WO2008068910A1 - ポリゴンミラースキャナモータとその製造方法 - Google Patents

ポリゴンミラースキャナモータとその製造方法 Download PDF

Info

Publication number
WO2008068910A1
WO2008068910A1 PCT/JP2007/056666 JP2007056666W WO2008068910A1 WO 2008068910 A1 WO2008068910 A1 WO 2008068910A1 JP 2007056666 W JP2007056666 W JP 2007056666W WO 2008068910 A1 WO2008068910 A1 WO 2008068910A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
polygon mirror
circuit board
jig
iron plate
Prior art date
Application number
PCT/JP2007/056666
Other languages
English (en)
French (fr)
Inventor
Yasushi Fukui
Masaki Sumi
Akimitsu Maetani
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN200780035374.5A priority Critical patent/CN101517870B/zh
Priority to US12/440,535 priority patent/US8115355B2/en
Publication of WO2008068910A1 publication Critical patent/WO2008068910A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/085Structural association with bearings radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Definitions

  • the present invention relates to a polygon mirror scanner motor including a hydrodynamic bearing device.
  • the present invention relates to a fixing structure and a fixing method between members that require high mounting accuracy.
  • LBP laser beam printers
  • Patent Document 1 conventionally, a structure in which a bearing is fixed to an iron substrate has been reduced in thickness and cost.
  • a fluid dynamic bearing which is a type of hydrodynamic bearing, has improved precision and extended life.
  • FIG. 4 is a cross-sectional view of a polygon mirror scanner motor in Conventional Example 1 shown in Patent Document 1.
  • the rotor boss 402 is fixed to the rotary shaft 401 by a method such as shrink fitting.
  • a rotating polygon mirror 403 and a rotor frame 404 are fixed to the rotor boss 402.
  • a rotor magnet 405 is fixed on the inner wall of the rotor frame 404.
  • a rotor 400 is constituted by a rotating shaft 401, a rotor boss 402, a rotating polygon mirror 403, a rotor frame 404 and a rotor magnet 405.
  • a stator substrate 411 of the polygon mirror scanner motor shown in FIG. 4 has an attachment portion for attaching the polygon mirror scanner motor to the apparatus.
  • the stator substrate 411 is made of a iron substrate with good thermal conductivity.
  • the stator core 412 is formed by laminating magnetic materials.
  • a stator coil 413 is wound around the stator core 412.
  • the stator core 412 and the stator coil 413 constitute a wire assembly 414.
  • a driving IC 415 for operating the polygon mirror scanner motor is mounted on the stator substrate 411.
  • the stator assembly 410 is configured by the driving IC 415.
  • Stator core 412 and rotor magnet 405 are opposed to each other through a gap.
  • a bearing 420 is inserted from the back surface of the stator substrate 411 and is directly caulked to the stator core 412.
  • a herringbone groove is formed as a dynamic pressure groove on the inner wall of the bearing 420, and the bearing 420 forms a fluid bearing.
  • the rotating shaft 401 is inserted into the bearing 420, and the bearing 420 supports the rotating shaft 401 rotatably.
  • the rotating polygon mirror 403 rotates. Wind is generated as the rotating polygon mirror 403 rotates. Due to the wind cooling effect of the wind, the heat generated by the bearing 420 can be dissipated from the stator core 412 and the stator substrate 411. This makes it possible to improve bearing performance in the polygon mirror scanner motor shown in Fig. 4.
  • heat generated by the drive IC 415 can also be dissipated by the air cooling effect.
  • the rotating shaft 401 is a bearing 4
  • Patent Document 2 proposes a configuration in which a flat rotor magnet, a rotor yoke, and a rotary polygon mirror are integrally formed in this planar opposed motor.
  • FIG. 5 is a cross-sectional view of a polygon mirror scanner motor in Conventional Example 2 shown in Patent Document 2.
  • a rotating polyhedron 510 has a flat rotor magnet 511 and a rotor 512 mounted therein, and a mirror surface 513 formed on the outer periphery.
  • a plurality of plate-like coils 521 face the plate-like rotor magnet 511 with a gap and are disposed on the control board 522.
  • the control board 522 is a mounting board that serves as both a bracket and a back yoke. Attached to.
  • a through hole 524 is formed in the center of the mounting plate 523.
  • the fixed shaft 525 is held by the mounting board 523 by fitting the concave circumferential groove 526 formed in the fixed shaft 525 to the periphery of the through hole 524.
  • a cylindrical portion 514 is formed at the center of the rotating polyhedron 510.
  • Bearings 515 and 516 are provided at both ends of the cylindrical portion 514 in the axial direction.
  • the cylindrical portion 514 is supported by the fixed shaft 525 via the bearing 515 and the bearing 516.
  • the rotating polyhedron 510 is disposed at a substantially central portion in the axial direction of the fixed shaft 525.
  • the bearing 515 and the bearing 516 are disposed at both ends of the cylindrical portion 514, a so-called both-end support structure is formed.
  • the motor shown in FIG. 5 can smoothly rotate at a high speed.
  • the conventional polygon mirror scanner motor disclosed in Patent Document 2 is excellent in that it has a bearing structure of a both-end support structure.
  • the planar opposed motor system since the planar opposed motor system is employed, an axial repulsive force is generated between the flat rotor magnet 511 and the flat coil 521 when the energized phase is switched. In particular, there is a problem that large vibrations and noise occur during high-speed rotation.
  • a mirror surface 513 is formed on the outer periphery of a rotating polyhedron 510 integrally formed with a cylindrical portion 514 that accommodates the bearing 515 and the bearing 516, a flat rotor magnet 511, and a rotor yoke 512. ing. Because of this configuration, there is also a problem that it is extremely difficult to form a highly accurate mirror surface.
  • a configuration corresponding to the cylindrical portion 514 of the rotating polyhedron 510 of Patent Document 2 is formed on the rotor boss 402 of Patent Document 1.
  • a herringbone groove is formed as a dynamic pressure groove on the inner wall of the cylindrical portion to constitute a fluid bearing with the fixed shaft.
  • a rotating polygon mirror 403 (mirror) in which the mirror surface 513 is made independent from the rotating polyhedron 510 of Patent Document 2 is fixed to the rotor boss 402.
  • the rotary polygon mirror 403 can be processed alone, and the problem that it is extremely difficult to form a highly accurate mirror surface can be solved.
  • FIG. 6 is a sectional view of the polygon mirror scanner motor in Conventional Example 3.
  • the bracket 601 is provided with an annular protrusion 602.
  • a stator core 603 is fixed to the annular protrusion 602.
  • a stator coil 604 is wound around the stator core 603.
  • the bracket 601 is attached and fixed to the iron plate circuit board 605.
  • a fixed shaft 606 is press-fitted and fixed at the center of the bracket 601.
  • the hub 611 is provided with a cylindrical sleeve bearing portion 612 protruding downward.
  • a herringbone groove is formed on the inner wall surface of the sleeve bearing portion 612. Due to the herringbone groove and the lubricant interposed in the slight gap between the fixed shaft 606 and the sleeve bearing portion 612. Thus, dynamic pressure is generated when the motor rotates. As a result, the fixed shaft 606 supports the sleeve bearing portion 612 in a rotatable manner.
  • the outer wall surface 613 of the sleeve bearing portion 612 has a rotor 614 attached thereto.
  • a rotary polygon mirror 615 having a square shape is placed on the upper part of the hub 611.
  • the rotary polygon mirror 615 is also pressed and fixed by an upper force by a clamp spring 616.
  • the press-fit fixing portion of the fixed shaft 606 is formed so as to protrude greatly from the back surface of the iron plate circuit board 605 at the center portion of the bracket 601. For this reason, there is a problem that it is difficult to reduce the size and thickness of the polygon mirror scanner motor.
  • the polygon mirror scanner motor shown in FIG. 5 fits the periphery of the through hole 524 formed in the center of the mounting plate 523 into the concave circumferential groove 526 formed in the fixed shaft 525. It is a fixed structure that only holds it. Therefore, there is a new problem that it is difficult to increase the degree of perpendicularity of the fixed shaft 525 with respect to the mounting plate 523, and hence the surface tilt accuracy of the mirror surface 513, and the fixing strength may be insufficient.
  • FIG. 7A is a cross-sectional view of main parts of a caulking part before laser light irradiation in a conventional caulking method using laser light
  • FIG. 7B is a main part cross-sectional view of the caulking part after laser light irradiation in the caulking method. It is.
  • one plate-like member 701 is provided with a mounting hole 702, and a chamfered portion 703 is formed on the periphery thereof.
  • the other cylindrical member 711 is formed with a small diameter portion 712 that fits into the attachment hole 702 and a large diameter flange portion 713.
  • the end surface 714 of the small diameter portion 712 is irradiated with the laser beam 720.
  • a part 715 of the small-diameter portion 712 shown in FIG. 7B is melted and flows in the direction of the chamfered portion 703 of one member 701. Move and solidify.
  • the other member 711 is completely fixed to the one member 701 by the fluidized part 715 and the flange 713, and is caulked in a so-called axial direction.
  • Patent Document 1 Japanese Patent Application Publication No. 9 131032
  • Patent Document 2 Japanese Patent Application Publication No. 3-63617
  • Patent Document 3 Japanese Patent Application Publication No. 7-336970
  • Patent Document 4 Japanese Patent Application Publication No. 60-87987
  • the polygon mirror scanner motor of the present invention includes a rotor, a winding line, a stator, a shaft, and a hydrodynamic bearing.
  • the rotor includes a rotor frame, a rotor magnet attached to the inner wall of the rotor frame, a rotor boss having a cylindrical portion and attached to the rotor frame, and a polygon mirror attached to the rotor boss.
  • the winding assembly is composed of a stator core that is laminated with a magnetic material and disposed opposite to the stator magnet, and a stator coil that is mounted on the stator core.
  • the stator is composed of a winding assembly and an iron plate circuit board in which a through hole is formed.
  • the shaft is fixed to the through hole by laser welding.
  • a dynamic pressure groove for generating a dynamic pressure in the radial direction is formed in one of the cylindrical portion of the rotor box and the shaft.
  • the cylindrical portion of the rotor boss is supported by the shaft.
  • the motor torque generating part has a circumferentially opposed structure with a core, and the rotor to which the polygon mirror is attached is supported by the dynamic pressure bearing with the shaft fixed structure.
  • the manufacturing method of the polygon mirror scanner motor of the present invention includes the following steps. There is a step of pressing and fixing the mounting surface of the iron plate circuit board for mounting the polygon mirror scanner motor to the apparatus against the jig with a predetermined pressure. In addition, there is a step of inserting the shaft into a hole formed at a right angle to the pressing surface of the jig and having a diameter slightly larger than the diameter of the shaft and holding it in a fixed state. Fixing the shaft to the iron plate circuit board by rotating while simultaneously irradiating a laser to a plurality of equally divided portions on the circumference of the joint of the shaft and the iron plate circuit board, and welding all around the circumference. . This method has the effect that the perpendicularity between the shaft and the iron plate circuit board can be secured with high accuracy.
  • FIG. 1 is a cross-sectional view of a polygon mirror scanner motor according to a first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view of the polygon mirror scanner motor shown in FIG. 1 before the shaft is inserted into the iron plate circuit board.
  • FIG. 2B is a cross-sectional view after inserting the shaft of the polygon mirror scanner motor shown in FIG. 1 into the iron plate circuit board.
  • FIG. 2C is a plan view for explaining the step of laser welding the shaft of the polygon mirror scanner motor shown in FIG. 1 to the iron plate circuit board.
  • FIG. 2D is a cross-sectional view of the polygon mirror scanner motor shaft shown in FIG. 1 after laser welding to the iron plate circuit board.
  • FIG. 2E is a plan view after laser welding of the shaft of the polygon mirror scanner motor shown in FIG. 1 to the iron plate circuit board.
  • FIG. 3 is a cross-sectional view of a jig used in the method for manufacturing a polygon mirror scanner motor according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view of a polygon mirror scanner motor in Conventional Example 1.
  • FIG. 5 is a sectional view of a polygon mirror scanner motor in Conventional Example 2.
  • FIG. 6 is a sectional view of a polygon mirror scanner motor in Conventional Example 3.
  • FIG. 7A is a cross-sectional view of an essential part of a caulking portion before laser light irradiation in a conventional caulking method using laser light.
  • FIG. 7B is a cross-sectional view of an essential part of a reclamation portion in a conventional caulking method using laser light.
  • FIG. 1 is a cross-sectional view of a polygon mirror scanner motor according to Embodiment 1 of the present invention. First, the main configuration of the polygon mirror scanner motor according to the first embodiment of the present invention will be described with reference to FIG.
  • the polygon mirror scanner motor includes a rotor 100, a winding assembly 114, a stator 130, a shaft 120, and a hydrodynamic bearing 131.
  • the rotor 100 includes a rotor frame 101, a rotor magnet 104 attached to the inner wall of the rotor frame 101, a rotor boss 102 having a cylindrical portion 105 and attached to the rotor frame 101, and a polygon mirror (rotation) attached to the rotor boss 102. Multifaceted mirror) 103.
  • the winding assembly 114 is made up of a stator core 112 that is formed by stacking magnetic materials and facing the rotor magnet 104, and a stator coil 113 that is mounted on the stator core 112.
  • the stator 130 includes a wire assembly 114 and an iron plate circuit board 111 in which a through hole 116 is formed.
  • the shaft 120 is fixed to the iron plate circuit board 111 by laser welding in the through hole 116.
  • a dynamic pressure groove 106 that generates dynamic pressure in the radial direction is formed in either the cylindrical portion 105 or the shaft 120 of the rotor boss 102.
  • the cylindrical portion 105 of the rotor boss 102 is supported by the shaft 120.
  • FIG. 2A is a cross-sectional view before inserting the shaft of the polygon mirror scanner motor shown in FIG. 1 into the iron plate circuit board.
  • FIG. 2B is after inserting the shaft of the polygon mirror scanner motor shown in FIG. 1 into the iron plate circuit board.
  • FIG. Figure 2C shows the polygon mirror scanner shown in Figure 1.
  • FIG. 5 is a plan view for explaining a step of laser welding a motor shaft to an iron plate circuit board.
  • Fig. 2D is a cross-sectional view of the polygon mirror scanner motor shaft shown in Fig. 1 after laser welding to the iron plate circuit board.
  • Fig. 2E is a laser welding of the polygon mirror scanner motor shaft shown in Fig. 1 to the iron plate circuit board.
  • FIG. 1 is a cross-sectional view before inserting the shaft of the polygon mirror scanner motor shown in FIG. 1 into the iron plate circuit board.
  • FIG. 2B is after inserting the shaft of the polygon mirror scanner motor shown in FIG. 1 into the iron plate circuit board.
  • a rotor boss 102 is attached to a hole formed in the center of the rotor frame 101.
  • a polygon mirror 103 is attached to the rotor boss 102.
  • a rotor magnet 104 is fixed to the inner wall of the rotor frame 101.
  • the rotor 100 is configured.
  • the iron plate circuit board 111 formed of an iron-based material has a mounting portion for mounting the polygon mirror scanner motor to the apparatus.
  • the stator core 112 is formed by laminating magnetic materials.
  • a stator coil 113 is wound around the stator core 112.
  • a stator core 112, a stator coil 113, and a force coil assembly 114 are formed.
  • the stator core 112 and the rotor magnet 104 are opposed to each other through a gap.
  • a stator 130 is composed of the wire assembly 114 and the iron plate circuit board 111.
  • a driving IC 115 for operating the polygon mirror scanner motor is mounted on the iron plate circuit board 111.
  • a through hole 116 is formed in the center of the iron plate circuit board 111.
  • a shaft 120 is inserted into the through hole 116.
  • the rotor boss 102 has a cylindrical portion 105 at the center.
  • herringbone grooves are formed at two locations as axially spaced grooves as dynamic pressure grooves 106.
  • a shaft 120 is inserted into the cylindrical portion 105, and a lubricant is filled between the inner wall of the cylindrical portion 105 and the shaft 120 to constitute a hydrodynamic bearing in the radial direction.
  • the shaft 120 of the stator 130 and the cylindrical portion 105 of the rotor 100 are rotatably supported.
  • Two dynamic pressure grooves 106 (ringbone grooves) formed on the inner wall of the cylindrical portion 105 are formed at positions corresponding to portions of the rotor box 102 where the polygon mirror 103 is fixed.
  • the two dynamic pressure grooves 106 described in the case where the two dynamic pressure grooves 106 are formed on the inner wall of the cylindrical portion 105 of the rotor boss 102 are formed on the shaft 120.
  • the polygon mirror 103 is attached to the outer wall of the cylindrical portion 105 of the rotor boss 102, and at least against the inner wall of the cylindrical portion 105 facing the axial range where the polygon mirror 103 is attached to the outer wall.
  • a dynamic pressure groove 106 is formed.
  • FIGS. 2A to 2E a method for manufacturing the polygon mirror scanner motor in the first embodiment shown in FIG. 1 will be described.
  • the method for manufacturing a polygon mirror scanner motor of the present invention includes the following steps. There is a step of pressing and fixing the mounting surface of the iron plate circuit board 111 for mounting the polygon mirror scanner motor to the apparatus against the jig with a predetermined pressure.
  • the shaft 120 is formed at a right angle to the pressing surface of the jig and has a step of inserting the shaft 120 into a hole (through hole 116) having a diameter slightly larger than the diameter of the shaft 120 and holding it in a fixed state.
  • the shaft 120 is welded to the steel plate circuit board by rotating it while irradiating the laser at the same time at multiple locations on the circumference of the joint 117 of the joint 120 between the shaft 120 and the iron board circuit board 111. 111, and fixing to 111.
  • the protruding amount of the shaft 120 from the back side (welding side) of the iron plate circuit board 111 as shown in FIG. 2B P is very small. Therefore, the motor can be reduced in size and thickness, and a space for the protruding portion on the apparatus side to which the motor is attached can be afforded. As a result, it can contribute to space saving of the apparatus.
  • the clearance between the through-hole 116 and the shaft 120 is set to about 0.8 mm from 0.001 force on one side.
  • FIG. 2D shows a cross-sectional view of the state in which the shaft 120 is fixed to the iron plate circuit board 111 by laser welding
  • FIG. 2E shows a plan view.
  • the motor torque generating portion has a circumferentially opposed structure in which the stator core 112 and the rotor magnet 104 face each other in the circumferential direction, thereby greatly reducing vibration and noise generated in the axial direction during high-speed rotation.
  • the rotor 100 to which the polygon mirror 103 is attached is supported by a dynamic pressure bearing having a fixed shaft structure.
  • the conventional polygon mirror single scanner motor bearing structure disclosed in Patent Document 1 can be supported only at a position spaced below the polygon mirror 103! It can solve the problem ⁇ and ⁇ ⁇ problem.
  • one of two herringbone grooves is formed on the inner wall of the cylindrical portion 105 of the rotor boss 102 including the portion to which the polygon mirror 103 is fixed. That is, one of the herringbone grooves is formed on the inner wall of the cylindrical portion 105 of the rotor boss 102 located on the upper side in the axial direction of the rotor frame 101.
  • the other of the herringbone grooves is formed on the inner wall of the cylindrical portion 105 of the port boss 102 located on the lower side in the axial direction of the rotor frame 101.
  • the shaft 120 is fixed directly to the iron plate circuit board 111 by laser welding, it is possible to firmly fix the shaft 120 while eliminating the structural equipment that largely protrudes from the back surface of the iron board circuit board 111. As a result, it is possible to provide a polygon mirror scanner motor capable of achieving high reliability, thinning, and low cost.
  • FIG. 3 is a cross-sectional view of a jig used in the method of manufacturing the polygon mirror scanner motor according to the second embodiment.
  • the jig 200 includes a clamp 202 that presses the iron plate circuit board 111 against the pressing surface 220 of the jig, and a holder 203 that holds the shaft 120 at right angles to the pressing surface 220 of the jig.
  • the holder 203 holds the shaft 120 by sandwiching the shaft 120 in parallel with the pressing surface 220 of the jig.
  • the jig 200 is opened and closed to open and close the holder 203.
  • a mechanism (not shown) and a moving mechanism (not shown) for moving the clamp 202 up and down in the axial direction are provided.
  • the polygon mirror scanner motor manufacturing method uses the jig 200 and has the following steps. There is a step of pressing the iron plate circuit board 111 by the clamp 202 against the pressing surface 220 of the jig.
  • the shaft 120 has a step of inserting the holder 203 into the through hole 116 of the iron plate circuit board 111 and inserting the shaft 120 from the pressing surface 220 side of the jig. Further, it has a step of laser welding and fixing the joint portion between the shaft 120 and the through hole 116 of the iron plate circuit board 111 while the shaft 120 is sandwiched and held by the holder 203.
  • the jig 200 includes a pressing surface 220 of the jig on which the iron plate circuit board 111 is pressed, a clamp 202 for pressing the iron board circuit board 111 against the pressing surface 220 of the jig, and a circuit board pressing surface 201.
  • a holder 203 for holding the shaft 120 at a right angle is provided.
  • the clamp 202 can be moved up and down in the axial direction by a moving mechanism (not shown).
  • the holder 203 includes a pair of a movable portion 203b and a movable portion 203c.
  • One movable portion 203b has a V-groove-shaped holding surface precisely machined at right angles to the circuit board pressing surface 201.
  • 203a is formed.
  • the holding surface 203a of the one movable portion 203b and the other movable portion 203c are configured to face each other.
  • the distance between the movable part 203b and the movable part 203c facing each other can be adjusted by moving the movable part 203b and the movable part 203c in parallel to the circuit board pressing surface 201 by an opening / closing mechanism (not shown). It is configured.
  • the clamp 202 of the jig 200 is lowered downward in the axial direction to secure a space in which the iron plate circuit board 111 can be mounted.
  • the pair of movable portions 203b and 203c of the holder 203 are set in an open state so that the shaft 120 can be easily inserted therebetween.
  • the iron plate circuit board 111 is mounted on the jig 200 so that the mounting surface 11 la for attaching the motor of the iron plate circuit board 111 to the apparatus faces the pressing surface 220 of the jig. And clan Then, the mounting surface 11la is pressed against the pressing surface 220 of the jig and fixed. Subsequently, the shaft 120 is inserted into the through hole 116 of the iron plate circuit board 111 until the one end of the shaft 120 abuts against the receiving surface 204 of the jig 200. In this state, the other end of the shaft 120 is set to protrude a predetermined amount from the mounting surface 11 la side.
  • the movable portion 203b and the movable portion 203c of the holder 203 move in the direction in which the interval is narrowed, and the shaft 120 is pressed against and held by the holding surface 203a.
  • the right angle accuracy between the circuit board pressing surface 201 and the shaft 120 is pressed against the holding surface 203a so that the right angle accuracy between the iron circuit board 111 and the shaft 120 depends on the accuracy of the parts. Therefore, it is possible to set with high accuracy.
  • the entire jig 200 is rotated, and as shown in FIG. 2C, the laser beam 210 is irradiated on the joint 117 where the through-hole 116 and the shaft 120 are in contact with each other at two irradiation points 118 simultaneously. Rotate while continuously irradiating up to the final irradiation point 119, which has been rotated 180 degrees or more, and weld all around to fix.
  • the polygon scanner motor of the present invention is configured such that the shaft 120 and the iron plate only protrude from the shaft 120 on the mounting surface 11 la side where the motor of the iron plate circuit board 111 is attached to the apparatus.
  • the circuit board 111 can be fixed with sufficient strength and high right-angle accuracy. As a result, there is an effect that the thickness can be reduced with high reliability.
  • the polygon mirror scanner motor and the method of manufacturing the same according to the present invention are particularly expensive. It can be applied to small and thin polygon mirror scanner motors for high-speed rotation that require reduced accuracy and bearing load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 本ポリゴンミラースキャナモータのロータは、ロータフレームの内壁に取り付けられたロータマグネットと、円筒部を有しロータフレームに取り付けられたロータボスと、ロータボスに取り付けられたポリゴンミラーとからなる。ステータは、磁性体を積層しロータマグネットと対向して配置されたステータコアと、ステータコアに巻装されたステータコイルと、貫通孔が形成された鉄板回路基板とからなる。貫通孔にレーザー溶接よって固定されたシャフト、またはロータボスの円筒部のいずれか一方に動圧溝が形成され動圧軸受が構成され、ロータボスの円筒部をシャフトによって支持する。

Description

明 細 書
ポリゴンミラースキャナモータとその製造方法
技術分野
[0001] 本発明は動圧軸受装置を備えるポリゴンミラースキャナモータに関する。特に、高 い取付精度が要求される部材間の固定構造および固定方法に関する。
背景技術
[0002] 近年、ポリゴンミラースキャナモータは、レーザービームプリンタ(以下、 LBPと呼ぶ) の普及に伴い、さらなる小型化および薄型化ならびに低コストィ匕が要求されている。 同時に、回転変動 (ジッター)や騒音の低減が要求される。また、ポリゴンミラーの面 倒れにつ 、ては高精度の維持が必要である。
[0003] こうした中、従来は例えば特許文献 1に開示されるように、鉄基板に軸受を固定する 構成によって、薄型化および低コストィ匕が図られてきた。また、軸受には動圧軸受の 一種である流体軸受を採用することによって高精度化および長寿命化が図られてき た。
[0004] 図 4は特許文献 1に示された従来例 1におけるポリゴンミラースキャナモータの断面 図である。図 4において、ロータボス 402力 回転軸 401に焼き嵌めなどの方法で固 設されている。ロータボス 402には、回転多面鏡 403とロータフレーム 404とが固設さ れている。ロータフレーム 404の内壁にはロータマグネット 405が固設されている。回 転軸 401、ロータボス 402、回転多面鏡 403、ロータフレーム 404およびロータマグネ ット 405によってロータ 400が構成されている。
[0005] 図 4に示すポリゴンミラースキャナモータのステータ基板 411は、同ポリゴンミラース キヤナモータを装置に対して装着するための取付部を有する。ステータ基板 411は 熱伝導率の良 ヽ鉄基板で構成されて 1ヽる。
[0006] ステータコア 412は磁性体を積層して構成されている。ステータコア 412にはステー タコイル 413が卷回されている。ステータコア 412とステータコイル 413とによって卷 線組立 414が構成されて 、る。ステータ基板 411にはポリゴンミラースキャナモータを 動作させるための駆動 IC415が実装されている。ステータ基板 411、卷線組立 414 および駆動 IC415によってステータ組立 410が構成されている。ステータコア 412と ロータマグネット 405とは空隙を介して対向している。
[0007] 軸受 420が、ステータ基板 411の裏面から挿入され、ステータコア 412に直接カシ メられている。軸受 420の内壁には動圧溝としてへリングボーン溝が形成され、軸受 4 20は流体軸受を構成している。回転軸 401が軸受 420に挿入され、軸受 420は回 転軸 401を回転可能に支持する。
[0008] ステータコイル 413に電流を流すことによって、ステータコア 412とロータマグネット 405との間に回転トルクが発生する。これにより、ロータ 400が回転する。
[0009] ロータ 400の回転に伴い回転多面鏡 403が回転する。回転多面鏡 403が回転する ことに伴い風が発生する。この風の風冷効果によって、軸受 420が発生する熱をステ ータコア 412およびステータ基板 411から放熱することができる。これにより、図 4に示 すポリゴンミラースキャナモータにおいては、軸受性能向上を図ることが可能となった
[0010] さらには、上記風冷効果によって、駆動 IC415が発生する熱も放熱することができ
、駆動 IC415の性能の悪ィ匕を防ぐことができる。
[0011] 上記特許文献 1に開示されたポリゴンミラースキャナモータは、回転軸 401が軸受 4
20に支持され回転する軸回転型である。一方、これとは別に、固定軸に挿入され支 持された軸受が、その固定軸の周りを回転する軸固定型のポリゴンミラースキャナモ ータがある。
[0012] この軸固定型のポリゴンミラースキャナモータにおいて、平板状ロータマグネットに 対向させて複数の平面コイルを配設した平面対向型モータがある。この平面対向型 モータにおいて、平板状ロータマグネットとロータヨークと回転多面鏡とを一体に形成 することによって薄型化を図る構成が、例えば特許文献 2に提案されている。
[0013] 図 5は特許文献 2に示された従来例 2におけるポリゴンミラースキャナモータの断面 図である。図 5において、回転多面体 510は、平板状ロータマグネット 511とロータョ ーク 512を内部に装着し、外周にミラー面 513を形成している。複数の平板状コイル 521が、平板状ロータマグネット 511と空隙を介して対向するとともに制御基板 522 上に配設されている。制御基板 522は、ブラケットとバックヨークを兼ねる取付盤 523 に取り付けられる。
[0014] 取付盤 523の中央には貫孔 524が形成されている。その貫孔 524の周縁に固定軸 525に形成された凹周溝 526を嵌合することによって、固定軸 525が取付盤 523に 保持されている。
[0015] 回転多面体 510の中央には円筒部 514が形成されている。円筒部 514の軸方向 両端には軸受 515および軸受 516が内装されている。軸受 515および軸受 516を介 して、円筒部 514は固定軸 525に支持されている。
[0016] この構成によって、回転多面体 510は固定軸 525の軸方向の略中央部に配設され る。しかも、軸受 515および軸受 516は、円筒部 514の両端に配設されるので、いわ ゆる両持支持構造の軸受構成となる。この構成により、図 5に示すモータは円滑に高 速回転を行うことができる。
[0017] ところで、 LBPの普及に伴い、 LBPのより高速ィ匕あるいはカラー化が望まれており、 ポリゴンミラースキャナモータも 30, 000力ら 50, OOOmin—1といった一層の高速回転 ィ匕が求められている。
[0018] 上記特許文献 1に開示された従来のポリゴンミラースキャナモータの軸受構成は、 V、わゆる片持支持構造であるため、すりこぎ運動を生じやす 、と 、う課題があった。 特に、 30, 000力ら 50, OOOmirT1と! /、つた高速回転時にお!/、ては、すりこぎ運動力 動圧軸受に与える影響が極めて大きぐ軸受寿命を著しく低下させるという課題を有 している。この課題を解決するために、回転軸の径を大きくし、動圧軸受の剛性を高 める構造をとることとなるが、この場合、軸受損失の増大による消費電力の増加や、モ ータの小型化が困難になるという課題を有していた。
[0019] 上記特許文献 2に開示された従来のポリゴンミラースキャナモータは、両持支持構 造の軸受構成である点では優れている。し力しながら、平面対向型モータ方式を採 用しているため、通電相を切り替える時に平板状ロータマグネット 511と平板状コイル 521との間に軸方向の吸引反発力が生じる。特に、高速回転時には大きな振動や騒 音が発生するという課題がある。
[0020] また、軸受 515および軸受 516を収容する円筒部 514、平板状ロータマグネット 51 1、ロータヨーク 512を一体形成した回転多面体 510の外周にミラー面 513を形成し ている。この構成のため、高精度のミラー面を形成することが極めて困難であるという 課題もある。
[0021] そこで、上記課題を解決する手段として、以下の構成が考えられる。先ず上記特許 文献 1に開示された従来のポリゴンミラースキャナモータのトルク発生部、すなわち図 4のステータ組立 410及びロータ 400の構成を、上記特許文献 2の平面対向型モー タ構成に置き換えることによって、高速回転時に大きな振動や騒音が発生するという 課題を解決することが考えられる。
[0022] 次に、上記特許文献 1のロータボス 402に上記特許文献 2の回転多面体 510の円 筒部 514に相当する構成を形成する。そして、その円筒部の内壁に動圧溝としてヘリ ングボーン溝を形成して、固定軸との間で流体軸受を構成する。こうして、ロータボス 402が固定軸の周りを回転する軸固定型の流体軸受構成とすることによって、両持 支持構造に近い軸受構成が可能となる。この構成により、高速回転時にすりこぎ運動 が動圧軸受に与える影響が極めて大きくかつ軸受寿命を著しく低下させるという課題 を解決することが考えられる。
[0023] さらに、上記特許文献 1と同様に、上記特許文献 2の回転多面体 510からミラー面 5 13を独立させた回転多面鏡 403 (ミラー)をロータボス 402に固定する。この構成によ り、回転多面鏡 403単独で加工が可能となり、高精度のミラー面を形成することが極 めて困難であるという課題も解決できる。
[0024] 実際にこのような構成のポリゴンミラースキャナモータ力 例えば、特許文献 3に提 案されている。図 6は従来例 3におけるポリゴンミラースキャナモータの断面図である
[0025] 図 6において、ブラケット 601には、環状突出部 602が設けられている。環状突出部 602にはステータコア 603が固定されている。ステータコア 603にはステータコイル 6 04が卷回されている。ブラケット 601は鉄板回路基板 605に取付固定されている。ブ ラケット 601の中央部には固定軸 606が圧入固定されている。
[0026] ハブ 611には下方に突出した円筒状のスリーブ軸受部 612が突設されている。スリ 一ブ軸受部 612の内壁面にはへリングボーン溝が形成されている。そのへリングボー ン溝と、固定軸 606とスリーブ軸受部 612との僅かな間隙に介在された潤滑剤とによ つて、モータ回転時に動圧が発生する。これにより、固定軸 606がスリーブ軸受部 61 2を回転可能に支持する。
[0027] スリーブ軸受部 612の外壁面 613〖こは、ロータ 614が取り付けられている。ハブ 61 1の上部には方形状をなす回転多面鏡 615が載置されて 、る。回転多面鏡 615は、 クランプ用ばね 616によって上部力も押圧固定されている。
[0028] しかしながら、図 6に示すポリゴンミラースキャナモータには、ブラケット 601の中央 部に、固定軸 606の圧入固定部が鉄板回路基板 605の裏面に大きく突き出して形 成されている。このため、ポリゴンミラースキャナモータとして小型化および薄型化が 難しいという課題を有する。
[0029] ここで、図 5に示すポリゴンミラースキャナモータにおいて、固定軸 525と取付盤 52 3の固定構造に着目すると、取付盤 523の裏面には大きく突き出す部材は存在しな V、ので、小型化および薄型化への解決手段として考えられる。
[0030] し力しながら、図 5に示すポリゴンミラースキャナモータは、固定軸 525に形成した 凹周溝 526に対して、取付盤 523の中央に形成された貫孔 524周縁を嵌合して保持 するだけの固定構造である。そのため、固定軸 525の取付盤 523に対する垂直度、 ひいてはミラー面 513の面倒れ精度を高精度にすることが困難であり、固定強度も不 十分となる虞があるという新たな課題がある。
[0031] ところで、軸と平板を大きな外力を加えずに堅固に固定する手段として、レーザー 光を用いて軸と平板を力シメて固定する方法が提案されている。例えば、特許文献 4 に開示されているこの方法を上記の課題を解決する方法として考える。
[0032] 図 7Aは従来のレーザー光を用いたカシメ方法におけるレーザー光照射前のカシメ 部分の要部断面図であり、図 7Bは同カシメ方法におけるレーザー光照射後のカシメ 部分の要部断面図である。
[0033] 図 7Aにおいて、板状の一方の部材 701には取付孔 702が設けられ、その周縁に は面取部 703が形成されている。円柱状の他方の部材 711には、取付孔 702に嵌 合する小径部 712と、径大な鍔部 713が形成されている。部材 701と部材 711とを組 合わせた後、小径部 712の端面 714にレーザー光 720を照射する。これにより、図 7 Bに示す小径部 712の一部 715が溶け、一方の部材 701の面取部 703の方向に流 動して固化する。この流動した一部 715と鍔部 713によって、他方の部材 711は完全 に一方の部材 701に固定され、 、わゆる軸方向にカシメられる。
[0034] し力しながら、上記従来の方法では、板状部材と円柱状部材とを直角に固定するた めには鍔部が必要であり、直角度は鍔部と板状部材の精度に依存するという課題が ある。さらに、流体軸受では、円柱状部材に相当する軸に要求される直径交差や表 面粗さ等の精度が極めて高ぐ軸に鍔部を形成した場合この要求精度を実現するこ とが非常に困難となるという課題もある。
特許文献 1 :日本特許出願特開平 9 131032号公報
特許文献 2 :日本特許出願特開平 3— 63617号公報
特許文献 3:日本特許出願特開平 7— 336970号公報
特許文献 4:日本特許出願特開昭 60— 87987号公報
発明の開示
[0035] 本発明のポリゴンミラースキャナモータは、ロータと卷線^ a立とステータとシャフトと 動圧軸受とを含む。ロータは、ロータフレームと、ロータフレームの内壁に取り付けら れたロータマグネットと、円筒部を有しロータフレームに取り付けられたロータボスと、 ロータボスに取り付けられたポリゴンミラーとからなる。卷線組立は、磁性体を積層し口 ータマグネットと対向して配置されたステータコアと、ステータコアに卷装されたステー タコイルとからなる。ステータは、卷線組立と、貫通孔が形成された鉄板回路基板とか らなる。シャフトは、貫通孔にレーザー溶接よつて固定される。動圧軸受は、ロータボ スの円筒部またはシャフトの 、ずれか一方にラジアル方向に動圧を発生させる動圧 溝が形成される。そして、ロータボスの円筒部をシャフトによって支持する構成を備え る。
[0036] この構成により、モータのトルク発生部をコア付き周対向構造とし、軸固定構造の動 圧軸受によってポリゴンミラーを取り付けたロータを支持する。この構成により、小型 化および高速回転ィ匕に対応可能となる。また、鉄板回路基板にシャフトを直接レーザ 一溶接により固定することによって堅固に固定できる。これにより、高い信頼性を実現 しながら薄型化と低コストィ匕が図ることができる。
[0037] また、本発明のポリゴンミラースキャナモータの製造方法は、次のステップを含む。 ポリゴンミラースキャナモータを装置に取り付ける鉄板回路基板の取付面を治具に対 して所定圧力で押圧固定するステップを有する。また、治具の押圧面に対して直角 に形成し、かつシャフトの直径よりわずかに大きい直径の孔にシャフトを挿入して固 定した状態で保持するステップを有する。シャフトと鉄板回路基板との接合部の円周 上における等分割の複数箇所に対して同時にレーザーを照射しながら回転させて全 周溶接することによって、シャフトを鉄板回路基板に固定するステップとを有する。こ の方法により、シャフトと鉄板回路基板との直角度が高い精度で確保できるという効 果を有する。
図面の簡単な説明
[図 1]図 1は本発明の実施の形態 1におけるポリゴンミラースキャナモータの断面図で ある。
[図 2A]図 2Aは図 1に示すポリゴンミラースキャナモータのシャフトを鉄板回路基板に 挿入する前の断面図である。
[図 2B]図 2Bは図 1に示すポリゴンミラースキャナモータのシャフトを鉄板回路基板に 挿入後の断面図である。
[図 2C]図 2Cは図 1に示すポリゴンミラースキャナモータのシャフトを鉄板回路基板に レーザー溶接するステップを説明するための平面図である。
[図 2D]図 2Dは図 1に示すポリゴンミラースキャナモータのシャフトを鉄板回路基板に レーザー溶接後の断面図である。
[図 2E]図 2Eは図 1に示すポリゴンミラースキャナモータのシャフトを鉄板回路基板に レーザー溶接後の平面図である。
[図 3]図 3は本発明の実施の形態 2におけるポリゴンミラースキャナモータの製造方法 に用 、る治具の断面図である。
[図 4]図 4は従来例 1におけるポリゴンミラースキャナモータの断面図である。
[図 5]図 5は従来例 2におけるポリゴンミラースキャナモータの断面図である。
[図 6]図 6は従来例 3におけるポリゴンミラースキャナモータの断面図である。
[図 7A]図 7Aは従来のレーザー光を用いたカシメ方法におけるレーザー光照射前の カシメ部分の要部断面図である。 [図 7B]図 7Bは従来のレーザー光を用いたカシメ方法におけるレ カシメ部分の要部断面図である。
符号の説明
100 ロータ
101 ロータフレーム
102 ロータボス
103 ポリゴンミラー(回転多面鏡)
104 ロータマグネット
105 円筒部
106 動圧溝
111 鉄板回路基板
111a 取付面
112 ステータコア
113 ステータコィノレ
114 卷線組立
115 駆動 IC
116 貫通孔
117 接合部
118 照射点
119 最終照射点
120 シャフト
130 ステータ
131 動圧軸受
200 治具
201 回路基板押圧面
202 クランプ
203 ホノレダ一
203a 保持面 203b, 203c 可動部
204 受面
210 レーザー
220 治具の押圧面
P 突出し量
発明を実施するための最良の形態
[0040] 以下、本発明を実施するための最良の形態について、図面を参照して説明する。
[0041] (実施の形態 1)
図 1は本発明の実施の形態 1におけるポリゴンミラースキャナモータの断面図である 。まず図 1を用いて、本発明の実施の形態 1におけるポリゴンミラースキャナモータの 主要構成について説明する。
[0042] 本実施の形態 1におけるポリゴンミラースキャナモータは、ロータ 100と卷線組立 11 4とステータ 130とシャフト 120と動圧軸受 131とを含む。ロータ 100は、ロータフレー ム 101と、ロータフレーム 101の内壁に取り付けられたロータマグネット 104と、円筒 部 105を有しロータフレーム 101に取り付けられたロータボス 102と、ロータボス 102 に取り付けられたポリゴンミラー(回転多面鏡) 103とからなる。卷線組立 114は、磁性 体を積層しロータマグネット 104と対向して配置されたステータコア 112と、ステータコ ァ 112に卷装されたステータコイル 113と力 なる。ステータ 130は、卷線組立 114と 、貫通孔 116が形成された鉄板回路基板 111とからなる。シャフト 120は、貫通孔 11 6にレーザー溶接によって鉄板回路基板 111に固定される。動圧軸受 131は、ロータ ボス 102の円筒部 105またはシャフト 120のいずれか一方にラジアル方向に動圧を 発生させる動圧溝 106が形成される。そして、ロータボス 102の円筒部 105をシャフト 120によって支持する構成を備える。
[0043] 次に、本実施の形態 1におけるポリゴンミラースキャナモータの構成について、図 1 および図 2Aから図 2Eを用いて、さらに詳しく説明する。
[0044] 図 2Aは図 1に示すポリゴンミラースキャナモータのシャフトを鉄板回路基板に挿入 する前の断面図であり、図 2Bは図 1に示すポリゴンミラースキャナモータのシャフトを 鉄板回路基板に挿入後の断面図である。図 2Cは図 1に示すポリゴンミラースキャナ モータのシャフトを鉄板回路基板にレーザー溶接するステップを説明するための平 面図である。図 2Dは図 1に示すポリゴンミラースキャナモータのシャフトを鉄板回路 基板にレーザー溶接後の断面図であり、図 2Eは図 1に示すポリゴンミラースキャナモ ータのシャフトを鉄板回路基板にレーザー溶接後の平面図である。
[0045] 図 1において、ロータフレーム 101の中央に形成された孔にロータボス 102が取り 付けられる。このロータボス 102には、ポリゴンミラー 103が取り付けられている。ロー タフレーム 101の内壁にはロータマグネット 104が固定されている。こうして、ロータ 1 00が構成される。
[0046] 鉄系材料で形成された鉄板回路基板 111は、ポリゴンミラースキャナモータを装置 へ装着する取付部を有して 、る。ステータコア 112は磁性体を積層して形成されて ヽ る。ステータコア 112にはステータコイル 113が卷回されている。ステータコア 112とス テータコイル 113と力ら卷線組立 114が構成されて ヽる。ステータコア 112とロータマ グネット 104とは空隙を介して対向して 、る。卷線組立 114と鉄板回路基板 111とか らステータ 130が構成されている。ポリゴンミラースキャナモータを動作させる駆動 IC 115が鉄板回路基板 111上に実装されて 、る。
[0047] 鉄板回路基板 111の中央には貫通孔 116が形成されている。この貫通孔 116には シャフト 120が挿入されている。鉄板回路基板 111の裏面側でシャフト 120と貫通孔 116の接合部とをレーザー溶接することによって、両者を堅固に固定して!/、る。
[0048] 一方、ロータボス 102は中央に円筒部 105を備えている。この円筒部 105の内壁に は、動圧溝 106としてへリングボーン溝が軸方向に離間して 2箇所に形成されている 。この円筒部 105にシャフト 120を挿入して、円筒部 105の内壁とシャフト 120との間 に潤滑剤を充填して、ラジアル方向の動圧流体軸受を構成している。こうして、ステ ータ 130のシャフト 120力 ロータ 100の円筒部 105を回転可能に支持している。
[0049] 円筒部 105の内壁に形成された 2箇所の動圧溝 106 (リングボーン溝)は、ロータボ ス 102のポリゴンミラー 103を固定している部分に対応する位置に形成されている。 上記では 2箇所の動圧溝 106が、ロータボス 102の円筒部 105の内壁に形成されて いる場合について説明した力 2箇所の動圧溝 106がシャフト 120に形成されていて ちょい。 [0050] すなわち、言い替えれば、ポリゴンミラー 103はロータボス 102の円筒部 105の外 壁に取り付けられ、少なくとも、外壁にポリゴンミラー 103が取り付けられた軸方向範 囲に相対する円筒部 105の内壁に対して動圧溝 106が形成されている。
[0051] 次に、図 2Aから図 2Eを用いて、図 1に示す実施の形態 1におけるポリゴンミラース キヤナモータの製造方法にっ 、て説明する。
[0052] 本発明のポリゴンミラースキャナモータの製造方法は、次のステップを含む。ポリゴ ンミラースキャナモータを装置に取り付ける鉄板回路基板 111の取付面を治具に対 して所定圧力で押圧固定するステップを有する。また、治具の押圧面に対して直角 に形成し、かつシャフト 120の直径よりわずかに大きい直径の孔(貫通孔 116)にシャ フト 120を挿入して固定した状態で保持するステップを有する。シャフト 120と鉄板回 路基板 111との接合部 117の円周上における等分割の複数箇所に対して、同時に レーザーを照射しながら回転させて全周溶接することによって、シャフト 120を鉄板回 路基板 111に固定するステップとを有する。
[0053] さらに詳細に説明を加える。図 2Aに示すように鉄板回路基板 111に設けられた貫 通孔 116にシャフト 120を挿入する際、図 2Bに示すように鉄板回路基板 111の裏面 側(溶接側)からのシャフト 120の突出し量 Pが僅かで済む。したがって、モータの小 型化および薄型化が可能となり、モータが取り付けられる装置側における飛び出し部 分のスペースに余裕ができる。その結果、装置の省スペース化に貢献できる。貫通孔 116とシャフト 120のクリアランスは、片側 0. 001力ら 0. 8mm程度に設定している。
[0054] この状態で図 2Cに示すように、貫通孔 116とシャフト 120が接する接合部 117にお ける 2箇所の照射点 118を同時に連続的にレーザー照射し、円周上に 180度以上回 転した最終照射点 119まで回転させる。こうして、レーザーによって、接合部 117を連 続的に全周溶接してシャフト 120を鉄板回路基板 111に固定する。
[0055] 図 2Dにレーザー溶接によって、シャフト 120を鉄板回路基板 111に固定した状態 の断面図を、また図 2Eに平面図を示す。
[0056] 以上の構成により、モータのトルク発生部を周方向にステータコア 112とロータマグ ネット 104が対向する周対向構造とすることにより、高速回転時に軸方向に発生する 振動および騒音を大幅に低減して 、る。 [0057] また、ポリゴンミラー 103を取り付けたロータ 100を軸固定構造の動圧軸受により支 持する構成としている。これにより、上記特許文献 1に開示された従来のポリゴンミラ 一スキャナモータの軸受構造ではポリゴンミラー 103の下側に離間した位置でしか支 持できな!/ヽため片持軸受構造とならざるを得な ヽと ヽぅ課題を解決できる。
[0058] 図 1に示すポリゴンミラースキャナモータでは、ポリゴンミラー 103を固定している部 分を含むロータボス 102の円筒部 105の内壁に、 2箇所のへリングボーン溝の一方を 形成している。すなわち、ヘリングボーン溝の一方は、ロータフレーム 101の軸方向 上側に位置するロータボス 102の円筒部 105の内壁に形成されている。この構成に より、両持支持構造に近い軸受構成が可能となり、高速回転時のすりこぎ運動を抑制 することができる。その結果、高速回転時の動圧軸受部への影響が低減され、軸受 の長寿命が実現できる。
[0059] なお、ヘリングボーン溝の他方は、ロータフレーム 101の軸方向下側に位置する口 ータボス 102の円筒部 105の内壁に形成されている。
[0060] また、鉄板回路基板 111の裏面側 (溶接側)からのシャフト 120の突出し量が僅か で済むことから、モータが最終的に取り付けられる装置側においても飛び出し部分の スペースに余裕ができるため装置の省スペース化に貢献できる。
[0061] さらに、鉄板回路基板 111にシャフト 120を直接レーザー溶接によって固定するの で、鉄板回路基板 111の裏面に大きく突出する構成備品を廃止しながら、堅固に固 定できる。その結果、高い信頼性および薄型化ならびに低コストィ匕が図れるポリゴンミ ラースキャナモータを提供できると 、う効果を有する。
[0062] (実施の形態 2)
図 3を用いて、本発明の実施の形態 2におけるポリゴンミラースキャナモータの製造 方法について説明する。図 3は本実施の形態 2におけるポリゴンミラースキャナモータ の製造方法に用いる治具の断面図である。
[0063] 治具 200は、鉄板回路基板 111を治具の押圧面 220に押圧するクランプ 202と、シ ャフト 120を治具の押圧面 220に対して直角に保持するホルダー 203を具備する。ホ ルダー 203は、シャフト 120を治具の押圧面 220に対して平行に両側力 挟み込ん でシャフト 120を保持する。さらに治具 200は、ホルダー 203を開閉するための開閉 機構 (図示せず)と、クランプ 202を軸方向に上下させる移動ための移動機構 (図示 せず)とを具備する。
[0064] 本発明の実施の形態 2におけるポリゴンミラースキャナモータの製造方法は、治具 2 00を用いるとともに、次のステップを有する。鉄板回路基板 111を治具の押圧面 220 に対してクランプ 202によって押圧するステップを有する。またシャフト 120を鉄板回 路基板 111の貫通孔 116にホルダー 203を開 、た状態で治具の押圧面 220側から 挿入するステップを有する。さらにホルダー 203でシャフト 120を挟み込んで保持しな がら、シャフト 120と鉄板回路基板 111の貫通孔 116との接合部をレーザー溶接し固 定するステップとを有する。
[0065] さらに詳細に説明を加える。図 3において、治具 200は、鉄板回路基板 111が押圧 される治具の押圧面 220、鉄板回路基板 111を治具の押圧面 220に押圧するため のクランプ 202と、回路基板押圧面 201に対してシャフト 120を直角に保持するホル ダー 203とを備えている。クランプ 202は移動機構(図示せず)によって軸方向に昇 降可能に構成されている。
[0066] またホルダー 203は、一対の可動部 203bおよび可動部 203cからなり、一方の可 動部 203bには回路基板押圧面 201に対して直角に精度良く加工された V溝状の保 持面 203aが形成されている。そして、一方の可動部 203bの保持面 203aと他方の 可動部 203cが対向するように構成されて 、る。可動部 203bおよび可動部 203cを 開閉機構(図示せず)によって回路基板押圧面 201に対して平行に互いに逆方向に 移動させることにより、互いに向かい合う可動部 203bおよび可動部 203cの間隔を調 整可能に構成されている。
[0067] 以上のように構成された治具 200について、以下、その動作および作用を説明する 。先ず治具 200のクランプ 202を軸方向下側に降ろし、鉄板回路基板 111を装着可 能なスペースを確保する。また、この時、ホルダー 203の一対の可動部 203bおよび 可動部 203cは、その間にシャフト 120を容易に挿入できるように開いた状態に設定 しておく。
[0068] 次に、鉄板回路基板 111のモータを装置に取り付ける取付面 11 laが治具の押圧 面 220に対向するように、鉄板回路基板 111を治具 200に装着する。そして、クラン プ 202を軸方向上側に上昇させて、治具の押圧面 220に対して取付面 11 laを押圧 し固定する。続いて、シャフト 120を鉄板回路基板 111の貫通孔 116に対して取付面 11 la側力もシャフト 120の一方の先端が治具 200の受面 204に突き当たるまで挿入 する。この状態で、シャフト 120の他方の先端が取付面 11 la側から所定量突き出す ように設定されている。そして、ホルダー 203の可動部 203bと可動部 203cとが間隔 が狭まる方向に移動し、保持面 203aにシャフト 120を押し付けて保持する。回路基 板押圧面 201に対し直角精度の出て!、る保持面 203aに対して、シャフト 120押し付 けることによって、鉄板回路基板 111とシャフト 120との直角精度は部品の精度に依 存することなく高精度に設定することが可能となる。
[0069] 次に治具 200全体を回転させ、図 2Cに示すように貫通孔 116とシャフト 120が接す る接合部 117を照射点 118の 2箇所を同時にレーザー 210を照射し、円周上に 180 度以上回転した最終照射点 119まで連続して照射しながら回転させて、全周溶接し て固定する。
[0070] 上記から明らかなように、本発明のポリゴンスキャナモータは、鉄板回路基板 111の モータを装置に取付ける取付面 11 la側にシャフト 120が必要最小限だけ突出する だけで、シャフト 120と鉄板回路基板 111とが充分な強度と高い直角精度で固定でき る。この結果、信頼性高く薄型化が可能となるという効果を有する。
[0071] また、治具 200によってシャフト 120を鉄板回路基板 111の取付面 11 laに対して 直角に保持した状態で、シャフト 120と鉄板回路基板 111との接合部を回転させなが ら円周上の複数箇所力も同時にレーザー 210を照射して溶接固定する。この製造方 法により、シャフト 120と鉄板回路基板 111との直角度が高い精度で確保できるという 効果を有する。
[0072] なお、以上の実施の形態においては、図 1に示すように、ロータボス 102にポリゴン ミラー 103を固定する構成とした力 ロータボス 102によってポリゴンミラー 103の芯 出しを行いながら、ロータフレーム 101の天面にポリゴンミラー 103を載置して固定す る構成としても同様に実施可能である。
産業上の利用可能性
[0073] 本発明に係るポリゴンミラースキャナモータおよびその製造方法は、特に高い取付 精度と軸受負荷の軽減が要求される高速回転用の小型および薄型ポリゴンミラース キヤナモータに適用できる。

Claims

請求の範囲
[1] ロータフレームと、前記ロータフレームの内壁に取り付けられたロータマグネットと、円 筒部を有し前記ロータフレームに取り付けられたロータボスと、前記ロータボスに取り 付けられたポリゴンミラーとからなるロータと、
磁性体を積層し前記ロータマグネットと対向して配置されたステータコアと、前記ステ ータコアに卷装されたステータコイルとからなる卷線組立と、
前記卷線組立と、貫通孔が形成された鉄板回路基板とからなるステータと、 前記貫通孔にレーザー溶接によって固定されたシャフトと、
前記ロータボスの前記円筒部または前記シャフトのいずれか一方にラジアル方向に 動圧を発生させる動圧溝が形成された動圧軸受とを含み、
前記ロータボスの前記円筒部を前記シャフトによって支持する構成を備えるポリゴンミ ラースキャナモータ。
[2] 前記ポリゴンミラーは、前記ロータボスの前記円筒部の外壁に取り付けられ、
少なくとも、前記外壁に前記ポリゴンミラーが取り付けられた軸方向範囲に相対する 前記円筒部の内壁に対して前記動圧溝が形成された請求項 1記載のポリゴンミラー スキャナモータ。
[3] 請求項 1記載のポリゴンミラースキャナモータの製造方法であり、
前記ポリゴンミラースキャナモータを装置に取り付ける前記鉄板回路基板の取付面を 治具の押圧面に対して所定圧力で押圧固定するステップと、
前記治具の押圧面に対して直角に形成し、かつ前記シャフトの直径より大きい直径 の孔に前記シャフトを挿入して固定した状態で保持するステップと、
前記シャフトと前記鉄板回路基板との接合部の円周上における等分割の複数箇所 に対して同時にレーザーを照射しながら回転させて全周溶接することによって、前記 シャフトを前記鉄板回路基板に固定するステップとを含むポリゴンミラースキャナモー タの製造方法。
[4] 請求項 2記載のポリゴンミラースキャナモータの製造方法であり、
前記ポリゴンミラースキャナモータを装置に取り付ける前記鉄板回路基板の取付面を 治具の押圧面に対して所定圧力で押圧固定するステップと、 前記治具の押圧面に対して直角に形成し、かつ前記シャフトの直径より大きい直径 の孔に前記シャフトを挿入して固定した状態で保持するステップと、
前記シャフトと前記鉄板回路基板との接合部の円周上における等分割の複数箇所 に対して同時にレーザーを照射しながら回転させて全周溶接することによって、前記 シャフトを前記鉄板回路基板に固定するステップとを含むポリゴンミラースキャナモー タの製造方法。
[5] 前記治具は、前記鉄板回路基板を前記治具の押圧面に押圧するクランプと、前記シ ャフトを前記治具の押圧面に平行に両側から挟み込んで前記治具の押圧面に対し て直角に保持するホルダーと、前記ホルダーを開閉するための開閉機構と、前記クラ ンプを軸方向に上下させる移動のための移動機構とを具備し、前記治具を用いて、 前記鉄板回路基板を前記治具の押圧面に前記クランプにより押圧するステップと、 前記シャフトを前記鉄板回路基板の前記貫通孔に前記ホルダーを開いた状態で前 記治具の押圧面側から挿入するステップと、
前記ホルダーで前記シャフトを挟み込んで保持しながら、前記シャフトと前記鉄板回 路基板の前記貫通孔との接合部をレーザー溶接し固定するステップとを含む請求項 3記載のポリゴンミラースキャナモータの製造方法。
[6] 前記治具は、前記鉄板回路基板を前記治具の押圧面に押圧するクランプと、前記シ ャフトを前記治具の押圧面に平行に両側から挟み込んで前記治具の押圧面に対し て直角に保持するホルダーと、前記ホルダーを開閉するための開閉機構と、前記クラ ンプを軸方向に上下させる移動のための移動機構とを具備し、前記治具を用いて、 前記鉄板回路基板を前記治具の押圧面に前記クランプにより押圧するステップと、 前記シャフトを前記鉄板回路基板の前記貫通孔に前記ホルダーを開いた状態で前 記治具の押圧面側から挿入するステップと、
前記ホルダーで前記シャフトを挟み込んで保持しながら、前記シャフトと前記鉄板回 路基板の前記貫通孔との接合部をレーザー溶接し固定するステップとを含む請求項 4記載のポリゴンミラースキャナモータの製造方法。
PCT/JP2007/056666 2006-11-27 2007-03-28 ポリゴンミラースキャナモータとその製造方法 WO2008068910A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200780035374.5A CN101517870B (zh) 2006-11-27 2007-03-28 多面镜扫描仪电机及其制造方法
US12/440,535 US8115355B2 (en) 2006-11-27 2007-03-28 Polygon mirror scanner motor and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006318253A JP5179048B2 (ja) 2006-11-27 2006-11-27 ポリゴンミラースキャナモータとその製造方法
JP2006-318253 2006-11-27

Publications (1)

Publication Number Publication Date
WO2008068910A1 true WO2008068910A1 (ja) 2008-06-12

Family

ID=39491825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056666 WO2008068910A1 (ja) 2006-11-27 2007-03-28 ポリゴンミラースキャナモータとその製造方法

Country Status (4)

Country Link
US (1) US8115355B2 (ja)
JP (1) JP5179048B2 (ja)
CN (1) CN101517870B (ja)
WO (1) WO2008068910A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193053A (ja) * 2013-03-28 2014-10-06 Nidec Sankyo Corp モータ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5179048B2 (ja) * 2006-11-27 2013-04-10 ミネベアモータ株式会社 ポリゴンミラースキャナモータとその製造方法
JP2010039337A (ja) * 2008-08-07 2010-02-18 Panasonic Corp ポリゴンミラースキャナモータ
JP5516795B2 (ja) * 2013-05-15 2014-06-11 コニカミノルタ株式会社 光偏向装置
JP6167434B2 (ja) * 2013-09-30 2017-07-26 ミネベアミツミ株式会社 ブラシレスモータ及びそのモータを用いた送風機
JP6074400B2 (ja) * 2014-11-26 2017-02-01 シナノケンシ株式会社 回転体駆動装置
JP6648062B2 (ja) * 2017-03-31 2020-02-14 ミネベアミツミ株式会社 ポリゴンミラースキャナモーター
CN107270813A (zh) * 2017-06-27 2017-10-20 中国航空工业集团公司北京长城航空测控技术研究所 一种扫描镜装置
TWI680627B (zh) * 2018-08-14 2019-12-21 大陸商佛山市建準電子有限公司 馬達之轉子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333404A (ja) * 1999-03-12 2000-11-30 Sankyo Seiki Mfg Co Ltd モータおよびこのモータを用いた回転多面鏡駆動装置
JP2001078407A (ja) * 1999-09-06 2001-03-23 Tokyo Parts Ind Co Ltd 小型モータの軸固定方法
JP2002239849A (ja) * 2001-02-16 2002-08-28 Victor Co Of Japan Ltd 軸挿入装置
JP2004090030A (ja) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd モータシャフトの溶接方法及び装置
JP2005020835A (ja) * 2003-06-24 2005-01-20 Tokyo Parts Ind Co Ltd 偏心ロータとこの偏心ロータを備えた軸方向空隙型振動モータ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087987A (ja) 1983-10-19 1985-05-17 Toshiba Corp レ−ザ光によるかしめ方法
JPH0363617A (ja) 1989-07-31 1991-03-19 Nippon Densan Corp レーザビームプリンタ用モータ
US5555124A (en) * 1992-12-15 1996-09-10 Matsushita Electric Industrial Co., Ltd. Rotating polygon mirror driving apparatus
JPH07336970A (ja) 1994-06-09 1995-12-22 Nippon Densan Corp レーザービームスキャナ用モータ
JPH09131032A (ja) 1995-11-06 1997-05-16 Matsushita Electric Ind Co Ltd 回転多面鏡駆動装置
JPH10184685A (ja) * 1996-12-25 1998-07-14 Fuji Xerox Co Ltd 磁気軸受
US5901013A (en) * 1997-08-11 1999-05-04 International Business Machines Corporation Fluid spindle bearing vent
KR100376993B1 (ko) * 2000-03-27 2003-03-26 삼성전기주식회사 스캐너 모터
JP3462181B2 (ja) * 2001-02-22 2003-11-05 セイコーインスツルメンツ株式会社 ポリゴンスキャナモータ
JP2004308698A (ja) * 2003-04-02 2004-11-04 Sankyo Seiki Mfg Co Ltd 軸受装置及びその製造方法、並びに軸受装置を備えたモータ及びその製造方法
CN2744457Y (zh) * 2004-11-19 2005-12-07 武汉华工激光工程有限责任公司 多工位精密激光焊接机
JP5179048B2 (ja) * 2006-11-27 2013-04-10 ミネベアモータ株式会社 ポリゴンミラースキャナモータとその製造方法
JP2009086409A (ja) * 2007-10-01 2009-04-23 Panasonic Corp ポリゴンミラースキャナモータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333404A (ja) * 1999-03-12 2000-11-30 Sankyo Seiki Mfg Co Ltd モータおよびこのモータを用いた回転多面鏡駆動装置
JP2001078407A (ja) * 1999-09-06 2001-03-23 Tokyo Parts Ind Co Ltd 小型モータの軸固定方法
JP2002239849A (ja) * 2001-02-16 2002-08-28 Victor Co Of Japan Ltd 軸挿入装置
JP2004090030A (ja) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd モータシャフトの溶接方法及び装置
JP2005020835A (ja) * 2003-06-24 2005-01-20 Tokyo Parts Ind Co Ltd 偏心ロータとこの偏心ロータを備えた軸方向空隙型振動モータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193053A (ja) * 2013-03-28 2014-10-06 Nidec Sankyo Corp モータ

Also Published As

Publication number Publication date
CN101517870A (zh) 2009-08-26
CN101517870B (zh) 2012-08-22
US8115355B2 (en) 2012-02-14
JP2008136261A (ja) 2008-06-12
JP5179048B2 (ja) 2013-04-10
US20100001603A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
WO2008068910A1 (ja) ポリゴンミラースキャナモータとその製造方法
JP4590714B2 (ja) ブラシレスモータ及びその製造方法
US7448804B2 (en) Fluid bearing device
US8304946B2 (en) Spindle motor
US7541708B2 (en) Spindle motor
JP2004092910A (ja) 流体軸受システム
JP2009086409A (ja) ポリゴンミラースキャナモータ
JP2008509640A (ja) エアーベアリングスピンドル
JP2006254663A5 (ja)
JP2009296809A (ja) アクチュエータ駆動用モータ
JP2010039337A (ja) ポリゴンミラースキャナモータ
JP2004340183A (ja) 流体軸受装置
JP2002051525A (ja) ステッピングモータ及びそのロータ
JP2007225678A (ja) ポリゴンスキャナモータ
JP2008139449A (ja) ポリゴンスキャナモータ
JP2002341282A (ja) 回転多面鏡駆動装置
JP2007174789A (ja) 位置調整機構付きモータ
JP4424725B2 (ja) スピンドルモータ
JP2002235737A (ja) スラスト軸受装置と同軸受装置を備えた小形モータ
JP2022131772A (ja) モータ
JP3877115B2 (ja) スピンドルモータ
JP2008271686A (ja) スピンドルモータの組み立て方法およびスピンドルモータ
JPH09131032A (ja) 回転多面鏡駆動装置
JP2004129436A (ja) インナーロータタイプモータ用ステータの製造方法並びにその製造方法に用いられるラミネーション及び積層体
JP2010141992A (ja) 回転モーター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780035374.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12440535

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740104

Country of ref document: EP

Kind code of ref document: A1