WO2008062828A1 - Système d'amélioration de champ équipé d'un résonateur - Google Patents

Système d'amélioration de champ équipé d'un résonateur Download PDF

Info

Publication number
WO2008062828A1
WO2008062828A1 PCT/JP2007/072544 JP2007072544W WO2008062828A1 WO 2008062828 A1 WO2008062828 A1 WO 2008062828A1 JP 2007072544 W JP2007072544 W JP 2007072544W WO 2008062828 A1 WO2008062828 A1 WO 2008062828A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
field
improvement system
coil
sensor
Prior art date
Application number
PCT/JP2007/072544
Other languages
English (en)
French (fr)
Inventor
Kunitaka Arimura
Original Assignee
Smart Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart Co., Ltd. filed Critical Smart Co., Ltd.
Priority to US12/312,623 priority Critical patent/US8305217B2/en
Publication of WO2008062828A1 publication Critical patent/WO2008062828A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • G06K19/07781Antenna details the antenna being of the inductive type the inductive antenna being a coil the coil being fabricated in a winding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/73Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for taking measurements, e.g. using sensing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation

Definitions

  • the present invention relates to a field improvement system with a resonator, in order to improve a communication situation when performing communication between a sensor and a tag in the field of using RFID (Radio Frequency Identification) and a non-contact IC card.
  • RFID Radio Frequency Identification
  • a non-contact IC card Presents a simple and effective method.
  • the resonance frequency shifts due to the influence of surrounding dielectric material, magnetic material, and metal, and the sensitivity decreases.
  • the load is large, the loaded Q becomes small and the sensitivity decreases. did.
  • 1S is generally not enough to ensure a magnetic path with a magnetic material.
  • the resonance frequency may be significantly shifted due to the interaction between coil antennas. In such a case, the resonance frequency is generally lowered.
  • Patent Document 1 Utility Model Registration No. 3121577
  • an object of the present invention is to provide a field improvement system with a resonator that can improve the communication environment between sensors, tags, and non-contact type IC cards.
  • the present invention provides a field improvement system with a resonator as follows.
  • a resonator is directly attached to a sensor, a tag, or a non-contact type IC card to improve the performance of the sensor, tag, or non-contact type IC card.
  • a field improvement system with a resonator characterized in that a magnetic material is attached to the coil of the resonator.
  • the resonator is approximately 1 /
  • a field improvement system with a resonator which is a resonator with a distributed capacity and inductance of two or about one wavelength, such as linear or plate-like.
  • the resonator coil and antenna are printed on a plastic film! /, Is etched! /, Is deposited! /, A field improvement system with a resonator.
  • the capacitor is formed of a thin electrode / with a plastic film sandwiched between it and a metal surface electrode, etc.
  • Field improvement system with a resonator [0016] (10)
  • an adhesive paste is added to one side of a plastic film that supports the resonator, and this is covered with silicon paper.
  • a field improvement system with a resonator In the field improvement system with a resonator described in (1) above, an adhesive paste is added to one side of a plastic film that supports the resonator, and this is covered with silicon paper.
  • an appropriate size and number of resonators may be disposed in the vicinity of a sensor or a tag, or may be in close contact with a part or all of the resonator.
  • a field improvement system with a resonator may be disposed in the vicinity of a sensor or a tag, or may be in close contact with a part or all of the resonator.
  • the present invention communication between the sensor, tag, and non-contact type IC card is remarkably improved by adding a resonance circuit between the sensor, RFID tag, non-contact type IC card, or these.
  • the effect to do was able to be demonstrated.
  • the present invention can also be effectively applied to metal-compatible sensors and tags, and has the effect of improving the communication environment by dispersing resonators between tags and non-contact type IC cards.
  • FIG.3 Diagram showing the case where the sensor coil is mounted on a magnetic body with a resonance circuit
  • FIG. 5 is a diagram showing an example in which the resonator of the present invention is applied to a conventional metal tag.
  • FIG.6 Diagram showing an example of a resonator (resonance circuit) using a magnetic rod
  • FIG. 10 is a diagram for explaining an example of using a resonator or a resonance circuit for a metal-compatible sensor.
  • FIG. 11 Diagram showing an example when used in a metal-compatible magnetic tag
  • the resonant circuit is made up of a sheet, and a paste is applied to the back side of the sheet so that it can be added to sensors and tags later.
  • FIG.13 Diagram showing an equivalent circuit of a resonator and resonant circuit attached to or attached to a sensor or tag
  • FIG. 15 Diagram showing an example of arranging resonators and resonance circuits indicated by broken lines before and after the sensor or tag.
  • FIG.16 A diagram showing an example when a sensor and tag are attached to a magnetic rod
  • FIG. 20 is a diagram showing a case where a sensor system for a metal plate is constructed by improving the sensor using the resonator of the present invention.
  • FIG. 22 is a diagram showing a column of a sensor and tag system for improving an electromagnetic field in which a large number of tags exist using the resonator of the present invention.
  • the present invention increases the strength of the magnetic field or current so that the communication distance between the sensor and the tag is short or is difficult to couple, and the sensitivity of the sensor and / or the tag is increased.
  • the resonator can be connected to the sensor or tag in a practical and effective way to improve the communication sensitivity of the sensor tag and extend the communication distance. By placing it in close contact with, close to, or in the middle of a sensor or tag, it concentrates without scattering the magnetic field. This is a method of increasing communication sensitivity.
  • FIG. 1 shows a case where a resonator is used for a tag.
  • Coil 2 is wound around body 1 of tag T, and IC3 is installed at both ends of the coil.
  • a coil 5 is formed on the plastic film 4 of the resonator 8, and a capacitor 7 is connected to both ends of the coil 5, thereby constituting an LC resonance circuit.
  • the resonance circuit Since the resonance circuit has no loss, it can exhibit high Q, and the resonance frequency of the tag T that is originally deviated can be adjusted to a desired resonance frequency, so that the sensitivity of the tag T is increased. That power S.
  • the tag T and the resonator 8 can be used with a force S that is slightly separated, and a force S that can be used with both closely attached.
  • the resonator current increases the magnetic field and increases sensitivity.
  • FIG. 2 shows a case where a resonator is used for the sensor coil.
  • FIG. 3 shows a case where the sensor coil is mounted on a magnetic body with a resonance circuit.
  • a resonance circuit consisting of the coil 15 and the capacitor 17 is constructed in the magnetic path at both ends, and strong in the center and side. This is an example of generating a magnetic path.
  • the current of the resonance circuit wound around the magnetic body 6 can generate a strong magnetic field S, and therefore the magnetic field generated by the sensor coil 2 'can be further increased, so that the central axis of the coil 2' A strong vertical magnetic field can be obtained.
  • the force used as the resonance circuit here can be created by a method that fits the magnetic body. If this is seen as a unit, it can be seen as a resonator.
  • the magnetic field can escape to the side of the magnetic body, it is more effective when there is a metal surface below, and is not easily affected by the metal surface. Further, when placed directly on a metal surface, the sensitivity can be further increased by the image effect of the coil 15 wound around the magnetic material.
  • Pro-metal sensors and tags that use magnetic materials and are compatible with metal surfaces are further described in Fig. 5, Fig. 9, Fig. 10, and Fig. 11.
  • FIG. 4 shows an application example of a resonator.
  • FIG. 4 (a) shows a case where the resonator coil 5 is wound further inside the coil 2 of the tag main body 1 and the resonator is constituted by the capacitor 7.
  • FIG. The IC chip is shown in 3.
  • Fig. 4 (b) shows the case where the sensor coil ⁇ power is supplied by the S terminals 22 and 22 ', and this coil ⁇ is placed on the magnetic body 6 directly or via plastic or the like! Indicates.
  • a plastic sheet 4 in which a resonance circuit (resonator coil 5, capacitor 7) is formed on the sensor coil 2 ' is pasted on the sensor circuit. Also in this case, it may be attached directly or via an insulator or dielectric such as plastic.
  • the resonator at the top is designed to resonate in the attached state.
  • a resonator can be attached below and used in place of the metal plate to have the same effect as the metal plate.
  • the metal plate For example, 13.
  • the metal plate When used in the 56 MHz band,
  • the vibration frequency is 14 ⁇ ; 14.2MH and the resonance frequency of the lower resonance circuit is 13 ⁇ 13.3MH.
  • each of the resonators has a structure that is attached to each of the forces depicted separately from the sensor coil 2 'and the magnetic body 6.
  • the inductance value is significantly affected and may vary even by a small distance. However, if it is in close contact, it is important to eliminate the instability, since it is a steady force from the beginning and the inductance does not change!
  • FIG. 4 (c) corresponds to FIG. 3, and uses a magnetic body 6 and a resonance circuit (resonator coil 5, capacitor 7) for the tag, so that sensitivity can be improved even on a metal surface or near a metal surface. This is the case.
  • the body 1 of the tag is affixed on the magnetic body 6 and the resonant circuit (coil 15 and capacitor 17) is formed on both sides, and the case where the magnetic field is released or excited to the side is shown!
  • FIG. 5 shows an example in which the resonator of the present invention is applied to a conventional metal-compatible tag.
  • FIG. 5 shows a magnetic sheet 6, a tag 1 including a coil 2 and an IC chip 3, and a plastic sheet 4 including a coil 5 and a capacitor 7 constituting a resonance circuit 8, as in a conventional metal-compatible tag. The configuration when added is shown. The metal surface is indicated by M.
  • FIG. 5 (a) is a perspective view
  • FIG. 5 (b) shows the case seen from the side.
  • the plastic sheet 4 constituting the resonance circuit 8 is added onto the main body 1 of the tag.
  • a magnetic sheet 6 is affixed to the lower part of the tag body 1, and an aluminum foil is generally affixed to the back to prevent a large change in inductance even when placed on a metal surface. .
  • FIG. 6 shows an example of a resonator using a magnetic rod.
  • Fig. 6 (a) shows a case where coil 5 is wound around a magnetic rod and capacitors 7 are attached to both ends of coil 5 to resonate and placed in the magnetic field path to strengthen the magnetic field. It has the effect of strengthening the magnetic field with both the magnitude of r and the magnitude of the resonance current.
  • the relative permeability is large, the magnetic flux density can be increased even if the cross-sectional area of the magnetic body 6 is small, so that it can be realized in a small size.
  • Fig. 6 (b) shows a case of a sensor using a relatively long rectangular magnetic material, and information on the coil 2 and the IC chip 3 of the tag at a distant position is obtained from the resonance circuit (resonator coil 5, 5).
  • the figure shows the case where it is amplified by a capacitor 7) and the magnetic field is strengthened by a magnetic substance and transmitted to the sensor coil 2 '.
  • the sensor is a force S wound around a distant magnetic material, even with the same magnetic material. good.
  • FIG. 7 shows a case where a resonator is used for a metal-compatible sensor or tag. Sensors and tags are placed on the metal surface M.
  • Fig. 7 (a) shows a case where the horizontal magnetic path 6 is bent to form a vertical magnetic path so that a vertical magnetic field is easily generated, and this vertical part, horizontal part, and resonance circuit are provided.
  • FIG. 7 (a) shows a case where a resonant circuit including a coil 5 and a capacitor 7 is provided in the vertical magnetic path.
  • Fig. 7 (b) shows a case where a resonance circuit including a coil 5 and a capacitor 7 is provided on the vertical protrusion of a sensor or tag having a vertical protrusion similarly.
  • FIG. 7 (c) shows a case of a metal embedded sensor or a tag. Similarly, the case where a resonant circuit with a coil 5 and a capacitor 7 is provided in the central vertical projection is shown.
  • FIG. 8 shows an example of a resonator applied to a UHF band sensor or tag having a high frequency.
  • the left antennas TX and RX are transmitting and receiving antennas
  • the right antenna is the tag T.
  • FIG. 9 shows an example in which a resonator is attached to a metal-compatible sensor.
  • the magnetic coil 6 and the exciting sensor coil ⁇ are perpendicular to the metal surface M, and the image generated on the metal surface works to double the magnetic field.
  • the wide magnetic part 6-3 on the left side of the coil 2 ' is a part where a vertical magnetic field is likely to be generated, and the coil 5 and the capacitor 7 constituting the resonance circuit 8 are formed in this part.
  • This further strengthens the vertical magnetic field. That is, it forms a magnetic field that easily couples with the magnetic field of a tag or non-contact IC card. It works to form a so-called field formation (magnetic field formation).
  • a magnetic field with many horizontal components is excited on the edge 6-1 side of the magnetic material, and this horizontal magnetic field generally works ineffectively with respect to the vertical magnetic field, and thus tends to reduce efficiency.
  • Fig. 9 (a) When the structure of Fig. 9 (a) and the structure of (b) are used in combination, the performance is slightly higher than in the case of Fig. 9 (a). Comparing Fig. 9 (a) and Fig. 9 (b), Fig. 9 (a) is superior to Fig. 9 (b). This is because Fig. 9 (a) is more effective in performing field formation to clean the vertical magnetic field distribution.
  • FIG. 10 further illustrates an example in which a resonator or a resonance circuit is used for a metal-compatible sensor.
  • FIG. 10 (a) the force indicating the sensor having the same configuration as in FIG. 9 (a), the resonance circuit of resonator 8 (resonator coil 5, capacitor 7) is placed directly on magnetic body 6.
  • the figure shows the case where the paper, plastic, dielectric ⁇ , or thin insulator is placed between them.
  • FIG. 10 (b) the place and method of placing the resonance circuit shown in FIG. 9 are mixed, and the resonance circuit (inductive coil 15) is connected to the end 6-1 of the magnetic body 6 on the left side of the figure. ', Inductive coil capacitor 17') is added so that the current of this resonator becomes inductive, and the magnetic field is prevented from leaking at this end.
  • the resonance circuit (resonator coil 15, capacitor 17) on the right side close to the sensor coil 2 ' is operated so that a current induced in the magnetic field flows and the magnetic field flowing in the coil is strengthened.
  • the operation is similar to the role of the resonant circuit with the lower coil 5 'and capacitor 7' and the upper coil 5 and capacitor 7 in Fig. 4 (b).
  • the power to which the three resonant circuits are attached each has a different role!
  • the coil 5 of the resonance circuit placed parallel to the surface of the magnetic body 6 excites a vertical magnetic field and performs field formation, and is a resonance circuit (coil 15, 15) close to the fed sensor coil 2 '.
  • the capacitor 17) has a magnetic operation, and the leftmost resonance circuit (coil 15 ', capacitor 17') generates a magnetic field that cancels the magnetic field passing through the coil 15 '. This If the magnetic field is too strong, the excited magnetic field will be canceled out.
  • the left and right resonant circuits have substantially the same characteristics and functions.
  • the left and right resonant circuits when applied to the tag of Fig. 4 (c), the left and right resonant circuits (coil 15, capacitor 17) have similar characteristics and functions. Sensors and tags have the same operating functions, and can be converted into tags when the IC chip is attached at a position corresponding to the power supply unit.
  • FIG. 11 shows an example in which the magnetic tag is used for metal.
  • a coil 2 is wound around the magnetic body 6, and IC 3 is connected to both ends of the coil 2. Therefore, the magnetic body extends in this direction in which a magnetic field is easily generated in the axial direction of the coil.
  • the coinole 2 is wound around one end, so the force that makes it easy to generate a vertical magnetic field at the center of the magnetic body 6 is also provided with a resonant circuit (coil 5, capacitor 7) that excites the vertical magnetic field. ing.
  • the placement of an insulator reduces the effect of fluctuation due to the magnetic material, and in order to stabilize the resonance frequency and make it easier to manufacture, it is better to have an insulator part.
  • the coil 5 and the chip capacitor 7 are attached on top of this, and the IC3 is also attached in the same way, a circuit can be assembled at the same time as a hybrid IC, making it suitable for mass production.
  • the ability to construct such a circuit without using ceramics is easier to mass produce.
  • the metal plate MS is added from the beginning in order not to disturb the resonance (tuning) frequency.
  • the resonance circuit 8 is formed of a plastic sheet 4, and a paste 9 is applied to the back side of the plastic sheet 4 so that it can be added to a sensor or tag later. It shows the case where it is configured so that it is pasted and the silicon paper is removed at the time of bonding, and it is bonded to the sensor or tag.
  • a large number of chip capacitors 7 are mounted in the same way as the process for making general coil-type tags.
  • FIG. 12 (a) shows an example of a plastic sheet 4 with a resonator 8 (coil 5 and capacitor 7) that can be bonded.
  • FIG. 12 (b) shows a capacitor constituted by the electrodes EP on the front and back sides of the plastic film 4.
  • An example of a resonator with an inductance where the front and back coils are connected by a through hole SH is shown below.
  • a capacitor can be configured and combined with two electrodes on both the front and back sides.
  • FIG. 13 shows an equivalent circuit of a resonator and a resonance circuit attached to or attached to a sensor or tag.
  • FIG. 13 (a) shows the left sensor and the resonance circuit of the main body 1 and the coil 5 of the resonance circuit of the resonator 8 attached to the main body 1 or the coil 15 wound around the magnetic material.
  • the corresponding resonant circuit with capacitors 7 and 17 is shown.
  • IC3 is connected to coil 2, and in the case of a sensor, both terminals 22 and 22 'of coil 2' serve as a power feeding unit, and a capacitor is connected to IC3.
  • IC3 Equivalent capacitance of IC pin.
  • Fig. 13 (b) shows the force given as an example of the sensor having the structure of Fig. 10 (b).
  • An IC may be connected to both ends of the coil 2 'and used as an IC tag.
  • the upper resonant circuit shows a planar resonant circuit
  • the two lower right resonant circuits show a resonant circuit wound around a magnetic material, and are in phase with the exciting magnetic field at the center of the coil by the current that induces the magnetic field.
  • the general purpose is as follows: More often used to excite a stronger magnetic field.
  • FIG. 14 shows an example when there are a plurality of tags.
  • the multiple resonance circuits 8 coil 5, capacitor 7) are used for the purpose of properly arranging and strengthening the magnetic field. Interference occurs due to the purpose of strengthening the magnetic field emitted from the sensor halfway and reaching further, the purpose of strengthening the magnetic field of the sensor or tag, and the presence of multiple tags.
  • Arrangement of resonators 8 is arbitrary and may be used every other or plural as shown in the figure.
  • FIG. 15 shows an example in which resonators and resonance circuits 8 and 8 ′ indicated by broken lines are arranged before and after the sensor or tag.
  • the resonance circuit coil 5 and the capacitor 7 are provided above the sensor, and another resonance circuit coil 5 ′ and the capacitor 7 ′ are provided below the sensor. This is an example of such a case.
  • FIG. 4 (b) shows an example of a sensor, but when IC3 is connected to terminals 22 and 22 ′ at both ends of the sensor coil of FIG. 15, it becomes an example of an IC tag.
  • the broken line on the left side of Fig. 15 shows the equivalent circuit of the IC circuit.
  • FIG. 16 shows an example in which a sensor and a tag are attached to a magnetic round bar or square bar 6, 6 ′.
  • a sensor coil 2 ′ in the center of the example of FIG. 6B, power is supplied through power supply terminals 22 and 22 ′, and the tag coil 2 and IC 3 are connected to the tip of the magnetic body 6.
  • the coil 5 and the capacitor 7 of the resonant circuit are attached to both sides at a little distance. Create a uniform magnetic field so that the tag can also be connected to this.
  • a metal surface can be placed underneath to provide a metal-compatible sensor.
  • Fig. 6 (b) shows a force that was a square magnetic body. Even a round magnetic body as shown in Fig. 16 or a square magnetic body has the same effect. Because there are multiple resonance circuits, it is possible to increase the distance between the sensor and the tag. Also, the tag itself (coil 2, IC3) can be used separately without being attached to the same magnetic rod. The resonance circuit of the coil 5 and the capacitor 7 mounted on the same magnetic material, and the magnetic field generated by the resonance circuit of the coil 15 and the capacitor 17 facilitates communication between the sensor and the tag. It is the purpose to use.
  • FIG. 17 is an explanatory diagram showing that the magnetic field of the sensor or tag by the magnetic surface eccentric coil corresponding to the metal surface is improved.
  • FIG. 17 (a) shows the approximate distribution of the magnetic field by the eccentric excitation coil of the magnetic body 6 placed on the metal surface.
  • Fig. 17 (a) shows the fact that a vertical magnetic field can be generated at the center of the magnetic body 6 by moving the coil to one end. Since the magnetic field leaks considerably from the end of the magnetic body 6 on the left end, it is not possible to create a vertical magnetic field only at the center.
  • the magnetic field excited by the coil 5 of the resonance circuit 8 strongly generates a vertical magnetic field.
  • FIG. 8 is a diagram for explaining that a magnetic field generated at the end of the magnetic body 6 or scattered magnetic fields can be absorbed and concentrated to generate a strong / perpendicular magnetic field at the center of the magnetic body 6. This is the field formation effect described in the previous explanation.
  • FIG. 18 is an explanatory diagram showing that the magnetic field of the conventional sensor or tag is improved by the resonator.
  • FIG. 18 (a) is a magnetic field of a general sensor or tag coil.
  • Fig. 18 (b) shows that when the resonant circuit 8 (coil 5, capacitor 7) is brought close to the coil 2 (2 ') of the sensor or tag, a larger magnetic field is generated by the current flowing through the resonant circuit 8. Show how to do.
  • FIG. 18 (c) shows a case where the resonance circuit 8 (coil 5, capacitor 7) has a function of concentrating the magnetic field that expands as the coil 2 (2 ′) force of the sensor or tag is also separated.
  • FIG. 18 In this case, since the magnetic field has the same shape as the magnetic field generated in the sensor coil or tag coil, the larger the resonance current of the resonance circuit, that is, the higher the Q, the greater the effect. , The balance with the band, the stability, the number of turns, etc.
  • FIG. 19 shows a comparison of resonance characteristics.
  • Figure 19 shows that the magnetic field strength due to the resonance characteristics of general sensors and tags is G, and when a resonance circuit is added, the magnetic field is only H-H near the resonance point.
  • FIG. 20 shows a case where a sensor system for a metal plate is constructed by improving the sensor using the resonator of the present invention. Applying it to magnetic sensors compatible with metal plates, it can be used for access control systems, machine controls, and various management controls by using the effects of extending the communication distance with non-contact IC cards and improving communication conditions. It can be used
  • a resonant circuit 8 is attached to the sensor, and the input / output of the sensor coil 2 'may be wired to the back side of the metal plate M via the substrate PCB, or the reader / writer R / W And may be guided to the control circuit CB using a switch box.
  • a computer is used for control and record management. There are various uses beyond the computer, but the mechanism Ma of various functions can be controlled. It is better to attach a LED or buzzer to the sensor to make it easier to recognize. Also covered with a plastic cover P indicated by a broken line!
  • FIG. 21 shows a case where a metal plate-compatible tag system is constructed by improving the tag using the resonator of the present invention.
  • power is supplied to IC3 via coil 2 by a resonant circuit consisting of coil 5 and capacitor 7 that excites a vertical magnetic field.
  • the signal is transmitted to the sensor (Sensor Ant) through the coil 2 and the coil 5 of the resonance circuit.
  • This signal is read by the reader / writer R / W and transmitted to the PC. It can be recorded and saved on a PC, and can perform predetermined tasks.
  • the signal read by the R / W can be transmitted by methods such as wired, wireless ZigBee, bruteus, and specific low power.
  • FIG. 22 shows a column of a sensor and tag system for improving an electromagnetic field in which a large number of tags exist using the resonator of the present invention.
  • the figure shows a resonator and a resonant circuit in an environment where a large number of tags ⁇ , ⁇ ⁇ are used.
  • a tag ⁇ is attached to each book file to identify or sort what is in it, or to remove what has been removed.
  • identifying and identifying the sensor antenna (Sensor Ant) below or next to the tag correct the resonance frequency shift due to the coupling between the tags, and tag T, T ⁇ ⁇ ⁇ ⁇ Can be prevented from interfering with each other or acting inductively, making it difficult to read.
  • the resonator can be installed on a tag or object to increase the communication distance between the sensor and the tag, or to improve the resonance state of the tag, thereby improving the communication environment between the sensor and the tag. Have.
  • Sensor antenna Sensor Ant
  • reader / writer R / W are connected in a wired manner
  • the reader / writer R / W and the computer must be connected by a non-spring, such as Bruteus, ZigBee, NFC, or specified low power Evolution.
  • the signal read by the reader / writer R / W is managed and displayed by the computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)
  • Burglar Alarm Systems (AREA)
  • Credit Cards Or The Like (AREA)

Description

明 細 書
共振器付フィールド改善システム
技術分野
[0001] 本発明は共振器付フィールド改善システムに関し、 RFID (Radio Frequency Id entification)や非接触式 ICカードの利用分野の中で、センサとタグ間の通信を行う 場合の通信状況を改善するための、簡単で効果的な方式を提示する。
背景技術
[0002] 従来のセンサやタグは、コイルによる連続する微小ループアンテナに電流を流し、 磁界や電界を作り、センサやタグや非接触 ICカード間の通信を行っていた。
[0003] しかるに、周囲の誘電体や磁性体や金属の影響を受けて共振周波数がずれて感 度が落ちたり、場合によっては、負荷が大きい場合にはローデッド Qが小さくなり、感 度が低下した。金属による逆相電流で打ち消されたり、磁路がふさがれたり、磁界が 曲がったりすることにより、磁界が低下したり、電界が低下したりして、通信条件が悪 化することが一般的である。磁性体による磁路を確保することを一般的に行っている 1S 充分ではない。コイルアンテナ間の相互作用により共振周波数が大幅にずれる こともある。このような場合には一般には共振周波数が低くなる。
特許文献 1 :実用新案登録第 3121577号公報
発明の開示
発明が解決しょうとする課題
[0004] ところで、共振周波数がずれたり、ローデッド Qが下がったり、磁界が乱れたり、弱く なった時、所望の磁界や電界を強めたりすることができれば、通信し易くなり、通信距 離も伸び、時に金属対応の磁性体を用いたセンサやタグの改善には大きな効果があ り、これらセンサやタグの感度を改善したり通信を改善したりするのに役立つ。
[0005] 以上のことから、本発明は、センサやタグや非接触式 ICカード間の通信環境を改 善することのできる共振器付フィールド改善システムを提供することを目的とするもの である。
課題を解決するための手段 [0006] 本発明は、上述の目的を達成するために、共振器付フィールド改善システムを次の
(1)〜(; 15)に示すとおりのものとする。
[0007] (l) RFIDのセンサや ICタグや非接触式 ICカードに用いるシステムにおいて、セン サゃタグや非接触式 ICカードに付加的に共振器を備えることを特徴とする共振器付 フィールド改善システム。
[0008] (2)前記(1)に記載の共振器付フィールド改善システムにおいて、センサやタグや 非接触式 ICカードに直接共振器を取り付け、センサやタグや非接触式 ICカードの性 能を改善することを特徴とする共振器付共振器付フィールド改善システム。
[0009] (3)前記(1)に記載の共振器付フィールド改善システムにおいて、共振器がコィノレ と、コンデンサと、力 なることを特徴とする共振器付フィールド改善システム。
[0010] (4)前記(1)な!/、し (3)の!/、ずれかに記載の共振器付フィールド改善システムにお
V、て、共振器のコイルに磁性体が添えられて!/、ることを特徴とする共振器付フィール ド改善システム。
[0011] (5)前記(1)に記載の共振器付フィールド改善システムにおいて、共振器が約 1/
2波長あるいは約 1波長の線状、板状等の分布容量とインダクタンスによる共振器で あることを特徴とする共振器付フィールド改善システム。
[0012] (6)前記(1)な!/、し(5)の!/、ずれかに記載の共振器付フィールド改善システムにお いて、共振器の形状が、円、楕円、多角形、棒状等であることを特徴とする共振器付 フィールド改善システム。
[0013] (7)前記(1)に記載の共振器付フィールド改善システムにおいて、共振器のコイル やアンテナがプラスチックフィルムに印刷ある!/、はエッチングある!/、は蒸着されて!/、る ことを特徴とする共振器付フィールド改善システム。
[0014] (8)前記(1)に記載の共振器付フィールド改善システムにおいて、共振器がプラス チックフィルムやプラスチックパッケージやセラミックパッケージで封止されていること を特徴とする共振器付フィールド改善システム。
[0015] (9)前記(1)に記載の共振器付フィールド改善システムにおいて、コンデンサがプ ラスチックフィルムを挟んだ薄!/、金属面電極等で構成されて!/、ることを特徴とする共 振器付フィールド改善システム。 [0016] (10)前記(1)に記載の共振器付フィールド改善システムにおいて、共振器を支え るプラスチックフィルムの片面に粘着性の糊が添加され、これをシリコン紙で覆われて いることを特徴とする共振器付フィールド改善システム。
[0017] (11)前記(1)に記載の共振器付フィールド改善システムにおいて、使用周波数に 共振を取る場合と、場の影響により共振周波数が低い方に動いている場合は、共振 器の共振周波数を使用周波数よりやや高めに調整し、場の共振周波数が高い方に 動いている場合には、共振周波数を使用周波数よりやや低めに調整し、総合で共振 を取ることを特徴とする共振器付フィールド改善システム。
[0018] (12)前記(1)に記載の共振器付フィールド改善システムにおいて、共振器に磁性 体を加えたり、誘電体や金属箔等を加えたりすることを特徴とする共振器付フィール ド改善システム。
[0019] (13)前記(1)に記載の共振器付フィールド改善システムにおいて、適当な大きさと 数の共振器をセンサやタグの近傍に配置したり、一部や全部に密着させることを特徴 とする共振器付フィールド改善システム。
[0020] (14)前記(1)、 (2)、 (3)、 (5)、 (11)のいずれかに記載の共振器付フィールド改 善システムにおいて、金属面対応を行うために磁性体を用いたり、コイルの中心軸が 金属面と平行となるように構成することを特徴とする共振器付フィールド改善システム
[0021] (15)前記(1)ないし(14)のいずれかに記載の共振器付フィールド改善システムに おいて、共振器を用いたセンサやタグを用いて、コンピュータ制御や記録管理携帯 端末等を行うことを特徴とする共振器付フィールド改善システム。
発明の効果
[0022] 本発明によれば、センサあるいは RFIDタグあるいは非接触式 ICカードあるいはこ れらの間に共振回路を付加することにより、センサ、タグ、非接触式 ICカード間の通 信を著しく改善する効果が発揮できた。本発明はまた、金属対応のセンサやタグにも 有効に応用でき、共振器をタグや非接触式 ICカード間にばら撒くことにより、通信環 境を改善する効果を持つ。
図面の簡単な説明 [図 1]タグに共振器を用いた場合を示す図
[図 2]センサコイルに共振器を用いた場合を示す図
[図 3]センサコイルを共振回路付磁性体の上に取り付けた場合を示す図
[図 4]共振器の応用例を示す図
[図 5]従来の金属対応タグに本発明の共振器を応用した例を示す図
[図 6]磁性体棒による共振器 (共振回路)の例を示す図
[図 7]金属対応センサやタグに共振器を用いた場合を示す図
[図 8]周波数が高い UHF帯のセンサやタグに応用した共振器の例を示す図
[図 9]金属対応センサに共振器を取り付けた例を示す図
[図 10]金属対応センサに共振器や共振回路を用いた例を説明する図
[図 11]金属対応の磁性体タグに用いた場合の例を示す図
[図 12]共振回路をシートで構成し、後でセンサやタグに添加できるように、シートの裏 側にのりを塗り、シリコン樹脂等を塗った紙を貼っておき、接着時にシリコン紙をはず し、センサやタグに接着するように構成した場合を示す図
[図 13]センサやタグに取り付けたり添えられたりする共振器や共振回路の等価回路を 示す図
[図 14]複数のタグがある場合の例を示す図
[図 15]センサあるいはタグの前後に、破線で示す共振器や共振回路を配列する場合 の例を示す図
[図 16]磁性体棒にセンサとタグが取り付けられている場合の例を示す図
[図 17]金属面対応磁性体偏心コイルによるセンサあるいはタグの磁界が改善されるこ との説明図
[図 18]従来のセンサやタグの磁界が共振器により改善されることの説明図
[図 19]共振特性の比較を示す図
[図 20]本発明の共振器によるセンサの改善により金属板対応センサシステムを構築 した場合を示す図
[図 21]本発明の共振器によるタグの改善により金属板対応タグシステムを構築した場 [図 22]本発明の共振器を用いて、多数のタグが存在する電磁界を改善するセンサ、 タグシステムの ί列を示す図
符号の説明
1 タグの本体
1' 基板
2 コイル
2' センサコィノレ
3 IC
4 共振器を載せたプラスチックシート (プラスチックフィルム)
5 共振器コイル
5 誘導的コイル
6 磁性体
7 コンデンサ
8 共振器、共振回路
9 のり
10 シリコン樹脂等を塗った紙
15 磁性体に巻いたコイル
17 コンデンサ
22 , 22' センサコィノレの端子
C 非接触式 ICカード
CB 制御回路
Η , Η 磁界
1 2
MS 金属面、金属板
P プラスチックカバー
PCB 基板
RC 共振器
R/W リーダライタ
T, T , T タグ 発明を実施するための最良の形態
[0025] 以下、本発明の実施例を図面に従って説明する。
実施例
[0026] 本発明は、センサやタグ間の通信距離が短かったり、結合し難い所で、センサある いはタグ、あるいは両方共に感度が高くなるように、磁界の強度あるいは電流の強度 を増すような機能を与える力、、通信を行う方向の磁界を強めることにより、センサゃタ グの通信感度を向上させたり通信距離を伸ばしたりする実用的かつ効果的な方法で 、共振器をセンサあるいはタグに密着させたり、近傍に置いたり、センサやタグの中間 に設置することにより、磁界を散らさずに集中させる。これにより通信感度を上昇させ る方法である。
[0027] 以下、図に沿って説明する。
[0028] 図 1は、タグに共振器を用いた場合を示す。
[0029] タグ Tの本体 1の中にコイル 2が巻かれており、 IC3がコイルの両端に設置されてい る · 合 不す。
[0030] この近傍、あるいは密着して、共振器 8のプラスチックフィルム 4の上にコイル 5が形 成され、コンデンサ 7がコイル 5の両端に接続され、 LCの共振回路を構成している。
[0031] 共振回路はロスがないので、高い Qを示すことができ、かつ、もともとずれているタグ Tの共振周波数を所望の共振周波数に合わせることができるので、タグ Tの感度を上 げること力 Sできる。図 1では説明のため、タグ Tと共振器 8は少し離してある力 S、両者を 密着させて使用すること力 Sできる。共振器の電流により、磁界は増強され感度が上昇 する。
[0032] 図 2は、センサコイルに共振器を用いた場合を示す。
[0033] タグの場合と同じように、センサコイル 2' の近傍、あるいは密着して共振回路 8が 設置されている場合を示す。一般にセンサコイルは、基板 1' 上でコイルを形成して いるものが多い。この基板 1' の表面の、コイルの中心部に共振器 8を設置する訳で ある力 センサコイル 2' と共振器のコイル 5が近過ぎると、お互いに結合して、互い の共振周波数を狂わせる。勿論結合が強レ、即ち相互インダクタンスが大き!/、場合で も、総合で共振周波数が合って、最大の電磁界が得られるように調整すればよい。 [0034] センサコイル 2' を励振するための端子は 22と 22' である。
[0035] 図 3は、センサコイルを共振回路付磁性体の上に取り付けた場合を示す。センサコ ィル 2' で励振された磁界が、磁性体 6の磁路に沿って通過するとき、両端の磁路に コイル 15とコンデンサ 17による共振回路を構築して、中央部と側方に強い磁路を発 生させる例である。磁性体 6に巻かれた共振回路の電流により、強い磁界を発生させ ること力 Sでき、したがって、センサコイル 2' により発生する磁界を更に増強させること ができるので、コイル 2' の中心軸に沿った垂直の強い磁界が得られる。磁性体の外 側を巻くようなコイルと、これに合ったコンデンサによる共振回路を用いているので、こ こでは共振回路とした力 この共振回路は磁性体にはめ込む方法でも作ることができ るので、これを一体としてみれば、共振器として見ること力 Sできる。
[0036] 磁性体の側方に磁界を逃がすことができるので、下方に金属面があった場合により 効果的であり、金属面の悪い影響は受け難い。また、直接金属面上に置かれるとき は、磁性体に巻いたコイル 15のイメージ効果により、更に感度を上げることができる。 磁性体を用い、金属面対応としたプロメタルセンサやタグについて、更に図 5や図 9、 図 10、図 11等で述べる。
[0037] 図 4は、共振器の応用例を示す。図 4 (a)は、タグの本体 1のコイル 2の更に内側に 、共振器コイル 5を巻き、コンデンサ 7により、共振器を構成する場合を示す。 ICチッ プを 3に示す。
[0038] 図 4 (b)は、センサコイル^ 力 S端子 22と 22' により給電され、このコイル^ が磁 性体 6の上に直接あるいはプラスチック等を介して載せられて!/、る場合を示す。
[0039] センサコイル 2' の上に共振回路(共振器コイル 5,コンデンサ 7)が構成されたブラ スチックシート 4がセンサ回路の上に貼り付けられる。この場合も、直接あるいはブラ スチック等の絶縁体や誘電体を介して貼り付ける場合も有る。
[0040] 上部にある共振器は、取り付けた状態で共振を取るようにする。
[0041] 特殊な場合、下方に共振器を取り付け、金属板の代わりとし、金属板と同様な効果 を持たせることもできる。例えば、 13. 56MH帯で用いる場合、上の共振回路の共
2
振周波数を 14〜; 14. 2MHとし、下の共振回路の共振周波数を 13〜 13. 3MHに
2 2 調整する。 [0042] 磁性体を挟んで、容量的と誘導的な共振器を用い、垂直磁界を励振することができ る。図では、夫々の共振器がセンサコイル 2' や磁性体 6と離して描かれてある力 そ れぞれ貼り付けられる構造のものでょレ、。
[0043] センサコイル 2' 、共振器コイル 5は磁性体 6に直接触れる接近した状態では、イン ダクタンスの値にかなり影響し、少しの距離の差でも変動するので、あまり密着して用 いない方がよいが、密着するならば、最初からしつ力、り固定してインダクタンスが変動 しな!/、ようにすること力 不安定さを無くす上で重要である。
[0044] 図 4 (c)は、図 3に対応し、タグに磁性体 6と共振回路(共振器コイル 5,コンデンサ 7 )を用い、金属面上や金属面に近い所でも感度が上るようにした場合である。タグの 本体 1を磁性体 6の上に貼り、両側に共振回路(コイル 15とコンデンサ 17による)を構 成し、側方に磁界を逃がしたり励振したりする場合を示して!/、る。
[0045] 図 5は、従来にもある金属対応タグに本発明の共振器を応用した例を示す。図 5は 、従来の金属対応タグ等のように、磁性体シート 6を、コイル 2、 ICチップ 3を含むタグ 1に、更に共振回路 8を構成するコイル 5とコンデンサ 7を含むプラスチックシート 4を 追加した場合の構成を示す。金属面を Mで示す。
[0046] 図 5 (a)は斜視図で、図 5 (b)は横から見た場合を示す。図 5 (b)からも分る通り、共 振回路 8を構成するプラスチックシート 4がタグの本体 1の上に添加される。タグの本 体 1の下方には磁性体シート 6が貼られており、一般的には裏にアルミ箔が貼られ、 金属面に載せられた場合でもインダクタンスの大きな変化が生じないようにしている。
[0047] 図 6には、磁性体棒による共振器の例を示す。図 6 (a)は、磁性体丸棒にコイル 5を 巻き、コイル 5の両端にコンデンサ 7を取り付け共振を取り、これを磁界の通路に置き 磁界を強めるもので、磁性体 6の比透磁率 rの大きさと共振電流の大きさの両方で 磁界を強める効果を持つ。この場合、比透磁率が大きければ、磁性体 6の断面積が 小さくても磁束密度は増加でき、したがって小形に実現することができる。
[0048] 図 6 (b)は、比較的長い角形磁性体によるセンサの場合で、離れた位置のタグのコ ィル 2と ICチップ 3の情報を、途中の共振回路(共振器コイル 5,コンデンサ 7)により 増幅させ、磁性体により磁界の結合を強くし、センサコイル 2' に伝える場合を示して いる。この場合などは、センサは離れた磁性体に巻かれている力 S、同一の磁性体でも 良い。
[0049] 図 7は、金属対応センサやタグに共振器を用いた場合を示す。センサやタグは金属 面 Mの上に載せてある。図 7 (a)は垂直磁界が出易いように、水平磁路 6を曲げ、垂 直磁路 を構成している場合で、この垂直部や水平部、共振回路を設ける場合を 示す。
[0050] 図 7 (a)では、垂直磁路 にコイル 5とコンデンサ 7による共振回路を設けた場合 を示している。
[0051] 図 7 (b)では、同様に垂直突起部 のあるセンサやタグの、垂直突起部 にコィ ノレ 5とコンデンサ 7による共振回路を設けた場合を示す。
[0052] 図 7 (c)は、金属埋込センサやタグの場合を示す。同様に中央部の垂直突起部 にコイル 5とコンデンサ 7による共振回路を設けた場合を示す。
[0053] 図 8は、周波数が高い UHF帯のセンサやタグに応用した共振器の例を示す。図中 左のアンテナ TX, RXは送受信アンテナで、右側のアンテナはタグ Tである。タグ丁の そばに分布定数による半波長 (ループの場合は 1波長)に近い共振器が置かれ、電 界ゃ磁界を強めている場合を示す。この場合は、八木 ·宇田アンテナに用いられる導 波器や反射器の原理とほぼ同じ原理を用い、置く場所や位相を考慮する必要がある
[0054] 図 9には金属対応センサに共振器を取り付けた例を示す。磁性体 6と励振するセン サコイル^ が金属面 Mに対して垂直面になっており、金属面で発生するイメージは 磁界を 2倍にする働きがある。
[0055] 図 9 (a)に示すように、コイル 2' の左側の磁性体面の広い部分 6— 3は垂直磁界が 出易い部分で、この部分に共振回路 8を構成するコイル 5とコンデンサ 7により、更に 垂直磁界が強化される。即ち、タグや非接触式 ICカードの磁界と結合し易いような磁 界を形成する。いわゆるフィールドフォーメーション (磁界形成)をなす働きをする。更 に磁性体の端部 6— 1側には多くの水平成分の磁界が励振され、この水平磁界は一 般には垂直磁界に対して無効に働くため効率を低下させる傾向にあった力 垂直成 分を励振する共振回路があるため、こちらにエネルギーが奪われ有効な垂直成分の み励振され、 5割近くの感度向上が得られる結果を得た。この説明は図 17で詳しく説 明する。図 9 (b)には、共振回路を構成するコイル 15とコンデンサ 17を磁性体 6その ものに巻き、センサコイル 2' により発生する磁界をそのまま励振することにより磁界 を補う働きをする。
[0056] 図 9 (a)の構造と (b)の構造を組み合せて用いると、図 9 (a)の場合より性能はやや 上昇する。図 9 (a)と図 9 (b)を比較すると、図 9 (a)の方が図 9 (b)より優っている。図 9 (a)の方が垂直磁界分布をきれいにするフィールドフォーメーションを行う動作が有 効に行われているためである。
[0057] 図 10には、更に金属対応センサに共振器や共振回路を用いた例を説明する。
[0058] 図 10 (a)には、図 9 (a)と同じ構成のセンサを示す力、共振器 8の共振回路(共振器 コイル 5,コンデンサ 7)を磁性体 6の上に直接載せるのではなぐ紙、プラスチックや 誘電体 εや薄い絶縁体を挟んで載せる場合を示している。
[0059] 共振回路のコイル 5が磁性体 6に接近すると、少しの変化でもインダクタンスが急変 し共振が取れにくいので、少し磁性体 6から離す方が安定であり、誘電体の誘電率を 用い、共振周波数を制御する場合にも適している。誘電率をあまり持たせたくない場 合には、誘電率が 1に近いものを用いるとよい。
[0060] 図 10 (b)には、図 9に示す共振回路の置く場所や置く方法を混成させ、更に図の 左側の、磁性体 6の端部 6—1に共振回路 (誘導的コイル 15' ,誘導的コイル用コン デンサ 17' )を追加し、この共振器の電流が誘導的になるようにし、磁界がこの端部 に漏れなレ、ように阻止するようにした場合を示す。
[0061] センサコイル 2' に近い右側の共振回路(共振器コイル 15,コンデンサ 17)は、磁 界に誘導させる電流を流して、コイルの中を流れる磁界が強化されるように動作させ る。図 4 (b)の下方のコイル 5' ,コンデンサ 7' による共振回路のと上方のコイル 5, コンデンサ 7による共振回路の役割と似た動作である。
[0062] したがって共振回路は 3個取り付けてある力 夫々は別々の役割を持って!/、る。磁 性体 6の面に平行に置かれた共振回路のコイル 5は、垂直磁界を励振し、かつフィー ルドフォーメーションを行う役割を持ち、給電されたセンサコイル 2' に近い共振回路 (コイル 15,コンデンサ 17)は導磁的な動作とし、左端の共振回路(コイル 15' ,コン デンサ 17' )は、コイル 15' を通過する磁界を打ち消すような磁界を発生させる。こ の磁界が強すぎると励振される箬の磁界が打ち消されるので注意を要する。
[0063] このように、右側にセンサコイル 2' があり、右側から給電されているので左右非対 称の構造となり、したがってコイル 15, コンデンサ 17の共振回路と、コイル 15' , コン デンサ 17' の共振回路とは、異なった特性や機能を持っている。
[0064] 一方、図 3の場合には、左右の共振回路はほぼ同様の特性と機能を持っている。
[0065] また、図 4 (c)のタグに応用した場合も同様に左右の共振回路(コイル 15,コンデン サ 17)は、同様の特性や機能を持っている。センサとタグは動作機能は同様で給電 部に相当する位置に ICのチップが取り付くことにより、タグとなったりする。
[0066] 図 11は、金属対応の磁性体タグに用いた場合の例を示す。
[0067] 磁性体 6にコイル 2を巻き、このコイル 2の両端に IC3が接続されている。したがって コイルの軸方向に磁界が発生し易ぐこの方向に磁性体が伸びている。もともとコィノレ 2は片端に巻かれているので、磁性体 6の中心部でも垂直磁界が発生し易くなつてい る力 この部分に更に垂直磁界を励振する共振回路(コイル 5,コンデンサ 7)を設置 している。図 10 (a)でも説明したように、絶縁体を置くことにより、磁性体による変動の 影響を少なくし、共振周波数を安定して製造し易くするためにも、絶縁体部分があつ た方がよいし、セラミックで構成し、この上にコイル 5とチップコンデンサ 7を取り付け、 I C3も同様に取り付ければ、ハイブリッド ICのように、同時に回路を組むことができ、量 産に適する。セラミックを用いなくてもこのような回路を構成することはできる力 図 11 の方が量産し易い。金属対応とした場合、共振(同調)周波数を狂わせないためにも 、最初から金属板 MSを添わせてある。
[0068] 図 12には共振回路 8をプラスチックシート 4で構成し、後でセンサやタグに添加でき るように、プラスチックシート 4の裏側にのり 9を塗り、シリコン樹脂等を塗った紙 10を 貼っておき、接着時にシリコン紙をはずし、センサやタグに接着するように構成した場 合を示す。一般のコイル形タグを作る工程と同じ方法により、 ICを載せる代わりにチッ プコンデンサ 7を載せ大量に作成する。
[0069] 図 12 (a)は、接着できる共振器 8 (コイル 5,コンデンサ 7による)付プラスチックシー ト 4の例を示す。
[0070] 図 12 (b)は、プラスチックフィルム 4の表裏の電極 EPにより構成されるコンデンサと スルーホール SHによって、表裏のコイルが接続されて!/、るインダクタンスによる共振 器の例を示す。スルーホールによらないで、表面と裏面両面それぞれ 2個の電極によ りコンデンサを構成し結合することもできる。
[0071] 図 13には、センサやタグに取り付けたり添えられたりする共振器や共振回路の等価 回路を示す。
[0072] 図 13 (a)は、左側のセンサや本体 1の共振回路と、この本体 1のそばに添えられた 共振器 8の共振回路のコイル 5、あるいは磁性体に巻かれたコイル 15に対応した、コ ンデンサ 7、 17による共振回路を示している。
[0073] タグの場合には、コイル 2に IC3が接続されており、センサの場合には、コイル 2' の両端子 22、 22' が給電部となり、 IC3にコンデンサが接続されているのは、 ICの 端子の等価的な容量である。力、つこ( )に入って!/、る数字は、センサとして応用する 場合に対応している。
[0074] 図 13 (b)は、図 10 (b)の構造のセンサの例としてあげている力 同図コイル 2' の 両端に ICを接続し、 ICタグとして用いる場合もある。
[0075] 付加する共振回路は 3個用いている力 この機能や用いる個数は、適宜目的に応 じて選択して用いればよい。上の共振回路は平面的な共振回路を示し、右下の 2個 の共振回路は磁性体に巻く共振回路を示し、磁界を誘導する電流により、コイルの 中心の励振磁界と同相となるように、より強いエネルギーを与えるようにする場合と、 金属面と等価な電流を流しコイルの中心の励振磁界を打ち消すようにするかは、使 用する目的や場合によって異なるが、一般的な目的は、より強くなる磁界を励振する 目的に使う方が多い。
[0076] 図 14には、複数のタグがある場合の例を示す。複数のタグがある場合、複数の共 振回路 8 (コイル 5,コンデンサ 7)を適切に配置し、磁界を強める働きをする目的に使 用するもので、先に説明もしたように、左端のセンサから発せられた磁界を途中で強 め、更に遠くに到達するようにする目的や、センサやタグの磁界を強める動作をする 目的や、タグが複数個あることにより干渉が起き、夫々のタグが他のタグに邪魔するこ とを防ぐように、あるいは単体が容量的な電流を流し、誘導的な磁界を緩和したり、全 体として共振状態が保たれる環境となるように調整する役目を持たせることもできる。 共振器 8の配置の仕方は任意で図のように 1つおきあるいは複数個おきに用いても 良い。
[0077] 特に多数タグをほぼ同時に検出するアンティコリジョン方式の検出時等に、ずれた 所から元に戻し、感知し易くする場合等にも、大変役に立つ。
[0078] 図 15は、センサあるいはタグの前後に、破線で示す共振器や共振回路 8, 8' を配 列する場合の例を示す。例えば、図 4 (b)の例は、センサの上に共振回路のコイル 5 とコンデンサ 7があり、センサの下にもう一つの共振回路のコイル 5' とコンデンサ 7' がある。このような場合の例である。
[0079] 図 4 (b)は、センサの例で示してあるが、図 15のセンサコイルの両端の端子 22, 22 ' に IC3を接続した場合には ICタグの例となる。図 15の左方の破線の中は、 ICの回 路の等価回路を示している。
[0080] 図 16は、磁性体の丸棒や角棒 6, 6' にセンサとタグが取り付けられている場合の 例を示す。例えば、図 6 (b)の例の中央にセンサコイル 2' があり、給電端子 22, 22 ' で給電され、磁性体 6の先にタグ用コイル 2と IC3が接続されている。上の磁界を均 一にするため、少しはなれた所に両側に共振回路のコイル 5とコンデンサ 7が取り付 けられている例を示している。この上にもタグが結合できるように均一な磁界を作って V、る。下方に金属面を置き金属対応のセンサとすることができる。
[0081] 図 6 (b)は角形磁性体であった力 図 16に示すような丸角磁性体であったり、角形 の磁性体であっても、同様な効果を持つ。共振回路が複数あることにより、センサとタ グとの距離をもっと取ること力 Sできる。また、タグ自体(コイル 2、 IC3)を同じ磁性体棒 に取り付けず、離して用いることもできる。同一の磁性体に取付けられたコイル 5とコ ンデンサ 7の共振回路や、コイル 15とコンデンサ 17の共振回路により強められた磁 界ゃ電界により、センサとタグが交信し易くなることが共振回路を用いる目的である。
[0082] 図 17は、金属面対応磁性体偏心コイルによるセンサあるいはタグの磁界が改善さ れることの説明図である。
[0083] 同図では、金属面上に置かれた、磁性体 6の偏心励磁コイルによる磁界の凡その 分布を示す。図 17 (a)に示すように、片端にコイルを寄せることにより、磁性体 6中心 部に垂直磁界を発生させることができることは先の出願でも述べている力 S、励振され た磁界は左端の磁性体 6の端部からもかなり漏れるので、中心部のみに垂直磁界を 作ることはできない。
[0084] 一方、図 17 (b)に示すように、共振回路 8のコイル 5により、励振された磁界は強力 に垂直磁界を発生させる。
[0085] 磁性体 6端部に発生させたり、散っていた磁界を吸収集中させ、磁性体 6の中心部 に強!/、垂直磁界を発生させることができることを説明する図である。前述の説明にも 述べたフィールドフォーメーション (磁界成形)効果である。
[0086] 図 18は、従来のセンサやタグの磁界が共振器により改善されることの説明図である
。従来のセンサやタグのコイルの磁界と、この磁界の向きと同方向に取り付けた共振 回路により磁界が改善されて!/、ることを示す。
[0087] 図 18 (a)は、一般のセンサやタグのコイルの磁界だとする。
[0088] 図 18 (b)は、共振回路 8 (コイル 5,コンデンサ 7)をセンサやタグのコイル 2 (2' )に 近付けた場合、共振回路 8に流れる電流により、より多くの磁界が発生する様子を示 す。
[0089] 図 18 (c)には、センサやタグのコイル 2 (2' )力も離れるにしたがって広がる磁界を 共振回路 8 (コイル 5,コンデンサ 7)により集中させる機能を持つ場合を示す。
[0090] 図 18 (その場合には、センサコイルやタグコイルに発生する磁界と同じ形状の磁界 であるため、共振回路の共振電流が大きければ大きい程、即ち Qが高い程大きな効 果があるが、帯域との兼ね合いや、安定度、巻数等との兼ね合いとなる。
[0091] 図 18 (c)の場合には、適当な位置に共振回路 8を設置することにより、中心軸に磁 界を集中させ到達距離を伸ばすことができる。このように、共振器や共振回路を磁界 増強に用いることができる。
[0092] 図 19には、共振特性の比較を示す。図 19には、一般のセンサやタグの共振特性 による磁界の強さを Gに、共振回路を加えたときに共振点近くで磁界が H— Hだけ
2 1 強くなる共振特性を Rで示す。
[0093] 図 17のような、フィールドフォーメーションによる垂直磁界が強くなる現象は、単なる 共振特性のみによるのではない。共振特性が鋭くなるのみでなぐむしろ垂直磁界成 分そのものを全体に増加させる効果がある。 [0094] 図 20は、本発明の共振器によるセンサの改善により金属板対応センサシステムを 構築した場合を示す。金属板対応の磁性体センサに応用し、非接触式 ICカードじと の通信距離を伸ばしたり、通信条件を改善する効果を利用し、アクセスコントロール システムや、機械の制御や、種々の管理制御に用いることができるようにしたものであ
[0095] センサ(Sensor)には共振回路 8が取り付けられ、センサコイル 2' の入/出力は、 基板 PCBを介して金属板 Mの裏側に配線される場合もあるし、リーダライタ R/Wと 共にスィッチボックスを利用して制御回路 CBに導かれることもある。図では、制御や、 記録の管理用として、コンピュータを用いている。コンピュータより先は、様々な用途 があるが、種々の機能のメカニズム Maを制御することができる。センサには、状態を 示す LEDやブザーが取り付けられ認識し易くする方が良い。また、破線で示すブラ スチックカバー Pで覆われて!/、ること力 S多!/、。
[0096] 図 21は、本発明の共振器によるタグの改善により金属板対応タグシステムを構築し た場合を示す。磁性体を用いた金属板対応タグ Tの磁性体 6の上面に、垂直磁界を 励振するコイル 5とコンデンサ 7とからなる共振回路により、 IC3にコイル 2を介して電 力を供給し、 IC3の信号をコイル 2と共振回路のコイル 5を介してセンサ(Sensor A nt)に伝送される。
[0097] この信号は、リーダライタ R/Wによって読まれ、 PCに伝送される。 PCに記録され 保存されたり、所定の作業を行うことができる。 R/Wによまれた信号は有線や無線 ジグビー,ブルートウス、特定小電力等のような方法によって伝送することができる。
[0098] 図 22は、本発明の共振器を用いて、多数のタグが存在する電磁界を改善するセン サ、タグシステムの ί列を示す。
[0099] 同図は、多数のタグ Τ , Τ · · · ·Τが使用される環境において、共振器や共振回路
1 2 η
を使用する例を示す。
[0100] 例えば、本やファイルが多数棚に載せられているとき、タグ Τがそれぞれの本ゃファ ィルに取り付けられ、その中にあるものを識別や選別をしたり、あるいは取り出された ものを識別したりする場合、センサアンテナ(Sensor Ant)をタグの下や横で識別, 選別する場合、タグ間の結合により共振周波数がずれるのを補正し、タグ T , T · · · · がそれぞれ干渉したり、誘導的に動作したりして読みづらくなるのを防ぐことができ る。この場合、共振器を、タグや物に設置し、センサ'タグ間の通信距離を伸ばしたり 、タグを共振状態を改善することにより、センサ'タグ間の通信環境を良好にしたりす る効果を持つ。センサアンテナ(Sensor Ant)も自由に動かすことができるので、共 振器 RCも所々に多数設置して、何処でも通信状態の良い環境を作っている。センサ アンテナ(Sensor Ant)とリーダライタ R/Wとは有線で接続している力 リーダライ タ R/Wとコンピュータは、ブルートウス、ジグビーや NFCや特定小電力等のような無 泉で fiうことあでさる。
リーダライタ R/Wで読まれた信号は、コンピュータで管理、表示する。

Claims

請求の範囲
[1] RFIDのセンサや ICタグや非接触式 ICカードに用いるシステムにおいて、センサや タグや非接触式 ICカードに付加的に共振器を備えることを特徴とする共振器付フィ 一ルド改善システム。
[2] 請求項 1に記載の共振器付フィールド改善システムにお!/、て、センサやタグや非接 触式 ICカードに直接共振器を取り付け、センサやタグや非接触式 ICカードの性能を 改善することを特徴とする共振器付共振器付フィールド改善システム。
[3] 請求項 1に記載の共振器付フィールド改善システムにおいて、共振器がコイルと、 コンデンサと、力、らなることを特徴とする共振器付フィールド改善システム。
[4] 請求項 1ないし 3のいずれかに記載の共振器付フィールド改善システムにおいて、 共振器のコイルに磁性体が添えられていることを特徴とする共振器付フィールド改善 システム。
[5] 請求項 1に記載の共振器付フィールド改善システムにおいて、共振器が約 1/2波 長あるいは約 1波長の線状、板状等の分布容量とインダクタンスによる共振器である ことを特徴とする共振器付フィールド改善システム。
[6] 請求項 1ないし 5のいずれかに記載の共振器付フィールド改善システムにおいて、 共振器の形状が、円、楕円、多角形、棒状等であることを特徴とする共振器付フィー ルド改善システム。
[7] 請求項 1に記載の共振器付フィールド改善システムにおいて、共振器のコイルゃァ ンテナがプラスチックフィルムに印刷あるいはエッチングあるいは蒸着されて!/、ること を特徴とする共振器付フィールド改善システム。
[8] 請求項 1に記載の共振器付フィールド改善システムにお!/、て、共振器がプラスチッ クフィルムやプラスチックパッケージやセラミックパッケージで封止されていることを特 徴とする共振器付フィールド改善システム。
[9] 請求項 1に記載の共振器付フィールド改善システムにおいて、コンデンサがプラス チックフィルムを挟んだ薄!/、金属面電極等で構成されて!/、ることを特徴とする共振器 付フィールド改善システム。
[10] 請求項 1に記載の共振器付フィールド改善システムにおいて、共振器を支えるブラ スチックフィルムの片面に粘着性の糊が添加され、これをシリコン紙で覆われているこ とを特徴とする共振器付フィールド改善システム。
[11] 請求項 1に記載の共振器付フィールド改善システムにおいて、使用周波数に共振 を取る場合と、場の影響により共振周波数が低い方に動いている場合は、共振器の 共振周波数を使用周波数よりやや高めに調整し、場の共振周波数が高い方に動い ている場合には、共振周波数を使用周波数よりやや低めに調整し、総合で共振を取 ることを特徴とする共振器付フィールド改善システム。
[12] 請求項 1に記載の共振器付フィールド改善システムにお!/、て、共振器に磁性体を 加えたり、誘電体や金属箔等を加えたりすることを特徴とする共振器付フィールド改 善システム。
[13] 請求項 1に記載の共振器付フィールド改善システムにおいて、適当な大きさと数の 共振器をセンサやタグの近傍に配置したり、一部や全部に密着させることを特徴とす る共振器付フィールド改善システム。
[14] 請求項 1、 2、 3、 5、 11のいずれかに記載の共振器付フィールド改善システムにお いて、金属面対応を行うために磁性体を用いたり、コイルの中心軸が金属面と平行と なるように構成することを特徴とする共振器付フィールド改善システム。
[15] 請求項 1ないし 14のいずれかに記載の共振器付フィールド改善システムにおいて 、共振器を用いたセンサやタグを用いて、コンピュータ制御や記録管理携帯端末等 を行うことを特徴とする共振器付フィールド改善システム。
PCT/JP2007/072544 2006-11-21 2007-11-21 Système d'amélioration de champ équipé d'un résonateur WO2008062828A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/312,623 US8305217B2 (en) 2006-11-21 2007-11-21 Field improving system provided with resonator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006314155A JP4422712B2 (ja) 2006-11-21 2006-11-21 共振器付フィールド改善システム
JP2006-314155 2006-11-21

Publications (1)

Publication Number Publication Date
WO2008062828A1 true WO2008062828A1 (fr) 2008-05-29

Family

ID=39429757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072544 WO2008062828A1 (fr) 2006-11-21 2007-11-21 Système d'amélioration de champ équipé d'un résonateur

Country Status (3)

Country Link
US (1) US8305217B2 (ja)
JP (1) JP4422712B2 (ja)
WO (1) WO2008062828A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192951A (ja) * 2009-02-16 2010-09-02 Panasonic Corp アンテナ装置
US20110163167A1 (en) * 2008-06-20 2011-07-07 Smart Packaging Solutions (Sps) Contactless card with security logo
JP2013513277A (ja) * 2009-12-07 2013-04-18 アイシス・イノヴェイション・リミテッド 共通通信装置
WO2013069455A1 (ja) * 2011-11-08 2013-05-16 株式会社村田製作所 アンテナ装置および通信装置
WO2013183552A1 (ja) * 2012-06-04 2013-12-12 株式会社村田製作所 アンテナ装置及び通信端末機器
US20150137615A1 (en) * 2008-07-02 2015-05-21 Access Business Group International Llc Electromagnetic interference mitigation
JP5846337B2 (ja) * 2013-07-16 2016-01-20 株式会社村田製作所 アンテナ装置及び通信装置
CN109565113A (zh) * 2016-06-01 2019-04-02 户田工业株式会社 天线装置以及使用其的ic标签

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329874B2 (ja) * 2008-08-29 2013-10-30 株式会社スマート センサ棚
JP5248274B2 (ja) * 2008-11-17 2013-07-31 株式会社スマート 金属対応センサ及び管理システム
GB2498109B (en) * 2010-07-29 2015-01-28 Murata Manufacturing Co Resonant circuit and antenna device
JP6219285B2 (ja) 2011-09-07 2017-10-25 ソラス パワー インコーポレイテッドSolace Power Inc. 電界を用いたワイヤレス電力送信システムおよび電力送信方法
US8763914B2 (en) * 2012-01-17 2014-07-01 On Track Innovations Ltd. Decoupled contactless bi-directional systems and methods
JP2013182481A (ja) * 2012-03-02 2013-09-12 Smart:Kk デバイス方式
US9553476B2 (en) * 2012-03-23 2017-01-24 Lg Innotek Co., Ltd. Antenna assembly and method for manufacturing same
US9806565B2 (en) 2012-03-23 2017-10-31 Lg Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
US9979206B2 (en) 2012-09-07 2018-05-22 Solace Power Inc. Wireless electric field power transfer system, method, transmitter and receiver therefor
US20160322867A1 (en) * 2012-09-07 2016-11-03 Nagesh POLU Wireless electric/magnetic field power transfer system, transmitter and receiver
US20140320369A1 (en) * 2013-04-24 2014-10-30 Broadcom Corporation Shielding layer for a device having a plurality of antennas
US9396428B2 (en) * 2013-11-08 2016-07-19 Gurbinder S Brar Method for anchoring a linear induction generator to living tissue for RFID signal transmission
JP6197946B2 (ja) 2014-03-28 2017-09-20 株式会社村田製作所 アンテナ装置および通信機器
SG11201610806QA (en) 2014-06-26 2017-01-27 Solace Power Inc Wireless electric field power transmission system, transmitter and receiver therefor and method of wirelessly transferring power
US10185912B2 (en) * 2014-09-12 2019-01-22 Sato Holdings Corporation RFID extended operation range system, apparatus and method
JP6449033B2 (ja) * 2015-01-28 2019-01-09 株式会社スマート 送受信センサシステム及び多機能カード、ウエアラブル機器
CN208336488U (zh) * 2015-07-31 2019-01-04 株式会社村田制作所 线圈天线以及天线装置
US10381881B2 (en) 2017-09-06 2019-08-13 Apple Inc. Architecture of portable electronic devices with wireless charging receiver systems
US20190074719A1 (en) * 2017-09-06 2019-03-07 Apple Inc. Multiple-structure wireless charging receiver systems having multiple receiver coils
US11426091B2 (en) 2017-09-06 2022-08-30 Apple Inc. Film coatings as electrically conductive pathways
CN211655071U (zh) * 2017-10-20 2020-10-09 株式会社村田制作所 卡式无线通信设备
US10446933B1 (en) * 2018-02-26 2019-10-15 General Atomics Magnetic antenna structures having improved gain bandwidth performance
DE102019005934A1 (de) * 2019-08-22 2021-02-25 Giesecke+Devrient Mobile Security Gmbh Chipkarte
JP2022179866A (ja) * 2021-05-24 2022-12-06 Tdk株式会社 アンテナ装置及びこれを備えるワイヤレス電力伝送デバイス

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1049639A (ja) * 1996-08-02 1998-02-20 Shinwa Kogyo Kk 埋設物認識方法とその埋設標識体
JPH10215210A (ja) * 1996-11-29 1998-08-11 Nippon Steel Corp データキャリアシステム
JPH11180079A (ja) * 1997-12-25 1999-07-06 Dainippon Printing Co Ltd 情報記録媒体及びその認証方式
JP2000050534A (ja) * 1998-08-03 2000-02-18 Shiro Sugimura Icカードの電力供給装置
JP2000099655A (ja) * 1998-09-18 2000-04-07 Omron Corp 非接触通信カード装置、非接触通信カード、カードホルダ及び非接触通信方法
JP2000270501A (ja) * 1999-03-19 2000-09-29 Nippon Telegr & Teleph Corp <Ntt> 基地局通信装置、及び携帯無線通信装置への電力供給方法
JP2001101370A (ja) * 1999-10-04 2001-04-13 Dainippon Printing Co Ltd 情報処理媒体
JP2004253858A (ja) * 2003-02-18 2004-09-09 Minerva:Kk Icタグ用のブースタアンテナ装置
JP2004336605A (ja) * 2003-05-12 2004-11-25 Toshiba Corp 帯域通過フィルタ
JP2004348497A (ja) * 2003-05-23 2004-12-09 Mitsubishi Materials Corp Rfidアンテナの構造及び該構造のアンテナを備えるタグ及びリーダ/ライタ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362738B1 (en) * 1998-04-16 2002-03-26 Motorola, Inc. Reader for use in a radio frequency identification system and method thereof
JP3121577U (ja) 2006-03-02 2006-05-18 株式会社スマート 偏心磁性体コイルシステム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1049639A (ja) * 1996-08-02 1998-02-20 Shinwa Kogyo Kk 埋設物認識方法とその埋設標識体
JPH10215210A (ja) * 1996-11-29 1998-08-11 Nippon Steel Corp データキャリアシステム
JPH11180079A (ja) * 1997-12-25 1999-07-06 Dainippon Printing Co Ltd 情報記録媒体及びその認証方式
JP2000050534A (ja) * 1998-08-03 2000-02-18 Shiro Sugimura Icカードの電力供給装置
JP2000099655A (ja) * 1998-09-18 2000-04-07 Omron Corp 非接触通信カード装置、非接触通信カード、カードホルダ及び非接触通信方法
JP2000270501A (ja) * 1999-03-19 2000-09-29 Nippon Telegr & Teleph Corp <Ntt> 基地局通信装置、及び携帯無線通信装置への電力供給方法
JP2001101370A (ja) * 1999-10-04 2001-04-13 Dainippon Printing Co Ltd 情報処理媒体
JP2004253858A (ja) * 2003-02-18 2004-09-09 Minerva:Kk Icタグ用のブースタアンテナ装置
JP2004336605A (ja) * 2003-05-12 2004-11-25 Toshiba Corp 帯域通過フィルタ
JP2004348497A (ja) * 2003-05-23 2004-12-09 Mitsubishi Materials Corp Rfidアンテナの構造及び該構造のアンテナを備えるタグ及びリーダ/ライタ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163167A1 (en) * 2008-06-20 2011-07-07 Smart Packaging Solutions (Sps) Contactless card with security logo
US20150137615A1 (en) * 2008-07-02 2015-05-21 Access Business Group International Llc Electromagnetic interference mitigation
JP2010192951A (ja) * 2009-02-16 2010-09-02 Panasonic Corp アンテナ装置
JP2013513277A (ja) * 2009-12-07 2013-04-18 アイシス・イノヴェイション・リミテッド 共通通信装置
JP5660229B2 (ja) * 2011-11-08 2015-01-28 株式会社村田製作所 アンテナ装置および通信装置
WO2013069455A1 (ja) * 2011-11-08 2013-05-16 株式会社村田製作所 アンテナ装置および通信装置
US9607260B2 (en) 2011-11-08 2017-03-28 Murata Manufacturing Co., Ltd. Antenna device and communication apparatus
JP5578291B2 (ja) * 2012-06-04 2014-08-27 株式会社村田製作所 アンテナ装置及び通信端末機器
CN103765675A (zh) * 2012-06-04 2014-04-30 株式会社村田制作所 天线装置及通信终端设备
CN103765675B (zh) * 2012-06-04 2015-06-10 株式会社村田制作所 天线装置及通信终端设备
US9582693B2 (en) 2012-06-04 2017-02-28 Murata Manufacturing Co., Ltd. Antenna device and communication terminal device
WO2013183552A1 (ja) * 2012-06-04 2013-12-12 株式会社村田製作所 アンテナ装置及び通信端末機器
JP5846337B2 (ja) * 2013-07-16 2016-01-20 株式会社村田製作所 アンテナ装置及び通信装置
CN109565113A (zh) * 2016-06-01 2019-04-02 户田工业株式会社 天线装置以及使用其的ic标签

Also Published As

Publication number Publication date
US20090315680A1 (en) 2009-12-24
JP2008129850A (ja) 2008-06-05
JP4422712B2 (ja) 2010-02-24
US8305217B2 (en) 2012-11-06

Similar Documents

Publication Publication Date Title
WO2008062828A1 (fr) Système d&#39;amélioration de champ équipé d&#39;un résonateur
JP2009259273A (ja) 共振器付フィールド改善システム
US10916850B2 (en) Omni-directional antenna for a cylindrical body
JP4885093B2 (ja) ブースターアンテナコイル
JP5713134B2 (ja) アンテナ装置および通信端末装置
US7990337B2 (en) Radio frequency IC device
US9024725B2 (en) Communication terminal and information processing system
US20060044769A1 (en) RFID device with magnetic coupling
EP2385580B1 (en) Antenna and wireless ic device
JP5216920B2 (ja) アンテナ装置、及び、通信装置
JP2005192124A (ja) 磁界アンテナ、それを用いて構成したワイヤレスシステムおよび通信システム
JP6590122B1 (ja) Rfidタグ、および、rfidタグが取り付けられた物品
JP6061035B2 (ja) Rfidタグ、及び、rfidシステム
US20200036080A1 (en) Antenna and system for rf communications
JP5884888B2 (ja) Hf帯無線通信デバイス
CN209217193U (zh) 通信设备
JPWO2008096574A1 (ja) 電磁結合モジュール付き包装材
JP2008301527A (ja) 磁界アンテナ、それを用いて構成したワイヤレスシステムおよび通信システム
JP2009025930A (ja) 無線icデバイス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832274

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12312623

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - EPO FORM 1205A SENT ON 01.09.2009

122 Ep: pct application non-entry in european phase

Ref document number: 07832274

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)