WO2008069061A1 - 有機薄膜トランジスタ及び有機薄膜発光トランジスタ - Google Patents

有機薄膜トランジスタ及び有機薄膜発光トランジスタ Download PDF

Info

Publication number
WO2008069061A1
WO2008069061A1 PCT/JP2007/072906 JP2007072906W WO2008069061A1 WO 2008069061 A1 WO2008069061 A1 WO 2008069061A1 JP 2007072906 W JP2007072906 W JP 2007072906W WO 2008069061 A1 WO2008069061 A1 WO 2008069061A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thin film
organic thin
film transistor
organic
Prior art date
Application number
PCT/JP2007/072906
Other languages
English (en)
French (fr)
Inventor
Masatoshi Saito
Yuki Nakano
Hiroaki Nakamura
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2008548237A priority Critical patent/JPWO2008069061A1/ja
Priority to US12/517,462 priority patent/US8207525B2/en
Publication of WO2008069061A1 publication Critical patent/WO2008069061A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/30Organic light-emitting transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • Organic thin film transistor and organic thin film light emitting transistor are organic thin film transistors and organic thin film light emitting transistors
  • the present invention relates to an organic thin film transistor and an organic thin film light emitting transistor having an organic semiconductor layer, and in particular, an organic thin film transistor including a compound having a high mobility and capable of high speed operation, and an organic film using the organic thin film transistor as a light emitting element.
  • the present invention relates to a thin film light emitting transistor.
  • a thin film transistor is widely used as a switching element for display in a liquid crystal display device or the like.
  • Figure 2 shows a typical TFT cross-sectional structure.
  • the TFT has a gate electrode and an insulator layer in this order on the substrate, and has a source electrode and a drain electrode formed on the insulator layer at a predetermined interval! /
  • a semiconductor layer is formed on the insulator layer that includes the partial surfaces of both electrodes and is exposed between the electrodes.
  • the semiconductor layer forms a channel region, and the on / off operation is performed by controlling the current flowing between the source electrode and the drain electrode by the voltage applied to the gate electrode.
  • this TFT has been manufactured using amorphous or polycrystalline silicon.
  • CVD devices used to manufacture TFTs using such silicon are very expensive and display devices using TFTs.
  • a large increase in manufacturing cost was accompanied by a large increase in manufacturing costs.
  • the process of depositing amorphous or polycrystalline silicon is performed at a very high temperature, so the types of materials that can be used as a substrate are limited, so that a lightweight resin substrate cannot be used. was there.
  • TFTs using organic substances instead of amorphous or polycrystalline silicon have been proposed! /.
  • Vacuum deposition and coating methods are known as film formation methods used when forming TFTs with organic materials.
  • these film formation methods can increase the size of the device while suppressing an increase in manufacturing costs. Therefore, the process temperature required for film formation can be made relatively low. For this reason, TFTs using organic substances are used for substrates.
  • Patent literature:! -20 etc. can be mentioned.
  • organic substances used in the organic compound layer of TFT include multimers such as conjugated polymers such as thiophenone (patent document;! To 5 etc.), metal phthalocyanine compounds (patent document 6 etc.), and condensation of pentacene.
  • Aromatic hydrocarbons Patent Documents 7 and 8, etc. are used in the form of simple substances or mixtures with other compounds.
  • n-type FET materials for example,
  • TNNQD 11,11,12,12-tetracyanonaphtho-2,6-quinodimethane
  • NCDI 1,4,5,8_naphthalenetetracarboxyldiimide
  • 10 discloses a fluorinated phthalocyanine! /.
  • Patent Document 12 discloses use of arylene-substituted aromatic compounds and organic semiconductors.
  • organic TFT elements can be fabricated by complicated processes, such as forming a semiconductor layer while heating after the monolayer treatment of the insulating layer!
  • the Non-Patent Document 19 has reach the phenylene vinylene polymer (poly Parafue two Renbinire emissions (PPV)), but electron mobility is described 10- 4 cm 2 / Vs and the small tool practical performance of Absent.
  • PPV which is a high molecular compound, has low field-effect mobility due to bending force due to the long main chain structure and disorder of the crystal structure due to molecular weight distribution.
  • an organic electorium luminescence (EL) element as a device that uses electric conduction in the same way.
  • An organic EL element is generally forced to apply a strong electric field of 10 V / cm or more in the direction of the thickness of an ultra-thin film of less than lOOnm.
  • organic TFTs it is necessary to flow charges at a high speed with an electric field of 10 5 V / cm or less in the case of organic TFTs, while organic TFTs require further conductivity. become.
  • the above-mentioned compound in the conventional organic TFT has a problem in high-speed response as a transistor with low field-effect mobility and low response speed. Also, the on / off ratio was small.
  • the on / off ratio mentioned here is the value obtained by dividing the current flowing between the source and drain when the gate voltage is applied (on) by the current flowing between the source and drain when the gate voltage is not applied (off).
  • on-current This is the current value (saturation current) when the gate voltage is increased and the current flowing between the source and drain is saturated.
  • Patent Document 1 JP-A-8-228034
  • Patent Document 2 JP-A-8-228035
  • Patent Document 3 Japanese Patent Laid-Open No. 9-232589
  • Patent Document 4 Japanese Patent Laid-Open No. 10-125924
  • Patent Document 5 Japanese Patent Laid-Open No. 10-190001
  • Patent Document 6 JP 2000-174277 A
  • Patent Document 7 Japanese Patent Laid-Open No. 5-55568
  • Patent Document 8 Japanese Patent Laid-Open No. 2001-94107
  • Patent Document 9 Japanese Patent Laid-Open No. 10-135481
  • Patent Document 10 JP-A-11-251601
  • Patent Document 11 JP-A-2005-142233
  • Patent Document 12 International Publication WO2006 / 113205
  • Non-patent literature 1 F. Ebisawa et al., Journal of Applied Physics, 54, 3255, 1983
  • Non-patent literature 2 A. Assadi et al., Applied Physics Letter, 53, 195, 1988
  • Non-patent document 3 G. Guillaud et al., Chemical Physics Letter, 167, 503, 1990
  • Non-patent document 4 X. Peng et al., Applied Physics Letter, 57, 2013, 1990
  • Non-Patent Document 5 G. Horowitz et al., Synthetic Metals, 41-43, 1127, 1991
  • Non-Patent Document 6 S. Miyauchi et al., Synthetic Metals, 41-43, 1991
  • Non-patent document 7 H. Fuchigami et al., Applied Physics Letter, 63, 1372, 1993
  • Non-patent document 8 Tsuji Koezuka et al., Applied Physics Letter, 62, 1794, 1993
  • Non-Patent Document 9 F. Gamier et al., Science, 265, 1684, 1994
  • Non-Patent Document 10 A. R. Brown et al., Synthetic Metals, 68, 65, 1994
  • Non-Patent Document 11 ⁇ Dodabalapur et al., Science, 268, 270, 1995
  • Non-Patent Document 12 T. Sumimoto et al., Synthetic Metals, 86, 2259, 1997
  • Non-Patent Document 13 Tsuji Kudo et al., Thin Solid Films, 331, 51, 1998
  • Non-Patent Document 14 Tsuji Kudo et al., Synthetic Metals, 102, 900, 1999
  • Non-Patent Document 15 Tsuji Kudo et al., Synthetic Metals, 111-112, 11 pages, 2000
  • Non-Patent Document 16 Advanced Materials Vol. 13, No. 16, 2001, p. 1273
  • Non-Patent Document 17 Advanced Materials Vol.15, No.6, 2003, p.478
  • Non-Patent Document 18 W. Geens et al., Synthetic Metals, 122, 191 pages, 2001
  • Non-Patent Document 19 Lay-Lay Chua et al., Nature, 434, March 10, 2005, p. 194
  • Non-Patent Document 20 Hong Meng et al., Journal of American Chemical Society, 128, 9304, 2
  • the present invention has been made to solve the above-mentioned problems, and has a high response speed (driving speed), a large force, and a large on / off ratio! /, And an organic thin film transistor using the same
  • An object is to provide an organic thin film light emitting transistor.
  • the present inventors use an organic compound having a structure represented by the following general formula (a) for the organic semiconductor layer of the organic thin film transistor. As a result, the present inventors have found that the response speed (drive speed) can be increased.
  • the present invention provides at least a gate electrode, a source electrode, and a drain electrode on a substrate.
  • the organic semiconductor layer has a structure represented by the following general formula ( a ).
  • An organic thin film transistor including an organic compound is provided.
  • A represents an oxygen atom, a sulfur atom, a selenium atom, an NH group which may have a substituent, a silane group which may have a substituent, or a methylene which may have a substituent.
  • B is a divalent aromatic hydrocarbon group having 6 to 60 carbon atoms or a divalent aromatic heterocyclic group having 1 to 60 carbon atoms, and R to R are each independently hydrogen. Atom, halogen atom, cyan group, carbon number
  • the present invention provides an organic thin film transistor that obtains light emission by utilizing a current flowing between a source and a drain in an organic thin film transistor and controls light emission by applying a voltage to a gate electrode. is there.
  • the organic thin film transistor of the present invention has an improved response speed (driving speed) and has a high performance as a transistor with a large on / off ratio, and is an organic thin film light emitting transistor capable of emitting light. Can also be used.
  • FIG. 1 is a diagram showing an example of an element configuration of an organic thin film transistor of the present invention.
  • FIG. 2 is a diagram showing an example of the element configuration of the organic thin film transistor of the present invention.
  • FIG. 3 is a diagram showing an example of the element structure of the organic thin film transistor of the present invention.
  • FIG. 4 is a diagram showing an example of the element structure of the organic thin film transistor of the present invention.
  • FIG. 5 is a diagram showing an example of the element structure of the organic thin film transistor of the present invention.
  • FIG. 6 is a diagram showing an example of the element structure of the organic thin film transistor of the present invention.
  • FIG. 7 is a diagram showing an example of an element configuration of an organic thin film transistor in an example of the present invention. is there.
  • FIG. 8 is a diagram showing an example of an element configuration of an organic thin film transistor in an example of the present invention.
  • FIG. 9 is a diagram showing an example of an element configuration of an organic thin film light emitting transistor in an example of the present invention.
  • the organic semiconductor layer is an organic thin film transistor containing an organic compound having a structure of the following general formula ⁇
  • A may have an oxygen atom, a sulfur atom, a selenium atom, or a substituent — may have an NH group, a substituent! /, A silane group, or a substituent. May be a group! /, A methylene group, preferably an oxygen atom or a sulfur atom.
  • B is a bivalent aromatic hydrocarbon group having 6 to 60 carbon atoms or a divalent aromatic heterocyclic group having 1 to 60 carbon atoms.
  • aromatic hydrocarbon group of B in the general formula (a) examples include benzene, naphthalene, anthracene, tetracene, pentacene, phenanthrene, thalene, triphenylene, coranulene, coronene, hexabenzotriphenylene. , Hexabenzocoronene, and sumanen.
  • aromatic heterocyclic group examples include pyridine, pyrazine, quinoline, naphthyridine, quinoxaline, phenazine, diazaanthracene, pyridoquinoline, pyrimidoquinazoline, virazinoquinoxaline, phenanthoracin, carbazole, 6, 12 dihydro Orchid, dibenzoselenophene, diselenindacene, diselenaindenoindene, dibenzosilole and the like.
  • A is preferably an oxygen atom or a sulfur atom.
  • B is preferably a group containing a benzene ring.
  • the structure in which the two olefin groups of the general formula (a) are substituted at positions symmetrical with respect to B—A—B is preferred.
  • the structure composed of ⁇ — ⁇ — and the olefin group takes a plane. It is more preferable that the ⁇ -electron system composed of B—A—B and the olefin group is lengthened. It is considered that having such a structure increases the planarity of the molecules and increases the interaction between the molecules, so that high performance can be obtained.
  • the main component is a one having a three-dimensional structure in which the conjugated main chain is arranged in trans.
  • R to R each independently represent a hydrogen atom, a halogen atom,
  • an alkoxyl group having 30 to 30 carbon atoms, a haloalkoxyl group having 1 to 30 carbon atoms, and an alkylthio group having 1 to 30 carbon atoms A haloalkylthio group having 1 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be bonded to each other to form a ring structure containing a nitrogen atom).
  • R to R each independently represent a hydrogen atom or a carbon number
  • R, R, R, and R are each independently a hydrogen atom or a fluorine atom.
  • a primary atom is preferable.
  • R to R and R to R are groups selected from the above, and the number of carbon atoms is 30 or less.
  • the ratio of the regularity control sites (R to R and R to R) in the general formula (a) increases.
  • R to R and R to R are each independently a hydrogen atom.
  • halogen atom a cyan group, an alkyl group having 1 to 30 carbon atoms, or a haloalkyl group having 1 to 30 carbon atoms.
  • the organic compound having a specific structure used in the organic thin film transistor of the present invention is basically bipolar indicating p-type (hole conduction) and n-type (electron conduction). In combination with the drain electrode, it can be driven as either a p-type element or an n-type element, but in the general formula (a), a group to be substituted on R to R, B and B is required.
  • the performance as p-type and n-type can be further enhanced. That is, using an electron-accepting group as a substituent on R to R, B and B
  • the minimum unoccupied orbit (LUMO) level can be lowered to function as an n-type semiconductor.
  • Preferred as an electron-accepting group are a hydrogen atom, a halogen atom, a cyano group, a haloalkyl group having 1 to 30 carbon atoms, a haloalkoxy group having 1 to 30 carbon atoms, a carbon number;!
  • an electron donating group as a substituent on R to R, B and B, the maximum
  • Preferred as an electron-donating group is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a carbon number;! To 30 alkoxyl groups, a carbon number;! To 30 alkylthio groups, and a carbon number;! To 30 An arolequinolemino group, a dialkylamino group having 2 to 60 carbon atoms (the alkyl groups may be bonded to each other to form a ring structure containing a nitrogen atom).
  • halogen atom examples include fluorine, chlorine, bromine and iodine atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexynole group, n-heptyl group, n-octyl group. Groups and the like.
  • haloalkyl group examples include a chloromethyl group, a 1-chloroethyl group, and a 2-alkyl group.
  • the alkoxyl group is a group represented by OX 1
  • examples of X 1 include the same examples as described for the alkyl group
  • the haloalkoxyl group is a group represented by OX 2
  • Examples of X 2 include the same examples as described for the haloalkyl group.
  • the alkylthio group is a group represented by SX 1 , and examples of X 1 include the same examples as those described for the alkyl group, and the haloalkylthio group is represented by SX 2. Examples of X 2 include the same examples as described for the haloalkyl group.
  • the alkylamino group is a group represented by —NHX 1
  • the dialkylamino group is a group represented by NX
  • X 1 and X 3 are examples similar to those described for the alkyl group, respectively. Is mentioned.
  • Examples of the ring structure in which the alkyl group of the dialkylamino group may be bonded to each other to form a ring structure containing a nitrogen atom include pyrrolidine, piperidine and the like.
  • the alkylsulfonyl group is a group represented by SO X 1 , and examples of X 1 include the same examples as those described above for the alkyl group, and the haloalkylsulfonyl group is —SO X 2 Examples of X 2 include the same examples as described for the haloalkyl group.
  • the aromatic hydrocarbon group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a fluorenyl group, a perylenyl group, and a pentacenyl group.
  • aromatic heterocyclic group examples include furanyl group, thiophdonyl group, pyrrolylyl group, pyrazolyl group, imidazolyl group, triazolyl group, tetrazolyl group, oxazolyl group, isoxazolyl group, thiazolyl group, thiadiazolyl group, pyridinyl group, Examples thereof include a pyrimigel group, a benzofuranyl group, a benzothiophenyl group, an indolinole group, a quinolinolinole group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group.
  • Substituents that may be further substituted with the groups represented by the general formula (a) include aromatic hydrocarbon groups, aromatic heterocyclic groups, alkyl groups, alkoxy groups, aralkyl groups, aryloxy groups. Group, arylthio group, alkoxycarbonyl group, amino group, halogen atom, cyano group, nitro group, hydroxyl group, carboxyl group and the like.
  • the compound used for the organic semiconductor layer of the organic thin film transistor of the present invention can be synthesized by various methods, and as a result, Organic Reactions Volume 14.3 (John Wiley & Sons, Inc.), Organic Reactions Volume 25.2 (John Wiley & Sons, Inc.) ⁇ Organic Reactions Volume 27.2 (John Wiley & Sons, Inc.), Organic Reactions Volume 50.1 (John Wiley & Sons, Inc.).
  • the three-dimensional structure of the olefin moiety is aligned with a single positional isomer using thermal reaction, photoreaction, addition reaction, etc. Can do.
  • Electronic devices such as transistors can be obtained with high field-effect mobility and high on / off ratio by using high-purity materials. Therefore, it is desirable to add purification by techniques such as column chromatography, recrystallization, distillation, and sublimation as necessary. Preferably, it is possible to improve the purity by repeatedly using these purification methods or by combining a plurality of methods. Furthermore, it is desirable to repeat sublimation purification at least twice as the final purification step. By using these methods, it is preferable to use a material having a purity of 90% or higher as measured by HPLC, more preferably 95% or higher, and particularly preferably 99% or higher. It is possible to increase the field effect mobility and on / off ratio of the resister and bring out the performance inherent in the material.
  • the organic thin film transistor of the present invention As an element configuration of the organic thin film transistor of the present invention, at least three terminals of a gate electrode, a source electrode and a drain electrode, an insulator layer and an organic semiconductor layer are provided on a substrate, and a voltage between the source and drain is applied to the gate electrode.
  • the thin film transistor is controlled by this, it is not limited and may have a known element structure.
  • FIGS. 1 to 4 elements A to D are shown in FIGS. 1 to 4 as typical element configurations of organic thin film transistors.
  • the organic thin film transistor of the present invention has a field effect transistor (FET) structure.
  • An organic thin film transistor has a predetermined distance from an organic semiconductor layer (organic compound layer), a source electrode and a drain electrode formed so as to face each other with a predetermined distance, and a source electrode and a drain electrode.
  • the distance between the source electrode and the drain electrode is determined depending on the use of the organic thin film transistor of the present invention, and is usually 0.1111 to 1111111, preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m. m to 100 ⁇ m.
  • the organic thin film transistor of the element B has a gate electrode and an insulator layer in this order on a substrate. On the layer In addition, a pair of a source electrode and a drain electrode formed at a predetermined interval are formed, and an organic semiconductor layer is formed thereon. The organic semiconductor layer forms a channel region, and the on / off operation is performed by controlling the current flowing between the source electrode and the drain electrode with the voltage applied to the gate electrode.
  • the substrate in the organic thin film transistor of the present invention plays a role of supporting the structure of the organic thin film transistor.
  • inorganic compounds such as metal oxides and nitrides, plastic films (PET, PES, PC) ), Metal substrates, or composites or stacks thereof can also be used.
  • PET, PES, PC plastic films
  • Metal substrates, or composites or stacks thereof can also be used.
  • a silicon (Si) wafer is often used as a substrate material.
  • Si itself can be used as a gate electrode / substrate. It is also possible to oxidize the Si surface to form SiO and use it as an insulating layer.
  • a metal layer such as Au may be deposited on the Si substrate serving as the substrate and gate electrode as an electrode for connecting the lead wire.
  • the material for the gate electrode, the source electrode, and the drain electrode is not particularly limited as long as it is a conductive material.
  • the source electrode and drain electrode are formed using a fluid electrode material such as a solution, paste, ink, or dispersion containing the above conductive material, in particular, a conductive polymer, Or the fluid electrode material containing the metal particle containing platinum, gold
  • the solvent or dispersion medium is preferably a solvent or dispersion medium containing water in an amount of 60% by mass or more, preferably 90% by mass or more, in order to suppress damage to the organic semiconductor.
  • the dispersion containing metal fine particles for example, a known conductive paste or the like may be used, but a dispersion containing metal fine particles usually having a particle size of 0.5 nm to 50 nm, lnm to; Preferably there is.
  • the material for the metal fine particles include platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony lead, tantalum, indium, palladium, tellurium, rhenium, iridium, aluminum, ruthenium, germanium, and molybdenum. , Tungsten, zinc, or the like can be used.
  • an electrode using a dispersion in which these metal fine particles are dispersed in water or a dispersion medium which is an arbitrary organic solvent using a dispersion stabilizer mainly composed of an organic material.
  • a method for producing such a dispersion of metal fine particles metal ions in the liquid phase such as a physical generation method such as gas evaporation method, sputtering method, metal vapor synthesis method, colloid method, and coprecipitation method are used.
  • a chemical production method in which metal fine particles are produced by reduction preferably, JP-A-11-76800, JP-A-11-80647, JP-A-11-319538, JP-A-11-319538
  • the electrode After forming the electrode using these metal fine particle dispersions and drying the solvent, it is shaped as necessary in the range of 100 ° C to 300 ° C, preferably 150 ° C to 200 ° C. By heating, the metal fine particles are thermally fused to form an electrode pattern having a desired shape.
  • a known conductive polymer whose conductivity has been improved by doping or the like as a material for the gate electrode, the source electrode, and the drain electrode.
  • conductive polyaniline, conductive polypyrrole, Conductive polythiophene (polyethylene dioxythiophene and polystyrene sulfonic acid complex, etc.), polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid complex, etc. are also preferably used. These materials can reduce the contact resistance between the source electrode and the organic semiconductor layer of the drain electrode.
  • the material for forming the source electrode and the drain electrode is preferably a material having a small electrical resistance at the contact surface with the organic semiconductor layer among the examples described above.
  • the electric resistance corresponds to the field-effect mobility when the current control device is manufactured.
  • the resistance should be as small as possible. This is generally determined by the magnitude relationship between the work function of the electrode material and the energy level of the organic semiconductor layer.
  • the work function (W) of the electrode material is a
  • the ionization potential of the organic semiconductor layer is (Ip) b
  • the electron affinity (Af) of the organic semiconductor layer is c
  • a, b, and c are all positive values based on the vacuum level.
  • b a ⁇ l.5 eV (formula (1)) is preferable, and b a ⁇ l.OeV is more preferable. If the above relationship can be maintained in relation to the organic semiconductor layer, the ability to obtain a high-performance device, especially the work function of the electrode material is preferred to be as large as possible. 4. Work function 4. OeV or higher The work function is more preferably 4.2 eV or more.
  • noble metals Al, Au, Cu, Pt
  • conductive polymers such as ITO, polyaniline and PEDOT: PSS and carbon are preferred. Even if the electrode material contains one or more of these high work function substances, there is no particular limitation as long as the work function satisfies the above formula (I).
  • ac is 1.5 eV (formula (II)), more preferably ac ⁇ l. OeV.
  • the work function of the electrode material is preferably as small as possible.
  • the work function is preferably 4.3 eV or less. More preferably, the work function is 3.7 eV or less.
  • low work function metal for example, it is effective to have a work function of 4.3 eV or less as described in Chemistry Handbook Fundamentals II, page 493 (revised 3rd edition, published by The Chemical Society of Japan, Maruzen Co., Ltd. 1983).
  • the electrode material Even if one or more of these low work function substances are included as the electrode material, there is no particular limitation as long as the work function satisfies the above formula (II).
  • low work function metals easily deteriorate when exposed to moisture and oxygen in the atmosphere. It is desirable to coat with a metal that is stable in the air.
  • the film thickness required for coating is 10 nm or more, and the power to protect from oxygen and water as the film thickness increases. For practical reasons, it is desirable to make it less than lum for reasons such as increasing productivity.
  • the electrode may be formed by means such as vapor deposition, electron beam vapor deposition, sputtering, atmospheric pressure plasma method, ion plating, chemical vapor deposition, electrodeposition, electroless plating, spin coating, printing or ink jet. Is done.
  • a conductive thin film formed by using the above method is formed by using a known photolithographic method or a lift-off method, or on a metal foil such as aluminum or copper.
  • a conductive polymer solution or dispersion, a dispersion containing metal fine particles, or the like may be directly patterned by an ink-jet method, and may be formed by lithography, laser ablation, or the like from a coating film.
  • a method of patterning a conductive ink or conductive paste containing a conductive polymer or metal fine particles by a printing method such as relief printing, intaglio printing, planographic printing or screen printing.
  • the thickness of the thus formed electrode is not particularly limited as long as the conduction of current, preferably 0. 2nm ⁇ 10 i um, more preferably in the range of 4Nm ⁇ 300nm. Within this preferred range, the thin film thickness does not cause a voltage drop due to an increase in resistance. In addition, since the film is not too thick, it does not take time to form the film, and when another layer such as a protective layer or an organic semiconductor layer is laminated, the laminated film can be made smoothly without causing a step.
  • a buffer layer may be provided between the organic semiconductor layer and the source and drain electrodes for the purpose of improving the injection efficiency.
  • the buffer layer is preferably a compound having an alkali metal or alkaline earth metal ion bond such as LiF, LiO, CsF, NaCO, KC1, MgF, and CaCO used for the cathode of organic EL. It is also possible to insert a compound used as an electron injection layer or electron transport layer in organic EL such as Alq.
  • cyan compounds such as FeCl, TCNQ, F—TCNQ, HAT, CFx, GeO, SiO, MoO, V O, VO, V O, MnO, Mn O, ZrO
  • Alkali metals such as WO, TiO, InO, ZnO, NiO, HfO, TaO, ReO, PbO
  • Metal oxides other than alkaline earth metals and inorganic compounds such as ZnS and ZnSe are desirable. In many cases, these oxides cause oxygen vacancies, which are suitable for hole injection.
  • amine compounds such as TPD and NPD, and compounds used as a hole injection layer and a hole transport layer in organic EL devices such as CuPc may be used. Further, those composed of two or more of the above compounds are desirable.
  • the power of the nofer layer is known to have the effect of lowering the threshold voltage by lowering the carrier injection barrier and driving the transistor at a low voltage. It has been found that there is an effect of improving mobility. This is because a carrier trap exists at the interface between the organic semiconductor and the insulator layer, and when carrier injection occurs when a gate voltage is applied, the first injected carrier inserts a 1S buffer layer used to fill the trap. This is because the trap is buried at a low voltage and the mobility is improved.
  • the buffer layer is required to be thin between the electrode and the organic semiconductor layer, and its thickness is 0.1 nm to 30 nm, preferably 0.3 nm to 20 nm.
  • the material of the insulator layer in the organic thin film transistor of the present invention is not particularly limited as long as it has an electrical insulating property and can be formed as a thin film.
  • Metal oxide including silicon oxide
  • metal nitride Materials having a resistivity of 10 ⁇ cm or more at room temperature, such as silicon nitride
  • polymers such as polymers, and small organic molecules
  • inorganic oxide films having a high relative dielectric constant are particularly preferable.
  • inorganic oxides include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, sodium zirconate titanate, lead zirconate titanate, lead lanthanum titanate, titanate Strontium, barium titanate, barium magnesium fluoride, lanthanum oxide, fluorine oxide, magnesium oxide, bismuth oxide, bismuth titanate, niobium oxide, strontium bismuth titanate, strontium bismuth tantalate, pentoxide Tantanole, bismuth tantalate niobate, yttrium trioxide, and combinations thereof, including silicon oxide, aluminum oxide, tantalum oxide, and titanium oxide are preferred.
  • Inorganic nitrides such as silicon nitride (SiN, SixNy (x, y> 0)), aluminum nitride, etc. It can be used suitably.
  • the insulator layer may be formed of a precursor containing an alkoxide metal.
  • a substrate is coated with a solution of the precursor, and the insulating layer is insulated by chemical solution treatment including heat treatment.
  • a body layer is formed.
  • the metal in the alkoxide metal is selected from, for example, a transition metal, a lanthanoid, or a main group element.
  • the metal is tantalum (Ba), strontium (Sr), titanium (Ti), bismuth (Bi), tantalum.
  • Ta zircon (Zr), iron (Fe), nickel (Ni), manganese (Mn), lead (Pb), lanthanum (La), lithium (Li), sodium (Na), potassium (K), Norevidium (Rb), Cesium (Cs), Francium (Fr) Beryllium (Be) Magnesium (Mg), calcium (Ca), niobium (Nb), thallium (T1), mercury (Hg), copper (Cu), cobalt (Co), rhodium (Rh), scandium (Sc) and yttrium (Y).
  • alkoxide in the alkoxide metal examples include, for example, alcohols including methanol, ethanol, propanol, isopropanol, butanol, isobutanol, methoxyethanol monoure, ethoxy ethanol, propoxy ethanol, butoxy ethanol, pentoxy ethanol, hep Examples thereof include those derived from alkoxy alcohols including toxiethanol, methoxypropanol, ethoxypropanol, propoxypropanol, butoxypropanol, pentoxypropanol, heptoxypropanol.
  • the insulator layer is made of the above-described material, a depletion layer is easily generated in the insulator layer, and the threshold voltage for transistor operation can be reduced.
  • silicon nitride such as SiN, SixNy, and SiONx (x, y> 0) is particularly useful.
  • edge layer When the edge layer is formed, a depletion layer is more easily generated, and the threshold voltage of transistor operation can be further reduced.
  • Insulator layers using organic compounds include polyimides, polyamides, polyesters, polyacrylates, photo-radical polymerization systems, photo-curing resins of photopower thione polymerization systems, copolymers containing acrylonitrile components, polybutanol, Polybulal alcohol, nopolac resin, cyano ethyl pullulan and the like can also be used.
  • wax polyethylene, polychloropyrene, polyethylene terephthalate, polyoxymethylene, polybutyl chloride, polyvinylidene fluoride, polymethylmetatalylate, polyethylene Risanorephone, polycarbonate, polyimide Cyanoechinolev. Nolan, poly (vinino refenore) (PVP), poly (methyl methacrylate) (PMMA), polycarbonate (PC), polystyrene (PS), polyolefin, polyacrylamide, poly (acrylic acid), nopolac resin, resole resin
  • PVP poly (vinino refenore)
  • PMMA poly (methyl methacrylate)
  • PC polycarbonate
  • PS polystyrene
  • polyolefin polyacrylamide
  • poly (acrylic acid) nopolac resin
  • resole resin it is also possible to use a polymer material having a high dielectric constant such as pullulan.
  • an organic compound having water repellency is particularly preferable.
  • the water repellency suppresses the interaction between the insulator layer and the organic semiconductor layer, and the aggregation inherent in the organic semiconductor. It is possible to improve the device performance by increasing the crystallinity of the organic semiconductor layer. Examples of this include polyparaxylylene derivatives described in Yasuda et al. Jpn. J. Appl. Phys. Vol. 42 (2003) ⁇ ⁇ 66 -6618, Janos Veres et al. Chem. Mater., Vol. 16 ( 2004) pp. 4543-4555.
  • the organic semiconductor layer can be formed with less damage. It is an effective method because it can.
  • the pre-insulator layer may be a mixed layer using a plurality of inorganic or organic compound materials as described above, or may be a laminated structure of these.
  • the device performance can be controlled by mixing or laminating materials with high dielectric constant, materials and water repellency, if necessary.
  • the insulator layer may include an anodic oxide film or the anodic oxide film as a component.
  • the anodized film is preferably sealed.
  • the anodized film is formed by anodizing a metal that can be anodized by a known method. Examples of the metal that can be anodized include aluminum and tantalum, and a known method without particular limitation can be used for the method of anodizing.
  • An oxide film is formed by anodizing. Any electrolyte solution that can form a porous oxide film can be used as the anodizing treatment. In general, sulfuric acid, phosphoric acid, oxalic acid, chromic acid, boric acid, sulfamic acid, benzenesulfone, and the like can be used.
  • Acids, etc., or mixed acids obtained by combining two or more of these or salts thereof are used.
  • the treatment conditions for anodization vary depending on the electrolyte used, so it cannot be specified in general.
  • the concentration of the electrolyte solution;! ⁇ 80 wt%, the temperature 5 to 70 ° C of the electrolytic solution, current density 0. 5 to 60 A / cm 2, voltage 1 to 100 V, suitably in the range of electrolysis time is from 10 seconds to 5 minutes It is.
  • a preferred anodizing treatment is a method in which an aqueous solution of sulfuric acid, phosphoric acid or boric acid is used as the electrolytic solution, and the treatment is performed with a direct current, but an alternating current can also be used.
  • the concentration of these acids is preferably 5 to 45% by weight. It is preferable to perform electrolytic treatment for 20 to 250 seconds at an electrolyte temperature of 20 to 50 ° C and a current density of 0.5 to 20 A / cm 2. Better!/,.
  • the thickness of the insulator layer As the thickness of the insulator layer, if the layer thickness is small, the effective voltage applied to the organic semiconductor increases, so the drive voltage and threshold voltage of the device itself can be lowered. Since the leakage current increases, it is necessary to select an appropriate film thickness, which is usually 10 ⁇ m to 5 ⁇ m, preferably 50 nm to 2 ⁇ m, and more preferably 100 nm to l ⁇ m.
  • an arbitrary alignment treatment may be performed between the insulator layer and the organic semiconductor layer.
  • An example is a method of improving the crystallinity of the organic semiconductor layer by reducing the interaction between the insulator layer and the organic semiconductor layer by applying a water repellency treatment to the surface of the insulator layer.
  • silane coupling agents such as octadecyltrichlorosilane, trichloromethylsilazane, self-anchored alignment film materials such as anolecanic acid, anolecansnorephonic acid, and anolecanic force norevonic acid are used.
  • a self-organized film is formed by contacting with the surface of the insulating film, and then appropriately dried.
  • a method of setting a film made of polyimide or the like on the surface of the insulating film and rubbing the surface is also preferable so that it can be used for alignment of liquid crystals.
  • the insulator layer can be formed by vacuum deposition, molecular beam epitaxy, ion cluster beam, low energy ion beam, ion plating, CV D, sputtering, 11-61406, 11-133205, JP-A 2000-121804, 2000-147209, 2000-185362, dry process such as atmospheric pressure plasma method, spray coating method, Wet processes such as spin coating, blade coating, dip coating, casting, roll coating, bar coating, die coating, and other wet processes such as printing and ink jet patterning Can be used according to. In the wet process, the fine particles of the inorganic oxide are dispersed in any organic solvent or water as necessary, such as a surfactant. A method of applying and drying a liquid dispersed using a powder auxiliary agent, or a so-called sol-gel method of applying and drying an oxide precursor, for example, an alkoxide solution, is used.
  • the thickness of the organic semiconductor layer in the organic thin film transistor of the present invention is not particularly limited, but is usually from 0.511 to 1111, and preferably from 2 nm to 250 nm.
  • the formation method of the organic semiconductor layer is not particularly limited, and a known method can be applied.
  • a known method can be applied.
  • MBE molecular beam vapor deposition
  • vacuum vapor deposition chemical vapor deposition
  • dipping of a solution in which a material is dissolved in a solvent Printing, spin coating method, casting method, bar coating method, mouth coating method, etc., coating method and baking, elect mouth polymer line determination, molecular beam deposition, self-assembly from solution, and combinations thereof
  • it is formed of the material of the organic semiconductor layer as described above.
  • the substrate temperature during film formation is preferably 50 to 250 ° C, more preferably 70 to 150 ° C.
  • the annealing temperature is preferably 50 to 200 ° C, more preferably 70 to 200 ° C, and the time is preferably 10 minutes to 12 hours; more preferably 10 to 12 hours.
  • the organic semiconductor layer may use one kind of material selected from the general formula (a).
  • a plurality of materials may be used in combination, or a plurality of known semiconductors such as pentacene and thiophene oligomer may be used. May be used as a mixed thin film or laminated! /.
  • the method for forming the organic thin film transistor of the present invention is not particularly limited and may be a known method. According to a desired element configuration, the substrate is charged, the gate electrode is formed, the insulator layer is formed, the organic semiconductor layer is formed, It is preferable to form a series of device fabrication processes up to source electrode formation and drain electrode formation without exposure to the air at all, because the device performance can be prevented from being impaired by moisture or oxygen in the atmosphere due to contact with the air. If it is unavoidable that the atmosphere must be exposed to the atmosphere once, the steps after the organic semiconductor layer deposition should not be exposed to the atmosphere at all.
  • the organic semiconductor layer is preferably laminated after cleaning and activation with irradiation, ultraviolet / ozone irradiation, oxygen plasma, argon plasma, or the like.
  • a gas barrier layer may be formed on the whole or part of the outer peripheral surface of the organic transistor element.
  • the material for forming the gas noble layer those commonly used in this field can be used. Examples thereof include polybutyl alcohol, ethylene butyl alcohol copolymer, polyvinyl chloride, polyvinylidene chloride, and polychlorotrifluoroethylene. Can be mentioned.
  • insulating inorganic materials exemplified for the insulator layer can also be used.
  • the organic thin film transistor can also be used as a light emitting element using charges injected from the source and drain electrodes.
  • an organic thin film transistor can be used as a light emitting device (an organic thin film light emitting transistor that also functions as an organic EU. This is because the light emission intensity can be controlled by controlling the current flowing between the source and drain electrodes at the gate electrode. Since the transistor for controlling light emission and the light emitting element can be integrated, it is possible to reduce the cost by improving the aperture ratio of the display and simplifying the manufacturing process.
  • the contents described in the above detailed description are sufficient, but in order for the organic thin film transistor of the present invention to operate as an organic light emitting transistor, it is necessary to inject holes from one of the source and drain, and electrons from the other. In order to improve the above, it is preferable to satisfy the following conditions.
  • a hole injection electrode is an electrode containing a substance having a work function of 4.2 eV or higher.
  • An electron injecting electrode is an electrode containing a substance having a work function of 4.3 eV or less. More preferably, it is an organic thin film light-emitting transistor provided with an electrode in which one is hole-injecting and the other is electron-injecting.
  • the organic thin-film light-emitting transistor of the present invention has at least It is preferable to insert a hole injection layer between one electrode and the organic semiconductor layer.
  • the hole injection layer include amine-based materials used as hole injection materials and hole transport materials in organic EL devices.
  • the electron injection layer can be made of an electron injection material used for organic EL devices.
  • it is an organic thin film light emitting transistor comprising a hole injection layer under one electrode and an electron injection layer under the other electrode.
  • a buffer layer may be provided between the organic semiconductor layer and the source and drain electrodes for the purpose of improving the injection efficiency.
  • An organic thin film transistor was produced by the following procedure. First, a glass substrate was ultrasonically cleaned with a neutral detergent, pure water, acetone and ethanol for 30 minutes each, and then a gold (Au) film was formed to a thickness of 4 Onm by sputtering to produce a gate electrode. . Next, this substrate was set in a film forming portion of a thermal CVD apparatus. On the other hand, in the raw material evaporation section, polyparaxylene derivative [polyparaxylene chloride (Parylene)] (trade name; diX-C, manufactured by Sansei Kasei Co., Ltd.) 250 mg is placed in a petri dish. To do. Vacuum the thermal CVD device with a vacuum pump and reduce the pressure to 5 Pa. Then, heat the evaporation part to 180 ° C and the polymerization part to 680 ° C and leave it for 2 hours. An insulator layer was formed.
  • Parylene polyparaxylene derivative
  • diX-C manufactured
  • the obtained organic thin film transistor was evaluated by using KEITHLEY (4200-SCS) at room temperature as follows. A gate voltage of 40 V was applied to the gate electrode of the organic thin film transistor, and a current was applied by applying a voltage between the source and drain. In this case, holes are induced in the channel region (between source and drain) of the organic semiconductor layer and operate as a p-type transistor. The on / off ratio of the current between the source and drain electrodes in the current saturation region was 1 ⁇ 10 6 . The field effect mobility of holes was calculated from the following formula (A) and found to be 2 ⁇ 10 cm ZVs.
  • I is the source-drain current
  • W is the channel width
  • L is the channel length
  • C is the gain.
  • V is the gate threshold voltage
  • V is the gate voltage
  • Example 1 the organic semiconductor layer was similarly formed except that the compound (A-11) was used instead of the compound (A-2) as the material of the organic semiconductor layer.
  • the compound (A-11) was used instead of the compound (A-2) as the material of the organic semiconductor layer.
  • / As a source / drain electrode through a metal mask, instead of Au, Ca was vacuum-deposited at 20 ⁇ m at a deposition rate of 0.05nm / s, and then Ag was deposited at 50nm at a deposition rate of 0.05nm / s. Covered organic thin film transistors were fabricated. The obtained organic thin film transistor was subjected to n-type driving at a gate voltage V of +40 V in the same manner as in Example 1 except that the source-drain electrode was
  • the on / off ratio of the current between them was measured, and the field-effect mobility of the electrons was calculated as 1 in 1 k.
  • Example 3 13 (Production of organic thin film transistor)
  • Example 1 an organic thin film transistor was produced in the same manner except that the compound shown in Table 1 was used instead of the compound (A-2) as the material of the organic semiconductor layer.
  • the obtained organic thin film transistor was p-type driven at a gate voltage V of 40 V in the same manner as in Example 1. Also, as in Example 1, between the source and drain electrodes
  • Table 1 shows the results of measuring the on / off ratio of the current and calculating the field-effect mobility of the holes.
  • the obtained organic thin film transistor was p-type driven at a gate voltage V of 40 V in the same manner as in Example 1. Measure the on / off ratio of the current between the source and drain electrodes, Table 1 shows the results of calculating the field-effect mobility ⁇ of holes.
  • Polyparaphenylenevinylene (PPV) was used as the material for the organic semiconductor layer, and the layers up to the organic semiconductor layer were formed exactly as in Comparative Example 1.
  • a source drain electrode through a metal mask instead of Au, Ca is vacuum-deposited by 20 nm at a deposition rate of 0.05 nm / s, and then Ag is deposited by 50 nm at a deposition rate of 0.05 nm / s 1 to cover Ca and organic A thin film transistor was fabricated. Size
  • the obtained organic thin film transistor was n-type driven at a gate voltage V of +40 V in the same manner as in Example 1. Measure the on / off ratio of the current between the source and drain electrodes,
  • Table 1 shows the results of the calculation of electron field-effect mobility.
  • An organic thin film light emitting transistor was produced by the following procedure. First, the surface of a Si substrate (also used as a P-type specific resistance 1 ⁇ cm gate electrode) was oxidized by a thermal oxidation method, and a 300 nm thermal oxide film was formed on the substrate to form an insulator layer. Furthermore, after the SiO film deposited on one side of the substrate is completely removed by dry etching, chromium is deposited to a thickness of 20 nm by sputtering, and further gold (Au) is deposited by lOOnm sputtering. A film was taken out and used as an electrode. This substrate was ultrasonically cleaned with a neutral detergent, pure water, acetone and ethanol for 30 minutes each.
  • Mg is deposited by lOOnm deposition with the substrate tilted 45 degrees in the opposite direction, so that the source electrode and drain electrode that are not in contact with each other substantially form a hole injecting electrode (Au) and an electron injecting electrode (Mg).
  • An organic thin-film light-emitting transistor was prepared (see Fig. 9).
  • the organic thin film transistor of the present invention has a high response speed (driving speed) by using a compound having a specific structure having high electron mobility as a material for the organic semiconductor layer, It has high performance as a transistor with a large on / off ratio, and can be used as an organic thin film light emitting transistor capable of emitting light.

Abstract

 少なくとも基板上にゲート電極、ソース電及びドレイン電極の3端子、絶縁体層並びに有機半導体層が設けられ、ソース-ドレイン間電流をゲート電極に電圧を印加することによって制御する有機薄膜トランジスタにおいて、前記有機半導体層が、中心に芳香族複素環基を有する特定の有機化合物を含む有機薄膜トランジスタ、並びに有機薄膜トランジスタにおいて、ソース-ドレイン間を流れる電流を利用して発光を得、ゲート電極に電圧を印加することによって発光を制御する有機薄膜発光トランジスタによって、応答速度が高速で、しかもオン/オフ比が大きい有機薄膜トランジスタ及びそれを利用した有機薄膜発光トランジスタを提供する。

Description

明 細 書
有機薄膜トランジスタ及び有機薄膜発光トランジスタ
技術分野
[0001] 本発明は、有機半導体層を有する有機薄膜トランジスタ及び有機薄膜発光トランジ スタに関し、特に、高い移動度を有する化合物を含み高速動作が可能な有機薄膜ト ランジスタ及びそれを発光素子として用いた有機薄膜発光トランジスタに関するもの である。
背景技術
[0002] 薄膜トランジスタ (TFT)は、液晶表示装置等の表示用のスイッチング素子として広 く用いられている。代表的な TFTの断面構造を図 2に示す。同図に示すように、 TFT は、基板上にゲート電極及び絶縁体層をこの順に有し、絶縁体層上に、所定の間隔 をあけて形成されたソース電極及びドレイン電極を有して!/、る。双方の電極の一部表 面を含み、電極間に露出する絶縁体層上には、半導体層が形成されている。このよう な構成の TFTでは、半導体層がチャネル領域を成しており、ゲート電極に印加され る電圧でソース電極とドレイン電極の間に流れる電流が制御されることによってオン /オフ動作する。
従来、この TFTは、アモルファスや多結晶のシリコンを用いて作製されていた力 こ のようなシリコンを用いた TFTの作製に用いられる CVD装置は、非常に高額であり、 TFTを用いた表示装置等の大型化は、製造コストの大幅な増加を伴うという問題点 があった。また、アモルファスや多結晶のシリコンを成膜するプロセスは非常に高い 温度下で行われるので、基板として使用可能な材料の種類が限られてしまうため、軽 量な樹脂基板等は使用できないという問題があった。
[0003] このような問題を解決するために、アモルファスや多結晶のシリコンに代えて有機物 を用いた TFTが提案されて!/、る。有機物で TFTを形成する際に用いる成膜方法とし て真空蒸着法や塗布法等が知られているが、これらの成膜方法によれば、製造コスト の上昇を抑えつつ素子の大型化が実現可能になり、成膜時に必要となるプロセス温 度を比較的低温にすることができる。このため、有機物を用いた TFTでは、基板に用 、る材料の選択時の制限が少な!/、と!/、つた利点があり、その実用化が期待されてお り、有機物を用いた TFTについて盛んに報告されるようになり、例えば、非特許文献 ;!〜 20などを挙げることができる。
また、 TFTの有機化合物層に用いる有機物としては、 p型では共役系ポリマーゃチ オフヱンなどの多量体(特許文献;!〜 5等)、金属フタロシアニン化合物(特許文献 6 等)、ペンタセンなどの縮合芳香族炭化水素(特許文献 7及び 8等)などが、単体又は 他の化合物との混合物の状態で用いられている。また, n型 FETの材料では、例え
A)、 11,11,12,12-テトラシァノナフト -2,6-キノジメタン (TCNNQD)、 1,4,5,8_ナフタ レンテトラカルボキシルジイミド (NTCDI)等が開示されており、特許文献 10には、フ ッ素化フタロシアニンが開示されて!/、る。
特許文献 12には、ァリールエチレン置換芳香族化合物及び有機半導体への使用 について開示されている。しかし、絶縁層に単分子膜処理を施した後に、加熱しなが ら半導体層を形成させるなど、複雑な工程により有機 TFT素子を作製して!/、る。 なお、非特許文献 19にはフエ二レンビニレンポリマー(ポリ パラフエ二レンビニレ ン (PPV))の電子移動度が記載されているが 10— 4cm2/Vsと小さぐ実用性能には達 していない。すなわち、高分子化合物である PPVでは主鎖構造が長いための折れ曲 力りや、分子量分布を持つことによる結晶構造の乱れのため電界効果移動度が小さ くなつてしまうのである。
一方、同じように電気伝導を用いるデバイスとして有機エレクト口ルミネッセンス(EL )素子がある力 有機 EL素子が、一般に lOOnm以下の超薄膜の膜厚方向に 10V /cm以上の強電界をかけ強制的に電荷を流しているのに対し、有機 TFTの場合に は数 m以上の距離を 105V/cm以下の電界で高速に電荷を流す必要があり、有 機物自体に、さらなる電導性が必要になる。し力、しながら、従来の有機 TFTにおける 上記化合物は電界効果移動度が小さぐ応答速度が遅ぐトランジスタとしての高速 応答性に問題があった。また、オン/オフ比も小さかった。ここで言うオン/オフ比と は、ゲート電圧をかけたとき(オン)のソース—ドレイン間に流れる電流を、ゲート電圧 をかけないとき(オフ)のソース ドレイン間に流れる電流で割った値であり、オン電流 とは通常ゲート電圧を増加させていき、ソース ドレイン間に流れる電流が飽和したと きの電流値 (飽和電流)のことである。
特許文献 1:特開平 8-228034号公報
特許文献 2:特開平 8-228035号公報
特許文献 3:特開平 9-232589号公報
特許文献 4:特開平 10-125924号公報
特許文献 5:特開平 10-190001号公報
特許文献 6:特開 2000-174277号公報
特許文献 7:特開平 5-55568号公報
特許文献 8:特開 2001-94107号公報
特許文献 9:特開平 10-135481号公報
特許文献 10 :特開平 11-251601号公報
特許文献 11:特開 2005-142233号公報
特許文献 12 :国際公開 WO2006/113205号公報
非特許文献 1 : F. Ebisawaら, Journal of Applied Physics, 54巻, 3255頁, 1983年 非特許文献 2 : A. Assadiら, Applied Physics Letter, 53巻, 195頁, 1988年
非特許文献 3 : G. Guillaudら, Chemical Physics Letter, 167巻, 503頁, 1990年 非特許文献 4 : X· Pengら, Applied Physics Letter, 57巻, 2013頁, 1990年
非特許文献 5 : G. Horowitzら, Synthetic Metals, 41-43巻, 1127頁, 1991年
非特許文献 6 : S. Miyauchiら, Synthetic Metals, 41-43巻, 1991年
非特許文献 7 : H. Fuchigamiら, Applied Physics Letter, 63巻, 1372頁, 1993年 非特許文献 8 : Η· Koezukaら, Applied Physics Letter, 62巻, 1794頁, 1993年
非特許文献 9 : F. Gamierら, Science, 265巻, 1684頁, 1994年
非特許文献 10 : A. R. Brownら, Synthetic Metals, 68巻, 65頁, 1994年
非特許文献 11 : Α· Dodabalapurら, Science,268巻, 270頁, 1995年
非特許文献 12 : T. Sumimotoら, Synthetic Metals, 86巻, 2259頁, 1997年
非特許文献 13 : Κ· Kudoら, Thin Solid Films, 331巻, 51頁, 1998年
非特許文献 14 : Κ· Kudoら, Synthetic Metals, 102巻, 900頁, 1999年 非特許文献 15 : Κ· Kudoら, Synthetic Metals, 111-112巻, 11頁, 2000年
非特許文献 16 : Advanced Materials 13巻, 16号, 2001年, 1273頁
非特許文献 17 : Advanced Materials 15巻, 6号, 2003年, 478頁
非特許文献 18 : W. Geensら, Synthetic Metals, 122巻, 191頁, 2001年
非特許文献 19 : Lay-Lay Chuaら, Nature, 434巻, 2005年 3月 10日号, 194頁
非特許文献 20 : Hong Mengら, Journal of American Chemical Society, 128巻, 9304頁, 2
006年
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、前記の課題を解決するためになされたもので、応答速度(駆動速度)が 高速で、し力、もオン/オフ比が大き!/、有機薄膜トランジスタ及びそれを利用した有機 薄膜発光トランジスタを提供することを目的とする。
課題を解決するための手段
[0007] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、有機薄膜トラ ンジスタの有機半導体層に、下記一般式 (a)で表される構造を有する有機化合物を 用いることにより応答速度 (駆動速度)を高速化することができることを見出し本発明 を完成したものである。
すなわち、本発明は、少なくとも基板上にゲート電極、ソース電及びドレイン電極の
3端子、絶縁体層並びに有機半導体層が設けられ、ソース ドレイン間電流をゲート 電極に電圧を印加することによって制御する有機薄膜トランジスタにおいて、前記有 機半導体層が、下記一般式 (a)の構造を有する有機化合物を含む有機薄膜トランジ スタを提供するものである。
[0008] [化 1]
Figure imgf000005_0001
[0009] [式中、 Aは、酸素原子、硫黄原子、セレン原子、置換基を有してもよい NH 基、 置換基を有してもよいシラン基又は置換基を有してもよいメチレン基であり、 Bは、炭 素数 6〜60の 2価の芳香族炭化水素基、又は炭素数 1〜60の 2価の芳香族複素環 基であり、 R〜R は、それぞれ独立に、水素原子、ハロゲン原子、シァノ基、炭素数
1 10
;!〜 30のァノレキノレ基、炭素数 1〜30のハロアルキル基、炭素数 1〜30のアルコキシ ル基、炭素数 1〜30のハロアルコキシル基、炭素数;!〜 30のアルキルチオ基、炭素 数 1〜30のハロアルキルチオ基、炭素数 1〜30のアルキルアミノ基、炭素数 2〜60 のジアルキルアミノ基(アルキル基は互いに結合して窒素原子を含む環構造を形成 しても良い)、炭素数 1〜30のアルキルスルホニル基、炭素数 1〜30のハロアルキル スルホニル基、炭素数 6〜60の芳香族炭化水素基、又は炭素数 1〜60の芳香族複 素環基であり、これら各基は置換基を有していても良ぐまた、互いに連結して炭素 数 6〜60の芳香族炭化水素基、又は炭素数 1〜60の芳香族複素環基を形成しても よい。 ]
[0010] 更に、本発明は、有機薄膜トランジスタにおいて、ソース一ドレイン間を流れる電流 を利用して発光を得、ゲート電極に電圧を印加することによって発光を制御する有機 薄膜発光トランジスタを提供するものである。
発明の効果
[0011] 本発明の有機薄膜トランジスタは、応答速度 (駆動速度)が高速化されており、しか もオン/オフ比が大きぐトランジスタとしての性能が高いものであり、発光可能な有 機薄膜発光トランジスタとしても利用できる。
図面の簡単な説明
[0012] [図 1]本発明の有機薄膜トランジスタの素子構成の一例を示す図である。
[図 2]本発明の有機薄膜トランジスタの素子構成の一例を示す図である。
[図 3]本発明の有機薄膜トランジスタの素子構成の一例を示す図である。
[図 4]本発明の有機薄膜トランジスタの素子構成の一例を示す図である。
[図 5]本発明の有機薄膜トランジスタの素子構成の一例を示す図である。
[図 6]本発明の有機薄膜トランジスタの素子構成の一例を示す図である。
[図 7]本発明の実施例における有機薄膜トランジスタの素子構成の一例を示す図で ある。
[図 8]本発明の実施例における有機薄膜トランジスタの素子構成の一例を示す図で ある。
[図 9]本発明の実施例における有機薄膜発光トランジスタの素子構成の一例を示す 図である。
発明を実施するための最良の形態
[0013] 本発明は、少なくとも基板上にゲート電極、ソース電及びドレイン電極の 3端子、絶 縁体層並びに有機半導体層が設けられ、ソース ドレイン間電流をゲート電極に電 圧を印加することによって制御する有機薄膜トランジスタにおいて、前記有機半導体 層が、下記一般式 ωの構造を有する有機化合物を含む有機薄膜トランジスタである
[化 2]
Figure imgf000007_0001
[0014] 前記一般式 (a)において、 Aは、酸素原子、硫黄原子、セレン原子、置換基を有し てもよい— NH 基、置換基を有してもよ!/、シラン基又は置換基を有してもよ!/、メチレ ン基であり、酸素原子又は硫黄原子であると好ましい。 Bは、炭素数 6〜60の 2価の 芳香族炭化水素基、又は炭素数 1〜60の 2価の芳香族複素環基である。
前記一般式 (a)における Bの芳香族炭化水素基の具体例としては、ベンゼン、ナフ タレン、アントラセン、テトラセン、ペンタセン、フエナントレン、タリセン、トリフエ二レン、 コラニュレン、コロネン、へキサベンゾトリフエ二レン、へキサベンゾコロネン、スマネン 等があげられる。また、芳香族複素環基の具体例としては、ピリジン、ピラジン、キノリ ン、ナフチリジン、キノキサリン、フエナジン、ジァザアントラセン、ピリドキノリン、ピリミド キナゾリン、ビラジノキノキサリン、フエナント口リン、カルバゾール、 6, 12 ジヒドロー ラン、ジベンゾセレノフェン、ジセレナインダセン、ジセレナインデノインデン、ジベンゾ シロール等が挙げられる。
一般式 (a)における Aは、酸素原子又は硫黄原子であると好ましぐ Bは、ベンゼ ン環を含む基であると好ましレヽ。
一般式(a)の 2つのォレフィン基が B—A—Bに対して対称の位置に置換している 構造が好ましぐ Β— Α— Βとォレフイン基で構成される構造が平面をとるように置換し ていると更に好ましぐ B— A— Bとォレフイン基で構成される π電子系が長くなるよう に置換しているとより好ましい。このような構造を持つことにより、分子の平面性が高く なり、また、分子間の相互作用が大きくなるため、高い性能が得られるものと考えられ また、一般式 (a)において、ォレフィン部分の立体構造は混合していても良いが、共 役主鎖がトランスに配置した立体構造を有するものが主成分であることが好ましい。
[0015] 一般式 (a)において、 R〜R は、それぞれ独立に、水素原子、ハロゲン原子、シァ
1 10
ノ基、炭素数 1〜30のアルキル基、炭素数 1〜30のハロアルキル基、炭素数;!〜 30 のアルコキシル基、炭素数 1〜30のハロアルコキシル基、炭素数 1〜30のアルキル チォ基、炭素数 1〜30のハロアルキルチオ基、炭素数 1〜30のアルキルアミノ基、炭 素数 2〜60のジアルキルアミノ基(アルキル基は互いに結合して窒素原子を含む環 構造を形成しても良い)、炭素数 1〜30のアルキルスルホニル基、炭素数;!〜 30の ハロアルキルスルホニル基、炭素数 6〜60の芳香族炭化水素基、又は炭素数;!〜 6 0の芳香族複素環基であり、これら各基は置換基を有していても良ぐまた、互いに連 結して炭素数 6〜60の芳香族炭化水素基、又は炭素数 1〜60の芳香族複素環基を 形成してもよい。
一般式 (a)において、 R〜R は、それぞれ独立に、水素原子又は炭素数;!〜 30の
1 10
アルキル基であると好ましぐ水素原子、ハロゲン原子、シァノ基又は炭素数 1〜30 のハロアルキル基であっても好ましレ、。
[0016] 一般式(a)において、 R、 R、 R及び R 、それぞれ独立に、水素原子又はフッ
1 5 6 10
素原子であると好ましい。
[0017] このように、 R〜R及び R〜Rを上記から選ばれる基とし、炭素数を 30以下とすれ ば、一般式 (a)に占める規則性制御部位 (R〜R及び R〜R )の比率が大きくなりす
2 4 7 9
ぎること力 S無く、電流制御に寄与する 71電子を持つ構造の密度が大きぐ膜の規則性 を制御することができ、高い電界効果移動度とオン/オフ比を得ることができる。
[0018] さらに、前記一般式(a)において、 R〜R及び R〜R 、それぞれ独立に、水素原
2 4 7 9
子、ハロゲン原子、シァノ基、炭素数 1〜30のアルキル基又は炭素数 1〜30のハロ アルキル基であるとより好ましレ、。
[0019] また、本発明の有機薄膜トランジスタに用いる特定の構造を有する有機化合物は、 基本的には p型(正孔伝導)及び n型(電子伝導)を示す両極性であり、後述するソー ス、ドレイン電極との組み合わせで p型素子としても n型素子としても駆動することが可 能であるが、前記一般式 (a)において R〜R 、 B及び B上に置換する基を必要に
1 10 1 2
応じて適宜選択することにより、 p型及び n型としての性能をより強めることができる。 すなわち、 R〜R 、 B及び B上に置換する基として電子受容性の基を用いることに
1 10 1 2
より、最低非占有軌道(LUMO)レベルを下げ n型半導体として機能させることができ る。電子受容性の基として好ましいものは水素原子、ハロゲン原子、シァノ基、炭素 数 1〜30のハロアルキル基、炭素数 1〜30のハロアルコキシル基、炭素数;!〜 30の ハロアルキルチオ基、及び炭素数 1〜30のハロアルキルスルホニル基である。また、 R〜R 、 B及び B上に置換する基として電子供与性の基を用いることにより、最高
1 10 1 2
占有軌道(HOMO)レベルを上げ p型半導体として機能させることができる。電子供 与性の基として好ましいものは水素原子、炭素数 1〜30のアルキル基、炭素数;!〜 3 0のアルコキシル基、炭素数;!〜 30のアルキルチオ基、炭素数;!〜 30のァノレキノレアミ ノ基、炭素数 2〜60のジアルキルアミノ基(アルキル基は互いに結合して窒素原子を 含む環構造を形成しても良い)である。
[0020] 以下、一般式 (a)の R〜R の示す各基の具体例を説明する。
1 10
前記ハロゲン原子としては、フッ素、塩素、臭素及びヨウ素原子が挙げられる。 前記アルキル基としては、メチル基、ェチル基、プロピル基、イソプロピル基、 n ブ チル基、 s ブチル基、イソブチル基、 t ブチル基、 n ペンチル基、 n へキシノレ 基、 n へプチル基、 n ォクチル基等が挙げられる。
前記ハロアルキル基としては、例えば、クロロメチル基、 1 クロ口ェチル基、 2—ク ロロェチル基、 2 クロ口イソブチル基、 1 , 2 ジクロ口ェチル基、 1 , 3 ジクロ口イソ プロピル基、 2, 3—ジクロロー t ブチル基、 1 , 2, 3—トリクロ口プロピル基、ブロモメ チル基、 1 ブロモェチル基、 2—ブロモェチル基、 2—ブロモイソブチル基、 1 , 2— ジブロモェチル基、 1 , 3—ジブロモイソプロピル基、 2, 3—ジブ口モー t ブチル基、 1 , 2, 3 トリブロモプロピル基、ョードメチル基、 1ーョードエチル基、 2 ョードエチ ル基、 2 ョードイソブチル基、 1 , 2 ジョードエチル基、 1 , 3 ジョードイソプロピル 基、 2, 3 ジョード— t ブチル基、 1 , 2, 3 トリョードプロピル基、フルォロメチル 基、 1 フルォロメチル基, 2—フルォロメチル基、 2—フルォロイソブチル基、 1 , 2— ジフロロェチル基、ジフルォロメチル基、トリフルォロメチル基、ペンタフルォロェチル 基、パーフルォロイソプロピル基、パーフルォロブチル基、パーフルォロシクロへキシ ル基等が挙げられる。
前記アルコキシル基は、 OX1で表される基であり、 X1の例としては、前記アルキル 基で説明したものと同様の例が挙げられ、前記ハロアルコキシル基は、 OX2で表さ れる基であり、 X2の例としては、前記ハロアルキル基で説明したものと同様の例が挙 げられる。
前記アルキルチオ基は、 SX1で表される基であり、 X1の例としては、前記アルキ ル基で説明したものと同様の例が挙げられ、前記ハロアルキルチオ基は、 SX2で 表される基であり、 X2の例としては、前記ハロアルキル基で説明したものと同様の例 が挙げられる。
前記アルキルアミノ基は、—NHX1で表される基であり、ジアルキルアミノ基は NX で表される基であり、 X1及び X3は、それぞれ前記アルキル基で説明したものと同 様の例が挙げられる。なお、ジアルキルアミノ基のアルキル基は互いに結合して窒素 原子を含む環構造を形成しても良ぐ環構造としては、例えば、ピロリジン、ピぺリジン 等が挙げられる。
前記アルキルスルホニル基は、 SO X1で表される基であり、 X1の例としては、前 記アルキル基で説明したものと同様の例が挙げられ、前記ハロアルキルスルホニル 基は、—SO X2で表される基であり、 X2の例としては、前記ハロアルキル基で説明し たものと同様の例が挙げられる。 前記芳香族炭化水素基としては、例えば、フエニル基、ナフチル基、アントリル基、 フエナントリル基、フルォレニル基、ペリレニル基、ペンタセニル基等が挙げられる。 前記芳香族複素環基としては、例えば、フラニル基、チオフヱニル基、ピロ一リル基 、ピラゾリル基、イミダゾリル基、トリァゾリル基、テトラゾリル基、ォキサゾリル基、イソォ キサゾリル基、チアゾリル基、チアジアゾリル基、ピリジニル基、ピリミジェル基、ベンゾ フラニル基、ベンゾチオフェニル基、インドリノレ基、キノリニノレ基、カルバゾリル基、ジ ベンゾフラニル基、ジベンゾチォフエニル基等が挙げられる。
[0022] 前記一般式 (a)の示す各基をさらに置換していても良い置換基としては、芳香族炭 化水素基、芳香族複素環基、アルキル基、アルコキシ基、ァラルキル基、ァリールォ キシ基、ァリールチオ基、アルコキシカルボニル基、アミノ基、ハロゲン原子、シァノ基 、ニトロ基、ヒドロキシル基、カルボキシル基等が挙げられる。
以下、本発明の有機薄膜トランジスタの有機半導体層に用いられる特定の構造を 有する有機化合物の具体例を挙げる力 これらに限定されるものではない。
[0023] [化 3]
剛 [woo]
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000014_0001
[0026] [化 6] 5) (
} i
) (
S ()
- ε (
Figure imgf000015_0001
9ι (
Figure imgf000016_0001
^§sss
Figure imgf000017_0001
[0029] [化 9] o o
Figure imgf000018_0001
Figure imgf000019_0001
TJP2007/072906
Figure imgf000020_0001
[0032] [化 12]
Figure imgf000021_0001
本発明の有機薄膜トランジスタの有機半導体層に用いる化合物は、種々の方法で合 成することカでき、 ί列えば、、 Organic Reactions Volume 14.3 (John Wiley&Sons, Inc.) 、 Organic Reactions Volume 25.2 (John Wiley&Sons, Inc.)ゝ Organic Reactions Volu me 27.2 (John Wiley&Sons, Inc.), Organic Reactions Volume 50.1(John Wiley&Sons, Inc.)の文献に記載の方法により合成できる。また、必要に応じて、ォレフィン部分の 立体を、熱反応、光反応、付加反応などを利用して単一の位置異性体に揃えること ができる。
トランジスタのような電子デバイスにおいては材料の純度の高いものを用いることに より電界効果移動度やオン/オフ比の高レ、デバイスを得ることができる。したがって 必要に応じて、カラムクロマトグラフィー、再結晶、蒸留、昇華などの手法により精製を 加えることが望ましい。好ましくはこれらの精製方法を繰り返し用いたり、複数の方法 を組み合わせることにより純度を向上させることが可能である。さらに精製の最終工程 として昇華精製を少なくとも 2回以上繰り返すことが望ましい。これらの手法を用いるこ とにより HPLCで測定した純度 90%以上の材料を用いることが好ましぐさらに好まし くは 95%以上、特に好ましくは 99%以上の材料を用いることにより、有機薄膜トラン ジスタの電界効果移動度やオン/オフ比を高め、本来材料の持っている性能を引き 出すこと力 Sできる。
[0034] 以下、本発明の有機薄膜トランジスタの素子構成について説明する。
本発明の有機薄膜トランジスタの素子構成としては、少なくとも基板上にゲート電極 、ソース電及びドレイン電極の 3端子、絶縁体層並びに有機半導体層が設けられ、ソ ースードレイン間電流をゲート電極に電圧を印加することによって制御する薄膜トラン ジスタであれば、限定されず、公知の素子構成を有するものであっても良い。
これらのうち、代表的な有機薄膜トランジスタの素子構成として素子 A〜Dを図 1〜 4に示す。このように、電極の位置、層の積層順などによりいくつかの構成が知られて おり、本発明の有機薄膜トランジスタは、電界効果トランジスタ(FET : Field Effec t Transistor)構造を有している。有機薄膜トランジスタは、有機半導体層(有機化 合物層)と、相互に所定の間隔をあけて対向するように形成されたソース電極及びド レイン電極と、ソース電極、ドレイン電極からそれぞれ所定の距離をあけて形成された ゲート電極とを有し、ゲート電極に電圧を印加することによってソース ドレイン電極 間に流れる電流を制御する。ここで、ソース電極とドレイン電極の間隔は本発明の有 機薄膜トランジスタを用いる用途によって決定され、通常は 0. 1 111〜1111111、好まし くは 1 μ m~100 μ m、さらに好ましくは 5 μ m~100 μ mである。
[0035] 素子 A〜Dのうち、図 2の素子 Bを例としてさらに詳しく説明すると、素子 Bの有機薄 膜トランジスタは、基板上に、ゲート電極及び絶縁体層をこの順に有し、絶縁体層上 に、所定の間隔をあけて形成された一対のソース電極及びドレイン電極を有し、その 上に有機半導体層が形成される。有機半導体層がチャネル領域を成しており、グー ト電極に印加される電圧でソース電極とドレイン電極の間に流れる電流が制御される ことによってオン/オフ動作する。
[0036] 本発明の有機薄膜トランジスタは、前記素子 A〜D以外の素子構成にも、有機薄膜 トランジスタとして種々の構成が提案されており、ゲート電極に印加される電圧でソー ス電極とドレイン電極の間に流れる電流が制御されることによってオン/オフ動作や 増幅などの効果が発現する仕組みであればこれらの素子構成に限定されるものでは なぐ例えば、産業技術総合研究所の吉田らにより第 49回応用物理学関係連合講 演会講演予稿集 27a— M— 3 (2002年 3月 )において提案されたトップアンドボトムコ ンタ外型有機薄膜トランジスタ(図 5参照)や、千葉大学のェ藤らにより電気学会論 文誌 118— A(1998) 1440頁において提案された縦形の有機薄膜トランジスタ(図 6 参照)のような素子構成を有するものであっても良い。
[0037] (基板)
本発明の有機薄膜トランジスタにおける基板は、有機薄膜トランジスタの構造を支 持する役目を担うものであり、材料としてはガラスの他、金属酸化物や窒化物などの 無機化合物、プラスチックフィルム(PET, PES, PC)や金属基板又はこれら複合体や積 層体なども用いることが可能である。また、基板以外の構成要素により有機薄膜トラン ジスタの構造を十分に支持し得る場合には、基板を使用しないことも可能である。ま た、基板の材料としてはシリコン(Si)ウェハが用いられることが多い。この場合、 Si自 体をゲート電極兼基板として用いることができる。また、 Siの表面を酸化し、 SiOを形 成して絶縁層として活用することも可能である。この場合、図 8に示すように、基板兼 ゲート電極の Si基板にリード線接続用の電極として、 Auなどの金属層を成膜すること もめる。
[0038] (電極)
本発明の有機薄膜トランジスタにおける、ゲート電極、ソース電極及びドレイン電極 の材料としては、導電性材料であれば特に限定されず、白金、金、銀、ニッケル、クロ ム、銅、鉄、錫、アンチモン鉛、タンタル、インジウム、パラジウム、テルル、レニウム、 イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、酸化 スズ 'アンチモン、酸化インジウム'スズ (ITO)、フッ素ドープ酸化亜鉛、亜鉛、炭素、 グラフアイト、グラッシ一カーボン、銀ペースト及びカーボンペースト、リチウム、ベリリウ ム、ナトリウム、マグネシウム、カリウム、カノレシゥム、スカンジウム、チタン、マンガン、 ジルコニウム、ガリウム、ニオブ、ナトリウム、ナトリウム カリウム合金、マグネシウム、リ チウム、アルミニウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシ ゥム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化ァ ノレミニゥム混合物、リチウム/アルミニウム混合物等が用いられる。
本発明の有機薄膜トランジスタにおいて、ソース電極、ドレイン電極としては、上記 の導電性材料を含む、溶液、ペースト、インク、分散液などの流動性電極材料を用い て形成したもの、特に、導電性ポリマー、又は白金、金、銀、銅を含有する金属微粒 子を含む流動性電極材料が好ましい。また、溶媒や分散媒体としては、有機半導体 へのダメージを抑制するため、水を 60質量%以上、好ましくは 90質量%以上含有す る溶媒又は分散媒体であることが好ましレ、。金属微粒子を含有する分散物としては、 例えば、公知の導電性ペーストなどを用いても良いが、通常粒子径が 0. 5nm〜50n m、 lnm〜; !Onmの金属微粒子を含有する分散物であると好ましい。この金属微粒 子の材料としては、例えば、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン 鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ル テニゥム、ゲルマニウム、モリブデン、タングステン、亜鉛等を用いることができる。 これらの金属微粒子を、主に有機材料からなる分散安定剤を用いて、水や任意の 有機溶剤である分散媒中に分散した分散物を用いて電極を形成するのが好ましい。 このような金属微粒子の分散物の製造方法としては、ガス中蒸発法、スパッタリング 法、金属蒸気合成法などの物理的生成法や、コロイド法、共沈法などの、液相で金 属イオンを還元して金属微粒子を生成する化学的生成法が挙げられ、好ましくは、 特開平 11— 76800号公報、同 11— 80647号公報、同 1 1— 319538号公報、特開
2000— 239853号公報等に示されたコロイド、法、特開 2001— 254185号公報、同
2001— 53028号公報、同 2001— 35255号公報、同 2000— 124157号公報、同 2000— 123634号公報などに記載されたガス中蒸発法により製造された金属微粒 子の分散物である。
これらの金属微粒子分散物を用いて前記電極を成形し、溶媒を乾燥させた後、必 要に応じて 100°C〜300°C、好ましくは 150°C〜200°Cの範囲で形状様に加熱する ことにより、金属微粒子を熱融着させ、 目的の形状を有する電極パターンを形成する
[0040] さらに、ゲート電極、ソース電極及びドレイン電極の材料として、ドーピング等で導 電率を向上させた公知の導電性ポリマーを用いることも好ましぐ例えば、導電性ポリ ァニリン、導電性ポリピロール、導電性ポリチォフェン(ポリエチレンジォキシチォフエ ンとポリスチレンスルホン酸の錯体など)、ポリエチレンジォキシチォフェン(PEDOT) とポリスチレンスルホン酸の錯体なども好適に用いられる。これらの材料によりソース 電極とドレイン電極の有機半導体層との接触抵抗を低減することができる。
[0041] ソース電極及びドレイン電極を形成する材料は、前述した例の中でも有機半導体 層との接触面において電気抵抗が少ないものが好ましい。この際の電気抵抗は、す なわち電流制御デバイスを作製したとき電界効果移動度と対応しており、大きな移動 度を得る為には出来るだけ抵抗が小さいことが必要である。これは一般に電極材料 の仕事関数と有機半導体層のエネルギー準位との大小関係で決まる。
電極材料の仕事関数 (W)を a、有機半導体層のイオン化ポテンシャルを (Ip)を b、 有機半導体層の電子親和力(Af)を cとすると、以下の関係式を満たすことが好まし い。ここで、 a, b及び cはいずれも真空準位を基準とする正の値である。
[0042] p型有機薄膜トランジスタの場合には、 b a< l . 5eV (式 (1) )であることが好ましく 、さらに好ましくは b a< l . OeVである。有機半導体層との関係において上記関係 が維持できれば高性能なデバイスを得ることができる力、特に電極材料の仕事関数 はできるだけ大きいことものを選ぶことが好ましぐ仕事関数 4. OeV以上であることが 好ましぐさらに好ましくは仕事関数 4. 2eV以上である。
金属の仕事関数の値は、例えば化学便覧 基礎編 II 493頁(改訂 3版 日本化学 会編丸善株式会社発行 1983年)に記載されている 4. OeV又はそれ以上の仕事関 数をもつ有効金属の前記リストから選別すれば良ぐ高仕事関数金属は、主として Ag (4. 26, 4. 52, 4. 64, 4. 74eV) , Al (4. 06, 4. 24, 4. 41eV) , Au (5. 1 , 5. 3 7, 5.47eV), Be (4.98eV) , Bi(4.34eV) , Cd(4.08eV) , Co (5. OeV) , Cu(
4.65eV), Fe(4.5, 4.67, 4.81eV), Ga(4.3eV) , Hg(4.4eV) , Ir(5.42,
5.76eV) , Mn(4. leV), Mo (4.53, 4.55, 4.95eV), Nb(4.02, 4.36, 4. 87eV), Ni(5.04, 5.22, 5.35eV), Os(5.93eV) , Pb(4.25eV), Pt(5.64e V), Pd(5.55eV), Re (4.72eV), Ru(4.71eV), Sb(4.55, 4.7eV) , Sn(4. 42eV) , Ta(4.0, 4.15, 4.8eV) , Ti(4.33eV) , V(4.3eV) , W(4.47, 4.6 3, 5.25eV), Zr(4.05eV)である。これらの中でも、貴金属(Ag, Au, Cu, Pt) , Ni, Co, Os, Fe, Ga, Ir, Mn, Mo, Pd, Re, Ru, V, Wが好ましい。金属以外では 、 ITO、ポリア二リンや PEDOT:PSSのような導電性ポリマー及び炭素が好ましい。 電極材料としてはこれらの高仕事関数の物質を 1種又は複数含んでいても、仕事関 数が前記式 (I)を満たせば特に制限を受けるものではない。
n型有機薄膜トランジスタの場合には a— cく 1· 5eV (式 (II) )であることが好ましく, さらに好ましくは a— c<l. OeVである。有機半導体層との関係において上記関係が 維持できれば高性能なデバイスを得ることができる力 特に電極材料の仕事関数は できるだけ小さいものを選ぶことが好ましぐ仕事関数 4.3eV以下であることが好まし ぐさらに好ましくは仕事関数 3.7eV以下である。
低仕事関数金属の具体例としては、例えば化学便覧 基礎編 II 493頁(改訂 3版 日本化学会編 丸善株式会社発行 1983年)に記載されている 4.3eV又はそれ以 下の仕事関数をもつ有効金属の前記リストから選別すれば良ぐ Ag (4· 26eV) , Al (4.06, 4.28eV), Ba(2.52eV) , Ca(2.9eV) , Ce(2.9eV) , Cs(l.95eV), Er(2.97eV), Eu(2.5eV) , Gd(3. leV), Hf (3.9eV) , In (4.09eV) , K(2.2 8), La (3.5eV), Li(2.93eV) , Mg(3.66eV), Na(2.36eV) , Nd(3.2eV) , Rb(4.25eV), Sc(3.5eV) , Sm(2.7eV) , Ta(4.0, 4.15eV), Y(3. leV), Yb(2.6eV), Zn(3.63eV)等が挙げられる。これらの中でも、 Ba, Ca, Cs, Er, E u, Gd, Hf, K, La, Li, Mg, Na, Nd, Rb, Y, Yb, Znカ好ましい。電極材料として はこれらの低仕事関数の物質を 1種又は複数含んでいても、仕事関数が前記式 (II) を満たせば特に制限を受けるものではない。ただし、低仕事関数金属は、大気中の 水分や酸素に触れると容易に劣化してしまうので、必要に応じて Agや Auのような空 気中で安定な金属で被覆することが望ましい。被覆に必要な膜厚は 10nm以上必要 であり、膜厚が熱くなるほど酸素や水から保護することができる力 実用上、生産性を 上げる等の理由から lum以下にすることが望ましい。
前記電極の形成方法としては、例えば、蒸着、電子ビーム蒸着、スパッタリング、大 気圧プラズマ法、イオンプレーティング、化学気相蒸着、電着、無電解メツキ、スピン コーティング、印刷又はインクジェット等の手段により形成される。また、必要に応じて パターユングする方法としては、上記の方法を用いて形成した導電性薄膜を、公知 のフォトリソグラフ法やリフトオフ法を用いて電極形成する方法、アルミニウムや銅など の金属箔上に熱転写、インクジェット等により、レジストを形成しエッチングする方法が ある。また、導電性ポリマーの溶液あるいは分散液、金属微粒子を含有する分散液 等を直接インクジェット法によりパターユングしても良ぐ塗工膜からリソグラフやレー ザ一アブレーシヨンなどにより形成しても良い。さらに導電性ポリマーや金属微粒子を 含有する導電性インク、導電性ペーストなどを凸版、凹版、平版、スクリーン印刷など の印刷法でパターユングする方法も用いることができる。
このようにして形成された電極の膜厚は電流の導通さえあれば特に制限はないが、 好ましくは 0. 2nm~10 iu m,さらに好ましくは 4nm〜300nmの範囲である。この好 ましい範囲内であれば、膜厚が薄いことにより抵抗が高くなり電圧降下を生じることが ない。また、厚すぎないため膜形成に時間がかからず、保護層や有機半導体層など 他の層を積層する場合に、段差が生じることが無く積層膜が円滑にできる。
また、本実施の有機薄膜トランジスタでは、例えば、注入効率を向上させる目的で、 有機半導体層とソース電極及びドレイン電極との間に、バッファ層を設けても良い。 バッファ層としては n型有機薄膜トランジスタに対しては有機 ELの陰極に用いられる LiF, Li O, CsF, NaCO , KC1, MgF , CaCOなどのアルカリ金属,アルカリ土類 金属イオン結合を持つ化合物が望ましい。また、 Alqなど有機 ELで電子注入層、電 子輸送層として用いられる化合物を揷入しても良レ、。
P型有機薄膜トランジスタに対しては FeCl、 TCNQ、 F— TCNQ、 HATなどのシ ァノ化合物、 CFxや GeO、 SiO、 MoO、 V O、 VO、 V O、 MnO、 Mn O、 ZrO
、 WO、 TiO、 In O、 ZnO、 NiO、 HfO、 Ta O、 ReO、 PbOなどのアルカリ金属 、アルカリ土類金属以外の金属酸化物、 ZnS、 ZnSeなどの無機化合物が望ましい。 これらの酸化物は多くの場合、酸素欠損を起こし、これが正孔注入に好適である。更 には TPDや NPDなどのアミン系化合物や CuPcなど有機 EL素子において正孔注 入層、正孔輸送層として用いられる化合物でもよい。また、上記の化合物二種類以 上からなるものが望ましい。
ノ ッファ層はキャリアの注入障壁を下げることにより閾値電圧を下げ、トランジスタを 低電圧駆動させる効果があることが知られている力 われわれは、本発明の化合物 に対しては低電圧効果のみならず移動度を向上させる効果があることを見出した。こ れは、有機半導体と絶縁体層の界面にはキャリアトラップが存在しゲート電圧を印加 してキャリア注入が起こると最初に注入したキャリアはトラップを埋めるのに使われる 1S バッファ層を揷入することにより、低電圧でトラップが埋められ移動度が向上する ためである。バッファ層は電極と有機半導体層との間に薄く存在すればよぐその厚 みは 0. lnm〜30nm、好ましくは 0. 3nm〜20nmである。
(絶縁体層)
本発明の有機薄膜トランジスタにおける絶縁体層の材料としては、電気絶縁性を有 し薄膜として形成できるものであるのなら特に限定されず、金属酸化物(珪素の酸化 物を含む)、金属窒化物(珪素の窒化物を含む)、高分子、有機低分子など室温での 電気抵抗率が 10 Ω cm以上の材料を用いることができ、特に、比誘電率の高い無機 酸化物皮膜が好ましい。
無機酸化物としては、酸化ケィ素、酸化アルミニウム、酸化タンタル、酸化チタン、 酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウム、ジルコニウム酸チタン酸 ノ リウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チ タン酸バリウム、フッ化バリウムマグネシウム、ランタン酸化物、フッ素酸化物、マグネ シゥム酸化物、ビスマス酸化物、チタン酸ビスマス、ニオブ酸化物,チタン酸ストロン チウムビスマス、タンタル酸ストロンチウムビスマス、五酸化タンタノレ、タンタル酸ニォ ブ酸ビスマス、トリオキサイドイットリウム及びこれらを組合せたものが挙げられ、酸化 ケィ素、酸化アルミニウム、酸化タンタル、酸化チタンが好ましい。
また、窒化ケィ素(Si N 、 SixNy(x、 y〉0) )、窒化アルミニウム等の無機窒化物も 好適に用いることができる。
[0046] さらに、絶縁体層は、アルコキシド金属を含む前駆物質で形成されていても良ぐこ の前駆物質の溶液を、例えば基板に被覆し、これを熱処理を含む化学溶液処理を することにより絶縁体層が形成される。
前記アルコキシド金属における金属としては、例えば、遷移金属、ランタノイド、又は 主族元素から選択され、具体的には、ノ リウム(Ba)、ストロンチウム(Sr)、チタン (Ti) 、ビスマス(Bi)、タンタル(Ta)、ジルコン(Zr)、鉄(Fe)、ニッケル(Ni)、マンガン(M n)、鉛(Pb)、ランタン(La)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ノレビジゥム (Rb)、セシウム(Cs)、フランシウム(Fr)ベリリウム(Be)マグネシウム(Mg)、カルシゥ ム (Ca)、ニオブ (Nb)、タリウム (T1)、水銀(Hg)、銅 (Cu)、コバルト (Co)、ロジウム ( Rh)、スカンジウム(Sc)及びイットリウム(Y)等が挙げられる。また、前記アルコキシド 金属におけるアルコキシドとしては、例えば、メタノール、エタノール、プロパノール、 イソプロパノール、ブタノール、イソブタノール等を含むアルコール類、メトキシェタノ 一ノレ、エトキシエタノーノレ、プロポキシエタノーノレ、ブトキシエタノーノレ、ペントキシエタ ノーノレ、ヘプトキシエタノール、メトキシプロパノーノレ、エトキシプロパノール、プロポキ シプロパノーノレ、ブトキシプロパノール、ペントキシプロパノール、ヘプトキシプロパノ ールを含むアルコキシアルコール類等から誘導されるものが挙げられる。
[0047] 本発明において、絶縁体層を上記したような材料で構成すると、絶縁体層中に空 乏層が発生しやすくなり、トランジスタ動作のしきい電圧を低減することができる。また 、上記材料の中でも、特に、 Si N 、 SixNy、 SiONx (x、 y〉0)等の窒化ケィ素で絶
3 4
縁体層を形成すると、空乏層がいっそう発生しやすくなり、トランジスタ動作のしきい 電圧をさらに低減させることができる。
有機化合物を用いた絶縁体層としては、ポリイミド、ポリアミド、ポリエステル、ポリアク リレート、光ラジカル重合系、光力チオン重合系の光硬化性樹脂、アクリロニトリル成 分を含有する共重合体、ポリビュルフエノール、ポリビュルアルコール、ノポラック樹 脂、及びシァノエチルプルラン等を用いることもできる。
[0048] その他、ワックス、ポリエチレン、ポリクロロピレン、ポリエチレンテレフタレート、ポリオ キシメチレン、ポリビュルクロライド、ポリフッ化ビニリデン、ポリメチルメタタリレート、ポ リサノレホン、ポリカーボネート、ポリイミドシァノエチノレフ。ノレラン、ポリ(ビニノレフエノーノレ ) (PVP)、ポリ(メチルメタクレート)(PMMA)、ポリカーボネート(PC)、ポリスチレン( PS)、ポリオレフイン、ポリアクリルアミド、ポリ(アクリル酸)、ノポラック樹脂、レゾール 樹脂、ポリイミド、ポリキシリレン、エポキシ樹脂に加え、プルランなどの高い誘電率を 持つ高分子材料を使用することも可能である。
絶縁体層の材料として、特に好ましいのは撥水性を有する有機化合物であり、撥水 性を有することにより絶縁体層と有機半導体層との相互作用を抑え、有機半導体が 本来保有している凝集性を利用して有機半導体層の結晶性を高めデバイス性能を 向上させること力 Sできる。このような例としては、 Yasudaら Jpn. J. Appl. Phys. Vol. 42 ( 2003) ρρ·66 -6618に記載のポリパラキシリレン誘導体や Janos Veresら Chem. Mat er., Vol. 16 (2004) pp. 4543-4555に記載のものが挙げられる。
また、図 1及び図 4に示すようなトップゲート構造を用いるときに、このような有機化合 物を絶縁体層の材料として用いると、有機半導体層に与えるダメージを小さくして成 膜することができるため有効な方法である。
前期絶縁体層は、前述したような無機又は有機化合物材料を複数用いた混合層で あっても良く、これらの積層構造体であっても良い。この場合、必要に応じて誘電率 の高レ、材料と撥水性を有する材料を混合したり、積層することによりデバイスの性能 を制卸することあでさる。
また、前記絶縁体層は、陽極酸化膜、又は該陽極酸化膜を構成として含んでも良 い。陽極酸化膜は封孔処理されることが好ましい。陽極酸化膜は、陽極酸化が可能 な金属を公知の方法により陽極酸化することにより形成される。陽極酸化処理可能な 金属としては、アルミニウム又はタンタルを挙げることができ、陽極酸化処理の方法に は特に制限はなぐ公知の方法を用いることができる。陽極酸化処理を行なうことによ り、酸化被膜が形成される。陽極酸化処理に用いられる電解液としては、多孔質酸化 皮膜を形成することができるものならばいかなるものでも使用でき、一般には、硫酸、 燐酸、蓚酸、クロム酸、ホウ酸、スルファミン酸、ベンゼンスルホン酸等あるいはこれら を 2種類以上組み合わせた混酸又はそれらの塩が用いられる。陽極酸化の処理条 件は使用する電解液により種々変化するので一概に特定し得ないが、一般的には、 電解液の濃度が;!〜 80質量%、電解液の温度 5〜70°C、電流密度 0. 5〜60A/c m2、電圧 1〜100ボルト、電解時間 10秒〜 5分の範囲が適当である。好ましい陽極 酸化処理は、電解液として硫酸、リン酸又はホウ酸の水溶液を用い、直流電流で処 理する方法であるが、交流電流を用いることもできる。これらの酸の濃度は 5〜45質 量%であることが好ましぐ電解液の温度 20〜50°C、電流密度 0. 5〜20A/cm2で 20〜250秒間電解処理するのが好まし!/、。
絶縁体層の厚さとしては、層の厚さが薄いと有機半導体に印加される実効電圧が大 きくなるので、デバイス自体の駆動電圧、閾電圧を下げることができる力 逆にソース ゲート間のリーク電流が大きくなるので、適切な膜厚を選ぶ必要があり、通常 10η m〜5 μ m、好まし ほ 50nm〜2 μ m、さりに好ましくは 100nm〜l μ mである。
[0050] また、前記絶縁体層と有機半導体層の間に、任意の配向処理を施しても良い。その 好まし!/、例としては、絶縁体層表面に撥水化処理等を施し絶縁体層と有機半導体層 との相互作用を低減させ有機半導体層の結晶性を向上させる方法であり、具体的に は、シランカップリング剤、例えば、ォクタデシルトリクロロシラン、トリクロロメチルシラ ザンや、ァノレカン憐酸、ァノレカンスノレホン酸、ァノレカン力ノレボン酸などの自己,祖織ィ匕 配向膜材料を、液相又は気相状態で、絶縁膜表面に接触させ自己組織化膜を形成 後、適度に乾燥処理を施す方法が挙げられる。また、液晶の配向に用いられるように 、絶縁膜表面にポリイミド等で構成された膜を設置し、その表面をラビング処理する 方法も好ましい。
[0051] 前記絶縁体層の形成方法としては、真空蒸着法、分子線ェピタキシャル成長法、ィ オンクラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、 CV D法、スパッタリング法、特開平 11— 61406号公報、同 11 133205号公報、特開 2000— 121804号公報、同 2000— 147209号公報、同 2000— 185362号公報に 記載の大気圧プラズマ法などのドライプロセスや、スプレーコート法、スピンコート法、 ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイ コート法などの塗布による方法、印刷やインクジェットなどのパターユングによる方法 などのウエットプロセスが挙げられ、材料に応じて使用できる。ウエットプロセスは、無 機酸化物の微粒子を、任意の有機溶剤又は水に必要に応じて界面活性剤などの分 散補助剤を用いて分散した液を塗布、乾燥する方法や、酸化物前駆体、例えば、ァ ルコキシド体の溶液を塗布、乾燥する、いわゆるゾルゲル法が用いられる。
[0052] 本発明の有機薄膜トランジスタにおける有機半導体層の膜厚は、特に制限されるこ とはないが、通常、 0. 51 111〜1 111であり、 2nm〜250nmであると好ましい。
また、有機半導体層の形成方法は特に限定されることはなく公知の方法を適用でき 、例えば、分子線蒸着法 (MBE法)、真空蒸着法、化学蒸着、材料を溶媒に溶かし た溶液のデイツビング法、スピンコーティング法、キャスティング法、バーコート法、口 ールコート法等の印刷、塗布法及びべ一キング、エレクト口ポリマラインゼーシヨン、 分子ビーム蒸着、溶液からのセルフ'アセンブリ、及びこれらの組合せた手段により、 前記したような有機半導体層の材料で形成される。
有機半導体層の結晶性を向上させると電界効果移動度が向上するため、気相から の成膜 (蒸着,スパッタ等)を用いる場合は成膜中の基板温度を高温で保持すること が望ましい。その温度は 50〜250°Cが好ましぐ 70〜150°Cであるとさらに好ましい 。また、成膜方法に関わらず成膜後にアニーリングを実施すると高性能デバイスが得 られるため好ましい。アニーリングの温度は 50〜200°Cが好ましぐ 70〜200°Cであ るとさらに好ましく、時間は 10分〜 12時間が好ましぐ;!〜 10時間であるとさらに好ま しい。
本発明において、有機半導体層には、一般式 (a)から選ばれる材料 1種類を用い ても良く、複数を組み合わせたり、ペンタセンやチォフェンオリゴマーなどの公知の半 導体を用レ、て複数の混合薄膜又は積層して用いても良!/、。
[0053] 本発明の有機薄膜トランジスタの形成方法としては、特に限定されず公知の方法に よれば良いが、所望の素子構成に従い、基板投入、ゲート電極形成、絶縁体層形成 、有機半導体層形成、ソース電極形成、ドレイン電極形成までの一連の素子作製ェ 程を全く大気に触れることなく形成すると、大気との接触による大気中の水分や酸素 などによる素子性能の阻害を防止できるため好ましい。やむをえず、一度大気に触 れさせなければならないときは、有機半導体層成膜以後の工程は大気に全く触れさ せない工程とし、有機半導体層成膜直前には、有機半導体層を積層する面(例えば 素子 Bの場合は絶縁層に一部ソース電極、ドレイン電極が積層された表面)を紫外線 照射、紫外線/オゾン照射、酸素プラズマ、アルゴンプラズマ等で清浄化 ·活性化し た後、有機半導体層を積層することが好ましい。
さらに、例えば、大気中に含まれる酸素、水などの有機半導体層に対する影響を考 慮し、有機トランジスタ素子の外周面の全面又は一部に、ガスバリア層を形成しても 良い。ガスノ リア層を形成する材料としては、この分野で常用されるものを使用でき、 例えば、ポリビュルアルコール、エチレン ビュルアルコール共重合体、ポリ塩化ビ ニル、ポリ塩化ビニリデン、ポリクロ口トリフロロエチレンなどが挙げられる。さらに、前 記絶縁体層で例示した、絶縁性を有する無機物も使用できる。
[0054] 本発明における,有機薄膜トランジスタはソース, ドレイン電極から注入した電荷を 用いて発光素子として用いることもできる。すなわち、有機薄膜トランジスタを発光素 子(有機 EUの機能を兼ねた有機薄膜発光トランジスタとして用いることができる。こ れは、ソース ドレイン電極間に流れる電流をゲート電極で制御することにより発光 強度を制御できる。発光を制御するためのトランジスタと発光素子を統合できるため、 ディスプレイの開口率向上や作製プロセスの簡易化によるコストダウンが可能となり実 用上の大きなメリットを与える。有機発光トランジスタとして用いるときは、上記詳細な 説明で述べた内容で十分であるが本発明の有機薄膜トランジスタを有機発光トラン ジスタとして動作させるためにはソース、ドレインの一方から正孔、もう一方から電子を 注入する必要あり、発光性能を向上させるため以下の条件を満たすことが好ましい。
[0055] (ソース, ドレイン)
本発明の有機薄膜発光トランジスタは、正孔の注入性を向上させるため、少なくとも 一方は正孔注入性電極であることが好ましい。正孔注入電極とは上記仕事関数 4. 2 eV以上の物質を含む電極である。
また、電子の注入性を向上させるため少なくとも一方は電子注入性電極であること が好ましい。電子注入性電極とは上記仕事関数 4. 3eV以下の物質を含む電極であ る。更に好ましくは一方が正孔注入性であり、かつ、もう一方が電子注入性である電 極を備える有機薄膜発光トランジスタである。
[0056] (素子構成)
本発明の有機薄膜発光トランジスタは、正孔の注入性を向上させるため、少なくとも 一方の電極と有機半導体層の間に正孔注入層を揷入することが好ましい。正孔注入 層には有機 EL素子において、正孔注入材料,正孔輸送材料として用いられるァミン 系材料等が挙げられる。
また、電子の注入性を向上させるため少なくとも一方電極と有機半導体層の間に電 子注入性層を揷入すること好ましレ、。正孔と同じく電子注入層には有機 EL素子に用 いられる電子注入材料等を用いることができる
さらに好ましくは一方の電極下に正孔注入層を備え、かつ、もう一方の電極下に電 子注入層を備える有機薄膜発光トランジスタである。
また、本実施の有機薄膜発光トランジスタでは、例えば、注入効率を向上させる目 的で、有機半導体層とソース電極及びドレイン電極との間に、バッファ層を設けても 良い。
実施例
[0057] 次に、実施例を用いて本発明をさらに詳しく説明する。
合成例 1 (化合物 (A— 2)の合成)
上記化合物 (A— 2)を以下のようにして合成した。合成経路を以下に示す。
[化 13]
Figure imgf000034_0001
[0058] ボロン酸 3. 24g (20mmol)、 4, 4,—ジブロモジフエニルエーテル 3. 28g (10 mmol)とテトラキストリフエニルホスフィンパラジウム(0) 0. l lg (0. 09 mmol)をフ ラスコに入れ、アルゴン置換を行い、さらに 1 , 2-ジメトキシェタン(30ml) , 2M 炭酸 ナトリウム水溶液 30ml (60mmol)を加える。反応器をアルゴン雰囲気下、 90°Cで 加熱還流する。反応終了後、濾過を行い、へキサン、メタノールにて洗浄する。さらに トルエンにより再結晶を行うことで、化合物(A— 2) 3. 42g (収率 85%)を得た。 FD -MS (フィールドディソープシヨンマス分析)の測定により目的物であることを確認し た。測定に用いた装置、測定条件、及び、得られた結果を以下に示す。 装置: HX110 (日本電子社製)
条件:加速電圧 8kV
スキャンレンジ m/z = 50~1500
結果: FD— MS, calcd for C H 0 = 402, found, m/z = 402 (M+, 100)
30 26
実施例 1 (有機薄膜トランジスタの製造)
有機薄膜トランジスタを以下の手順で作製した。まず、ガラス基板を、中性洗剤,純 水,アセトン及びエタノールで各 30分超音波洗浄した後、スパッタ法にて金 (Au)を 4 Onmの膜厚で成膜してゲート電極を作製した。次いで、この基板を熱 CVD装置の成 膜部にセットした。一方、原料の蒸発部には、絶縁体層の原料のポリパラキシレン誘 導体 [ポリパラ塩化キシレン (Parylene) ] (商品名; diX— C,第三化成株式会社製) 250mgをシャーレに入れて設置する。熱 CVD装置を真空ポンプで真空に引き、 5P aまで減圧した後、蒸発部を 180°C、重合部を 680°Cまで加熱して 2時間放置しグー ト電極上に厚さ 1 H mの絶縁体層を形成した。
次に、真空蒸着装置 (ULVAC社製, EX-400)に設置し、絶縁体層上に前記化 合物 (A— 2)を 0. 05nm/sの蒸着速度で 50nm膜厚の有機半導体層として成膜し た。次いで、金属マスクを通して金を 50nmの膜厚で成膜することにより、互いに接し ないソース電極及びドレイン電極を、間隔(チャンネル長 Uが 75 mになるように形 成した。そのときソース電極とドレイン電極の幅(チャンネル幅 W)は 5mmとなるように 成膜して有機薄膜トランジスタを作製した(図 7参照)。
得られた有機薄膜トランジスタは KEITHLEY社製(4200— SCS)を用いて室温 下で以下のように評価を行った。有機薄膜トランジスタのゲート電極に 40Vのゲー ト電圧を印加し、ソース ドレイン間に電圧を印加して電流を流した。この場合、正孔 が有機半導体層のチャンネル領域 (ソース—ドレイン間)に誘起され、 p型トランジスタ として動作する。電流飽和領域でのソース ドレイン電極間の電流のオン/オフ比は 1 X 106であった。また、正孔の電界効果移動度 を下記式 (A)より算出したところ 2 X 10 cm ZVsでめった。
I = (W/2L) - n - (V V )2 (A)
D G T
式中、 Iはソース ドレイン間電流、 Wはチャンネル幅、 Lはチャンネル長、 Cはゲ ート絶縁体層の単位面積あたりの電気容量、 Vはゲート閾値電圧、 Vはゲート電圧
T G
である。
[0060] 実施例 2 (有機薄膜トランジスタの製造)
実施例 1において、有機半導体層の材料として、化合物 (A— 2)の代わりに化合物 (A— 11)を用いた以外は同様にして有機半導体層まで成膜した。次!/、で金属マスク を通してソースドレイン電極として Auの代わりに Caを 0. 05nm/sの蒸着速度で 20η m真空蒸着し、その後 Agを 0. 05nm/sの蒸着速度で 50nm蒸着し Caを被覆し有 機薄膜トランジスタを作製した。得られた有機薄膜トランジスタについて、 +40Vのゲ ート電圧 Vにて n型駆動させた以外は実施例 1と同様にして、ソース—ドレイン電極
G
間の電流のオン/オフ比を測定し、電子の電界効果移動度 を算出した結果を第 1 kに 1、 。
[0061] 実施例 3 13 (有機薄膜トランジスタの製造)
実施例 1において、有機半導体層の材料として、化合物 (A— 2)の代わりにそれぞ れ第 1表に記載の化合物を用いた以外は同様にして有機薄膜トランジスタを作製し た。得られた有機薄膜トランジスタについて、実施例 1と同様にして、 40Vのゲート 電圧 Vにて p型駆動させた。また、実施例 1と同様にして、ソース—ドレイン電極間の
G
電流のオン/オフ比を測定し、正孔の電界効果移動度 を算出した結果を第 1表に 示す。
[0062] 比較例 1 (有機薄膜トランジスタの製造)
実施例 1と同様に基板の洗浄,ゲート電極成膜,絶縁体層を実施した。次いでポリ パラフエ二レンビニレン(PPV) [分子量(Mn) 86000,分子量分布(Mw/Mn = 5· 1) ]をトルエンに 3質量%溶解させ,前記絶縁体層まで成膜した基板の上にスピンコ ート法により成膜し,窒素雰囲気下 120°Cにて乾燥させ有機半導体層として成膜した 。次いで,真空蒸着装置で金属マスクを通して金 (Au)を 50nmの膜厚で成膜するこ とにより,互いに接しないソース及びドレイン電極を形成し有機薄膜トランジスタを作
; ^^し/
得られた有機薄膜トランジスタについて、実施例 1と同様にして、 40Vのゲート電 圧 Vにて p型駆動させた。ソース ドレイン電極間の電流のオン/オフ比を測定し、 正孔の電界効果移動度 μを算出した結果を第 1表に示す。
[0063] 比較例 2 (有機薄膜トランジスタの製造)
有機半導体層の材料としてポリパラフエ二レンビニレン (PPV)を用い,有機半導体 層までは比較例 1とまったく同様に成膜した。次いで金属マスクを通してソースドレイ ン電極として Auの代わりに Caを 0. 05nm/sの蒸着速度で 20nm真空蒸着し、その あと Agを 0.05nm/s 1の蒸着速度で 50nm蒸着し Caを被覆し有機薄膜トランジスタ を作製した。 寸
得られた有機薄膜トランジスタについて、実施例 1と同様にして、 +40Vのゲート電 圧 Vにて n型駆動させた。ソース ドレイン電極間の電流のオン/オフ比を測定し、
G
電子の電界効果移動度 を算出した結果を第 1表に示す。
[0064] [表 1] 丄
棚 体層の トランジスタの ■効果移動度 オンオフ比
化 翻 觀 (cm2/Vs)
魏例 1 (A - 2) p型 2 X 1 CT1 1 X 106 難例 2 (A-11) n型 3 X 10— 2 1 X 105 難例 3 (A-14) P型 2X 10— 1 5 X 105 難例 4 (A— 16) p型 3 X 10 1 X 106 魏例 5 (A— 21) p型 2X 10— 1 1 X 106 難例 6 (A-24) P型 3X 10— 1 2 X 106 魏例 7 P型 2X 10— 1 5 X 105 雞例 8 (B-15) P型 2X 10- 1 2X 105 難例 9 (B-16) P型 3 X 10"1 5 X 105 雄例 10 (B-21) P型 2X 10"1 2 X 105 魏例 1 1 (B— 24) p型 3 X 10 1 X 106 魏例 12 (B-30) P型 3 X 10— 1 1 X 106 雞例 13 (B-39) P型 2 X 10 5 X 105 比棚 1 PPV P型 1 X 10 1 X 103 比較例 2 PPV 1 X 10— 4 1 X 103 [0065] 実施例 14 (有機薄膜発光トランジスタの製造)
有機薄膜発光トランジスタを以下の手順で作製した。まず、 Si基板 (P型比抵抗 1 Ω cmゲート電極兼用)を熱酸化法にて表面を酸化させ、基板上 300nmの熱酸化膜を 作製して絶縁体層とした。さらに基板の一方に成膜した SiO膜をドライエッチングに て完全に除去した後、スパッタ法にてクロムを 20nmの膜厚で成膜し、さらにその上に 金 (Au)を lOOnmスパッタにて成膜し取り出し電極とした。この基板を、中性洗剤,純 水,アセトン及びエタノールで各 30分超音波洗浄した。
次に、真空蒸着装置 (ULVAC社製, EX— 900)に設置し、絶縁体層(SiO )上に 前記化合物 (A— 2)を 0. 05nm/sの蒸着速度で lOOnm膜厚の有機半導体発光層 として成膜した。次いで、上記と同じようにチャンネル長 75 m,チャネル幅 5mmの 金属マスクを設置し,基板を蒸発源に対して 45度傾けた状態でマスクを通して金を 5 Onmの膜厚で成膜した。次に基板を逆方向に 45度傾けた状態で Mgを lOOnm蒸着 することにより、互いに接しないソース電極及びドレイン電極が実質的に正孔注入性 電極 (Au)と電子注入性電極 (Mg)を備えた有機薄膜発光トランジスタを作製した( 図 9参照)。
ソース—ドレイン電極間に— 100Vを印加し、ゲート電極に— 100V印加すると青色 の発光が得られた。
産業上の利用可能性
[0066] 以上詳細に説明したように、本発明の有機薄膜トランジスタは、有機半導体層の材 料として高い電子移動度を有する特定構造の化合物を用いることにより、応答速度( 駆動速度)が高速で、し力、もオン/オフ比が大きぐトランジスタとしての性能が高いも のであり、発光可能な有機薄膜発光トランジスタとしても利用できる。

Claims

請求の範囲
[1] 少なくとも基板上にゲート電極、ソース電及びドレイン電極の 3端子、絶縁体層並び に有機半導体層が設けられ、ソース ドレイン間電流をゲート電極に電圧を印加する ことによって制御する有機薄膜トランジスタにおいて、前記有機半導体層が、下記一 般式 (a)の構造を有する有機化合物を含む有機薄膜トランジスタ。
Figure imgf000039_0001
[式中、 Aは、酸素原子、硫黄原子、セレン原子、置換基を有してもよい NH 基、 置換基を有してもよいシラン基又は置換基を有してもよいメチレン基であり、 Bは、炭 素数 6〜60の 2価の芳香族炭化水素基、又は炭素数 1〜60の 2価の芳香族複素環 基であり、 R〜R は、それぞれ独立に、水素原子、ハロゲン原子、シァノ基、炭素数
1 10
;!〜 30のァノレキノレ基、炭素数 1〜30のハロアルキル基、炭素数 1〜30のアルコキシ ル基、炭素数 1〜30のハロアルコキシル基、炭素数;!〜 30のアルキルチオ基、炭素 数 1〜30のハロアルキルチオ基、炭素数 1〜30のアルキルアミノ基、炭素数 2〜60 のジアルキルアミノ基(アルキル基は互いに結合して窒素原子を含む環構造を形成 しても良い)、炭素数 1〜30のアルキルスルホニル基、炭素数 1〜30のハロアルキル スルホニル基、炭素数 6〜60の芳香族炭化水素基、又は炭素数 1〜60の芳香族複 素環基であり、これら各基は置換基を有していても良ぐまた、互いに連結して炭素 数 6〜60の芳香族炭化水素基、又は炭素数 1〜60の芳香族複素環基を形成しても よい。 ]
[2] 前記一般式 (a)における Bがベンゼン環を含む基である請求項 1に記載の有機薄
[3] 前記一般式(a)において、 2つのォレフィン基が B— A— Bに対して対称の位置に 置換して!/、る構造である請求項 1に記載の有機薄膜トランジスタ。
[4] 前記一般式 (a)において、 R、 R、 R及び R 力 それぞれ独立に、水素原子又は フッ素原子である請求項 1に記載の有機薄膜トランジスタ。
[5] 前記一般式 (a)において、 R〜R 力 それぞれ独立に、水素原子又は炭素数 1〜
1 10
30のアルキル基である請求項 1に記載の有機薄膜トランジスタ。
[6] 前記一般式 (a)において、 R〜R 力 それぞれ独立に、水素原子、ハロゲン原子、
1 10
シァノ基又は炭素数 1〜30のハロアルキル基である請求項 1に記載の有機薄膜トラ
[7] 前記一般式 (a)において、 Αが、酸素原子又は硫黄原子である請求項 1に記載の 有機薄膜トランジスタ。
[8] ソース電極及びドレイン電極と有機半導体層の間にバッファ層を有する請求項 1に 記載の有機薄膜トランジスタ。
[9] 請求項 1〜8のいずれかに記載の有機薄膜トランジスタにおいて、ソース ドレイン 間を流れる電流を利用して発光を得、ゲート電極に電圧を印加することによって発光 を制御する有機薄膜発光トランジスタ。
[10] ソース及びドレインの少なくとも一方が仕事関数 4. 2eV以上の物質からなり、かつ
/又は少なくとも一方が仕事関数 4. 3eV以下の物質からなる請求項 9に記載の有 機薄膜発光トランジスタ。
[11] ソース電極及びドレイン電極と有機半導体層の間にバッファ層を有する請求項 9に 記載の有機薄膜発光トランジスタ。
PCT/JP2007/072906 2006-12-04 2007-11-28 有機薄膜トランジスタ及び有機薄膜発光トランジスタ WO2008069061A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008548237A JPWO2008069061A1 (ja) 2006-12-04 2007-11-28 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
US12/517,462 US8207525B2 (en) 2006-12-04 2007-11-28 Organic thin film transistor and organic thin film light emitting transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006327037 2006-12-04
JP2006-327037 2006-12-04

Publications (1)

Publication Number Publication Date
WO2008069061A1 true WO2008069061A1 (ja) 2008-06-12

Family

ID=39491962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072906 WO2008069061A1 (ja) 2006-12-04 2007-11-28 有機薄膜トランジスタ及び有機薄膜発光トランジスタ

Country Status (4)

Country Link
US (1) US8207525B2 (ja)
JP (1) JPWO2008069061A1 (ja)
TW (1) TW200840108A (ja)
WO (1) WO2008069061A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128559A1 (en) * 2008-04-17 2009-10-22 Ricoh Company, Ltd. [1]benzothieno[3,2-b][1]benzothiophene compound and method for producing the same, and organic electronic device using the same
US20100006830A1 (en) * 2008-07-09 2010-01-14 Samsung Electronics Co., Ltd. Organic semiconductor compound based on 2,7-bis-(vinyl)[1]benzothieno[3,2-b]benzothiophene, organic semiconductor thin film and transistor using the same and methods of forming the same
WO2011065465A1 (ja) * 2009-11-26 2011-06-03 独立行政法人物質・材料研究機構 有機半導体デバイスのコンタクト構造の作製方法及び有機半導体デバイスのコンタクト構造
JP2012508964A (ja) * 2008-08-05 2012-04-12 ケンブリッジ ディスプレイ テクノロジー リミテッド レーザー熱転写プロセスを使用して有機薄膜トランジスタを製造する方法
JP2015183046A (ja) * 2014-03-20 2015-10-22 Jsr株式会社 膜形成用組成物、レジスト下層膜及びその形成方法並びにパターン形成方法
KR20160016446A (ko) * 2014-08-05 2016-02-15 삼성전자주식회사 유기 화합물, 유기 박막 및 전자 소자
JP2018127433A (ja) * 2017-02-10 2018-08-16 国立大学法人山形大学 新規ベンゾチエノベンゾチオフェン誘導体、それを用いた正孔輸送材料及び有機el素子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080024136A (ko) * 2005-05-21 2008-03-17 메르크 파텐트 게엠베하 올리고머 폴리아센 및 반도체 배합물
TWI469224B (zh) * 2008-10-20 2015-01-11 Ind Tech Res Inst 有機薄膜電晶體及其製造方法
TWI443829B (zh) 2010-04-16 2014-07-01 Ind Tech Res Inst 電晶體及其製造方法
JP6225992B2 (ja) 2013-07-23 2017-11-08 トッパン・フォームズ株式会社 トランジスタ
US20220045274A1 (en) * 2020-08-06 2022-02-10 Facebook Technologies Llc Ofets having organic semiconductor layer with high carrier mobility and in situ isolation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176666A (ja) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd 有機電界発光素子
JP2007258253A (ja) * 2006-03-20 2007-10-04 Kyoto Univ トランジスタ材料及びこれを用いた発光トランジスタ素子

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3076603B2 (ja) * 1990-09-20 2000-08-14 出光興産株式会社 有機エレクトロルミネッセンス素子
JPH05194943A (ja) * 1991-08-05 1993-08-03 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH0555568A (ja) 1991-08-28 1993-03-05 Asahi Chem Ind Co Ltd 有機薄膜トランジスタ
US5574291A (en) 1994-12-09 1996-11-12 Lucent Technologies Inc. Article comprising a thin film transistor with low conductivity organic layer
US6278127B1 (en) 1994-12-09 2001-08-21 Agere Systems Guardian Corp. Article comprising an organic thin film transistor adapted for biasing to form a N-type or a P-type transistor
US6326640B1 (en) * 1996-01-29 2001-12-04 Motorola, Inc. Organic thin film transistor with enhanced carrier mobility
KR19980032958A (ko) 1996-10-15 1998-07-25 스코트 리트만 N형 유기 반도체 화합물을 포함한 박막트랜지스터를 구비한 장치
JP4085438B2 (ja) 1996-10-17 2008-05-14 松下電器産業株式会社 有機薄膜トランジスタ及び液晶素子と有機発光素子
US6107117A (en) 1996-12-20 2000-08-22 Lucent Technologies Inc. Method of making an organic thin film transistor
TW399338B (en) 1997-11-24 2000-07-21 Lucent Technologies Inc Method of making an organic thin film transistor and article made by the method
JP2000174277A (ja) 1998-12-01 2000-06-23 Hitachi Ltd 薄膜トランジスタおよびその製造方法
JP2000290284A (ja) * 1999-04-07 2000-10-17 Fuji Photo Film Co Ltd 特定のシラン化合物、合成法、及びそれらからなる発光素子材料、及び、それを含有する発光素子。
JP2001094107A (ja) 1999-09-20 2001-04-06 Hitachi Ltd 有機半導体装置及び液晶表示装置
JP4841751B2 (ja) * 2001-06-01 2011-12-21 株式会社半導体エネルギー研究所 有機半導体装置及びその作製方法
JP2005142233A (ja) 2003-11-04 2005-06-02 Yamanashi Tlo:Kk 液晶化合物薄膜の配向制御方法及びこれを用いて形成された液晶化合物薄膜の膜構造、薄膜トランジスタ並びに有機エレクトロルミネッセンス素子
JP4544937B2 (ja) * 2004-07-30 2010-09-15 大日本印刷株式会社 有機機能素子、有機el素子、有機半導体素子、有機tft素子およびそれらの製造方法
JP5256568B2 (ja) * 2004-12-28 2013-08-07 住友化学株式会社 高分子化合物およびそれを用いた高分子発光素子
JP5124942B2 (ja) * 2005-01-14 2013-01-23 住友化学株式会社 金属錯体および素子
JP2006273792A (ja) * 2005-03-30 2006-10-12 Dainippon Printing Co Ltd 有機電荷輸送性化合物及びその製造方法、並びに有機電子デバイス
KR101347419B1 (ko) 2005-04-15 2014-02-06 이 아이 듀폰 디 네모아 앤드 캄파니 아릴-에틸렌 치환된 방향족 화합물 및 유기 반도체로서의 이의 용도

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176666A (ja) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd 有機電界発光素子
JP2007258253A (ja) * 2006-03-20 2007-10-04 Kyoto Univ トランジスタ材料及びこれを用いた発光トランジスタ素子

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440713B2 (en) 2008-04-17 2013-05-14 Ricoh Company, Ltd. [1]benzothieno[3,2-B][1]benzothiophene compound and method for producing the same, and organic electronic device using the same
JP2009275032A (ja) * 2008-04-17 2009-11-26 Ricoh Co Ltd 脱離基を有する[1]ベンゾチエノ[3,2‐b][1]ベンゾチオフェン誘導体および[1]ベンゾチエノ
WO2009128559A1 (en) * 2008-04-17 2009-10-22 Ricoh Company, Ltd. [1]benzothieno[3,2-b][1]benzothiophene compound and method for producing the same, and organic electronic device using the same
US20100006830A1 (en) * 2008-07-09 2010-01-14 Samsung Electronics Co., Ltd. Organic semiconductor compound based on 2,7-bis-(vinyl)[1]benzothieno[3,2-b]benzothiophene, organic semiconductor thin film and transistor using the same and methods of forming the same
JP2012508964A (ja) * 2008-08-05 2012-04-12 ケンブリッジ ディスプレイ テクノロジー リミテッド レーザー熱転写プロセスを使用して有機薄膜トランジスタを製造する方法
WO2011065465A1 (ja) * 2009-11-26 2011-06-03 独立行政法人物質・材料研究機構 有機半導体デバイスのコンタクト構造の作製方法及び有機半導体デバイスのコンタクト構造
JPWO2011065465A1 (ja) * 2009-11-26 2013-04-18 独立行政法人物質・材料研究機構 有機半導体デバイスのコンタクト構造の作製方法及び有機半導体デバイスのコンタクト構造
JP5769254B2 (ja) * 2009-11-26 2015-08-26 国立研究開発法人物質・材料研究機構 有機半導体デバイスのコンタクト構造の作製方法及び有機半導体デバイスのコンタクト構造
JP2015183046A (ja) * 2014-03-20 2015-10-22 Jsr株式会社 膜形成用組成物、レジスト下層膜及びその形成方法並びにパターン形成方法
KR20160016446A (ko) * 2014-08-05 2016-02-15 삼성전자주식회사 유기 화합물, 유기 박막 및 전자 소자
US20180198078A1 (en) * 2014-08-05 2018-07-12 Samsung Electronics Co., Ltd. Organic compound, and organic thin film and electronic device
US10516116B2 (en) * 2014-08-05 2019-12-24 Samsung Electronics Co., Ltd. Organic compound, and organic thin film and electronic device
KR102232857B1 (ko) * 2014-08-05 2021-03-25 삼성전자주식회사 유기 화합물, 유기 박막 및 전자 소자
JP2018127433A (ja) * 2017-02-10 2018-08-16 国立大学法人山形大学 新規ベンゾチエノベンゾチオフェン誘導体、それを用いた正孔輸送材料及び有機el素子

Also Published As

Publication number Publication date
US20100019234A1 (en) 2010-01-28
TW200840108A (en) 2008-10-01
US8207525B2 (en) 2012-06-26
JPWO2008069061A1 (ja) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5337490B2 (ja) 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
JP5368797B2 (ja) 有機薄膜トランジスタ素子及び有機薄膜発光トランジスタ
WO2008069061A1 (ja) 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
WO2008059817A1 (fr) Transistor mince film organique et transistor électrolumiscent à mince film organique
WO2007094361A1 (ja) 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
JP5299807B2 (ja) ベンゾジチオフェン誘導体並びにそれを用いた有機薄膜トランジスタ及び有機薄膜発光トランジスタ
KR20110057133A (ko) 유기 박막 트랜지스터용 화합물 및 그것을 이용한 유기 박막 트랜지스터
WO2008062841A1 (fr) Transistor à couches minces organiques et transistor électroluminescent à couches minces organiques
JP5452476B2 (ja) 有機薄膜トランジスタ用化合物及び有機薄膜トランジスタ
JP2015109455A (ja) 有機薄膜トランジスタ
JP5308164B2 (ja) 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
JP5329404B2 (ja) 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
WO2009125704A1 (ja) 有機薄膜トランジスタ用化合物及びそれを用いた有機薄膜トランジスタ
JP2008147587A (ja) 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
JP2010275239A (ja) 新規な縮合芳香環化合物及びそれを用いた有機薄膜トランジスタ
JP5308162B2 (ja) 有機薄膜トランジスタ及び有機薄膜発光トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548237

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12517462

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832628

Country of ref document: EP

Kind code of ref document: A1