WO2008065787A1 - Optical semiconductor device and transparent optical member - Google Patents

Optical semiconductor device and transparent optical member Download PDF

Info

Publication number
WO2008065787A1
WO2008065787A1 PCT/JP2007/066029 JP2007066029W WO2008065787A1 WO 2008065787 A1 WO2008065787 A1 WO 2008065787A1 JP 2007066029 W JP2007066029 W JP 2007066029W WO 2008065787 A1 WO2008065787 A1 WO 2008065787A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon
compound
cage
Prior art date
Application number
PCT/JP2007/066029
Other languages
English (en)
French (fr)
Inventor
Ken-Ichi Shinotani
Takao Hayashi
Shunpei Fujii
Norihiro Takamura
Original Assignee
Panasonic Electric Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006319050A external-priority patent/JP2007246880A/ja
Priority claimed from JP2006319051A external-priority patent/JP5204395B2/ja
Application filed by Panasonic Electric Works Co., Ltd. filed Critical Panasonic Electric Works Co., Ltd.
Publication of WO2008065787A1 publication Critical patent/WO2008065787A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a semiconductor optical device using a silsesquioxane compound as a sealing material, and a transparent optical member using a silsesquioxane compound as a molding material.
  • semiconductor light emitting devices such as light emitting diodes, laser diodes, and semiconductor lasers have been used as light emission sources.
  • light-emitting diodes are widely used as long-life, compact light sources for sine light sources and display light sources.
  • Semiconductor light-emitting elements are also being developed as lighting fixtures incorporating white LED units, and are expected to become increasingly widespread in the future.
  • the white LED light source used in the white LED unit is a blue / near-ultraviolet LED, and development to achieve high output and high brightness is being promoted in order to satisfy the requirements of lighting equipment. It has been.
  • Patent Document 1 discloses a semiconductor device obtained by encapsulating a semiconductor light emitting element using metalloxane, which is a metal oxide obtained by a sol-gel method, as a material having excellent heat resistance and light resistance.
  • metalloxane which is a metal oxide obtained by the sol-gel method, has a problem in that it has a porous structure and therefore has a high water absorption rate and may absorb moisture and cause cracks during use.
  • a DVD device that records light by irradiating light onto a resin disk is used as information recording.
  • light in the blue region and near ultraviolet region is used.
  • a device that records and reads data by irradiating is being studied. When reading information recorded on a resin disc, the laser light in the blue / near ultraviolet region is irradiated onto the recording surface of the resin disc, and the light reflected on the recording surface is received by the semiconductor light receiving element.
  • Such semiconductor light receiving elements are generally sealed and protected with a sealing material, and are irradiated with a single laser beam with a higher output than those using conventional red laser light.
  • a sealing material When using this sealing material, there was a problem that the sealing material was likely to deteriorate.
  • DVD devices are also demanded to improve recording speed.
  • the power to increase the recording speed by increasing the rotational speed of the disk S.
  • the rotational speed is high, the amount of laser light (power density) irradiated to the disk during a certain period of time decreases compared to when it is slow.
  • the laser power has been increasing, and in this respect as well, there has been a problem that the sealing material tends to deteriorate when using an epoxy type sealing material.
  • Patent Document 1 Japanese Patent No. 3412152
  • the present invention has been made in view of the above points, and in a semiconductor optical device in which a semiconductor light emitting element or a semiconductor light receiving element is sealed with a sealing material, the sealing material is unlikely to deteriorate and has an excellent lifetime.
  • a transparent optical member used for a portion irradiated with light in a blue region (near ultraviolet region) a transparent optical member that is hardly deteriorated and has an excellent lifetime is provided. It is intended to provide.
  • the present inventors have developed a glass-like inorganic property when a desired force and a silsesquioxane compound are used as a sealant, and a blue region- It has resistance to near-ultraviolet light and can also be formed into a desired shape due to its organic properties, and its power and type silsesquioxane compounds are used as sealing agents for semiconductor optical devices.
  • the inventors have found that the present invention is optimal and have completed the present invention.
  • the semiconductor optical device includes a cage silsesquioxane compound represented by the following formula (1), or a force obtained by partial addition reaction of this compound, a cage silsesquioxane compound.
  • the formula (1) is (Al ⁇ I ⁇ SiOSiO) (BR 3 R 4 SiOSiO) (HOSiO)
  • A is a group having a carbon-carbon unsaturated bond
  • B is a substituted or unsubstituted saturated alkyl group or hydroxyl group
  • R 1 , R 2 , R 3 and R 4 are each independently a lower alkyl group.
  • m is a number selected from 6, 8, 10, and 12
  • n is an integer from 2 to m
  • s is an integer from 0 to m-n. Represents).
  • equation (2) means (R 5 R 6 HSiOSiO) (ER 7 R 8 SiOSiO) (HOSiO)...
  • E is a substituted or unsubstituted saturated alkyl group or hydroxyl group
  • R 5 , R 6 , R 7 , and R 8 are each independently selected from a lower alkyl group, a phenyl group, and a lower arylalkyl group.
  • the invention of claim 2 is the semiconductor optical device according to claim 1, wherein A in the formula (1) is a chain hydrocarbon group having a carbon-carbon unsaturated bond.
  • the transparent optical member according to claim 3 of the present invention is a cage silsesquioxane compound represented by the following formula (1), or a force obtained by partial addition reaction of this compound, a cage silsesquioxane compound partial polymerization.
  • the force represented by the following formula (2), the silsesquioxane type It is characterized in that it is obtained by polymerizing a compound or a cage compound containing a cage-type silsesquioxane compound partial polymer obtained by partial addition reaction of this compound.
  • the expression (1) is (Al ⁇ I ⁇ SiOSiO) (BR 3 R 4 SiOSiO) (HOSiO)
  • A is a group having a carbon-carbon unsaturated bond
  • B is a substituted or unsubstituted saturated alkyl group or hydroxyl group
  • R 1 , R 2 , R 3 and R 4 are each independently a methyl group or M represents a number selected from 6, 8, 10 and 12
  • n represents an integer of 2 to m
  • s represents an integer of 0 to m-n).
  • Equation (2) means (R 5 R 6 HSiOSiO) (ER 7 R 8 SiOSiO) (HOSiO) ⁇ ' ⁇ (2)
  • E represents a substituted or unsubstituted saturated alkyl group or hydroxyl group
  • R 5 , R 6 , R 7 and R 8 each independently represents a methyl group or a phenyl group; , 10 and 12, q is an integer of 2 to p, and r is an integer of 0 to p—q).
  • the invention of claim 4 is the transparent optical member according to claim 3, wherein A in the formula (1) is a chain hydrocarbon group having a carbon-carbon unsaturated bond.
  • the cage silsesquioxane compound of the formula (1) is a polyhedral structure formed of a silicon atom and an oxygen atom, and a group having a carbon-carbon unsaturated bond bonded to the silicon atom via a siloxane bond.
  • the cage silsesquioxane compound has a hydrogen atom bonded via a siloxane bond to a silicon atom having a polyhedral structure formed of a silicon atom and an oxygen atom, carbon carbon
  • a three-dimensional structure in which a group of unsaturated bonds and a hydrogen atom undergo a hydrosilylation reaction, crosslink and cure by addition polymerization, and a nano-sized cage structure composed of silicic force is connected by organic segments. It is formed by a crosslinked structure, expresses a glass-like function, is hardly deteriorated even when used in the state of being irradiated with light in the blue region (near ultraviolet region), and absorbs light. The rate is low cured product.
  • the chain hydrocarbon group having a carbon-carbon unsaturated bond has less steric hindrance than the cyclic hydrocarbon group, and the cross-linking reaction by the hydrosilylation reaction proceeds efficiently, and there are fewer unreacted residues in the hardened material. This improves the resistance to Blu-ray irradiation. Therefore, it is possible to obtain a semiconductor optical device encapsulated with an encapsulant that does not easily deteriorate and has an excellent lifetime, and it is possible to obtain a transparent optical member with a material that does not easily deteriorate and has an excellent lifetime. It is possible.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a semiconductor optical device of the present invention.
  • FIG. 2 is a view schematically showing a three-dimensional crosslinked structure polymer crosslinked by a cage silsesquioxane compound of the present invention.
  • FIG. 1 shows an example of a semiconductor optical device.
  • a semiconductor light emitting element 2 is mounted on the surface of a substrate 1, and the entire semiconductor light emitting element 2 and a part of the surface of the substrate 1 are sealed with a sealing material 3. It is.
  • a phosphor layer 4 is formed on the surface of the sealing material 3.
  • an electronic circuit 5 is formed on the substrate 1 and is electrically connected to the semiconductor light emitting element 2 by a bonding wire 6 in the embodiment of FIG.
  • the semiconductor light-emitting element 2 when a device that outputs light having a wavelength in the blue region or near-ultraviolet region of 450 nm or less, which can use the known semiconductor light-emitting device 2, is obtained. It is preferable because it can increase the illuminance of the light device and enhance the color rendering.
  • a semiconductor such as GaAlN, ZnS, Zn Se, SiC, GaP, GaAlAs, AlInGaP, InGaN, GaN, AlInGaN is emitted on a semiconductor substrate. What was formed as a layer can be used.
  • the mounting of the semiconductor light emitting element 2 can be performed by placing the semiconductor light emitting element 2 on the portion of the substrate 1 where the semiconductor light emitting element 2 is mounted and performing wire bonding mounting or flip chip mounting.
  • the substrate 1 can be obtained by molding a resin material such as a ceramic material, a thermoplastic resin, or a thermosetting resin into a desired shape by various molding methods. It is not limited. Examples of the ceramic material that can be used for the substrate 1 include alumina, aluminum nitride, zirconium oxide, and carbide carbide. These are formed by known compression molding, injection molding (CIM), etc., and sintered. Can be formed as a substrate 1 by the force S. Since the ceramic material is excellent in thermal conductivity, it can be preferably used from the viewpoint that the heat generated by the semiconductor light emitting element 2 can be diffused throughout the substrate 1 and efficiently radiated.
  • a resin material such as a ceramic material, a thermoplastic resin, or a thermosetting resin into a desired shape by various molding methods. It is not limited. Examples of the ceramic material that can be used for the substrate 1 include alumina, aluminum nitride, zirconium oxide, and carbide carbide. These are formed by known compression molding, injection molding (CIM),
  • thermoplastic resins such as polyphenylene sulfide (PPS), polyphthalimide (PPA), or liquid crystal polymer (LCP), and thermosetting resins such as epoxy resin and phenol resin can be used.
  • thermosetting resins such as epoxy resin and phenol resin
  • a filler such as glass, silica, or alumina
  • the electric circuit 5 having a predetermined pattern connected to the semiconductor light-emitting element 2 is formed on the surface of the substrate 1 as described above.
  • the forming method is not particularly limited, and a known method is used. Being the power S
  • the semiconductor optical device according to the present invention has been described using a semiconductor light emitting device in which the semiconductor light emitting element 2 is sealed with the sealing material 3.
  • the semiconductor light receiving element is made of the sealing material. Even a semiconductor light-receiving device that is sealed! /, Noha! /, Undo! /.
  • the sealing material 3 is a cage silsesquioxane compound represented by the following formula (1), or a portion of a cage silsesquioxane compound obtained by partial addition reaction of this compound.
  • Equation (1) is expressed as (AR ⁇ E ⁇ SiOSiO) (BR 3 R 4 SiOSiO) (HOSiO)... Represented by (1),
  • Equation (2) is expressed by (R 5 R 6 HSiOSiO) (ER 7 R 8 SiOSiO) (HOSiO) ⁇ ' ⁇ (2)
  • A represents a group having a carbon-carbon unsaturated bond, and is not particularly limited as long as it includes a carbon-carbon double bond or a carbon-carbon triple bond as part of the group.
  • those containing an alkenyl group, an alkynyl group, and a cyclohexenyl group can be exemplified.
  • the group containing an alkenyl group or an alkynyl group include a group having a carbon-carbon double bond such as a bur group and an aryl group, Examples thereof include a group having a carbon-carbon triple bond such as an ether group and a vinyl group.
  • a group in which a group having a carbon-carbon double bond or a carbon-carbon triple bond and a divalent group not having an unsaturated group are bonded, and a divalent group not having an unsaturated group is bonded examples include cyclohexenylethyldimethyloxy group.
  • B in the above formula (1) and E in the formula (2) each represent a substituted or unsubstituted saturated alkyl group or hydroxyl group.
  • the substituted or unsubstituted saturated alkyl group include a monovalent saturated hydrocarbon group having a carbon number;! To 8 which is substituted or unsubstituted.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group or an octyl group; a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group; a methoxy group , Alkoxy groups such as ethoxy group; aralkyl groups such as 2 phenylethyl group, 2 phenylpropyl group, 3 phenylpropyl group; chloromethyl group, ⁇ -chloropropynole group, 3, 3, 3-trifluoropropyl group And halogen-substituted hydrocarbon groups such as Among these, a methyl group, which is preferably an alkyl group having 1 to 4 carbon atoms, is particularly preferred from the viewpoint of reducing steric hindrance during reaction.
  • the ⁇ group of formula (1) and the ⁇ group of formula (2) may be the same or different.
  • each B group may be the same or different.
  • each E group may be the same or different.
  • R 1 , R 2 , R 3 , R 4 in the above formula (1) and R 5 , R 6 , R 7 , R 8 in the formula (2) are each independently low It represents one functional group selected from a primary alkyl group, a phenyl group, and a lower arylalkyl group, such as an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group, a phenyl group, And arylalkyl groups having 7 to 10 carbon atoms such as benzyl group and phenethyl group.
  • a phenyl group is preferable from the viewpoint of increasing the refractive index preferred by a methyl group from the viewpoint of reducing steric hindrance during hydrolysis.
  • m represents a number selected from 6, 8, 10, and 12
  • n represents an integer of 2 to m
  • s represents an integer of 0 to m ⁇ n.
  • p represents a number selected from 6, 8, 10 and 12
  • q represents an integer of 2 to p
  • r represents an integer of 0 to p-q, is there.
  • Examples of the cage silsesquioxane compound represented by the above formula (1) include those represented by the following formula (3) with a force S.
  • the structural formula of formula (4) is that, among the eight silicon atoms constituting the substantially hexahedral structure, (-O-SiMe H) is bonded to four silicon atoms one by one, and the other four silicon atoms (— O— SiMe)
  • this compound is added to all hydridodimethylsiloxy groups with a compound having two or more carbon-carbon unsaturated groups in the molecule, such as 4-but-1-cyclohexene.
  • a group A having a carbon-carbon unsaturated bond is bonded to eight silicon atoms constituting a substantially hexahedral structure formed of silicon atoms and oxygen atoms.
  • the octacanion can be obtained by hydrolytic polycondensation of tetraethoxysilane in the presence of tetramethylammonium hydroxide.
  • a cage-type silsesquioxane compound in which a group having a carbon-carbon unsaturated bond is partially bonded and a trimethylsiloxy group is bonded to another silicon atom can be prepared.
  • the cage silsesquioxane compound of the formula (1) obtained as described above is bonded to a silicon atom having a polyhedral structure formed of a silicon atom and an oxygen atom via a siloxane bond. And a group having a carbon-carbon unsaturated bond.
  • the cage silsesquioxane compound of formula (2) has a hydrogen atom bonded to a polyhedral silicon atom formed of a silicon atom and an oxygen atom via a siloxane bond. For this reason, the group having a carbon-carbon unsaturated bond of the compound of formula (1) and the hydrogen atom of the compound of formula (2) are subjected to force S hydrosilylation reaction, and are crosslinked and cured by addition polymerization.
  • Figure 2 schematically shows a three-dimensional cross-linked structure in which an approximately hexahedral structure (symbol 7) formed of silicon atoms and oxygen atoms is cross-linked.
  • symbol 7 an approximately hexahedral structure formed of silicon atoms and oxygen atoms is cross-linked.
  • [Chemical Formula 3] shows the cross-linking reaction of a three-dimensional cross-linked structure when A in the formula (1) is a cyclohexenyl group.
  • This three-dimensional cross-linked structure has a structure in which nano-sized cage structures with silica (glass) power are connected by organic segments, and can exhibit glass-like functions.
  • both the carbon-carbon unsaturated bond group and the hydrogen atom to be reacted are silsesquioxy. Bonded to the polyhedral structure of sun (Si 2 O 3) via a siloxane bond (1 O Si—)
  • the crosslinked structure of the cured product obtained as described above is obtained by combining silicon atoms constituting the polyhedral structure of silsesquioxane with four oxygen atoms! /, which is an inorganic material glass.
  • the organic group is directly bonded to this silicon atom! /, NA! /, So it is used in the state irradiated with light in the blue / near ultraviolet region. It is hard to deteriorate even if it is done
  • the sealing material 3 for sealing the semiconductor light-emitting element 2 or the like a light-transmitting epoxy resin, polyester, polyacrylate, organopolysiloxane, or the like that has been used in the past is used. Unnecessary absorption peaks are likely to appear in the required spectral region due to the presence of cross-linking bonds and absorbing groups. However, when the cured product of the cage silsesquioxane compound of the present invention is used, Thus, the sealing material 3 having good blue light and ultraviolet light transmission properties with a small number of absorption peaks is obtained.
  • the compounding amount includes the force represented by the formula (1), the number of groups having a carbon-carbon unsaturated bond in the cage silsesquioxane compound, and the cage silsesquioxane compound represented by the formula (2).
  • the number of hydrogen atoms bonded to the silicon atoms via siloxane bonds is preferably the same as the whole mixed liquid. It may be somewhat different as long as the desired optical and physical properties of the cured product are maintained.
  • the conditions are such that the polymerization and crosslinking reaction of the cage silsesquioxane compound proceeds. Any method can be adopted without particular limitation, and the reaction may be carried out using an addition reaction catalyst such as gold or noradium as required.
  • the force and the gale silsesquioxane compound according to the present invention is liquid at room temperature or solid that melts at a relatively low temperature until cross-linking, so that the semiconductor light emitting device 2 and the like are easily sealed. It becomes possible.
  • a partial polymer of a cage silsesquioxane compound obtained by partial addition reaction of the cage silsesquioxane compound represented by the above formula (1) of the present invention is represented by the formula (1).
  • the partial polymer of the cage silsesquioxane compound obtained by partial addition reaction of the cage silsesquioxane compound represented by the above formula (2) of the present invention is represented by the formula (2).
  • the sealing material 3 can be formed of a cured product that is hardly deteriorated and has a low water absorption even when used in a state of being irradiated with light in a blue region or near-ultraviolet region.
  • the encapsulant 3 for encapsulating the semiconductor light-emitting element 2 has a cage silsesquioxane compound represented by the above formulas (1) and (2) or a partial addition reaction of this compound.
  • a key compound having addition reactivity may be contained as long as desirable optical and physical properties of the cured product are maintained. .
  • the reaction can be carried out in the same manner to obtain a force, a cage silsesquioxane compound or a cage silsesquioxane compound partial polymer.
  • these compounds are cross-linked by polymerizing with other forces, eg, silsesquioxane compounds, etc., and have a polyhedral structure formed of silicon atoms and oxygen atoms in the skeleton. A three-dimensional crosslinked structure is formed. In this case as well, even when used in a state of being irradiated with light in the blue region and near-ultraviolet region, it becomes a cured product that is hardly deteriorated and has a low water absorption rate.
  • the substituted or unsubstituted alkyl group of ⁇ is an alkoxy group, and (s ⁇ 2)
  • the substituted or unsubstituted alkyl group of the cage-type cinolesesquioxane compound force E represented by the above formula (2) is an alkoxy group and is (r 2)
  • the carbon- In addition to the bond between a group having a carbon unsaturated bond and a hydrogen atom, the alkoxy group can be cross-linked by hydrolysis and polycondensation, which increases the versatility of use and the versatility of curing. Increased and preferable.
  • the bond between a group having a carbon-carbon unsaturated bond and a hydrogen atom is a main cross-linked structure, since it becomes relatively easy to increase the thickness of the cured product, and hydrolysis between alkoxy groups is preferable.
  • the polycondensation bond is a main cross-linked structure, it is preferable because of relatively high transparency.
  • [Chemical Formula 4] shows an example of a crosslinking reaction of a three-dimensional crosslinked structure when A in the formula (1) is a cyclohexenyl group, B is an ethoxy group, and E in the formula (2) is an ethoxy group. .
  • the cage silsesquioxane compound of the formula (1) and the formula (2), or a cage-type cinolesesquioxane formed by partial addition reaction of this compound is described, the cage-type silsesquioxane compound of the formula (1) and the formula (2), or the compound force S partial It is possible to produce a transparent optical member such as a lens or a prism by using, as a molding material, a force-type silsesquioxane compound partial polymer obtained by addition reaction to the polymer, and then polymerizing and curing it. it can.
  • a transparent optical member such as a protective layer of a Blu-ray disc by being applied to the surface of the optical disc and polymerized. It can also be used by forming on a substrate such as a stamper for DV D disk manufacturing.
  • a cured product of the cage-type sinoreschioxane compound is used as a light for a transparent sealing material for LED white illumination.
  • a heavy metal sol such as TiO or ZrO is mixed with a cage-type silsesquioxane compound, and this heavy metal sol is a cured product of the cage-type silsesquioxane compound. It is preferable to introduce in.
  • the cage-type silsesquioxane compound is generally incompatible with heavy metal zonole such as TiO and ZrO, and it is difficult to uniformly disperse the heavy metal sol, and as a result, the transparency of the cured product tends to be impaired.
  • A is a allyl group
  • R 1 and R 2 are methinole groups
  • m ⁇ n ⁇ s is 1 or more
  • p ⁇ q ⁇ r is Use a silsesquioxane compound having an OH group that is 1 or more.
  • the affinity of the heavy metal sol with the OH group of the silsesquioxane compound of formula (1) and formula (2) and the single OH group covering the heavy metal sol Dispersibility can be increased, and a heavy metal sol is uniformly dispersed in the silsesquioxane compound to obtain a cured product of a rugged silsesquioxane compound having a refractive index while maintaining transparency. be able to.
  • the cage silsesquioxane compound of the formula (1) listed in [Chemical Formula 6] is represented by the following formula (1):
  • silicon atoms that form a substantially hexahedral structure formed of silicon and oxygen atoms
  • hydrogen atoms are bonded to six silicon atoms via siloxane bonds (one O—Si—) It has a structure in which a hydroxyl group is bonded to two silicon atoms.
  • Such a cage silsesquioxane having a hydroxyl group bonded to a part of eight silicon atoms constituting an approximately hexahedral structure can be produced as follows.
  • the octakis [aryldimethylsiloxy] silsesquioxane of [Chem. 5] can be prepared by reacting octanion with allyldimethylchlorosilane as shown in [Chem. 7] below. Possible force In order to replace all of the eight reaction sites of Octanion with allyldimethylchlorosilane, the amount of allyldimethylchlorosilane should be set to a large excess (more than 30 times equivalent) to Octanion. There is a need to.
  • the number of introduction of one OH group into the cage silsesquioxane is controlled by adjusting the degree of excess. For example, when the number of moles of allyldimethylchlorosilane is adjusted to 30 moles per mole of octatanion and reacted at 30-fold moles, the number of --OH groups introduced is 0 per cage silsesquioxane compound molecule. Similarly, the number of introduction of 1OH group when reacted at 25 times mole was 0.7, and the number of introduction of 1OH group when reacted at 15 times mole was 0.9. The number of introduced 1 OH groups when reacted at 8 times mole is 2.0.
  • octakis [hydridodimethylsioxy] silsesquioxane of [Chemical Formula 5] can be prepared by reacting octaneanion with dimethylchlorosilane as shown in [Chemical Formula 8] below.
  • Possible force In order to replace dimethylcyclosilane in all eight reaction sites of Octanion, it is necessary to set the amount of dimethylchlorosilane to be a large excess with respect to Octanion. Therefore, when the degree of excess of dimethylchlorosilane relative to octanion is small, a part of the eight reaction sites of octanion is not substituted, and the unsubstituted site becomes one OH group.
  • a hydridodimethylsiloxysil sesquioxane in which an OH group is introduced into a part of silicon atoms constituting a substantially hexahedral structure can be prepared.
  • the number of introduced 1 OH groups in the cage silsesquioxane can be controlled.
  • the cage silsesquioxane compound according to Embodiment 2 of the present invention will be described in detail.
  • A is a group having a carbon-carbon unsaturated bond.
  • the cage silsesquicho according to the first embodiment is that A is a chain hydrocarbon group having a carbon-carbon unsaturated bond. Different from Xiangyi compound.
  • Sealing material 3 is a cage silsesquioxane compound represented by the following formula (1) or a partial weight of a cage silsesquioxane compound obtained by partial addition reaction of this compound. Partial polymerization of a cage compound containing a compound and a cage silsesquioxane compound represented by the following formula (2), or a cage silsesquioxane compound obtained by partial addition reaction of this compound This is formed by crosslinking a silicon compound containing a product.
  • Formula (2) is expressed by (R 5 R 6 HSiOSiO) (ER 7 R 8 SiOSiO) (HOSiO)
  • A is a chain hydrocarbon group having a carbon-carbon unsaturated bond, and is particularly limited as long as it contains a carbon-carbon double bond or a carbon-carbon triple bond as part of the group. Not. Examples thereof include those containing an alkenyl group or an alkynyl group. Examples of the group containing an alkenyl group or an alkynyl group include groups having a carbon-carbon double bond such as vinyl group and aryl group, Examples thereof include a group having a carbon-carbon triple bond such as a di / re group and a propynyl group.
  • a group in which a group having a carbon-carbon double bond or a carbon-carbon triple bond and a divalent group not having an unsaturated group are bonded can also be exemplified.
  • chain hydrocarbons having these carbon-carbon unsaturated bonds The position of the carbon-carbon unsaturated bond of the basic group is preferably at the end in order to reduce steric hindrance during the crosslinking reaction.
  • OHSS Octoctis [hydridodimethylsioxy] silsesquioxane
  • a compound having a carbon-carbon unsaturated group such as hexenyl in the molecule is reacted with all hydridodimethylsiloxy groups so that this compound undergoes an addition reaction.
  • the above octanion can be obtained by hydrolysis polycondensation reaction of tetraethoxysilane in the presence of tetramethylammonium salt.
  • a silicon atom is obtained.
  • Type silsesquioxane compounds can be prepared.
  • the cage-type silsesquioxane compound of the formula (1) obtained as described above is bonded to a polyhedral silicon atom formed of a silicon atom and an oxygen atom via a siloxane bond. It has a chain hydrocarbon group having a combined carbon-carbon unsaturated bond.
  • the cage silsesquioxane compound of the formula (2) has a hydrogen atom bonded via a siloxane bond to a polyhedral silicon atom formed of a silicon atom and an oxygen atom.
  • Group having a carbon-carbon unsaturated bond and a hydrogen atom of the compound of formula (2) undergo a hydrosilylation reaction, and are crosslinked and cured by addition polymerization to form a three-dimensional crosslinked structure.
  • FIG. 2 schematically shows a substantially hexahedral structure (symbol 7) formed by silicon atoms and oxygen atoms, and a three-dimensional cross-linked structure formed by force cross-linking.
  • the cage-type silsesquioxane of the formula (1) has eight hexenyl groups bonded to eight silicon atoms having a substantially hexahedral structure via a siloxane bond.
  • a cage-type sesquioxane has eight hydrogen atoms bonded to eight silicon atoms having a substantially hexahedral structure via a siloxane bond, and the hydrogen bridge structure is a nano-structure with silica (glass) force. • It has a structure that combines the size of the cage structure with organic segments, and can develop a glass-like function.
  • a chain hydrocarbon group such as a chain vinyl is used as the group having a carbon-carbon unsaturated bond of A.
  • the cross-linking reaction between the hydrogen atom and the carbon-carbon unsaturated bond is remarkably accelerated, and the amount of unreacted residues in the cured product is also reduced.
  • a 1-mL mL flask equipped with a reflux tube and a dropping funnel was charged with 334 mL of tetramethylammonium hydroxide, 164 mL of methanol, and 123 mL of water and stirred.
  • the dropping funnel was charged with 179 mL of tetraethoxysilane (TEOS), and the whole flask was cooled to about 5 ° C in an ice bath, and when the temperature reached about 5 ° C, TEOS was added dropwise. Addition of 179 mL of TEOS was completed in about 1 hour.
  • TEOS tetraethoxysilane
  • the mixture was stirred for 10 minutes in an ice bath, while the stirring was continued, the ice bath was removed, and the mixture was further stirred at room temperature for 6 hours to proceed the reaction.
  • the solution in the flask was transferred to a 2 L separatory funnel, and the lower methanol layer was taken out.
  • the upper hexane layer was transferred to a 2 L Erlenmeyer flask, sodium sulfate was added, and the mixture was allowed to stand for about 10 minutes to dry the water in the solution.
  • the upper hexane layer formed by standing was transferred to the 2 L Erlenmeyer flask to which the above hexane layer was transferred, The water in the solution was dried.
  • the dried hexane layer was transferred to a 1 L eggplant type flask, and the hexane was volatilized from the solution using a rotary evaporator and removed from the system.
  • the damp white solid remaining in the 1 L eggplant type flask where hexane was volatilized was further dried under reduced pressure (133 Pa (lmmHg), room temperature) using a vacuum pump.
  • a dropping funnel, thermometer, and reagent injection valve were attached to the three-necked flask, and 188 mL of hexane and 10.6 mL of allyldimethylchlorosilane were added to the three-necked flask (8 times equivalent of allyldimethylchlorosilane to octacanion).
  • 188 mL of hexane and 10.6 mL of allyldimethylchlorosilane were added to the three-necked flask (8 times equivalent of allyldimethylchlorosilane to octacanion).
  • a dropping funnel, a thermometer, and a reagent injection valve were attached to the three-necked flask, and 895 mL of hexane and 55.8 mL of dimethylchlorosilane were added to the three-necked flask.
  • the whole system is cooled with an ice bath to 5 ° C or less, and when the temperature in the system falls to 5 ° C or less, the dripping funnel power, 334 mL of Roctanyon is applied at 1 to 2 drops / second. It was dripped at a speed.
  • allyl dimethy g having two OH groups in each molecule obtained as described above was mixed, poured into a Teflon (registered trademark) mold, and dehydrated at 85 ° C for 2 hours. I worried. Next, after deaeration, the temperature was raised to 200 ° C. at a rate of 30 ° C./h while flowing nitrogen in the oven, and kept at that temperature for 10 hours to cure to obtain a colorless and transparent resin plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Description

明 細 書
半導体光装置及び透明光学部材
技術分野
[0001] 本発明は、シルセスキォキサン化合物を封止材として用いた半導体光装置、及び シルセスキォキサン化合物を成形材として用いた透明光学部材に関するものである
背景技術
[0002] 近年、発光ダイオード、レーザーダイオード、半導体レーザー等の半導体発光素子 が発光光源として利用されている。特に発光ダイオードは長寿命な小型光源としてサ イン光源用途やディスプレイ光源用途として幅広く利用されている。
[0003] また、半導体発光素子は白色 LEDユニットを組み込んだ照明用器具としての開発 も進められており、今後ますます広く普及していくことが予想されている。 白色 LEDュ ニットに用いられる白色 LEDの光源には青色域 ·近紫外域 LEDが用いられ、照明用 器具としての要求を満足させるために高出力 ·高輝度化を達成するための開発が進 められている。
[0004] そしてこのように高出力 ·高輝度化された半導体発光素子からは高い熱エネルギー 及び光エネルギーが発せられるために、このような半導体発光素子を基板上に実装 して封止した場合には、一般に用いられているエポキシ系の封止材の場合、封止材 が急速に劣化してしまい、比較的低寿命になるという問題があった。
[0005] 前記問題を解決するために、耐熱'耐候性に優れた封止材、例えばシロキサン化 合物のような金属酸化物や低融点ガラス等を用いた封止材が検討されて!/、る。例え ば、特許文献 1では耐熱 ·耐光性に優れた材料として、ゾルーゲル法により得られる 金属酸化物であるメタロキサンを用いて半導体発光素子を封止することにより得られ る半導体装置が開示されてレ、る。
[0006] しかし、ゾルーゲル法で得られる金属酸化物であるメタロキサンは、多孔質構造とな つてしまうため吸水率が高ぐ使用時に吸湿してクラック等が生じる恐れがあるという 問題があった。 [0007] また、情報の記録として、樹脂ディスクに光を照射して記録する例えば DVD装置等 が用いられており、近年の高容量化の要望に対応するため、青色域'近紫外域の光 を照射して記録 ·読み出しする装置が検討されている。そして樹脂ディスクに記録さ れた情報を読み取る場合には、青色域 ·近紫外域のレーザー光を樹脂ディスクの記 録面に照射して、記録面で反射した光を半導体受光素子で受光することにより、情 報の読み出しが行われている。このような半導体受光素子も、一般に封止材で封止 されて保護されており、従来の赤色レーザー光を用いたものと比較して高出力のレー ザ一光が照射されるため、エポキシ系の封止材を用いた場合、封止材が劣化しやす いという問題があった。
[0008] さらに DVD装置では、記録スピードの向上も要望されている。ディスクの回転スピ ードアップにより記録速度向上が図られる力 S、回転スピードが速いと、遅いときと比較 して一定時間中にディスクに照射されるレーザー光量 (パワー密度)が減少する。こ の減少分を補完する目的でレーザーパワーの増大が進んでおり、この点でもェポキ シ系の封止材を用いた場合、封止材が劣化しやすいという問題があった。
[0009] また、上記青色域 ·近紫外域のレーザー光を樹脂ディスクの記録面に照射して、記 録面で反射した光を半導体受光素子で受光するに際し、レーザー光の径を絞ったり 、光路を曲げることが行われており、この場合に用いられるレンズやプリズム等の透明 光学部材も、比較的高出力のレーザー光が照射されるため、エポキシ系の樹脂を用 V、て製造した場合、劣化し易いとレ、う問題があった。
特許文献 1:特許第 3412152号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は上記の点に鑑みてなされたものであり、半導体発光素子または半導体受 光素子を封止材で封止した半導体光装置において、封止材が劣化し難く寿命に優 れた半導体光装置を提供することを目的とするものであり、また青色域'近紫外域の 光が照射される部分に使用される透明光学部材において、劣化し難く寿命に優れた 透明光学部材を提供することを目的とするものである。
課題を解決するための手段 [0011] 本発明者らは、叙上に鑑み鋭意研究を重ねた結果、封止剤として所望の力、ご型シ ルセスキォキサン化合物を用いれば、ガラスライクな無機的性質を発現し、青色域- 近紫外域の光に対しても耐性を備えるとともに、有機的性質により所望の形状にも形 成することが可能であり、力、ご型シルセスキォキサン化合物は半導体光装置の封止 剤として最適であることを見出し、本発明を完成するに至った。
したがって、本発明の請求項 1に係る半導体光装置は、下記式(1)で表されるかご 型シルセスキォキサン化合物、又はこの化合物が部分的に付加反応してなる力、ご型 シルセスキォキサン化合物の部分重合物と、下記式(2)で表される力、ご型シルセスキ ォキサン化合物、又はこの化合物が部分付加反応したかご型シルセスキォキサン化 合物部分重合物とを含有するケィ素化合物で、半導体発光素子又は半導体受光素 子を封止して成ることを特徴とするものである。
[0012] ここで、式(1)とは、(Al^I^SiOSiO ) (BR3R4SiOSiO ) (HOSiO )
1. 5 n 1. 5 s 1. 5 m— n s
•••( l )
(式(1)中、 Aは炭素 炭素不飽和結合を有する基、 Bは置換又は非置換の飽和ァ ルキル基もしくは水酸基、 R1, R2, R3, R4は各々独立に低級アルキル基、フエニル基 、低級ァリールアルキル基から選ばれる官能基を表し、 mは 6, 8, 10, 12から選ばれ た数、 nは 2〜mの整数、 sは 0〜m— nの整数を表す)を意味する。
また、式(2)とは、(R5R6HSiOSiO ) (ER7R8SiOSiO ) (HOSiO ) …
1. 5 q 1. 5 r 1. 5 p— q— r
(2)
(式(2)中、 Eは置換又は非置換の飽和アルキル基もしくは水酸基、 R5, R6, R7, R8 は各々独立に低級アルキル基、フエニル基、低級ァリールアルキル基から選ばれる 官能基を表し、 pは 6, 8, 10, 12から選ばれた数、 qは 2〜pの整数、 rは 0〜p— qの 整数を表す)を意味する。
また、請求項 2の発明は、請求項 1において、式(1)における Aが炭素 炭素不飽 和結合を有する鎖状炭化水素基であることを特徴とする半導体光装置である。
また本発明の請求項 3に係る透明光学部材は、下記式(1)で表されるかご型シル セスキォキサン化合物、又はこの化合物が部分的に付加反応してなる力、ご型シルセ スキォキサン化合物部分重合物と、下記式(2)で表される力、ご型シルセスキォキサン 化合物、又はこの化合物が部分的に付加反応してなるかご型シルセスキォキサン化 合物部分重合物とを含有するケィ素化合物を、重合して成ることを特徴とするもので ある。
[0013] ここで、式(1)とは、(Al^I^SiOSiO ) (BR3R4SiOSiO ) (HOSiO )
1. 5 n 1. 5 s 1. 5 m— n s
•••( l )
(式(1)中、 Aは炭素 炭素不飽和結合を有する基、 Bは置換又は非置換の飽和ァ ルキル基もしくは水酸基、 R1, R2, R3, R4は各々独立にメチル基又はフエ二ル基を表 し、 mは 6, 8, 10, 12から選ばれた数、 nは 2〜mの整数、 sは 0〜m— nの整数を表 す)を意味し、
式(2)とは、(R5R6HSiOSiO ) (ER7R8SiOSiO ) (HOSiO ) · ' · (2)
1. 5 q 1. 5 r 1. 5 p— q— r
(式(2)中、 Eは置換又は非置換の飽和アルキル基もしくは水酸基、 R5, R6, R7, R8 は各々独立にメチル基又はフエ二ル基を表し、 pは 6, 8, 10, 12から選ばれた数、 q は 2〜pの整数、 rは 0〜p— qの整数を表す)を意味する。
さらにまた、請求項 4の発明は、請求項 3において、式(1)における Aが炭素 炭素 不飽和結合を有する鎖状炭化水素基であることを特徴とする透明光学部材である。 発明の効果
[0014] 式(1)のかご型シルセスキォキサン化合物はシリコン原子と酸素原子で形成された 多面体構造において、そのシリコン原子にシロキサン結合を介して結合した炭素 炭素不飽和結合を有する基を、式(2)の力、ご型シルセスキォキサン化合物はシリコン 原子と酸素原子で形成された多面体構造のシリコン原子にシロキサン結合を介して 結合した水素原子を、それぞれ有しているため、炭素 炭素不飽和結合を有する基 と水素原子とがヒドロシリル化反応して、付加重合することにより架橋して硬化し、シリ 力からなるナノサイズのかご型構造を有機のセグメントでつなぎ合わせたような三次 元架橋構造が形成されてなるものであり、ガラスライクな機能を発現し、青色域'近紫 外域の光が照射された状態で使用されても劣化し難ぐかつ吸水率が低い硬化物と なる。しかも、炭素 炭素不飽和結合を有する鎖状炭化水素基は環状の炭化水素 基よりも立体障害が小さぐヒドロシリル化反応による架橋反応が効率よく進行し、硬 化物中の未反応残基が少なくなつて、ブルーレイ照射耐性などが向上する。 [0015] このため、劣化し難く寿命に優れた封止材で封止した半導体光装置を得ることがで きるものであり、また劣化し難く寿命に優れた材料で透明光学部材を得ることができる ものである。
[0016] また、式(1)及び式(2)の力、ご型シルセスキォキサン化合物に水酸基を導入するこ とによって、表面が水酸基で覆われる TiOや ZrO等の重金属ゾルとの親和性を高め ること力 Sでき、式(1)及び式(2)のかご型シルセスキォキサン化合物と重金属ゾルとの 分散性を高めて、重金属ゾルの導入によって透明性を維持しつつ、屈折率を高めた 硬ィ匕物を得ること力 Sできる。
図面の簡単な説明
[0017] [図 1]本発明の半導体光装置の実施の形態の一例を示す概略断面図である。
[図 2]本発明のかご型シルセスキォキサン化合物が架橋した三次元架橋構造ポリマ 一を模式的に示す図である。
符号の説明
[0018] 2 半導体発光素子
3 封止材
発明を実施するための最良の形態
[0019] 以下、本発明を実施するための最良の形態を説明する。
(実施の形態 1)
図 1は半導体光装置の一例を示すものであり、基板 1の表面に半導体発光素子 2 が実装され、半導体発光素子 2の全体と基板 1の表面の一部が封止材 3により封止さ れている。この封止材 3の表面には蛍光体の層 4が形成されている。また基板 1上に は電子回路 5が形成され、図 1の実施の形態ではボンディングワイヤ 6で半導体発光 素子 2と電気的に接続されている。
[0020] 上記の半導体発光素子 2としては、公知の半導体発光素子 2を使用することができ る力 450nm以下の青色域や近紫外域の波長の光を出力する素子を用いる場合、 得られる半導体光装置の照度を高めたり、演色性を高めることができるために好まし い。半導体発光素子 2の具体例としては、例えば半導体基材上に GaAlN、 ZnS、 Zn Se、 SiC、 GaP、 GaAlAs, AlInGaP, InGaN, GaN、 AlInGaN等の半導体を発光 層として形成させたものを用いることができる。この半導体発光素子 2の実装は、基板 1の半導体発光素子 2を実装する部分に半導体発光素子 2を載置し、ワイヤボンディ ング実装ゃフリップチップ実装等することにより行なうことができる。
[0021] また上記の基板 1は、セラミックス材料、熱可塑性樹脂'熱硬化性樹脂等の樹脂材 料を各種成形法により所望の形状に成形して得ることができるものであり、その形状 は特に限定されない。基板 1に用いることのできるセラミックス材料としては、アルミナ 、窒化アルミニウム、ジルコユア、炭化ケィ素等を挙げることができ、これらは公知の 圧縮成形や射出成形(CIM)等により成形し、焼結することによって基板 1として形成 すること力 Sできる。セラミックス材料は熱伝導性に優れているために半導体発光素子 2の発熱による熱を基板 1の全体に拡散させ、効率的に放熱できる点から好ましく用 いること力 Sできる。また、樹脂材料としては、ポリフエ二レンサルファイド (PPS)、ポリフ タルイミド (PPA)或いは液晶ポリマー(LCP)等の熱可塑性樹脂や、エポキシ樹脂、 フエノール樹脂等の熱硬化性樹脂を使用することができる。この樹脂材料にガラス、 シリカ、アルミナ等の充填材を配合することによって、基板 1の熱伝導性や耐熱性を 向上させること力 Sでさる。
[0022] さらに基板 1の表面には、上記のように半導体発光素子 2と接続する所定パターン の電気回路 5が形成されて!/、る力 この形成方法は特に限定されず公知の方法を用 いること力 Sでさる。
尚、図 1の実施の形態では、本発明に係る半導体光装置を、半導体発光素子 2を 封止材 3で封止した半導体発光装置を用いて説明したが、半導体受光素子を封止 材で封止してなる半導体受光装置であってもよ!/、のは!/、うまでもな!/、。
[0023] 本発明において、上記の封止材 3は、下記の式(1)で表されるかご型シルセスキォ キサン化合物、またはこの化合物が部分的に付加反応してなるかご型シルセスキォ キサン化合物の部分重合物と、下記の式(2)で表されるかご型シルセスキォキサン 化合物、またはこの化合物が部分的に付加反応してなるかご型シルセスキォキサン 化合物の部分重合物とを含有するケィ素化合物とを、架橋して形成されたものである
[0024] ここで、式(1)は、 (AR^E^SiOSiO ) (BR3R4SiOSiO ) (HOSiO ) … (1)により表され、
式(2)は、(R5R6HSiOSiO ) (ER7R8SiOSiO ) (HOSiO ) · ' · (2)によ
1. 5 q 1. 5 r 1. 5 p— q— r
り表される。
上記の式(1)において、 Aは炭素 炭素不飽和結合を有する基を表すものであり、 炭素 炭素二重結合または炭素 炭素三重結合を基の一部に含むものであれば 特に限定はされない。例えば、アルケニル基、アルキニル基、シクロへキセニル基を 含むものを挙げることができ、アルケニル基またはアルキニル基を含む基としては、 例えばビュル基、ァリル基等の炭素 炭素二重結合を有する基や、ェチュル基、プ ロビニル基等の炭素 炭素三重結合を有する基を挙げることができる。また炭素 炭素二重結合または炭素 炭素三重結合を有する基と、不飽和基を有しない 2価の 基が結合した基を挙げることもでき、この不飽和基を有しない 2価の基が結合した基 の例としては、シクロへキセニルェチルジメチルシ口キシ基等を挙げることができる。
[0025] また上記の式(1)の B、式(2)の Eは、それぞれ置換または非置換の飽和アルキル 基もしくは水酸基を表すものである。置換または非置換の飽和アルキル基としては、 例えば、置換されまたは置換されていない、炭素数;!〜 8の 1価の飽和炭化水素基を 挙げること力 Sできる。具体的には、メチル基、ェチル基、プロピル基、ブチル基、ペン チル基、へキシル基、ヘプチル基、ォクチル基等のアルキル基;シクロペンチル基、 シクロへキシル基等のシクロアルキル基;メトキシ基、エトキシ基等のアルコキシ基; 2 フエニルェチル基、 2 フエニルプロピル基、 3 フエニルプロピル基等のァラルキ ノレ基;クロロメチル基、 γ クロ口プロピノレ基、 3, 3, 3—トリフルォロプロピル基等の ハロゲン置換炭化水素基等を例示することができる。これらの中でも、反応時の立体 障害を減らす点から炭素数 1〜4のアルキル基が好ましぐメチル基が特に好ましい。 尚、式(1)の Β基と式(2)の Ε基は同じであっても、異なっていても、いずれでもよい。 また、式(1)の一つの分子内に複数の Β基を有する場合、すなわち s≥ 2の場合、そ れぞれの B基は同じであってもよぐ異なっていてもよい。さらに式(2)の一つの分子 内に複数の E基を有する場合、すなわち r≥ 2の場合、それぞれの E基は同じであつ てもよく、異なっていてもよい。
[0026] また上記の式(1)の R1, R2, R3, R4、式(2)の R5, R6, R7, R8は、各々独立して、低 級アルキル基、フエニル基、低級ァリールアルキル基から選ばれた一つの官能基を 表すものであり、メチル基、ェチル基、プロピル基等の炭素数が 1〜4のアルキル基 や、フエニル基や、ベンジル基、フエネチル基等の炭素数 7〜 10のァリールアルキル 基を例示することができる。これらの中でも、加水分解時の立体障害を減らす点から メチル基が好ましぐ屈折率を高める点からフエニル基が好ましい。
[0027] さらに上記の式(1)において、 mは 6, 8, 10, 12から選ばれた数を表し、 nは 2〜m の整数を表し、 sは 0〜m—nの整数を表すものであり、式(2)において、 pは 6, 8, 10 , 12から選ばれた数を表し、 qは 2〜pの整数を表し、 rは 0〜p— qの整数を表すもの である。
[0028] 上記の式(1)のかご型シルセスキォキサン化合物としては、例えば次の式(3)で表 されるあのを挙げること力 Sでさる。
[0029] 式(3)の化合物は、上記の式(1)において、 m= 8、 n = 4、 s = 4、 B及び R1, R2, R 3, R4力 Sメチル基 (Me)の化合物であり、シリコン原子と酸素原子で形成された略 6面 体構造を構成する 8つのシリコン原子のうち、 4つのシリコン原子にシロキサン結合( O Si )を介して A基が結合し、他の 4つのシリコン原子にシロキサン結合( O Si )を介して Bのメチル基が結合した構造を有するものである。尚、式(3)の構造 式は、略 6面体構造を構成する 8つのシリコン原子のうち 4つのシリコン原子に(一 O SiMe — A)がーつずつ結合し、他の 4つのシリコン原子に(一 O SiMe )がーつ
2 3 ずつ結合してレ、ることを簡略化して表現して!/、る。
[0030] [化 1]
Figure imgf000011_0001
[0031] また上記の式(2)のかご型シルセスキォキサン化合物としては、例えば次の式 (4) で表されるあのを挙げること力 Sでさる。
[0032] 式(4)の化合物は、上記の式(2)において、 p = 8、 q = 4、 r=4、 E及び R5, R6, R7 , R8がメチル基 (Me)の化合物であり、シリコン原子と酸素原子で形成された略 6面 体構造を構成する 8つのシリコン原子のうち、 4つのシリコン原子にシロキサン結合( —O— Si—)を介して水素原子が結合し、他の 4つのシリコン原子にシロキサン結合( —O— Si—)を介して Eのメチル基が結合した構造を有するものである。尚、式 (4)の 構造式は、略 6面体構造を構成する 8つのシリコン原子のうち、 4つのシリコン原子に( -O- SiMe H)がーつずつ結合し、他の 4つのシリコン原子に(— O— SiMe )がー
2 3 つずつ結合してレ、ることを簡略化して表現してレ、る。
[0033] [化 2]
Figure imgf000012_0001
次に、上記のかご型シルセスキォキサン化合物の合成方法の一例を説明する。ま ず、略 6面体構造を有するォクタァニオン(Si O 8一)と、クロロヒドリドジメチルシラン
8 12
のような反応性ハロゲンとを反応させ、ォクタァニオンの 8つのシリコン原子にヒドリド ジメチルシロキシ基を結合させて、式(2)において p = 8、 q = 8、 r = 0、 R5, R6がメチ ル基の力、ご型シルセスキォキサン化合物である
Figure imgf000012_0002
]シルセスキォキサン(OHSS)を調製する。
[0035] そしてこの OHSSを用いて、 4—ビュル 1ーシクロへキセン等の炭素 炭素不飽 和基を分子中に 2つ以上有する化合物を、全てのヒドリドジメチルシロキシ基にこの化 合物が付加反応するように反応させることによって、シリコン原子と酸素原子で形成さ れた略 6面体構造を構成する 8つのシリコン原子に炭素 炭素不飽和結合を有する 基 Aが結合した、式(1)において m= 8、 n = 8、 s = 0、 R1, R2がメチル基のかご型シ ルセスキォキサン化合物を調製することができる。尚、上記ォクタァニオンは、水酸化 テトラメチルアンモニゥムの存在下テトラエトキシシランを加水分解重縮合して得るこ とが可能である。
[0036] また上記のクロロヒドリドジメチルシランをォクタァニオンと反応させるときに、クロロト リメチルシランのような不飽和基や活性水素を有さない反応性ハロゲンをも混合して 反応させることにより、略 6面体構造を構成する 8つのシリコン原子の一部にトリメチル シ
[0037] さらに、ジメ
二ルジメチルシラン等の炭素,炭素不飽和基を有する反応性ノヽロゲンとクロロトリメチ ルシランとの混合物をォクタァニオンと反応させることにより、シリコン原子と酸素原子 で形成された略 6面体構造 8つのシリコン原子の一部に炭素一炭素不飽 和結合を有する基が結合し、他のシリコン原子にトリメチルシロキシ基が結合したかご 型シルセスキォキサンィヒ合物を調製することができる。
[0038] 上記のようにして得られる式(1)のカゝご型シルセスキォキサン化合物は、'シリコン原 子と酸素原子で形成された多面体構造のシリコン原子にシロキサン結合を介して結 合した炭素一炭素不飽和結合を有する基を有するものである。また式 (2)のかご型 シルセスキォキサン化合物はシリコン原子と酸素原子で形成された多面体構造のシ リコン原子にシロキサン結合を介して結合した水素原子を有レている。このため、式( 1)の化合物の炭素一炭素不飽和結合を有する基と、式 (2)の化合物の水素原子と 力 Sヒドロシリル化反応して、付加重合することにより架橋して硬化し、三次元架橋構造 を形成するものである。図 2にシリコン原子と酸素原子で形成された略 6面体構造 (符 号 7)が架橋結合された三次元架橋構造を模式的に示す。また [化 3]に、式 (1)の A がシクロへキセニル基である場合の、三次元架橋構造の架橋反応を示す。この三次 元架橋構造は、シリカ(ガラス)力 なるナノサイズのかご型構造を有機のセグメントで つなぎ合わせたような構造を有しており、ガラスライクな機能を発現させることができる
[0039] [化 3]
Figure imgf000013_0001
[0040] ここで、この反応する炭素一炭素不飽和結合基と水素原子は共に、シルセスキォキ サン(Si O )の多面体構造の部分と、シロキサン結合(一 O Si—)を介して結合し
8 12
ているため、他のかご型シルセスキォキサン化合物と重合する際に、立体障害が起き に《なっており、反応率が高い硬化物を得ることが可能であり、また未反応残基が少 なくなって、未反応残基に起因する信頼性低下を防ぐことが可能である。さらにこのよ うにシリカ(ガラス)力もなるナノサイズのかご型構造を有しているため、ゾル一ゲル法 により得られるメタロキサン等と比較して架橋密度が高くなり、吸水率が低い硬化物を 得ること力 sでさる。
[0041] また、上記のように得られる硬化物の架橋構造は、シルセスキォキサンの多面体構 造を構成するシリコン原子が 4つの酸素原子と結合して!/、て、無機材料であるガラス に近レ、構造となっており、し力、もこのシリコン原子に有機基は直接結合して!/、な!/、た め、青色域 ·近紫外域の光が照射された状態で使用されても、劣化し難くなつている
[0042] そして、半導体発光素子 2等を封止する封止材 3として、従来力も使用されている光 透過性エポキシ樹脂、ポリエステル、ポリアタリレート、オルガノポリシロキサン等を用 いると、これらに含まれる架橋結合と吸収基の存在のために、必要とされるスペクトル 領域に不要な吸収ピークが出現しやすいが、本発明のかご型シルセスキォキサン化 合物の硬化物を用いると、このような吸収ピークが少なぐ良好な青色光や紫外線光 の透過性を有する封止材 3となる。
[0043] 尚、本発明の上記式(1)で表される力、ご型シルセスキォキサン化合物と、本発明の 上記式(2)で表される力、ご型シルセスキォキサン化合物の配合量は、式(1)で表され る力、ご型シルセスキォキサン化合物が有する炭素 炭素不飽和結合を有する基の 数と、式(2)で表されるかご型シルセスキォキサン化合物が有するシリコン原子と酸 素原子で形成された多面体構造において、そのシリコン原子にシロキサン結合を介 して結合した水素原子の数とが、混合した液全体で見て同じであることが好ましいが 、硬化物の望ましい光学および物理的特性が維持される限りにおいて多少異なって いても良い。
[0044] 本発明のかご型シルセスキォキサン化合物を用いて半導体発光素子 2等を封止す るにあたっては、力、ご型シルセスキォキサン化合物の重合 ·架橋反応が進む条件で あれば、特に限定されることなく任意の方法を採用することができ、必要に応じて白 金、ノ ラジウム等の付加反応触媒を用いて反応させても良い。ここで、本発明に係る 力、ご型シルセスキォキサン化合物は、架橋させるまでは、室温で液状ないしは比較 的低温で溶融する固形であるため、半導体発光素子 2等の封止を容易に行なうこと が可能となる。
[0045] また、本発明の上記式(1)で表されるかご型シルセスキォキサン化合物が部分的 に付加反応してなるかご型シルセスキォキサン化合物の部分重合物は、式(1)で表 される力、ご型シルセスキォキサン化合物が 2〜; 10個程度重合したオリゴマーであり、 半導体発光素子 2等を封止することが可能な流動性を持つものである。また本発明 の上記式(2)で表されるかご型シルセスキォキサン化合物が部分的に付加反応して なるかご型シルセスキォキサン化合物の部分重合物は、式(2)で表されるかご型シ ルセスキォキサン化合物が 2〜; 10個程度重合したオリゴマーであり、半導体発光素 子 2等を封止することが可能な流動性を持つものである。従ってこの部分重合物を用 いた場合も、他の力、ご型シルセスキォキサン化合物またはその部分重合物と重合す ることにより架橋し、例えば図 2に示すような三次元架橋構造が形成される。そしてこ の場合も同様に、青色域 ·近紫外域の光が照射された状態で使用されても、劣化し 難ぐかつ吸水率が低い硬化物で封止材 3を形成することができる。
[0046] 尚、半導体発光素子 2を封止する封止材 3には、上記式(1)及び(2)で表されるか ご型シルセスキォキサン化合物またはこの化合物が部分的に付加反応してなるかご 型シルセスキォキサン化合物の部分重合物に加えて、付加反応性を有するケィ素化 合物を、硬化物の望ましい光学および物理的特性が維持される限りにおいて含有し ても良い。
[0047] 上記の説明では、上記式(1)のかご型シルセスキォキサン化合物を m= 8の場合 で、上記式(2)のかご型シルセスキォキサン化合物を p = 8の場合で説明した力 m や pが 6, 10, 12の場合も、同様に反応させることにより、力、ご型シルセスキォキサン 化合物やかご型シルセスキォキサン化合物部分重合物を得ることができる。そして、 これらの化合物を用いた場合も、他の力、ご型シルセスキォキサン化合物等と重合す ることにより架橋し、シリコン原子と酸素原子で形成された多面体構造を骨格に有す る三次元架橋構造が形成される。そしてこの場合も同様に、青色域'近紫外域の光 が照射された状態で使用されても、劣化しにくく、かつ吸水率が低い硬化物となる。
[0048] 尚、上記の式(1)で表される力ご型シノレセスキォキサン化合物が、 Βの置換または 非置換のアルキル基がアルコキシ基であり、かつ(s≥2)である場合、また上記の式( 2)で表されるかご型シノレセスキォキサン化合物力 Eの置換または非置換のアルキ ル基がアルコキシ基であり、かつ (r 2)である場合、上記した炭素—炭素不飽和結 合を有する基と水素原子との結合に加えて、このアルコキシ基同士の加水分解 '重 縮合の結合でも架橋することが可能となり、利用の汎用性が高まると共に硬化の汎用 性が高まり好ましい。このとき、炭素一炭素不飽和結合を有する基と水素原子との結 合が主な架橋構造になると、硬化物の厚膜化が比較的容易になって好ましく、また、 アルコキシ基同士の加水分解.重縮合の結合が主な架橋構造になると、比較的透明 性が高くなつて好ましい。 [化 4]に、式(1)の Aがシクロへキセニル基、 Bがエトシキ基 であり、式 (2)の Eがエトキシ基である場合の、三次元架橋構造の架橋反応の一例を 示す。
[0049]
Figure imgf000016_0001
[0050] また、上記の実施の形態では、式(1)及び式 (2)のかご型シルセスキォキサン化合 物、又はこの化合物が部分的に付加反応してなるかご型シノレセスキォキサン化合物 の部分重合物で半導体発光素子又は半導体受光素子を封止した半導体光装置を 説明したが、式(1)及び式(2)のかご型シルセスキォキサン化合物、又はこの化合物 力 S部分的.に付加反応してなる力ご型シルセスキォキサン化合物部分重合物を成形 材として用い、これを成形して重合'硬化させることによって、レンズやプリズム等の透 明光学部材を作製することができる。また光学ディスクの表面に塗布して重合させる ことにより、ブルーレイディスクの保護層等の透明光学部材に利用できる。また、 DV Dディスク製造用スタンパー等の基板に成形して利用することもできる。 [0051] ここで、かご型シノレセスキォキサン化合物の硬化体を LED白色照明用の透明封止 材等の光
ルセスキォキサン化合物の硬化体を高屈折率となるように形成するために、かご型シ ルセスキォキサン化合物に Ti〇や ZrO等の重金属ゾルを混合し、この重金属ゾルを かご型シルセスキォキサン化合物の硬化物中に導入することが好ましい。このとき、 かご型シルセスキォキサン化合物は一般に TiOや ZrO等の重金属ゾノレと相溶性が 悪く、重金属ゾルを均一に分散させることが難しぐその結果、硬化体の透明性が損 なわれやすい。これは例えば [化 5]のように、式(1)において Aがァリル基、 R1, R2が メチノレ基、 m= 8、 n=8、 s ==0のかご型シノレセスキォキサン化合物であるォクタキス [ ァリルジメチルシロキシ]シルセスキォキサンと、式(2)において R5, R6カ^チル基、 p =8、 q=8、 r=0のかご型シルセスキォキサン化合物であるォクタキス [ヒドリドジメチ ルシロキシ]シルセスキォキサンとを架橋反応させる系では、重金属ゾルの表面を覆 う一〇Ηと親和性のある官能基が存在しないからである。
[0052} . [化 5]
Figure imgf000017_0001
[0053] そこでこの場合には、式(1)において m— n— sが 1以上である、一 ΟΗ基を導入し たシルセスキォキサン化合物と、式 (2)において p— q— rが 1以上である、一 OH基を 導入したシルセスキォキサン化合物を用レ、るようにする。次の [化 6]に示すように、式 (1 )及び式 (2)のシルセスキォキサンィ匕合物の一 OH基と重金属ゾルを覆う一 OH基 との親和性によって、重金属ゾルの分散性を高めることができ、シルセスキォキサン 化合物に重金属ゾルを均一に分散させて、透明性を維持しつつ髙屈折率を有する 力ご型シルセスキォキサンィ匕合物の硬化物を得ることができる。
[0054] [化 6] ^
Figure imgf000018_0001
[0055] [化 6]に挙げる式(1)のかご型シルセスキォキサン化合物は、式(1)において Aが ァリル基、 R1, R2がメチル基、 m=8、 n=6、 s=0の化合物であり、シリコン原子と酸 素原子で形成された略 6面体構造を構成する 8つのシリコン原子のうち、 6つのシリコ ン原子にシロキサン結合(一0— Si—)を介してァリル基が結合し、 2つのシリコン原 子に水酸基が結合した構造を有するものである。また [化 6]に挙げる式 (2)の力 ^型 シルセスキォキサン化合物は、式(2)において R5, R6力 Sメチル基、 p=8、 q=6、 r= . 0の化合物であり、シリコン原子と酸素原子で形成された略 6面体構造を構成する 8 つのシリコン原子のうち、 6つのシリコン原子にシロキサン結合(一 O— Si—)を介して 水素原子が結合し、 2つのシリコン原子に水酸基が結合した構造を有するものである
[0056] このような、略 6面体構造を構成する 8つのシリコン原子の一部に水酸基が結合した かご型シルセスキォキォキサンは、次のようにして製造することができる。
[0057] [化 5]のォクタキス [ァリルジメチルシロキシ]シルセスキォキサンは、次の [化 7]に 示すように、ォクタァニオンにァリルジメチルクロルシランを反応させることによって調 . 製することができる力 ォクタァニオンの 8つの反応サイトの全てにァリルジメチルシク ロルシランを置換させるためには、ァリルジメチルクロルシランの配合量はォクタァニ オンに対して大過剰(30倍当量以上)となるように設定する必要がある。従って、オタ タァニオンに対するァリルジメチルクロルシランの過剰度合レ、が少なレ、場合、オタタァ 二オンの 8つの反応サイトの一部が置換されなくなり、非置換サイトが加水分解して一 g本 ·
17
OH基になり、 [化 6]のような略 6面体構造を構成する一部のシリコン原子に OH基を 導入した
の過剰度合いを調整することによって、かご型シルセスキォキサンへの一 OH基の導 入数を制御することができる。例えば、ォクタァニオン 1モルに対するァリルジメチルク ロルシランの配合モル数を 30モルに調整して、 30倍モルで反応させたとき、 -OH 基の導入数は、かご型シルセスキォキサン化合物 1分子に対して 0. 02個となり、同 様に 25倍モルで反応させたときの一OH基の導入数は 0. 7個、 15倍モルで反応さ せたときの一 OH基の導入数は 0. 9個、 8倍モルで反応させたときの一 OH基の導入 数は 2. 0個となる。
[0058] [化 7]
Figure imgf000019_0001
[0059] また、 [化 5]のォクタキス [ヒドリドジメチルシ口キシ]シルセスキォキサンは、次の [化 8]に示すように、ォクタァニオンにジメチルクロルシランを反応させることによって調 製することができる力 ォクタァニオンの 8つの反応サイトの全てにジメチルシクロルシ ランを置換させるためには、ジメチルクロルシランの配合量はォクタァニオンに対して 大過剰となるように設定する必要がある。従って、ォクタァニオンに対するジメチルク ロルシランの過剰度合レ、が少なレ、場合、ォクタァニオンの 8つの反応サイトの一部が 置換されなくなり、非置換サイトが一OH基になるものであり、 [化 6]のような略 6面体 構造を構成する一部のシリコン原子に OH基を導入したヒドリドジメチルシロキシシル セスキォキサンを調製することができる。またこの過剰度合いを調整することによって 、かご型シルセスキォキサンへの一 OH基の導入数を制御することができる。
[0060] [化 8] '
Figure imgf000020_0001
[0061] (実施の形態 2)
続いて、本発明の実施の形態 2に係るかご型シルセスキォキサン化合物について 詳細に説明する。本実施の形態 2に係るかご型シルセスキォキサン化合物は、実施 の形態 1では式(1)で表されるかご型シルセスキォキサン化合物における Aが炭素一 炭素不飽和結合を有する基であって必ずしも鎖状炭化水素基ではないのに対し、実 施の形態 2では Aが炭素—炭素不飽和結合を有する鎖状炭化水素基である点で実 施の形態 1に係るかご型シルセスキォキサンィ匕合物と異なる。
[0062] 封止材 3は、下記の式(1)で表されるかご型シルセスキォキサン化合物、またはこ の化合物が部分的に付加反応してなるかご型シルセスキォキサン化合物の部分重 合物を含有するケィ素化合物と、下記の式 (2)で表されるかご型シルセスキォキサン 化合物、またはこの化合物が部分的に付加反応してなるかご型シルセスキォキサン 化合物の部分重合物とを含有するケィ素化合物を、架橋して形成される。
ここで、式(1)は、上記同様、(Al^I^SiOSiO ) (BR3R4Si〇SiO ) (HOSiO
1. 5 n 1. 5 s
1. 5 ) m— n— s…ひ)
で表され、式(2)は、(R5R6HSiOSiO ) (ER7R8SiOSiO ) (HOSiO )
1. 5 q 1. 5 r 1. 5 p~q— r
•'' (2)で表される。式 (1)において、 Aは炭素一炭素不飽和結合を有する鎖状炭化 水素基であり、炭素一炭素二重結合または炭素一炭素三重結合を基の一部に含む ものであれば特に限定はされない。例えば、アルケニル基、アルキニル基を含むもの を挙げることができ、アルケニル基またはアルキニル基を含む基としては、例えぱビニ ル基、ァリル基等の炭素一炭素二重結合を有する基や、ェチ二/レ基、プロピニル基 等の炭素一炭素三重結合を有する基を挙げることができる。また炭素一炭素二重結 合または炭素一炭素三重結合を有する基と、不飽和基を有.しない 2価の基が結合し た基を挙げることもできる。尚、これらの炭素一炭素不飽和結合を有する鎖状炭化水 素基の炭素 炭素不飽和結合の位置は、架橋反応時の立体障害を減らす点から、 末端に有することが好ましい。
[0063] 次に、本実施の形態 2に係るかご型シルセスキォキサン化合物の合成方法の一例 を説明する。まず、実施の形態 1と同様、略 6面体構造を有するォクタァニオン(Si O
8
8つと、クロロヒドリドジメチルシランのような反応性ハロゲンとを反応させ、ォクタァニ
12
オンの 8つのシリコン原子にヒドリドジメチルシ口キシ基を結合させて、式(2)において p = 8、 q = 8、 r = 0、
Figure imgf000021_0001
R6がメチル基のかご型シルセスキォキサン化合物である、 ォクタキス [ヒドリドジメチルシ口キシ]シルセスキォキサン (OHSS)を調製する。
[0064] そしてこの OHSSを用いて、 1一へキセニル等の炭素 炭素不飽和基を分子中に 有する化合物を、全てのヒドリドジメチルシロキシ基にこの化合物が付加反応するよう に反応させることによって、シリコン原子と酸素原子で形成された略 6面体構造を構 成する 8つのシリコン原子に炭素 炭素不飽和結合を有する鎖状炭化水素基 Aが結 合した、式(1)において m = 8、 n = 8、 s = 0、 R1, R2がメチル基のかご型シルセスキ ォキサン化合物を調製することができる。尚、上記ォクタァニオンは、テトラメチルアン モニゥム塩の存在下、テトラエトキシシランの加水分解重縮合反応で得ることが可能 である。
[0065] また上記のクロロヒドリドジメチルシランをォクタァニオンと反応させるときに、クロロト リメチルシランのような不飽和基や活性水素を有さない反応性ハロゲンをも混合して 反応させることにより、略 6面体構造を構成する 8つのシリコン原子の一部にトリメチル シロキサン基が結合したかご型シルセスキォキサン化合物を調製することができる。
[0066] さらに、ジメチルビユルクロロシラン、ジメチルァリルクロロシラン、クロロシクロアルケ 二ルジメチルシラン等の炭素 炭素不飽和基を有する反応性ハロゲンとクロロトリメチ ルシランとの混合物をォクタァニオンと反応させることにより、シリコン原子と酸素原子 で形成された略 6面体構造を構成する 8つのシリコン原子の一部に炭素 炭素不飽 和結合を有する鎖状の基が結合し、他のシリコン原子にトリメチルシロキシ基が結合 したかご型シルセスキォキサン化合物を調製することができる。
[0067] 上記のようにして得られる式(1)のかご型シルセスキォキサン化合物は、シリコン原 子と酸素原子で形成された多面体構造のシリコン原子にシロキサン結合を介して結 合した炭素一炭素不飽和結合を有する鎖状炭化水素基を有するものである。また、 式 (2)のかご型シルセスキォキサン化合物はシリコン原子と酸素原子で形成された 多面体構造のシリコン原子にシロキサン結合を介して結合した水素原子を有している このため、式 (1)の化合物の炭素一炭素不飽和結合を有する基と、式(2)の化合 物の水素原子とがヒドロシリル化反応して、.付加重合することにより架橋して硬化し、 三次元架橋構造を形成する。
[0068] 図 2にシリコン原子と酸素原子で形成された略 6面体構造 (符号 7)力架橋結合され た三次元架橋構造を模式的に示している。また [化 10]に、式(1)のシルセスキォキ サン化合物が、式(1)の Aがへキセニル基、 R1, R2力 Sメチル基、 m=8 n=8 s=0 であるォクタキス [へキセニルジメチルシ口キシ]シルセスキォキサンであり、式(2)の シルセスキォキサン化合物力 式(2)において , カメチル基、 p=8 q=8 r= 0であるォクタキス [ヒドリドジメチルシ口キシ]シルセスキォキサンである場合の三次元 架橋構造の架橋反応を示す。式 (1)のかご型シルセスキォキサンは、略 6面体構造 の 8つのシリコン原子に、シロキサン結合を介して 8個のへキセニル基が結合している ものであり、また式(2)のかご型シ セスキォキサンは、略 6面体構造の 8つのシリコ ン原子に、シロキサン結合を介して 8個の水素原子が結合しているものであり、水素 ' 橋 構造は、シリカ (ガラス)力 なるナノサイズのカご型構造を有機のセグメントでつなぎ • 合わせたような構造を有しており、ガラスライクな機能を発現させることができる。
[0069] [化 10]
Figure imgf000022_0001
[0070] ここで、上記のようにかご型シルセスキォキサン化合物を水素原子と不飽和基とのヒ ドロシリノレイ匕反応で架橋させるにあたって、 [化 11]のような Aの炭素一炭素不飽和結 合を有する基として環状ビュルなどの環状炭化水素基を導入したかご型シルセスキ ォキサン化合物を用いた場合、環状炭化水素は立体障害が大きぐシクロへキセニ ルの炭素一炭素不飽和結合と水素原子(一 C = C/—SiH)の間の架橋反応が進行 し難ぐ 性などの耐久性に問題が生じるおそれがある。
Figure imgf000023_0001
[0072] しかしながら、本実施の形態 2のように、式(1)のかご型シルセスキォキサン化合物 において Aの炭素一炭素不飽和結合を有する基として鎖状ビニルなどの鎖状炭化 水素基を用いることによって、立体障害が起き難くなり、水素原子と炭素一炭素不飽 和結合の間の架橋反応が著しく促進され、硬化物中の未反応残基の量も低減される 。この結果、未反応残基に起因する信頼性低下を防ぐことが可能になり、ブルーレイ 照射耐性などの耐久性が高レ、硬化物を得ることができる。
実施例
[0073] 次に、本発明を実施例によって具体的に説明する。
[0074] (実施例 1)
還流管と滴下ロートを取り付けた 1 OOOmLのフラスコに水酸化テトラメチルアンモニ ゥム 334mL、メタノール 164mL、水 123mLを投入して攪拌した。そして滴下ロート に 179mLのテトラエトキシシラン (TEOS)を装てんし、フラスコ全体を氷浴で約 5°C になるまで冷却して、約 5°Cになった時点で TEOSを滴下した。滴下開始力 約 1時 間で 179mLの TEOSの滴下を完了させた。滴下完了後、 10分間氷浴中での攪拌 を継続した後、氷浴を取り除き、その後、室温で 10時間攪拌して反応を進めた。 10 時間の室温攪拌を完了した後、反応生成物をろ過し、ろ液としてォクタァニオン Zメ タノール溶液を得た。
[0075] 次いで、還流管と滴下ロートを取り付けた lOOOmLのフラスコに、へキサン 895mL 、ジメチルクロロシラン 69· 7mLを投入し、攪拌した。そして滴下ロートにォクタァニォ ン/メタノール溶液を装てんし、フラスコ内の溶液を約 5°Cになるまで冷却して、窒素 雰囲気下で、約 5°Cになった時点でォクタァユオン/メタノール溶液を滴下した。滴 下開始から約 2時間で 334mLのォクタァニオン/メタノール溶液の滴下を完了させ た。滴下終了後、 10分間氷浴中で攪拌し、攪拌を継続したまま、氷浴を取り除き、さ らに室温で 6時間攪拌して、反応を進行させた。 6時間攪拌後、 2Lの分液ロートにフ ラスコ内の溶液を移し、下層のメタノール層を取り出した。そして上層のへキサン層を 2Lの三角フラスコに移し、硫酸ナトリウムを加え、約 10分間静置することにより、溶液 中の水分を乾燥させた。また、下層のメタノール層にへキサン lOOmLを加えて反応 物の抽出を行なった後、静置して形成された上層のへキサン層を、上記のへキサン 層を移した 2L三角フラスコに移し、溶液中の水分の乾燥を行なった。次にこの乾燥し 終えたへキサン層を 1Lナス型フラスコに移し、ロータリーエバポレーターを用いて、 溶液からへキサンを揮発させ、系内から除去した。このへキサンを揮発させた 1Lナス 型フラスコ中に残存している湿った白色固体を、真空ポンプを用いて、減圧下(133 Pa (lmmHg) ,室温)でさらに乾燥した。そして白色固体の入っている 1Lナス型フラ スコにァセトニトリルを加え、白色固体を攪拌した後、吸引濾過瓶で固体をろ別した。 次にこのろ別した白色固体を lOOmLビーカーに移し、さらにァセトニトリル lOOmLで 洗浄し、吸引ろ過することで白色固体を取り出した。この洗浄操作を 2回繰り返した後 、真空ポンプを用いて減圧下で乾燥することによって、白色固体のォクタキス [ヒドリド ジメチルシロキシ]シルセスキォキサン(OHSS)を得た。このときの収率は 56%であ つた。この OHSSは、上記式(2)において R5, R6がメチル基、 pが 8、 qが 8、 rが 0のシ ルセスキォキサン化合物である([化 8]参照)。
次に、還流冷却器を有する 250mLのシュレンクフラスコに、上記の OHSSを 21. 4 g (21mmol)仕込んだ。このフラスコを真空下で徐々に加熱して残留空気と水分を除 去した後、窒素を流し、次に、 4—ビュル一 1—シクロへキセンを 18. 2g (170mmol) 、及び触媒として 2mMの Pt (dcp)—トルエン溶液を 0. lmL (Pt : 0. 02ppm)を添カロ した。そしてこの混合物を 90°Cで 4時間攪拌しながら反応させた後、過剰の試薬を除 去することによって、白色の粉状生成物を得た。次いで、得られた粉末をァセトニトリ ルで洗浄して精製した後、乾燥した。得られた白色粉末は 38. 5g (20mmol)であり
、収率は 97%であった。
[0077] 得られた反応物を、 1H— NMRスペクトルと、 TGA— DTAで分析した結果、構造 式が上記式(1)において、 Aがシクロへキセニル基、 R1, R2がメチル基、 mが 8、 nが 8
、 sが 0である、次の [化 12]で示されるォクタキス (シクロへキセニルェチルジメチルシ 口キシ)シルセスキォキサンであることが確認された。
[0078] [化 12]
ふ δΟΐ2 O-Si
」8
[0079] そして、このように得られたかご型シルセスキォキサン化合物 lg (0. 5mmol)と、上 記で得た OHSS O. 5g (0. 5mmol)とを混合した後、テフロン (登録商標)製の型に 流し込み、 85°Cで 2時間脱気した。次いで脱気後、オーブンに窒素を流しながら温 度を 30°C/hの割合で 200°Cまで上げ、その温度で 10時間保持して硬化させること によって、樹脂板を得た。
[0080] (実施例 2)
三口フラスコに滴下ロート、温度計、試薬注入弁を取り付け、三口フラスコにへキサ ン 188mL、ァリルジメチルクロルシラン 10. 6mLを投入した(ォクタァニオンに対して ァリルジメチルクロルシランは 8倍当量)。次に系内全体を 5°C以下になるように氷浴 で冷却し、系内の温度が 5°C以下になった時点で、滴下ロートからォクタァニオン 70 mLを;!〜 2滴/秒の速さで滴下した。
[0081] 滴下完了後、氷浴を外し、室温で 6時間攪拌して反応させた。得られた反応溶液を へキサン 40mLで 3回抽出し、へキサン層を乾燥剤 (硫酸ナトリウム)で乾燥した後、 吸引濾過した。得られたろ液をエバポレーシヨンしてへキサンを留去し、さらにへキサ ンを除去して得られた反応性生物から未反応原料を真空ポンプで 65°Cで加熱しな 力 ¾除去して、精製することによって、 [化 6]に示す、 OH基を 2個持つァリルジメチ [0082] また、三口フラスコに滴下ロート、温度計、試薬注入弁を取り付け、三口フラスコに へキサン 895mL、ジメチルクロルシラン 55. 8mLを投入した。次に系内全体を 5°C 以下になるように氷浴で冷却し、系内の温度が 5°C以下になった時点で、滴下ロート 力、らォクタァニオン 334mLを 1〜2滴/秒の速さで滴下した。
[0083] 滴下完了後、氷浴を外し、室温で 6時間攪拌して反応させた。得られた反応溶液を へキサン 40mLで 3回抽出し、へキサン層を乾燥剤 (硫酸ナトリウム)で乾燥した後、 吸引濾過した。このろ液をエバポレーシヨンしてへキサンを留去し、得られた結晶をァ セトニトリルで洗浄することによって、 [化 6]に示す、 OH基を 2個持つヒドリドジメチ
[0084] そして上記のようにして得た、それぞれ分子中に OH基を 2個持つ、ァリルジメチ gとを混合し、これをテフロン (登録商標)製の型に流し込み、 85°Cで 2時間脱気した 。次いで脱気後、オーブンに窒素を流しながら温度を 30°C/hの割合で 200°Cまで 上げ、その温度で 10時間保持して硬化させることによって、無色透明の樹脂板を得 た。
[0085] (実施例 3)
三口フラスコに滴下ロート、温度計、試薬注入弁を取り付けた器具を組み、三ロフ ラスコにへキサン 188mL、ァリルジメチルクロルシラン 28. 35mLを投入した。次に 三口フラスコ内の系全体を 5°C以下になるように氷浴で冷却し、系内の温度が 5°C以 下になつたことを確認した後、窒素気流下で滴下ロートからォクタァニオン 50mLを 1 〜2滴/秒の速さで滴下した。このとき、ォクタァニオンの 8つの反応サイトの全てに 量はォクタァニオンに対して大過剰(30倍当量以上)に設定する必要がある。
[0086] 滴下完了後、氷浴を外し、室温で 6時間攪拌して上記の [化 7]に示すようにォクタ ァニオンとァリルジメチルクロルシランを反応させた( [化 7]にお!/、て Meはメチル基を 示す)。得られた反応溶液をへキサン 50mLで 3回抽出し、へキサン層を乾燥剤 (硫 酸ナトリウム)で乾燥した後、吸引濾過した。得られたろ液をエバポレーターを用いて へキサンを留去し、さらにへキサンを除去して得られた反応性生物から未反応原料を 真空ポンプで 65°Cで加熱しながら除去することによって、ォクタキス [ァリルジメチル
Figure imgf000027_0001
[0087] また、三口フラスコに滴下ロート、温度計、試薬注入弁を取り付けた器具を組み、三 口フラスコにへキサン 895mL、ジメチルクロルシラン 69. 7mLを投入した。次に三口 フラスコ内の系全体を 5°C以下になるように氷浴で冷却し、系内の温度が 5°C以下に なったことを確認した後、窒素気流下で滴下ロートからォクタァニオン 334mLを 1〜2 滴/秒の速さで滴下した。このとき、ォクタァニオンの 8つの反応サイトの全てにジメ チルクロルシランを置換させるために、ジメチルクロルシランの配合量はォクタァニォ ンに対して大過剰に設定する必要がある。
[0088] 滴下完了後、氷浴を外し、室温で 6時間攪拌して上記の [化 8]に示すようにォクタ ァニオンとジメチルクロルシランを反応させた( [化 8]にお!/、て Meはメチル基を示す) 。得られた反応溶液をへキサン lOOmLで 3回抽出し、へキサン層を乾燥剤 (硫酸ナト リウム)で乾燥した後、吸引濾過した。このろ液をエバポレーターを用いてへキサンを 留去し、得られた結晶をァセトニトリルで洗浄して乾燥することによって、ォクタキス [ヒ
[0089] そして上記のようにして得たォクタキス [ァリルジメチルスロキシ]シルセスキォキサン をテフロン (登録商標)製の型に流し込み、 85°Cで 2時間脱気した。次いで脱気後、 オーブンに窒素を流しながら温度を 30°C/hの割合で 200°Cまで上げ、その温度で 10時間保持して硬化させることによって、無色透明の樹脂板を得た。

Claims

請求の範囲 [1] 下記式(1)で表されるかご型シルセスキォキサン化合物、又はこの化合物が部分 的に付加反応してなるかご型シルセスキォキサン化合物の部分重合物と、下記式(2 )で表される力、ご型シルセスキォキサン化合物、又はこの化合物が部分的に付加反 応してなる力、ご型シルセスキォキサン化合物の部分重合物とを含有するケィ素化合 物で、半導体発光素子又は半導体受光素子を封止して成ることを特徴とする半導体 光装置。 (AR SiOSiO ) (BR3R4SiOSiO ) (HOSiO ) …ひ)
1. 5 n 1. 5 s 1. 5 m— n s
(式(1)中、 Aは炭素 炭素不飽和結合を有する基、 Bは置換又は非置換の飽和ァ ルキル基もしくは水酸基、 R1, R2, R3, R4は各々独立に低級アルキル基、フエニル基 、低級ァリールアルキル基から選ばれる官能基を表し、 mは 6, 8, 10, 12から選ばれ た数、 nは 2〜mの整数、 sは 0〜m— nの整数を表す)
(R5R6HSiOSiO ) (ER7R8SiOSiO ) (HOSiO ) …(2)
1. 5 q 1. 5 r 1. 5 p— q— r
(式(2)中、 Eは置換又は非置換の飽和アルキル基もしくは水酸基、 R5, R6, R7, R8 は各々独立に低級アルキル基、フエニル基、低級ァリールアルキル基から選ばれる 官能基を表し、 pは 6, 8, 10, 12から選ばれた数、 qは 2〜pの整数、 rは 0〜p— qの 整数を表す)
[2] 上記式(1)における Aが炭素 炭素不飽和結合を有する鎖状炭化水素基であるこ とを特徴とする請求項 1に記載の半導体光装置。
[3] 下記式(1)で表されるかご型シルセスキォキサン化合物、又はこの化合物が部分 的に付加反応してなるかご型シルセスキォキサン化合物の部分重合物と、下記式(2 )で表される力、ご型シルセスキォキサン化合物、又はこの化合物が部分的に付加反 応してなる力、ご型シルセスキォキサン化合物の部分重合物とを含有するケィ素化合 物を、重合して成ることを特徴とする透明光学部材。
(AR SiOSiO ) (BR3R4SiOSiO ) (HOSiO ) …ひ)
1. 5 n 1. 5 s 1. 5 m— n s
(式(1)中、 Aは炭素 炭素不飽和結合を有する基、 Bは置換又は非置換の飽和ァ ルキル基もしくは水酸基、 R1, R2, R3, R4は各々独立に低級アルキル基、フエニル基 、低級ァリールアルキル基から選ばれる官能基を表し、 mは 6, 8, 10, 12から選ばれ た数、 nは 2〜mの整数、 sは 0〜m— nの整数を表す)
(R5R6HSiOSiO ) (ER7R8SiOSiO ) (HOSiO ) …(2)
1. 5 q 1. 5 r 1. 5 p— q— r
(式(2)中、 Eは置換又は非置換の飽和アルキル基もしくは水酸基、 R5, R6, R7, R8 は各々独立に低級アルキル基、フエニル基、低級ァリールアルキル基から選ばれる 官能基を表し、 pは 6, 8, 10, 12から選ばれた数、 qは 2〜pの整数、 rは 0〜p— qの 整数を表す)
上記式(1)における Aが炭素 炭素不飽和結合を有する鎖状炭化水素基であるこ とを特徴とする請求項 3に記載の透明光学部材。
PCT/JP2007/066029 2006-11-27 2007-08-17 Optical semiconductor device and transparent optical member WO2008065787A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006319050A JP2007246880A (ja) 2006-02-20 2006-11-27 半導体光装置及び透明光学部材
JP2006-319050 2006-11-27
JP2006319051A JP5204395B2 (ja) 2006-02-20 2006-11-27 半導体光装置及び透明光学部材
JP2006-319051 2006-11-27

Publications (1)

Publication Number Publication Date
WO2008065787A1 true WO2008065787A1 (en) 2008-06-05

Family

ID=39467585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066029 WO2008065787A1 (en) 2006-11-27 2007-08-17 Optical semiconductor device and transparent optical member

Country Status (1)

Country Link
WO (1) WO2008065787A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173760A (ja) * 2008-01-23 2009-08-06 Kaneka Corp 液状多面体構造ポリシロキサン系化合物および該化合物を用いた組成物と硬化物。
JP2010254927A (ja) * 2009-04-28 2010-11-11 Kaneka Corp 光硬化可能な組成物
WO2012144480A1 (ja) * 2011-04-20 2012-10-26 セントラル硝子株式会社 シロキサン化合物およびその硬化物
US20130099395A1 (en) * 2011-10-25 2013-04-25 Haruka ONA Silicone resin composition, encapsulating layer, reflector, and optical semiconductor device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267290A (ja) * 1988-06-29 1990-03-07 Akad Wissenschaften Ddr 鳥かご状構造を有する親油性二重環ケイ酸誘導体、その製造方法及びその使用方法
JPH06329687A (ja) * 1993-05-13 1994-11-29 Wacker Chemie Gmbh 有機ケイ素化合物及びその製法
JPH1171462A (ja) * 1997-08-29 1999-03-16 Toshiba Silicone Co Ltd 新規な含ケイ素重合体
JP2000154252A (ja) * 1998-11-18 2000-06-06 Agency Of Ind Science & Technol 新型含シルセスキオキサンポリマー及びその製造方法
JP2000198930A (ja) * 1998-12-28 2000-07-18 Shin Etsu Chem Co Ltd 付加硬化型シリコ―ン組成物
JP2000265066A (ja) * 1999-03-17 2000-09-26 Dow Corning Asia Ltd 有機溶剤可溶性の水素化オクタシルセスキオキサン−ビニル基含有化合物共重合体及び同共重合体からなる絶縁材料
JP2004186168A (ja) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004359933A (ja) * 2003-05-14 2004-12-24 Nagase Chemtex Corp 光素子用封止材
JP2005290352A (ja) * 2004-03-12 2005-10-20 Asahi Kasei Corp カゴ状シルセスキオキサン構造を有する化合物
JP2006022207A (ja) * 2004-07-08 2006-01-26 Chisso Corp ケイ素化合物
WO2006077667A1 (ja) * 2005-01-24 2006-07-27 Momentive Performance Materials Japan Llc. 発光素子封止用シリコーン組成物及び発光装置
JP2006299149A (ja) * 2005-04-22 2006-11-02 Asahi Kasei Corp 封止材用組成物及び光学デバイス
JP2006299150A (ja) * 2005-04-22 2006-11-02 Asahi Kasei Corp 封止材用組成物及び光学デバイス
JP2007031619A (ja) * 2005-07-28 2007-02-08 Nagase Chemtex Corp 光素子封止用樹脂組成物
JP2007246880A (ja) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd 半導体光装置及び透明光学部材
JP2007251123A (ja) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd 半導体光装置及び透明光学部材

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267290A (ja) * 1988-06-29 1990-03-07 Akad Wissenschaften Ddr 鳥かご状構造を有する親油性二重環ケイ酸誘導体、その製造方法及びその使用方法
JPH06329687A (ja) * 1993-05-13 1994-11-29 Wacker Chemie Gmbh 有機ケイ素化合物及びその製法
JPH1171462A (ja) * 1997-08-29 1999-03-16 Toshiba Silicone Co Ltd 新規な含ケイ素重合体
JP2000154252A (ja) * 1998-11-18 2000-06-06 Agency Of Ind Science & Technol 新型含シルセスキオキサンポリマー及びその製造方法
JP2000198930A (ja) * 1998-12-28 2000-07-18 Shin Etsu Chem Co Ltd 付加硬化型シリコ―ン組成物
JP2000265066A (ja) * 1999-03-17 2000-09-26 Dow Corning Asia Ltd 有機溶剤可溶性の水素化オクタシルセスキオキサン−ビニル基含有化合物共重合体及び同共重合体からなる絶縁材料
JP2004186168A (ja) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2004359933A (ja) * 2003-05-14 2004-12-24 Nagase Chemtex Corp 光素子用封止材
JP2005290352A (ja) * 2004-03-12 2005-10-20 Asahi Kasei Corp カゴ状シルセスキオキサン構造を有する化合物
JP2006022207A (ja) * 2004-07-08 2006-01-26 Chisso Corp ケイ素化合物
WO2006077667A1 (ja) * 2005-01-24 2006-07-27 Momentive Performance Materials Japan Llc. 発光素子封止用シリコーン組成物及び発光装置
JP2006299149A (ja) * 2005-04-22 2006-11-02 Asahi Kasei Corp 封止材用組成物及び光学デバイス
JP2006299150A (ja) * 2005-04-22 2006-11-02 Asahi Kasei Corp 封止材用組成物及び光学デバイス
JP2007031619A (ja) * 2005-07-28 2007-02-08 Nagase Chemtex Corp 光素子封止用樹脂組成物
JP2007246880A (ja) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd 半導体光装置及び透明光学部材
JP2007251123A (ja) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd 半導体光装置及び透明光学部材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173760A (ja) * 2008-01-23 2009-08-06 Kaneka Corp 液状多面体構造ポリシロキサン系化合物および該化合物を用いた組成物と硬化物。
JP2010254927A (ja) * 2009-04-28 2010-11-11 Kaneka Corp 光硬化可能な組成物
WO2012144480A1 (ja) * 2011-04-20 2012-10-26 セントラル硝子株式会社 シロキサン化合物およびその硬化物
JP2012233174A (ja) * 2011-04-20 2012-11-29 Central Glass Co Ltd シロキサン化合物およびその硬化物
US20130099395A1 (en) * 2011-10-25 2013-04-25 Haruka ONA Silicone resin composition, encapsulating layer, reflector, and optical semiconductor device
US8810046B2 (en) * 2011-10-25 2014-08-19 Nitto Denko Corporation Silicone resin composition, encapsulating layer, reflector, and optical semiconductor device

Similar Documents

Publication Publication Date Title
JP5204393B2 (ja) 半導体光装置及び透明光学部材
JP5204394B2 (ja) 半導体光装置及び透明光学部材
JP2007246880A (ja) 半導体光装置及び透明光学部材
KR101762348B1 (ko) 규소 함유 경화성 조성물, 그 규소 함유 경화성 조성물의 경화물 및 그 규소 함유 경화성 조성물로 형성되는 리드 프레임 기판
KR101706077B1 (ko) 경화성 실리콘 조성물, 이의 경화물, 및 광반도체 장치
JP5211059B2 (ja) 半導体光装置及び透明光学部材
KR101131410B1 (ko) 반도체 발광 디바이스용 부재 및 그 제조 방법, 그리고 그것을 사용한 반도체 발광 디바이스
KR102026598B1 (ko) 광학 물품 및 형성 방법
US8828753B2 (en) Producing method of light emitting diode device
CN103374206B (zh) 热固化性硅酮树脂组合物、使用该组合物的led用反射器及光半导体装置
WO2008001799A1 (en) Illuminating device
JP5210881B2 (ja) 半導体光装置及び透明光学部材
WO2007034919A1 (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
CN105518076A (zh) 可固化有机硅组合物、其固化产物以及光学半导体器件
WO2008065786A1 (fr) Dispositif optique à semiconducteur et élément optique transparent
JP2007019459A (ja) 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
US8035236B2 (en) Semiconductor device comprising high performance encapsulation resins
CN106459482A (zh) 用于光电应用的混杂材料
JP6213123B2 (ja) シリカ粒子を含む硬化性組成物およびその硬化物、並びにそれを用いた半導体封止材
JP2008084986A (ja) 光半導体用封止材及び半導体光装置
WO2008065787A1 (en) Optical semiconductor device and transparent optical member
JP5204395B2 (ja) 半導体光装置及び透明光学部材
JP4991162B2 (ja) 半導体光装置及び透明光学部材
JP2013001813A (ja) シリコーン樹脂組成物、封止層、リフレクタおよび光半導体装置
JP5210880B2 (ja) 半導体光装置及び透明光学部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07792645

Country of ref document: EP

Kind code of ref document: A1