antenna 21 formed of a flexible wiring board 20 formed by the above method.
  • the thickness of the conductor of the film antenna 21 is usually 1 m to 30 m, which is thinner than an antenna conductor having a thickness of about 200 m which is usually formed by sheet metal processing. That is, since the cross-sectional area of the film antenna 21 is smaller than that of the sheet metal antenna, the film antenna 21 has a conductivity which increases in conductor resistance as much as a single digit lower than that of the sheet metal antenna. Therefore, as shown in FIG. 14, it is possible to reduce the radiation efficiency of the antenna in the interference wave band (second frequency band) where the conductor resistance of the antenna conductor significantly influences.
  • the desired wave band (first frequency band) since the current distribution is antinode in the feeding part 11, as shown in FIG. 15, the inflow of current into the ground forming body 10 is large. Radiation from the source is dominant. That is, in the desired wave band (the first frequency band), the influence of the conductor resistance of the antenna conductor is small, and even if the film antenna 21 having a large conductor resistance is used, the reduction of the radiation efficiency in the desired wave band is It is very small. In addition, by using such a film antenna 21, the antenna element occupies only a very small area, and the film antenna 21 has flexibility, so the degree of freedom of arrangement is increased, and the entire electronic device is miniaturized. Can be
  • the field effect transistor 16 and the notch filter 17 shown in FIG. 9 may be mounted on the flexible wiring board 20.
  • the distance from the antenna element to the field effect transistor 16 and the notch filter 17 can be shortened, and the change in impedance from the antenna element to the notch filter 17 can be reduced.
  • the difference between the removal frequency of the interference wave band and the removal frequency of the notch filter 17 caused by the ⁇ / 2 resonance on the second antenna conductor 13 and the third antenna conductor 14 becomes extremely small.
  • the flexible wiring board 20 is a flex-rigid wiring board, in which only the part where the field effect transistor 16 and the notch filter 17 are mounted is a rigid substrate.
  • the present invention can improve the reception quality S in an electronic device provided with a plurality of antenna devices, and is useful for an electronic device such as a mobile phone.

Abstract

 複数のアンテナ装置を備えた電子機器において、受信品質を向上させる。その為に本発明の電子機器(7)における第1アンテナ装置(8)は、グランド形成体(10)と、グランド形成体(10)に設けられた給電部(11)と、給電部(11)に一端が接続された第1アンテナ導体(12)と、第1アンテナ導体(12)の他端に分岐接続された第2アンテナ導体(13)と第3アンテナ導体(14)とを有し、第1アンテナ導体(12)の長さと第2アンテナ導体(13)の長さとの和が第1周波数帯の信号の波長の略(1/4+n/2)倍であると共に、第2アンテナ導体(13)の長さと第3アンテナ導体(14)の長さとの和が第2周波数帯の信号の波長の略(1/2+m/2)倍である。

Description

明 細 書
アンテナ装置と、これを用いた電子機器
技術分野
[0001] 本発明は、アンテナ装置と、これを用いた電子機器に関するものである。
背景技術
[0002] 以下、従来の移動体通信端末などの電子機器について、図 17を用いて説明する。
図 17において、従来の電子機器 1は、第 1周波数帯を用いて通信する第 1アンテナ 装置 2と、第 1周波数帯と異なる第 2周波数帯を用いて通信する第 2アンテナ装置 3と を備える。そして、第 1アンテナ装置 2と第 2アンテナ装置 3は、グランド形成体 4に形 成されると共に、各周波数帯の信号のアンテナ導体上での波長の略 1/4である長さ を有するアンテナ導体 5、 6をそれぞれ備える。
[0003] なお、この発明に関連する先行技術文献情報としては、例えば、特許文献 1が知ら れている。
[0004] しかしながら、近年、電子機器 1は小型化され、第 1アンテナ装置 2と第 2アンテナ装 置 3とは非常に近接したものとなっている。これにより、アンテナ導体 5、 6同士のアイ ソレーシヨンが低下し、受信品質が劣化するという問題があった。
特許文献 1 :特開平 11 261363号公報
発明の開示
[0005] 本発明は、複数のアンテナ装置を備えた電子機器において、受信品質を向上させ るものである。
[0006] その為に本発明の電子機器は、第 1周波数帯を用いて通信する第 1アンテナ装置 と、第 1周波数帯と異なる第 2周波数帯を用いて通信する第 2アンテナ装置とを備え、 第 1アンテナ装置は、グランド形成体と、このグランド形成体に設けられた給電部と、 この給電部に一端が接続された第 1アンテナ導体と、この第 1アンテナ導体の他端に 分岐接続された第 2アンテナ導体と第 3アンテナ導体とを有し、第 1アンテナ導体の 長さと第 2アンテナ導体の長さとの和が第 1周波数帯の信号のアンテナ導体上での 波長の略(l/4 + n/2)倍 (nは 0以上の整数)であると共に、第 2アンテナ導体の長 さと第 3アンテナ導体の長さとの和が第 2周波数帯の信号のアンテナ導体上での波 長の略(l/2 + m/2)倍 (mは 0以上の整数)である。
[0007] 上記第 1アンテナ装置における第 2アンテナ導体と第 3アンテナ導体とからなる導体 において、第 2周波数帯の (m+ 1) λ /2共振が起こる。この為、この共振電流はグ ランド形成体にはほとんど流れず、第 2アンテナ導体と第 3アンテナ導体のみに大半 の電流が分布する。このとき、これらのアンテナ導体をメアンダ形状等に小型化すると 、アンテナ導体における放射抵抗が低下し、損失抵抗の影響が大きくなる。その結果 、第 1アンテナ装置において、妨害波帯域である第 2周波数帯の受信電力を減衰す ることが可能となり、第 1アンテナ装置における受信品質を向上させることができる。 図面の簡単な説明
[0008] [図 1]図 1は、本発明の実施の形態 1における電子機器の概略図である。
[図 2]図 2は、同実施の形態 1における電子機器の斜視図である。
[図 3]図 3は、同実施の形態 1における電子機器の他の概略図である。
[図 4]図 4は、同実施の形態 1におけるスミスチャートである。
[図 5]図 5は、同実施の形態 1における電子機器の他の概略図である。
[図 6]図 6は、同実施の形態 1におけるスミスチャートである。
[図 7]図 7は、同実施の形態 1における電子機器の他の概略図である。
[図 8]図 8は、同実施の形態 1におけるスミスチャートである。
[図 9]図 9は、同実施の形態 1における電子機器の回路図である。
[図 10]図 10は、同実施の形態 1における他の電子機器の斜視図である。
[図 11]図 11は、同実施の形態 1における他の電子機器の斜視図である。
[図 12]図 12は、同実施の形態 1におけるアンテナ導体の斜視図である。
[図 13]図 13は、同実施の形態 1におけるアンテナ導体の他の斜視図である。
[図 14]図 14は、同実施の形態 1における電子機器の他の斜視図である。
[図 15]図 15は、同実施の形態 1における電子機器の他の斜視図である。
[図 16]図 16は、同実施の形態 1におけるアンテナ導体の他の斜視図である。
[図 17]図 17は、従来の電子機器の概略図である。
符号の説明 [0009] 7 電子機器
8 第 1アンテナ装置
9 第 2アンテナ装置
10 グランド形成体
11 給電部
12 第 1アンテナ導体
13 第 2アンテナ導体
14 第 3アンテナ導体
15 第 4アンテナ導体
16 電界効果トランジスタ
17 ノッチフィルタ
19 固定部材
20 誘電体フィルム
21 フレキシブル配線板
発明を実施するための最良の形態
[0010] (実施の形態 1)
以下、本発明の実施の形態 1について、図面を用いて説明する。図 1は、実施の形 態 1における電子機器の概略図である。図 2は、実施の形態 1における電子機器の斜 視図である。図 1において、電子機器 7は、第 1周波数帯を用いて通信する第 1通信 部である第 1アンテナ装置 8と、第 1周波数帯と異なる第 2周波数帯を用いて通信す る第 2通信部である第 2アンテナ装置 9とを備える。
[0011] そして、第 1アンテナ装置 8は、グランド形成体 10と、このグランド形成体 10に設け られた給電部 11と、この給電部 11に一端が接続された第 1アンテナ導体 12と、この 第 1アンテナ導体 12の他端に分岐接続された第 2アンテナ導体 13と第 3アンテナ導 体 14とを有する。また、第 1アンテナ導体 12の長さと第 2アンテナ導体 13の長さとの 和が第 1周波数帯の信号のアンテナ導体上での波長、すなわちアンテナ導体周辺 の部材ゃグランド形成体などの影響による波長短縮後の波長の略 1/4である。それ と共に、第 2アンテナ導体 13の長さと第 3アンテナ導体 14の長さとの和が第 2周波数 帯の信号のアンテナ導体上での波長の略 1/2である。尚、第 2アンテナ装置 9は、 第 2周波数帯の信号のアンテナ導体上での波長の略 1/4の長さの第 4アンテナ導 体 15を有する。
[0012] そして、図 2に示す様に、第 2アンテナ導体 13又は第 3アンテナ導体 14の少なくと も一部がメアンダ状又はヘリカル状又はスパイラル状又はジグザグ形状である。即ち 、第 1アンテナ導体 12の給電点端から第 3アンテナ導体 14の先端までの距離が、第 2周波数帯の信号のアンテナ導体上での波長の 1/2倍の長さよりも短い。
[0013] ここで例えば、第 1周波数帯が 470MHzから 750MHz、第 2周波数帯が 824MHz 力も 839MHzとなる場合において、上記の構成を考える。図 3の矢印により示される 、第 1アンテナ導体 12を含めたアンテナ導体を見込んだインピーダンスのスミスチヤ ート上での 100MHzから 1GHzまでの周波数での軌跡を図 4に示す。また、図 4にお いて、 F470、 F750、 Fresl、 Fantilはそれぞれ、 470MHz、 750MHz、 700MH z、 839MHzの周波数を示す。第 1周波数帯の途中に λ /4共振点、つまりインピー ダンスが容量性力 誘導性に変化する点 Freslが存在し、第 2周波数帯内に λ /2 共振点、つまりインピーダンスが誘導性から容量性に変化する点 Fantilが存在する 。この時、第 2周波数帯付近ではえ /2共振でありアンテナ導体を見込んだインピー ダンスが非常に大きくなる。そのため、この共振電流はグランド形成体にはほとんど流 れず、アンテナ導体のみに大半の電流が分布する。
[0014] また、このアンテナ導体を構成する第 1アンテナ導体 12、第 2アンテナ導体 13、第
3アンテナ導体 14がメアンダ形状等であるため、アンテナ導体 12、 13、 14における 放射抵抗が低下し、損失抵抗の影響が大きくなる。その結果、第 1アンテナ装置 8に おいて、妨害波帯域である第 2周波数帯の受信電力を減衰させることが可能となり、 第 1アンテナ装置 8における受信品質を向上させることができる。尚、このような放射 抵抗の低下による受信電力の減衰は、 Fantil付近の周波数において連続的に起こ つている。つまり、 Fantilが第 2周波数帯の外にあったとしても第 2周波数帯におい てある程度の減衰量を得ることができる。
[0015] また、図 5の矢印により示される、第 1アンテナ導体 12を含まないアンテナ導体を見 込んだインピーダンスのスミスチャート上での 100MHzから 1GHzまでの周波数での 軌跡を図 6に示す。図 6において、 Fres2、 Fanti2はそれぞれ、 720MHz、 885MH zの周波数を示す。図 5の矢印により示される位置からのアンテナ導体を見込んだ場 合のインピーダンスは、図 6のように、第 1アンテナ導体 12の長さの分だけ、 Freslお よび Fantilが図 4に示した位置からシフトする。そして、 Fres2において λ /4共振 1S Fanti2において λ /2共振がおこる。
[0016] つまり、妨害波帯域における最も減衰させたい周波数が Fantilである場合、 Fanti 1よりも第 1アンテナ導体 12の長さを考慮した分だけ高い周波数 (Fanti2)に合わせ て、第 2アンテナ導体 13と第 3アンテナ導体 14の長さを決定することにより、減衰周 波数を Fantilに調整することが可能となる。この第 1アンテナ導体 12はグランド形成 体の基板上に実装され給電に使用される板ばねゃポゴピンなどを含んでいても良い
[0017] ここで、図 1において第 3アンテナ導体 14がない場合を考える。図 7に図 1から第 3 アンテナ導体 14を省いた図を、図 8にその時のスミスチャート上での給電点からアン テナ側を見込んだインピーダンスの 100MHzから 1GHzまでの周波数での軌跡を示 す。ここで、図 8にて示されるように、 Fres lはえ /4共振点から約 4MHz、 Fantilは λ /2共振点から約 12MHz、図 4の位置からそれぞれシフトしている。このこと力、ら、 所望波帯域である第 1周波数帯における周波数シフトよりも、妨害波帯域である第 2 周波数帯の周波数シフトの方が大きぐ第 3アンテナ導体 14の長さは λ /2共振周 波数に大きく影響することがわかる。
[0018] したがって、第 3アンテナ導体 14の長さを変化させることにより、 λ /2共振となる減 衰帯域を所望波帯域力も独立して調整することができる。尚、第 1アンテナ装置 8は 第 1周波数帯の信号のアンテナ導体上での波長が第 2周波数帯の信号のアンテナ 導体上での波長の略 2k (kは 1以上の整数)倍の長さである時、第 3アンテナ導体 14 の長さは 0であっても良い。この場合、第 1アンテナ装置 8は、第 1アンテナ導体 12と 第 2アンテナ導体 13とを用いて、第 1周波数帯において(2n+ l)ぇ/4 (1は0以上 の整数)共振し、第 2アンテナ導体 13を用いて、第 2周波数帯において、(m+ 1) λ /2 (mは 0以上の整数)共振する構成となり、上記と同様の効果を得ることができる。 [0019] また、第 1アンテナ装置 8は、第 1アンテナ導体 12と第 2アンテナ導体 13とを用いて 、第 1周波数帯において(2η + 1 ) λ /4 (ηは 0以上の整数)共振し、第 2アンテナ導 体 13と第 3アンテナ導体 14とを用いて、第 2周波数帯において、(m+ 1 ) /2 (m は 0以上の整数)共振する構成であっても良い。即ち、第 1アンテナ導体 12の長さと 第 2アンテナ導体 13の長さとの和が第 1周波数帯の信号のアンテナ導体上での波長 の略(l/4 + n/2)倍であると共に、第 2アンテナ導体 13の長さと第 3アンテナ導体 14の長さとの和が第 2周波数帯の信号のアンテナ導体上での波長の略(l/2 + m Z 2)倍であっても、上記と同様の効果を得ることができる。
[0020] ただし、電子機器 7を例えば携帯電話に搭載させる場合、小型化のため、 n = 0とす るのが望ましい。また、このように電子機器 7を携帯電話に搭載させる場合において、 第 2周波数帯における所望波の帯域をデジタルテレビ帯域と考えると、想定される妨 害波はセルラー通信用帯域となるため、 mの値はセルラー帯域の存在する m≤ 2と するのが望ましい。なお、第 1アンテナ導体 12の長さと第 2アンテナ導体 13の長さと の和及び第 2アンテナ導体 13の長さと第 3アンテナ導体 14の長さとの和は、それぞ れ厳密に第 1周波数帯の信号のアンテナ導体上での波長の(l/4 + n/2)倍及び 第 2周波数帯の信号のアンテナ導体上での波長の(l/2 + m/2)倍でなくともよい 。すなわち、それぞれ第 1周波数帯の信号のアンテナ導体上での波長の(l/4 + n /2)倍及び第 2周波数帯の信号のアンテナ導体上での波長の(l/2 + m/2)倍の 長さの前後 15%ほどの範囲であれば、第 2周波数帯の受信電力を減衰することが可 能であり、上記と同等の効果を得ることができる。
[0021] また、第 1アンテナ装置 8は、第 1アンテナ導体 12と第 3アンテナ導体 14とを用いて 、妨害波帯域である第 2周波数帯の受信電力を減衰しても良い。即ち、第 1アンテナ 導体 12の長さと第 3アンテナ導体 14の長さとの和が第 2周波数帯の信号のアンテナ 導体上での波長の略(l/2 + m/2)倍 (mは 0以上の整数)であっても、上記と同様 の効果を得ることができる。この場合、第 1アンテナ導体 12又は第 3アンテナ導体 14 の少なくとも一部がメアンダ状又はヘリカル状又はジグザグ形状である。即ち、給電 部 1 1から第 3アンテナ導体 14の先端までの距離が、第 2周波数帯の信号のアンテナ 導体上での波長の (m+ 1 ) /2倍の長さよりも短!/、構成となる。 [0022] また、図 9に示す様に、電子機器 7は、給電部 11にゲート Gが接続されると共にソー ス接地型又はドレイン接地型の電界効果トランジスタ 16と、給電部 11と電界効果トラ ンジスタ 16との間にシャントに接地接続されると共に第二周波数帯の信号を減衰さ せるノッチフィルタ 17とを有することが望ましい。これにより、妨害波帯域である第 2周 波数帯において、給電部 11から見たアンテナ導体 12、 13、 14の入力インピーダン スは大きぐさらにソース接地型又はドレイン接地型の電界効果トランジスタ 16の入力 インピーダンスも大きい。さらにまた、給電部 11と電界効果トランジスタ 16との間に接 続されたノッチフィルタ 17のインピーダンスが小さいことにより、アンテナ導体 12、 13 、 14とノッチフィルタ 17間、及びノッチフィルタ 17と電界効果トランジスタ 16間に大き なインピーダンスの差が生じる。その結果、ノッチフィルタ 17の妨害帯域除去効果に 加えて、大きなフィルタ効果を得ること力 Sできる。また、電界効果トランジスタ 16の代わ りにコレクタ接地型のトランジスタ(図示せず)を用いても同様の効果が得られる。
[0023] さらにまた、図 10に示す様に、電界効果トランジスタ 16とノッチフィルタ 17とがアン テナ導体 12、 13、 14とグランド形成体 10との間に配置されていることが望ましい。例 導体 12、 13、 14が形成される固定部材 19の側面に実装することにより、電子機器 7 の小型化を実現する。また、電子機器 7のアンテナ性能はグランド形成体 10とアンテ ナ導体 12、 13、 14の位置関係により主に決定される。そこで、アンテナ導体 12、 13 、 14よりグランド形成体 10に近接する面にモジュール 18を実装することにより、アン テナ性能への影響を低減しつつ、電子機器 7を小型化することができる。なお、ダラ ンド形成体 10上にはモジュール 18を駆動するための電源端子 31を備えている。
[0024] また、図 11に示す様に、グランド形成体 10から第 2アンテナ導体 13の最遠点まで の距離 D1と、グランド形成体 10から第 3アンテナ導体 14の最遠点までの距離 D2と、 第 1アンテナ導体 12の長さと第 2アンテナ導体 13の長さとの和の略 4倍の長さ λ 1と 、第 1アンテナ導体 12の長さと第 3アンテナ導体 14の長さとの和の略 4倍の長さ λ 2 との関係が、 D1/ 1≥D2/ 2の条件を満たすことが望ましい。この構成により、 第 3アンテナ導体 14とグランドが近接することになる。これにより、第 1アンテナ導体 1 2及び第 3アンテナ導体 14の長さの略 4倍の波長の信号が有する周波数帯における 放射効率が低下する。その結果、給電部 11に接続される回路に悪影響を及ぼす不 要波を低減することができる。
[0025] さらに、図 12に示す様に、第 3アンテナ導体 14の幅が不均一であっても良い。例え ば、第 3アンテナ導体 14をテーパ状にすることにより、第 2周波数帯において様々な 波長で共振することとなる。これにより、妨害除去帯域である第 2周波数帯を広く取る ことができ、安定した通信が可能になる。
[0026] さらにまた、図 13に示す様に、第 2アンテナ導体 13の主偏波方向と第 3アンテナ導 体 14の主偏波方向とが互いに略直交しても良い。この構成により、第 2アンテナ導体 13と第 3アンテナ導体 14上の電流の進行方向が直交し、互いの電磁的結合が弱ま る。その結果、第 1周波数帯及び第 2周波数帯の周波数を調整する際、第 2アンテナ 導体 13と第 3アンテナ導体の設計独立性を高めることができ、調整が容易になる。
[0027] また、第 1アンテナ導体 12、第 2アンテナ導体 13、及び第 3アンテナ導体 14を固定 する固定部材 19が誘電体と磁性体の少なくとも一つの材料を含むことが望ましい。 誘電体および磁性体等は損失材料である。その結果、図 14に示す様に、妨害波帯 域 (第 2周波数帯)においては領域 32内に電流が集中し、主にアンテナ導体のみか らの放射となるため、損失材料の損失成分が顕著に影響する。これにより、妨害波帯 域の放射効率が低下する。一方、所望波帯域 (第 1周波数帯)において、電流分布 は給電部 11で腹となる。そのため、図 15に示す様に、所望波帯域 (第 1周波数帯) においては領域 33内に電流が集中し、グランド形成体 10への電流の流入が大きく グランド形成体 10からの放射が支配的となる。よって、固定部材 19の損失材料の影 響は小さぐ所望波帯域での放射効率低下を極めて小さく抑えることができる。
[0028] また、図 16に示す様に、第 1アンテナ導体 12、第 2アンテナ導体 13、及び第 3アン テナ導体 14を含むアンテナ素子力 S、誘電体フィルムの片面に導体を印刷することに より形成されたフレキシブル配線板 20よりなるフィルムアンテナ 21であっても良い。こ のフィルムアンテナ 21の導体の厚さは通常 1 m以上 30 m以下であり、板金加工 により形成される通常 200 m程度の厚さのアンテナ導体に比べ、薄!/、ものである。 すなわち、フィルムアンテナ 21の断面積は板金アンテナよりも小さいため、フィルムァ ンテナ 21は板金アンテナに比べ、導体抵抗が大きぐ導電率は 1桁程度低下する。 したがって、図 14に示す様に、アンテナ導体の導体抵抗が顕著に影響する妨害波 帯域 (第 2周波数帯)においては、アンテナの放射効率を低下させることが可能となる
[0029] 一方、所望波帯域 (第 1周波数帯)において、電流分布は給電部 11で腹となるため 、図 15に示す様に、グランド形成体 10への電流の流入が大きくグランド形成体 10か らの放射が支配的となる。すなわち、所望波帯域 (第 1周波数帯)においてはアンテ ナ導体の導体抵抗の影響は小さいものであり、導体抵抗の大きいフィルムアンテナ 2 1を用いたとしても、所望波帯域における放射効率の低下は極めて小さいものである 。また、このようなフィルムアンテナ 21を使用することによりアンテナ素子は極めて小 さな領域しか占有せず、さらにフィルムアンテナ 21は柔軟性を有するため、配置の自 由度が増し、電子機器全体を小型化することができる。
[0030] さらに、図 9に示す電界効果トランジスタ 16とノッチフィルタ 17はフレキシブル配線 板 20上に実装されていても良い。これにより、アンテナ素子から電界効果トランジスタ 16、及びノッチフィルタ 17までの距離を短くすることができ、アンテナ素子からノッチ フィルタ 17にかけてのインピーダンスの変化を小さくすることができる。その結果、第 2アンテナ導体 13、及び第 3アンテナ導体 14上で λ /2共振することにより起こる妨 害波帯域の除去周波数とノッチフィルタ 17の除去周波数のずれが極めて小さくなる 。これにより、妨害波帯域である第 2周波数帯の受信電力を効率よく減衰させることが 可能となり、第 1アンテナ装置 8における受信品質を向上させることができる。
[0031] 尚、前記フレキシブル配線板 20は電界効果トランジスタ 16とノッチフィルタ 17が実 装される部位のみリジッド基板となる、フレックスリジッド配線板であっても同様の効果 が得られる。
産業上の利用可能性
[0032] 本発明は、複数のアンテナ装置を備えた電子機器において、受信品質を向上させ ること力 Sでき、携帯電話等の電子機器に有用である。

Claims

請求の範囲
[1] 第 1周波数帯を用いて受信又は送信する第 1通信部と、
前記第 1周波数帯と異なる第 2周波数帯を用いて受信又は送信する第 2通信部とを 備え、
前記第 1通信部は、
グランド形成体と、
前記グランド形成体に設けられた給電部と、
前記給電部に一端が接続された第 1アンテナ導体と前記第 1アンテナ導体の他端に 分岐接続された第 2アンテナ導体及び第 3アンテナ導体からなるアンテナとを有し、 nと mを 0以上の整数とするとき、
前記第 1アンテナ導体の長さと前記第 2アンテナ導体の長さとの和が前記第 1周波数 帯の信号のアンテナ導体上での波長の略(l/4 + n/2)倍であると共に、 前記第 2アンテナ導体の長さと前記第 3アンテナ導体の長さとの和が前記第 2周波数 帯の信号のアンテナ導体上での波長の略(l/2 + m/2)倍である電子機器。
[2] 前記第 2アンテナ導体の先端から前記第 3アンテナ導体の先端までの距離が、前記 第 2周波数帯の信号のアンテナ導体上での波長の(m+ 1) /2倍の長さよりも短レ、、 請求項 1に記載の電子機器。
[3] 前記第 2アンテナ導体又は前記第 3アンテナ導体の少なくとも一部がメアンダ状又は ヘリカル状又はジグザグ形状に形成された、請求項 1に記載の電子機器。
[4] 第 1周波数帯を用いて通信する第 1アンテナ装置と、
前記第 1周波数帯と異なる第 2周波数帯を用いて通信する第 2アンテナ装置とを備え 前記第 1アンテナ装置は、
グランド形成体と、
前記グランド形成体に設けられた給電部と、
前記給電部に一端が接続された第 1アンテナ導体と、
前記第 1アンテナ導体の他端に分岐接続された第 2アンテナ導体と第 3アンテナ導 体とを有し、 nと mを 0以上の整数とするとき、
前記第 1アンテナ導体の長さと前記第 2アンテナ導体の長さとの和が前記第 1周波数 帯の信号のアンテナ導体上での波長の略(l/4 + n/2)倍であると共に、前記第 1 アンテナ導体の長さと前記第 3アンテナ導体の長さとの和が前記第 2周波数帯の信 号のアンテナ導体上での波長の略(l/2 + m/2)倍である電子機器。
[5] 前記給電部から前記第 3アンテナ導体の先端までの距離が、前記第 2周波数帯の信 号のアンテナ導体上での波長の(m+ 1) /2倍の長さよりも短い、請求項 4に記載の 電子機器。
[6] 前記第 1アンテナ導体又は前記第 3アンテナ導体の少なくとも一部がメアンダ状又は ヘリカル状又はスパイラル状又はジグザグ形状に形成された、請求項 4に記載の電 子機器。
[7] 前記給電部にゲートが接続された電界効果トランジスタと、
前記給電部と前記電界効果トランジスタとの間にシャントに接地接続されると共に、 前記第二周波数帯の信号を減衰させるノッチフィルタを有する、請求項 1又は請求項
4に記載の電子機器。
[8] 前記給電部にベースが接続されたコレクタ接地型トランジスタと、
前記給電部と前記コレクタ接地型トランジスタとの間にシャントに接地接続されると共 に、
前記第二周波数帯の信号を減衰させるノッチフィルタを有する、請求項 1又は請求項 4に記載の電子機器。
[9] 前記電界効果トランジスタ又は前記コレクタ接地型トランジスタと前記ノッチフィルタと が前記第 1、第 2、第 3アンテナ導体と前記グランド形成体との間に配置された、請求 項 7に記載の電子機器。
[10] 前記電界効果トランジスタ又は前記コレクタ接地型トランジスタと前記ノッチフィルタと が前記第 1、第 2、第 3アンテナ導体よりグランド形成体に近接した、請求項 9に記載 の電子機器。
[11] 前記グランド形成体から前記第 2アンテナ導体の最遠点までの距離 D1と、前記ダラ ンド形成体から前記第 3アンテナ導体の最遠点までの距離 D2と、前記第 1アンテナ 導体の長さと前記第 2アンテナ導体の長さとの和の略 4倍の長さ λ 1と、前記第 1アン テナ導体の長さと前記第 3アンテナ導体の長さとの和の略 4倍の長さ λ 2との関係が
、 D1/ λ 1≥Ό2/ λ 2の条件を満たす、請求項 1に記載の電子機器。
[12] 前記第 3アンテナ導体の幅が不均一である、請求項 1に記載の電子機器。
[13] 前記第 2アンテナ導体の主偏波方向と前記第 3アンテナ導体の主偏波方向とが互い に略直交する、請求項 1に記載の電子機器。
[14] 前記第 1、第 2、第 3アンテナ導体を固定する固定部材が誘電体と磁性体の少なくと も一つの材料を含む、請求項 1に記載の電子機器。
[15] 前記第 1、第 2、第 3アンテナ導体を含むアンテナ素子が、誘電体フィルムの片面に 導体を印刷することにより形成されたフレキシブル配線板よりなる、請求項 1に記載の 電子機器。
[16] 前記電界効果トランジスタ又は前記コレクタ接地型トランジスタと前記ノッチフィルタと が前記フレキシブル配線板上に実装された、請求項 7に記載の電子機器。
[17] グランド形成体と、
前記グランド形成体に設けられた給電部と、
前記給電部に一端が接続された第 1アンテナ導体と、
前記第 1アンテナ導体の他端に分岐接続された第 2アンテナ導体と第 3アンテナ導 体とを有し、
ηと mを 0以上の整数とするとき、
前記第 1アンテナ導体の長さと前記第 2アンテナ導体の長さとの和が前記第 1周波数 帯の信号のアンテナ導体上での波長の略(l/4 + n/2)倍であると共に、前記第 2 アンテナ導体の長さと前記第 3アンテナ導体の長さとの和が前記第 2周波数帯の信 号のアンテナ導体上での波長の略(l/2 + m/2)倍である、アンテナ装置。
[18] グランド形成体と、
前記グランド形成体に設けられた給電部と、
前記給電部に一端が接続された第 1アンテナ導体と、
前記第 1アンテナ導体の他端に分岐接続された第 2アンテナ導体と第 3アンテナ導 体とを有し、 nと mを 0以上の整数とするとき、
前記第 1アンテナ導体の長さと前記第 2アンテナ導体の長さとの和が前記第 1周波数 帯の信号のアンテナ導体上での波長の略(l/4 + n/2)倍であると共に、前記第 1 アンテナ導体の長さと前記第 3アンテナ導体の長さとの和が前記第 2周波数帯の信 号のアンテナ導体上での波長の略(l/2 + m/2)倍である、アンテナ装置。
PCT/JP2007/073290 2006-12-04 2007-12-03 アンテナ装置と、これを用いた電子機器 WO2008069165A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07832917A EP2081250A4 (en) 2006-12-04 2007-12-03 ANTENNA DEVICE AND ELECTRONIC APPARATUS USING THE SAME
US12/516,616 US20100066615A1 (en) 2006-12-04 2007-12-03 Antenna device and electronic apparatus using the same
CN2007800448425A CN101548428B (zh) 2006-12-04 2007-12-03 天线装置和采用该天线装置的电子设备
JP2008548271A JP4692635B2 (ja) 2006-12-04 2007-12-03 アンテナ装置と、これを用いた電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006326599 2006-12-04
JP2006-326599 2006-12-04

Publications (1)

Publication Number Publication Date
WO2008069165A1 true WO2008069165A1 (ja) 2008-06-12

Family

ID=39492054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073290 WO2008069165A1 (ja) 2006-12-04 2007-12-03 アンテナ装置と、これを用いた電子機器

Country Status (5)

Country Link
US (1) US20100066615A1 (ja)
EP (1) EP2081250A4 (ja)
JP (1) JP4692635B2 (ja)
CN (1) CN101548428B (ja)
WO (1) WO2008069165A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199204A (ja) * 2007-02-09 2008-08-28 Fujikura Ltd アンテナおよびこのアンテナを搭載した無線通信装置
JP2011077715A (ja) * 2009-09-29 2011-04-14 Tdk Corp アンテナ及び通信装置
JP2012514387A (ja) * 2008-12-24 2012-06-21 ホリンワース ファンド,エル.エル.シー. Rfフロントエンドモジュールおよびアンテナシステム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9948348B2 (en) * 2010-05-26 2018-04-17 Skyworks Solutions, Inc. High isolation switch with notch filter
WO2014111975A1 (ja) * 2013-01-18 2014-07-24 三菱マテリアル株式会社 アンテナ装置
JP6339319B2 (ja) * 2013-04-16 2018-06-06 日本ピラー工業株式会社 マイクロストリップアンテナ及び携帯型端末
WO2014204494A1 (en) * 2013-06-21 2014-12-24 Laird Technologies, Inc. Multiband mimo vehicular antenna assemblies
JP2015023394A (ja) * 2013-07-18 2015-02-02 アルプス電気株式会社 無線モジュール
US20150097735A1 (en) * 2013-10-04 2015-04-09 Samsung Electro-Mechanics Co., Ltd. Antenna assembly and electronic device
JP6285482B2 (ja) * 2016-03-29 2018-02-28 株式会社フジクラ フィルムアンテナ及びアンテナ装置
KR102426308B1 (ko) * 2018-12-04 2022-07-28 삼성전기주식회사 인쇄회로기판 및 이를 포함하는 모듈

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261363A (ja) 1998-03-11 1999-09-24 Kenwood Corp ローパスフィルタ機能を備えた整合回路
JP2001345625A (ja) * 2000-06-05 2001-12-14 Sansei Denki Kk デュアルバンドアンテナの構成方法、およびデュアルバンドアンテナ
JP2002368535A (ja) * 2001-06-11 2002-12-20 Sony Corp 携帯無線端末装置
JP2003087043A (ja) * 2001-07-05 2003-03-20 Toshiba Corp アンテナ装置
JP2003298334A (ja) * 2002-04-01 2003-10-17 Sony Corp 誘電体アンテナ装置および誘電体アンテナ装置を有する電子機器
JP2004040596A (ja) * 2002-07-05 2004-02-05 Matsushita Electric Ind Co Ltd 携帯無線機用多周波アンテナ
JP2004304783A (ja) * 2003-03-20 2004-10-28 Hitachi Metals Ltd 表面実装型チップアンテナ及びアンテナ装置、並びにこれらを搭載した通信機器
JP2005020621A (ja) * 2003-06-27 2005-01-20 Tdk Corp 内蔵アンテナ装置
JP2006504308A (ja) * 2002-10-24 2006-02-02 ノキア コーポレイション 無線デバイスおよびアンテナ構造
JP3775795B1 (ja) * 2005-01-11 2006-05-17 株式会社東芝 無線装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10336057A (ja) * 1997-06-04 1998-12-18 Yokowo Co Ltd Am受信用アンテナブースタ
ES2267081T3 (es) * 1997-01-20 2007-03-01 Yokowo Co., Ltd. Circuito de antena.
JP3825146B2 (ja) * 1997-08-18 2006-09-20 ユニデン株式会社 複合アンテナ
US6259407B1 (en) * 1999-02-19 2001-07-10 Allen Tran Uniplanar dual strip antenna
WO1999043037A2 (en) * 1998-02-23 1999-08-26 Qualcomm Incorporated Uniplanar dual strip antenna
JP3828050B2 (ja) * 2002-06-14 2006-09-27 株式会社東芝 アンテナアレー及び無線装置
EP1460715A1 (en) * 2003-03-20 2004-09-22 Hitachi Metals, Ltd. Surface mount type chip antenna and communication equipment using the same
JP4297012B2 (ja) * 2003-12-10 2009-07-15 パナソニック株式会社 アンテナ
US7633446B2 (en) * 2006-02-22 2009-12-15 Mediatek Inc. Antenna apparatus and mobile communication device using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261363A (ja) 1998-03-11 1999-09-24 Kenwood Corp ローパスフィルタ機能を備えた整合回路
JP2001345625A (ja) * 2000-06-05 2001-12-14 Sansei Denki Kk デュアルバンドアンテナの構成方法、およびデュアルバンドアンテナ
JP2002368535A (ja) * 2001-06-11 2002-12-20 Sony Corp 携帯無線端末装置
JP2003087043A (ja) * 2001-07-05 2003-03-20 Toshiba Corp アンテナ装置
JP2003298334A (ja) * 2002-04-01 2003-10-17 Sony Corp 誘電体アンテナ装置および誘電体アンテナ装置を有する電子機器
JP2004040596A (ja) * 2002-07-05 2004-02-05 Matsushita Electric Ind Co Ltd 携帯無線機用多周波アンテナ
JP2006504308A (ja) * 2002-10-24 2006-02-02 ノキア コーポレイション 無線デバイスおよびアンテナ構造
JP2004304783A (ja) * 2003-03-20 2004-10-28 Hitachi Metals Ltd 表面実装型チップアンテナ及びアンテナ装置、並びにこれらを搭載した通信機器
JP2005020621A (ja) * 2003-06-27 2005-01-20 Tdk Corp 内蔵アンテナ装置
JP3775795B1 (ja) * 2005-01-11 2006-05-17 株式会社東芝 無線装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2081250A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199204A (ja) * 2007-02-09 2008-08-28 Fujikura Ltd アンテナおよびこのアンテナを搭載した無線通信装置
JP2012514387A (ja) * 2008-12-24 2012-06-21 ホリンワース ファンド,エル.エル.シー. Rfフロントエンドモジュールおよびアンテナシステム
JP2011077715A (ja) * 2009-09-29 2011-04-14 Tdk Corp アンテナ及び通信装置

Also Published As

Publication number Publication date
EP2081250A1 (en) 2009-07-22
US20100066615A1 (en) 2010-03-18
EP2081250A4 (en) 2013-01-02
CN101548428B (zh) 2013-01-16
JPWO2008069165A1 (ja) 2010-03-18
CN101548428A (zh) 2009-09-30
JP4692635B2 (ja) 2011-06-01

Similar Documents

Publication Publication Date Title
WO2008069165A1 (ja) アンテナ装置と、これを用いた電子機器
JP6465109B2 (ja) マルチアンテナ及びそれを備える無線装置
EP1248316B1 (en) Antenna and communication apparatus having the same
EP1315238B1 (en) Enhancing electrical isolation between two antennas of a radio device
KR100339788B1 (ko) 표면 실장형 안테나 및 이를 이용한 통신장치
US6218992B1 (en) Compact, broadband inverted-F antennas with conductive elements and wireless communicators incorporating same
US9077081B2 (en) Multi-antenna device and communication apparatus
US7382319B2 (en) Antenna structure and communication apparatus including the same
JP5874648B2 (ja) スロットアンテナ
KR101644908B1 (ko) 미모 안테나 장치
KR101714537B1 (ko) 미모 안테나 장치
KR20060042232A (ko) 역 에프 안테나
KR101018628B1 (ko) 다중 대역 안테나 장치 및 이를 이용한 통신 장치
CN114447583A (zh) 天线及电子设备
JP2011035519A (ja) アンテナ装置
CN107026313A (zh) 用于无线通信模块的天线
JP2012060380A (ja) アンテナ装置
WO2006123790A1 (ja) 放送用受信機付き携帯電話
JP3975843B2 (ja) 無線通信装置
CN114006166A (zh) 具有电容耦合馈电元件的多馈天线系统
JP4049185B2 (ja) 携帯無線機
CN112042057B (zh) 天线装置
WO2008117898A1 (en) Broad band antenna
JP4240953B2 (ja) チップアンテナ及び無線通信装置
JP4232626B2 (ja) アンテナ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044842.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548271

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007832917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12516616

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE