WO2008050710A1 - Al-BASE ALLOY WIRING MATERIAL AND ELEMENT STRUCTURE USING THE SAME - Google Patents

Al-BASE ALLOY WIRING MATERIAL AND ELEMENT STRUCTURE USING THE SAME Download PDF

Info

Publication number
WO2008050710A1
WO2008050710A1 PCT/JP2007/070531 JP2007070531W WO2008050710A1 WO 2008050710 A1 WO2008050710 A1 WO 2008050710A1 JP 2007070531 W JP2007070531 W JP 2007070531W WO 2008050710 A1 WO2008050710 A1 WO 2008050710A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wiring material
nitrogen
semiconductor layer
alloy wiring
Prior art date
Application number
PCT/JP2007/070531
Other languages
English (en)
French (fr)
Inventor
Hironari Urabe
Yoshinori Matsuura
Takashi Kubota
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to CN2007800031101A priority Critical patent/CN101375378B/zh
Priority to JP2008514993A priority patent/JP4160110B2/ja
Priority to TW096140011A priority patent/TW200828347A/zh
Publication of WO2008050710A1 publication Critical patent/WO2008050710A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • H01L23/53219Aluminium alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an A1 alloy wiring material used for an element of a display device such as a liquid crystal display, and in particular, an A1 Ni—B—N alloy wiring material suitable for a display device including a thin film transistor and a transparent electrode. And an element structure using the same.
  • A1 aluminum
  • A1-based alloy wiring materials made of aluminum (hereinafter sometimes simply referred to as “A1”) alloy have been widely used as a constituent material for display devices such as thin-screen televisions typified by liquid crystal displays.
  • the reason for this is that the specific resistance value of the A1-based alloy wiring material is low and the wiring process is easy.
  • a thin film transistor (hereinafter abbreviated as TFT) as a switching element, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), etc.
  • An element is composed of a transparent electrode (hereinafter sometimes referred to as a transparent electrode layer) and a wiring circuit (hereinafter also referred to as a wiring circuit layer) formed from an A1-based alloy wiring material.
  • a transparent electrode hereinafter sometimes referred to as a transparent electrode layer
  • a wiring circuit hereinafter also referred to as a wiring circuit layer
  • FIG. Figure 1 shows a schematic cross-sectional view of an a-Si TFT for a liquid crystal display.
  • This TFT structure In this case, an electrode wiring circuit layer 2 made of an A1-based alloy wiring material constituting the gate electrode portion G and a cap layer 3 made of Mo, Mo—W, or the like are formed on the glass substrate 1.
  • the gate electrode portion G is provided with a SiNx gate insulating film 4 as a protection. Further, on this gate insulating film 4, an a-Si semiconductor layer 5, a channel protective film layer 6, an n + -Si semiconductor layer 7, a cap layer 3, an electrode wiring circuit layer 2, and a cap layer 3 are sequentially deposited.
  • the drain electrode portion D and the source electrode portion S are provided by appropriately forming a pattern.
  • the drain electrode portion D and the source electrode portion S are covered with an element surface planarizing resin or SiNx insulating film 4 ′.
  • a contact hole CH is provided in the insulating layer 4 ′, and a transparent electrode layer 7 ′ made of ITO or IZO is formed there.
  • the transparent electrode layer 7 'and the electrode wiring layer 2 in the contact hole CH between the n + — Si semiconductor layer 7 and the electrode wiring layer 2 are used.
  • the cap layer 3 is interposed between them.
  • an A1-based alloy wiring material that satisfies the following characteristics is required.
  • Gate in the device structure of Figure 1 For the electrode wiring circuit layer 2 of the electrode G, it is necessary to be able to directly join with a transparent electrode layer such as ITO in the lead-out wiring portion, although not shown in the drawing, and preferably satisfy heat resistance of 350 ° C or higher. Is required. The reason is that a high temperature thermal history is added when forming the gate insulating film formed on the gate electrode G, so that the electrode wiring circuit layer causes defects such as hillocks even at a temperature of 350 ° C or higher. This is because there is a need for such heat resistance.
  • the electrode wiring circuit layer 2 of the drain electrode portion D and the source electrode portion S in the element structure of FIG. 1 can be directly bonded to a transparent electrode layer such as ITO, and n + — Si, etc. It is required that direct bonding with the semiconductor layer is possible. In direct bonding with a semiconductor layer such as n + — Si, diffusion of A1 and Si is not required even when a thermal history of 200 ° C or higher is applied. Further, the electrode wiring circuit layer 2 of the drain electrode portion D and the source electrode portion S is required to have heat resistance that does not cause defects such as hillocks even when a thermal history of about 250 ° C. is applied.
  • the A1 alloy wiring material that forms the gate electrode part G, drain electrode part D, source electrode part S, and other wiring parts naturally has a low specific resistance, that is, 10/1 Q cm or less. Desirably, it is required to satisfy a specific resistance value of 5 ⁇ cm or less. In other words, there is an urgent need for A1-based alloy wiring materials that satisfy all of these required characteristics!
  • the present invention has been made in the background as described above.
  • a display device including a thin film transistor and a transparent electrode layer, an A1-based alloy wiring that can be directly bonded to a semiconductor layer such as n + — Si.
  • the material is provided.
  • the present invention is characterized in that an A1-based alloy wiring material containing nickel and boron in aluminum further contains nitrogen (N).
  • A1-based alloy wiring material according to the present invention the nitrogen content, 2 X 10 17 atom S / cm 3 or more on the 9 X 10 it is preferably less than 21 atoms / cm 3! / ,.
  • the A1-based alloy wiring material according to the present invention has a nickel composition ratio X at.%, A boron composition ratio y at.%, And an aluminum composition damage IJ compound in the relationship between aluminum, nickel, and boron.
  • Z at.% And x + y + z 100, 0.5 ⁇ x ⁇ 10.0 (Equation 1), 0.05 ⁇ v ⁇ ll. 00 (Equation 2), y + 0.25x ⁇ l .00 (Equation 3), y + l .15x ⁇ ll .50 (Equation 4), x + y
  • each formula of + z 100 (Formula 5) is satisfied, and the balance contains nitrogen.
  • the A1 alloy wiring material according to the present invention is used for an element structure of a display device in which a wiring circuit layer formed of an A1 alloy wiring material has a portion directly bonded to a semiconductor layer. Is preferred. Further, the wiring circuit layer at this time may be configured by laminating an Al—Ni—B alloy and an Al—Ni—BN alloy.
  • a sputtering process in a nitrogen-containing atmosphere using a sputtering target containing nickel and boron in aluminum.
  • the Al—Ni—B alloy sputtering target used in this case has a nickel content of Xat.% Of nickel and a boron content of Yat.% Of boron. 0 (Equation 6), 0. 05 ⁇ Y ⁇ 11.00 (Equation 7), ⁇ + 0.25 ⁇ 1.00 (Equation 8), ⁇ + 1.15 ⁇ 11.50 (Equation 9) It is preferable that it is in the range of the region satisfying the formula, and the balance is aluminum.
  • FIG. 1 is a schematic sectional view of a TFT.
  • FIG. 2 is a conceptual graph showing the results of nitrogen analysis in an A1-Ni-B alloy film containing nitrogen by a secondary ion mass spectrometer.
  • FIG. 5 is a conceptual plan view showing a wiring structure of a TFT element.
  • FIG. 6 A schematic oblique view of a test sample in which an ITO (IV) electrode layer and an Al alloy electrode layer are crossed and laminated.
  • the A1-based alloy wiring material according to the present invention has a basic composition containing aluminum as a base material and nickel and boron, and further contains nitrogen. This is because when Al—Ni—B alloy contains nitrogen, direct bonding with a semiconductor layer such as n + —Si becomes possible.
  • the nitrogen content is 2 X 10 17 atoms / cm 3 or more and less than 9 X 10 21 atoms / cm 3.
  • the A1 alloy wiring material of the present invention may contain nitrogen at a depth of at least about 5 ⁇ to 50 ⁇ from the bonding surface directly bonded to the semiconductor layer, that is, the surface of the A1 alloy wiring material. Further, on the semiconductor layer side to which the A1 alloy wiring material of the present invention is directly bonded, there is an effect of improving the direct bonding with the A1 alloy wiring material which may contain nitrogen in the semiconductor layer.
  • the A1-based alloy wiring material of the present invention has a nickel composition ratio X at.% And a boron composition ratio y at. In relation to aluminum, nickel and boron. /.
  • the A1-based alloy wiring material of the present invention preferably satisfies the formulas (1) to (5) as the composition ratio of the metal element, and preferably contains nitrogen.
  • the A1-based alloy wiring material in the present invention is a gas component that may be mixed in, for example, a material manufacturing process, a wiring circuit forming process, an element manufacturing process, or the like, without departing from the effects of the present invention. And other inevitable impurities are not prevented.
  • Nickel has an effect of forming an intermetallic compound with aluminum by heat treatment to improve the bonding characteristics in direct bonding with the transparent electrode layer.
  • the nickel content increases, the specific resistance of the wiring circuit itself increases and becomes impractical.
  • the nickel content is low, the amount of intermetallic compounds produced with aluminum decreases, making direct bonding to the transparent electrode layer impossible, and heat resistance (a deterrent effect against the occurrence of plastic deformation of the A1-based alloy wiring material due to heat). ) Also tends to decrease.
  • the nickel content must satisfy the above (Equation 1).
  • the nickel composition ratio exceeds 10 at.%, The specific resistance value of the wiring material becomes too large, and a dimple-like defect called dimple is easily formed on the surface of the wiring material. Tend to be unable to secure the sex. If it is less than 0.5 at. Protrusions called hillocks tend to be formed on the surface of the wiring material, and heat resistance cannot be secured.
  • This dimple is a micro-dent-like defect formed on the surface of the material due to stress strain generated when heat-treating the A1 alloy wiring material. When this dimple is generated, it adversely affects the bonding characteristics and Reliability decreases.
  • hillocks contrary to dimples, are forces that are projections formed on the material surface due to stress strain generated when heat-treating an A1-based alloy wiring material. Even if this hillock occurs, the bonding characteristics are adversely affected. And the bonding reliability is lowered. Furthermore, if the nickel composition ratio is less than 0.5 at%, the junction resistance during direct bonding with ITO is increased, which is not practical. These dimples and hillocks are common in that they are plastic deformation of the A1 alloy wiring material due to heat. This phenomenon is generally referred to as stress migration, and the A1 alloy wiring material depends on the level of these defects. The heat resistance of can be judged.
  • the boron composition ratio must satisfy the above (Formula 2).
  • the A1 alloy wiring material according to the present invention ensures mutual diffusion between A1 and Si at the bonding interface even in a thermal process at a temperature exceeding 240 ° C when directly bonding to a semiconductor layer. In order to prevent this, it is desirable to satisfy the above (Formula 3). In order to reliably maintain the specific resistance of the A1 alloy wiring material itself at 10 ⁇ cm or less, it is desirable to satisfy the above (Equation 4).
  • the dimple is a minute dent-like defect formed on the surface of the wiring material when heat-treating the A1-based alloy wiring material.
  • the surface of the material was observed, and the generated dimples (0.3 to 0 ⁇ ⁇ ) were investigated.
  • the area of all the dimples generated in the observation field was obtained, and the heat resistance characteristics of the wiring material were investigated using the area ratio of the dimples in the observation field as the dimple generation rate. Even if the nickel composition ratio is 4 at.% Or more and the boron composition ratio is 0.80 at.% Or less within the range satisfying (Equation 5), even when heat treatment is performed at 350 ° C.
  • the dimple generation rate can be suppressed to 1.6% or less. It is desirable that this dimple is not generated as much as possible. If this dimple generation rate is low, even if it passes through the thermal process in the device manufacturing process of the display device, it will be at the bonding interface directly bonded to the semiconductor layer or transparent electrode layer. This is more preferable because it is less likely to cause bonding defects and the like, and the bonding reliability is improved. Also, if the dimple generation rate is suppressed to 1.6% or less, the on / off ratio (on / off ratio) of the TFT having a structure directly bonded to the semiconductor layer is stabilized, and the connection reliability is improved. It is thought to be up.
  • the A1 alloy wiring material according to the present invention has a force that is suitable for direct bonding to a semiconductor layer or a transparent electrode layer.
  • a cap layer made of a refractory metal material such as Mo is provided on the semiconductor layer side. This does not prevent application in the device structure.
  • the A1-based alloy wiring material according to the present invention has a composition ratio of nickel in the range satisfying the above (formula 1) to (formula 5) and a boron composition ratio of 4at.% To 6at.%.
  • the ratio is from 0.2 at.% To 0.8 at.%, It becomes a particularly suitable A1-based alloy wiring material when directly bonding to the semiconductor layer.
  • the laboratory According to research, it has been confirmed that an altered layer is formed at the joint interface due to the effect of interdiffusion. This altered layer means that the A1 alloy wiring material and the semiconductor layer are directly joined, subjected to a predetermined heat treatment, and then peeled off from the A1 alloy wiring material, and the surface of the semiconductor layer is observed.
  • This deteriorated layer tends to be generated as the heat treatment temperature is increased, and it is desirable that the deteriorated layer should not be generated by heat treatment (for 30 minutes) at 200 ° C. or higher.
  • the composition ratio of boron is 4at.% To 6at.% In the range satisfying the above formulas (1) to (5). From 0.2 at.% To 0.8 at.%, It was found that the formation of a deteriorated layer tends to be suppressed even during heat treatment at 330 ° C. for 30 minutes. In this composition range, the specific resistance of the wiring material itself is 5 a ⁇ cm or less.
  • an A1—5—Oat.% Ni-0. 4 at.% B film (specific resistance value: 4.2 ⁇ Q cm) is used as the A1—Ni—B-based alloy layer.
  • the device was directly bonded to the semiconductor layer, and the characteristics of the device were evaluated.
  • control was performed so that an Al—Ni—B—N alloy layer was formed between Si and the Al—Ni—B alloy layer.
  • the nitrogen content of the Al-Ni-B-based alloy layer was measured by a secondary ion mass spectrometer (Dynamic SIMS) when it was 10 18 atoms / cm 3 or more.
  • a secondary ion mass spectrometer Dynamimic SIMS
  • the analysis results shown in Fig. 2 are obtained.
  • Fig. 2 conceptually shows the results of analyzing nitrogen in the depth direction using a secondary ion mass spectrometer for an A1-Ni-B alloy wiring film containing nitrogen. For example, when the film contains nitrogen, nitrogen is detected in a portion corresponding to the thickness containing nitrogen.
  • the average nitrogen concentration indicates an average value in the measurement depth range where a certain level of measurement value was detected. Specifically, in the case of 2.5 X 10 18 (solid line data) shown in FIG. 2, the average value was obtained from the measured values in the range of 18 nm to 75 nm, excluding the measured values in the range of 0 to; .
  • the nitrogen content is 10 18 atom S / cm 3 or less
  • sputtering is performed in the depth direction of the Si semiconductor layer by an X-ray photoelectron spectrometer (XPS) in the depth direction of 50 to;
  • the sputtered part was measured with an X-ray photoelectron spectrometer (XPS), and the nitrogen content was calculated by comparing with the integrated intensity of the nitrogen detection peak obtained from the sample measurement result with a known nitrogen content.
  • This nitrogen content can be measured with either a secondary ion mass spectrometer or an X-ray photoelectron spectrometer, but in the case of a content near the detection limit of the secondary ion mass spectrometer, From the viewpoint of the reliability of the measured values, measurements may be made using an X-ray photoelectron spectrometer.
  • an Al—Ni—B—N alloy layer was formed to a thickness of 100 A on the n + — Si layer, and an Al—Ni—B alloy layer was formed to a thickness of 1900 A thereon.
  • the Al—Ni—B—N alloy layer is formed under sputtering conditions (magnetron sputtering equipment, input power 3 ⁇ OWatt / cm 2 , argon gas flow rate 100sccm, argon pressure 0.5 ⁇ Pa). Nitrogen gas was introduced into the argon gas, and the actual nitrogen flow rate was adjusted within the range of 0% to 40% of the total actual gas flow rate (actual argon gas flow rate + actual nitrogen flow rate).
  • the Al—Ni—B alloy layer formed thereon was formed under the above conditions without introducing nitrogen gas.
  • FIG. 3 and FIG. 4 show typical optical micrographs on the exposed semiconductor layer surface.
  • Fig. 3 shows the surface of the semiconductor layer where no interdiffusion is observed (evaluation result: ⁇ )
  • Fig. 4 shows the trace of interdiffusion (black dots in the photograph) (evaluation result: X). Then, among the respective heat treatment temperatures, the highest temperature with an evaluation result of ⁇ was taken as the diffusion heat resistance temperature of the evaluation sample.
  • the observation photographs shown in FIG. 3 and FIG. 4 are image photographs used as a reference when evaluating the diffusion heat resistance, and do not show the specific sample results of the first embodiment.
  • the evaluation sample was produced according to the following procedure.
  • an A1-based alloy film having a thickness of 8 1- ⁇ -8 alloy layer having a thickness of 3000 was formed on a glass substrate (Coujung Co., Ltd. # 1737).
  • Sputtering conditions are: substrate heating temperature 100 ° C, DC Powerl000W (3. lWatt / cm 2 ), argon gas flow rate 100sccm, argon pressure 0 I went at 5Pa.
  • the A1-based alloy film was etched by photolithography to form a gate wiring width of 50 ⁇ m and a gate electrode width of 15 111 (see FIG. 5).
  • Photolithographic conditions are as follows: A1 type alloy film surface is coated with a resist (TFR-970: Tokyo Ohka Kogyo Co., Ltd./Coating conditions: spin coater 3000rpm, resist thickness 1m after baking). After processing (110 ° C, 1.5 minutes), a predetermined pattern film was placed and exposure processing (Mask Anaira MA-20: Mikasa Co., Ltd./exposure conditions 15mj / cm 2 ) was performed. .
  • TMAH developer alkaline developer
  • TMAH developer tetramethylammonium hydride oxide
  • the resist is removed with a stripping solution (ST106: manufactured by Tokyo Ohka Kogyo Co., Ltd.).
  • SiNx serving as an insulating layer is formed by RF sputtering at a thickness of 4200 A. A film was formed.
  • the deposition conditions were a substrate heating temperature of 350 ° C., RF Powerl000W (3.1 Watt / cm 2 ), an argon gas flow rate of 90 sccm, a nitrogen gas flow rate of 10 sccm, and a pressure of 0.5 Pa.
  • i Si (non-doped Si film) deposition conditions are: substrate heating temperature 200 ° C, RF PowerlOOW (0.31 Watt / cm 2 ), SiH flow rate (10% argon gas dilution) 300
  • n + Si (P (phosphorus) doped film) deposition conditions are: substrate heating temperature 200 ° C, RF PowerlOOW (0.31 Watt / cm 2 ), SiH flow rate (8% Al)
  • an A1-based alloy film having the same composition as that first formed on the glass substrate was formed on the n + -Si layer with a thickness of 2000A.
  • an Al—Ni—B—N alloy layer was formed on the n + —Si layer with a thickness of 1 ⁇ , and an Al—Ni—B alloy layer was formed thereon with a thickness of 1900 A.
  • the deposition conditions for the A 1—Ni—B—N alloy layer are as follows. Elementary gas was introduced, and the actual nitrogen flow rate was adjusted within the range of 0% to 40% of the total gas actual flow rate (argon gas actual flow rate + nitrogen actual flow rate). Further, the Al—Ni—B alloy layer formed thereon was performed under the same conditions as in the case of the gate wiring. The deposition conditions were fi under the same conditions as the above gate wiring.
  • a source wiring, a drain wiring, and an electrode were formed by photolithography.
  • the photolithography conditions are the same as those for the gate wiring.
  • dry etching of the n + — Si layer was performed. Dry etching conditions were RF Power 50 W, SF gas flow rate 30 sccm, pressure lOPa.
  • stripping solution ST106:
  • the resist was removed by Tokyo Ohka Kogyo Co., Ltd.
  • a SiNx insulating film serving as a passivation was formed to a thickness of 2500 A, and only the gate, source, and drain electrode portions were exposed by dry etching. Dry etching conditions are RF Power 100W, SF gas flow rate 30sccm, O gas flow rate 5sccm, pressure lOPa
  • Table 1 shows the evaluation results for the above-described nitrogen content, specific resistance, and diffusion heat resistance on / off ratio.
  • the nitrogen content of the A1 alloy wiring material is 2X10 17 atoms / cm 3 to 8X10 21 atoms / cm 3 2.5X10 18 atoms / cm 3 to 7.7 X 10 It was found that 21 atoms / cm 3 is more preferable.
  • Reference Example 1 In this Reference Example 1, a film was formed by sputtering on the A1 alloy wiring material of each composition of the Reference Example and Reference Comparative Example shown in Table 2, and the characteristics of the film were evaluated. went .
  • the sputtering target was prepared by mixing the metals of each composition shown in Table 2 with aluminum, dissolving and stirring in vacuum, then forging in an inert gas atmosphere, rolling and molding the obtained ingot, A surface produced by processing the surface to be sputtered was used.
  • the film characteristics for each composition listed in Table 2 are based on Si diffusion when bonded directly to the semiconductor layer.
  • Si diffusion heat resistance As an evaluation sample of this characteristic, an n + — Si semiconductor layer (30 OA) was formed on a glass substrate by CVD, and sputtering (magnetron 'sputtering device, input power 3 ⁇ OWatt / cm 2 , argon gas flow rate 100 sccm, argon pressure 0.5 Pa) were used to form each composition film (2000 A) shown in Table 2.
  • sputtering magnet 'sputtering device, input power 3 ⁇ OWatt / cm 2 , argon gas flow rate 100 sccm, argon pressure 0.5 Pa
  • the diffusion heat resistance was evaluated with reference to FIGS. 3 and 4 described in the above example.
  • Specific resistance of film The specific resistance value of each composition film shown in Table 2 is obtained by forming a single film (thickness of about 0.3 111) on a glass substrate by sputtering (the conditions are the same as above), After heat treatment at 300 ° C. for 30 minutes in a gas atmosphere, the measurement was performed with a four-terminal resistance measuring device.
  • Heat resistance at 350 ° C The heat resistance of each composition film shown in Table 2 is that a single film (thickness of about 0.3 111) is formed on a glass substrate by sputtering (the conditions are the same as above), and nitrogen is added.
  • the film surface was observed with a scanning electron microscope (SEM: 10,000 times) after heat treatment for 30 minutes in a temperature range of 100 ° C. to 400 ° C. in a gas atmosphere.
  • SEM scanning electron microscope
  • the 350 ° C heat resistance was evaluated by checking whether protrusions (hillocks) with a diameter of 0.1 m or more were observed on the observation surface in a heat treatment at 350 ° C for 30 minutes, or a depression (diameter) on the observation surface.
  • X was defined as 4 or more dimples that became 0 ⁇ 3 ⁇ 111-0. 5 111).
  • a circle with no protrusions and no more than 3 dimples was marked as ⁇ .
  • ITO bondability This ITO bondability is obtained by applying ITO on a glass substrate as shown in the schematic perspective view of FIG.
  • Evaluation was performed using a test sample (Kelvin device) formed so as to cross the composition film layer (2000 A thickness, circuit width 10 m).
  • This test sample was prepared by first forming each A1-based alloy ter- mer of the above composition on a glass substrate. Using a get, an A1 alloy film having a thickness of 2000 A was formed under the above sputtering conditions. At this time, the substrate temperature during sputtering was set as shown in Table 6 to perform each film formation. The surface of each A1 alloy film is coated with a resist (TFR-970: Tokyo Ohka Kogyo Co., Ltd.), and a 10 ⁇ wide circuit forming pattern film is placed on the surface and exposed to light. The film was developed with an alkaline developer containing tetramethylammonium hydride oxide at a temperature of 23 ° C (hereinafter abbreviated as TMAH developer).
  • TMAH developer alkaline developer containing tetramethylammonium hydride oxide at a temperature of 23 ° C
  • circuit formation is performed using a phosphoric acid-based mixed acid etching solution (manufactured by Kanto Chemical Co., Ltd.), and the resist is removed using a dimethyl sulfoxide (hereinafter abbreviated as DMSO) stripping solution.
  • DMSO dimethyl sulfoxide
  • the substrate on which the 10 ⁇ m-wide A1 alloy film circuit was formed was subjected to pure water cleaning and drying treatment, and an SiNx insulating layer (thickness 4200 A) was formed on the surface.
  • This insulating layer was formed using a sputtering device under sputtering conditions of input power RF3.OWatt / cm 2 , argon gas flow rate 90 sccm, nitrogen gas flow rate 10 sccm, pressure 0.5 Pa, substrate temperature 300 ° C.
  • a positive resist manufactured by Tokyo Ohka Kogyo Co., Ltd .: TFR-970
  • a pattern film for opening a ⁇ ,, ⁇ ⁇ ,, m-square contact hole is arranged.
  • the film was exposed to light and developed with a TMAH developer.
  • Contact hole formation condition is CF gas flow rate 5
  • Osccm oxygen gas flow rate 5 sccm, pressure 4.0 Pa, output 150 W.
  • the resist was stripped with the DMSO stripper described above. Then, the remaining stripping solution was removed using isopropyl alcohol, and then washed with water and dried. For each sample after the resist removal process, the ITO target (composition In O-10wt% Sn
  • the bright electrode layer was formed by sputtering (substrate temperature 70 ° C, input power 1 ⁇ 8 Watt / cm 2 , anoregon gas flow rate 80sccm, oxygen gas flow rate 0 ⁇ 7sccm, pressure 0 ⁇ 37Pa). A film was formed.
  • the ITO film surface was coated with a resist (TFR-970: Tokyo Ohka Kogyo Co., Ltd.), exposed by placing a pattern film, developed with a TMAH developer, and oxalic acid mixed acid ester.
  • a 10 m wide circuit was formed with a chinching solution (Kanto Chemical Co., Ltd .: ITO05N).
  • the resist was removed with a DMSO stripping solution.
  • test sample obtained by the production method as described above was subjected to 250 ° C in an air atmosphere.
  • IZO bondability This IZO bondability is similar to the IZO bondability evaluation described above.
  • the specific resistance value is 10 ⁇ cm or less, and the reference comparative example 9 is out of the composition range of the present invention.
  • the specific resistance value exceeded 10 ⁇ cm.
  • the A1—Ni—B alloy wiring material of each reference example has a Si diffusion heat resistance of 240 ° C or higher, and even at a high temperature of 330 ° C, A1 and Si There was something that could not be recognized as mutual diffusion.
  • the A1-Ni-B alloy wiring material of each reference example can be directly bonded to the ITO and IZO transparent electrode layers. It should be noted that this silicon diffusion heat resistance does not occur in heat treatment at 200 ° C or higher in practice. Considering the thermal history applied when forming the insulating layer by CVD, it is desirable that the altered layer does not occur even in a high temperature range of 240 ° C to 300 ° C. Furthermore, it is desirable to have Si diffusion heat resistance at 330 ° C or higher in order to provide a sufficient range of manufacturing conditions to which each thermal history is applied in the device manufacturing process. In the Si diffusion heat resistance evaluation shown in Table 3, since the directly bonded semiconductor layer (n + — Si) contained nitrogen, the heat resistance value was high. In addition, the nitrogen content in the n + — Si semiconductor layer is determined by the SiH gas diluted with hydrogen and the P-containing gas during film formation by CVD.
  • Reference Example 2 In this Reference Example 2, the relationship between the heat resistance of the film and the bonding characteristics of the semiconductor layer is related to the composition range of the Al—Ni—B alloy wiring material according to the present invention. The results of further detailed examination will be described. Tables 4 to 6 show the specific resistance value of the film, the dimple generation rate of the film when the nickel content and boron content are changed, the generation status of the altered layer when directly bonded to the semiconductor layer, and The result of having investigated the roughness change amount of the semiconductor layer surface is shown.
  • composition Roughness change Composition Roughness change
  • Table 4 shows the specific resistance value and dimple generation rate of the film in each composition.
  • the measurement conditions for the specific resistance of the film are the same as in Reference Example 1 above.
  • the dimple generation rate is a result obtained by SEM observation of each evaluation sample at heat treatment temperatures of 350 ° C. and 400 ° C. under the same conditions as the heat resistance evaluation in Reference Example 1 above. However, in the heat resistance evaluation in Reference Example 2, the occurrence rate of dimples was examined for a more detailed examination than the heat resistance evaluation in Reference Example 1 above.
  • the dimple generation rate is determined by detecting dimples that are indentations (diameter: 0.3111 to 0.5 m) on the observation surface, calculating the area occupied by the dimples from the size and number of the dimples.
  • an evaluation sample prepared under the same conditions as the Si diffusion heat resistance evaluation described in Reference Example 1 was used. Specifically, an n + — Si semiconductor layer (30 OA) is formed on a glass substrate by CVD, and sputtering (magnetron sputtering equipment, input power 3 ⁇ OWatt / cm 2 , argon gas flow rate on the semiconductor layer A film in which an Al—Ni—B alloy film (2000A) having each composition shown in Table 4 was formed at 100 sccm and an argon pressure of 0.5 Pa was used. Then, this evaluation sample was heat-treated at 300, 330, and 350 ° C.
  • Table 6 shows the results of examining the change in the surface state of the semiconductor layer in accordance with the investigation of the altered layer.
  • This change in the surface state of the semiconductor layer was carried out by measuring the surface roughness of the semiconductor layer. Specifically, the surface roughness (hereinafter referred to as as-depo roughness) immediately after the n + — Si semiconductor layer (300 A) was formed on the glass substrate and the evaluation sample of the above-mentioned altered layer investigation were exposed. The surface roughness (hereinafter referred to as direct bonding roughness) of the semiconductor layer was measured, and (direct bonding roughness value) / (as-depo roughness value) was calculated.
  • the surface roughness of the semiconductor layer after direct bonding and heat treatment increases as the numerical value of roughness change shown in Table 5 is greater than 1. Indicates that it is rough.
  • a ten-point average roughness according to JIS B0601: 1994 was used, using a stepped surface roughness (roughness) / fine shape measuring device (KLA Tencor, P-15 type). I asked for Rz.
  • the roughness change amount in Table 6 shows a tendency almost correlated with the result of the altered layer in Table 5. From the results of the roughness change in Table 6, even after heat treatment at 330 ° C after direct bonding, the bonding surface of the semiconductor layer does not become extremely rough, that is, within 1.5 times the as-depo roughness value. It was found that the composition range of the amount of change was 4.0 to 6. Oat.% For nickel and 0.20 to 0.60 at.% For polone.
  • the cap layer made of a refractory metal material such as Mo is omitted, the interdiffusion between A1 and Si is suppressed at the junction interface where the wiring circuit and the semiconductor layer are directly joined. It is.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Conductive Materials (AREA)

Description

明 細 書
A1系合金配線材料及びそれを用レ、た素子構造
技術分野
[0001] 本発明は、液晶ディスプレイなどの表示デバイスの素子に用いられる A1系合金配 線材料に関し、特に、薄膜トランジスタや透明電極を備える表示デバイスに好適な A1 Ni— B— N系合金の配線材料及びそれを用いた素子構造に関する。
背景技術
[0002] 近年、液晶ディスプレイに代表される薄型テレビなどの表示デバイスには、その構 成材料としてアルミニウム(以下、単に A1と記載する場合がある)系合金の配線材料 が広く普及している。この理由は、 A1系合金配線材料の比抵抗値が低ぐ配線加工 が容易な特性を有することによる。
[0003] 例えば、アクティブマトリックスタイプの液晶ディスプレイの場合、スイッチング素子と しての薄膜トランジスタ(Thin Film Transistor,以下、 TFTと略称する)や、 ITO (Indium Tin Oxide)或いは IZO (Indium Zinc Oxide)などの透明電極(以下 、透明電極層と称する場合がある)と、 A1系合金配線材料より形成された配線回路( 以下、配線回路層と称する場合がある)とから素子が構成される。このような素子構造 では、 A1系合金配線材料による配線回路を、透明電極と接合させる部分や TFT内 における n+— Si (リンドープの半導体層)と接合させる部分が存在する。
[0004] 現在使用されている A1系合金配線材料では、上述のような素子を構成する場合、 A1系合金配線材料に形成されるアルミニウム酸化物の影響を考慮し、配線回路と透 明電極との間に、モリブデン(Mo)やチタニウム (Ti)などの高融点金属材料を、いわ ゆるキャップ層として形成している。また、 n+— Siのような半導体層と配線回路との接 合においては、製造工程中の熱プロセスにより、 A1と Siとが相互拡散することを防止 すべぐ半導体層と配線回路との間に、上記キャップ層と同じモリブデン (Mo)やチタ ニゥム (Ti)などの高融点金属材料を介在させるようにして!/、る。
[0005] 図 1を参照しながら、上記した素子構造について具体的に説明する。図 1には、液 晶ディスプレイに関する a— Siタイプの TFT断面概略図を示している。この TFT構造 では、ガラス基板 1上に、ゲート電極部 Gを構成する A1系合金配線材料からなる電極 配線回路層 2と、 Moや Mo— Wなどからなるキャップ層 3とが形成されている。そして 、このゲート電極部 Gには、その保護として SiNxのゲート絶縁膜 4が設けられている。 また、このゲート絶縁膜 4上には、 a— Si半導体層 5、チャネル保護膜層 6、 n+— Si半 導体層 7、キャップ層 3、電極配線回路層 2、キャップ層 3が順次堆積され、適宜バタ ーン形成されることにより、ドレイン電極部 Dとソース電極部 Sとが設けられる。このドレ イン電極部 Dとソース電極部 Sとの上には、素子の表面平坦化用樹脂または SiNxの 絶縁膜 4'が被覆される。さらに、ソース電極部 S側には、絶縁層 4'にコンタクトホール CHが設けられ、その部分に ITOや IZOの透明電極層 7'が形成される。このような電 極配線回路層 2に A1系合金配線材料を用いる場合では、 n+— Si半導体層 7と電極 配線層 2との間ゃコンタクトホール CHにおける透明電極層 7 'と電極配線層 2との間 に、キャップ層 3を介在させる構造となっている。
[0006] この図 1に示す素子構造では、 Moなどのキャップ層を形成するため、材料や製造 設備などのコストアップは避けられず、製造工程の複雑化が指摘されていた。そのた め、本願出願人は、このような従来の素子構造におけるキャップ層の省略を可能とす る技術を既に提案している(特許文献 1参照)。この特許文献 1では、 ITOとの直接接 合が可能となる、 A1— C— Ni合金や A1— C— Ni— Si合金の配線材料を開示した。 特許文献 1 :特開 2003— 89864号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、上記特許文献 1の A1系合金配線材料では、 ITOや IZOなどの透明 電極層との直接接合は可能となるものではある力 n+— Siなどの半導体層と直接接 合させる場合にあっては十分に満足できる特性を備えるものではなかった。例えば、 A1系合金配線材料力もなる配線回路層と半導体層とを直接接合した際に、接合界 面において A1と Siとの拡散現象などが生じ、接合特性を満足できない傾向を示すこ とがあった。
[0008] より具体的には、図 1で示した素子構造のキャップ層を省略した場合には、次のよう な特性を満足する A1系合金配線材料が要求される。図 1の素子構造におけるゲート 電極 Gの電極配線回路層 2については、図示はないが引き出し配線部分で ITOなど の透明電極層との直接接合が可能である必要があり、望ましくは 350°C以上の耐熱 性を満足することが要求される。その理由は、ゲート電極 Gの上に形成するゲート絶 縁膜を形成する際に、高温の熱履歴が加わるため、 350°C以上の温度においても、 電極配線回路層がヒロックなどの欠陥を生じないような耐熱性が必要となるからであ る。また、図 1の素子構造におけるドレイン電極部 Dやソース電極部 Sの電極配線回 路層 2については、 ITOなどの透明電極層との直接接合が可能であり、且つ、 n+— S iなどの半導体層との直接接合が可能であることが要求される。この n+— Siなどの半 導体層との直接接合では、 200°C以上の熱履歴が加わっても A1と Siとの拡散現象な どが生じないことが必要とされる。そして、このドレイン電極部 Dやソース電極部 Sの電 極配線回路層 2では、 250°C程度の熱履歴が加わっても、ヒロックなどの欠陥を生じ ない耐熱性も要求される。さらに、ゲート電極部 G、ドレイン電極部 D、ソース電極部 S 、その他の配線部分を形成する A1系合金配線材料には、当然に、比抵抗が低い特 性、即ち、 10 /1 Q cm以下、望ましくは 5 Ω cm以下の比抵抗値を満足することが要 求されるのである。つまり、このような要求特性をすベからく満足する A1系合金配線 材料が切望されて!/、るのが現状である。
[0009] 本発明は、以上のような事情を背景になされたものであり、薄膜トランジスタや透明 電極層を備える表示デバイスにおいて、 n+— Siなどの半導体層と直接接合が可能 な A1系合金配線材料を提供するものである。
課題を解決するための手段
[0010] 本発明は、アルミニウムにニッケルとボロンとを含有した A1系合金配線材料におい て、窒素(N)をさらに含有することを特徴とする。
[0011] 本発明に係る A1系合金配線材料は、その窒素含有量が、 2 X 1017atomS/cm3以 上 9 X 1021atoms/cm3未満であることが好まし!/、。
[0012] 本発明に係る A1系合金配線材料は、アルミニウムとニッケルとボロンとの関係にお いて、ニッケルの組成割合 X at. %、ボロンの組成割合 y at. %、アルミニウムの組成 害 IJ合を z at. %とし、 x + y+ z = 100と定義した場合、 0. 5≤x≤10. 0 (式1)、0. 05 ≤v≤l l . 00 (式 2)、y+ 0. 25x≥l . 00 (式 3)、y+ l . 15x≤l l . 50 (式 4)、x+ y + z = 100 (式 5)の各式を満足し、残部に窒素が含有されていることが好ましい。
[0013] 本発明に係る A1系合金配線材料は、 A1系合金配線材料により形成された配線回 路層が、半導体層に直接接合された部分を有する表示デバイスの素子構造に用い ること力 S好適である。また、このときの配線回路層は、 Al— Ni— B合金と Al— Ni— B N合金とを積層して構成されてもよい。
[0014] 本発明に係る A1系合金配線材料による配線膜を形成する場合、アルミニウムに二 ッケルとボロンとを含有したスパッタリングターゲットを用い、窒素含有雰囲気中でス パッタリング処理を行うことが好ましい。この場合に用いる Al— Ni— B合金スパッタリ ングターゲットは、ニッケル含有量をニッケルの原子百分率 Xat.%とし、ボロン含有量 をボロンの原子百分率 Yat.%とした場合、 0· 5≤X≤10. 0 (式 6)、 0. 05≤Y≤11 . 00 (式 7)、Υ + 0. 25Χ≥1. 00 (式 8)、Υ+ 1. 15Χ≤11. 50 (式 9)の各式を満足 する領域の範囲内にあり、残部がアルミニウムであることが好ましい。
図面の簡単な説明
[0015] [図 1]TFT概略断面図。
[図 2]二次イオン質量分析装置による窒素を含有させた A1— Ni— B合金膜中の窒素 分析結果を示す概念グラフ。
[図 3]Si拡散耐熱性評価の光学顕微鏡写真。
[図 4]Si拡散耐熱性評価の光学顕微鏡写真。
[図 5]TFT素子の配線構造を示す平面概念図。
[図 6]ITO (ΙΖΟ)電極層と Al合金電極層とをクロスして積層した試験サンプル概略斜 視図。
発明を実施するための最良の形態
[0016] 以下、本発明における最良の実施形態について説明する力 本発明は下記実施 形態に限定されるものではない。
[0017] 本発明に係る A1系合金配線材料は、アルミニウムを母材に、ニッケル、ホウ素を含 有した基本組成であって、さらに窒素を含有するものである。 Al— Ni— B合金に窒素 を含有させると、 n+— Siなどの半導体層との直接接合が可能となるからである。
[0018] この窒素含有量は、 2 X 1017atoms/cm3以上 9 X 1021atoms/cm3未満であるこ とが好ましい。 2 X 1017atomS/cm3未満であると、半導体層との直接接合が困難と なり、 9 X 1021atoms/cm3以上になると、トランジスタ特性の on/off比が悪くなるた めである。本発明の A1系合金配線材料は、半導体層と直接接合する接合面、即ち、 A1系合金配線材料の表面から少なくとも 5θΑ〜50θΑ程度の深さにおいて窒素を 含有していればよい。さらに、本発明の A1系合金配線材料が直接接合する半導体層 側においては、半導体層に窒素を含有させてもよぐ A1系合金配線材料との直接接 合を良好にする効果がある。
[0019] また、本発明における A1系合金配線材料は、アルミニウムとニッケルとボロンとの関 係において、ニッケルの組成割合 X at. %、ボロンの組成割合 y at.。/。、アルミニウム の組成割合を z at. %とし、 x + y+ z = 100と定義した場合、 0. 5≤x≤10. 0 (式 1) 、 0. 05≤y≤l l . 00 ( 2)、y+ 0. 25x≥l . 00 ( 3)、y+ l . 15x≤l l . 50 (式 4 )、 x+y+ z = 100 (式 5)の各式を満足し、残部に窒素が含有されていることが好まし い。つまり、本発明の A1系合金配線材料は、金属元素の組成割合としては(式 1 )〜( 式 5)を満足するものであり、且つ、窒素を含有している組成であることが望ましい。尚 、本発明における A1系合金配線材料は、本発明の奏する効果を逸脱しない範囲に おいて、例えば、材料製造工程或いは配線回路形成工程や素子製造工程などで混 入する可能性のあるガス成分やその他の不可避不純物の混入を妨げるものではな い。
[0020] ニッケルは、熱処理によりアルミニウムとの金属間化合物を形成し、透明電極層との 直接接合における接合特性を良好にする作用を有する。但し、ニッケル含有量が多 くなると、配線回路自体の比抵抗が高くなり実用的でなくなる。また、ニッケル含有量 が少ないと、アルミニウムとの金属間化合物の生成量が減少し、透明電極層との直接 接合ができなくなり、耐熱性 (熱による A1系合金配線材料の塑性変形発生に対する 抑止作用)も低下する傾向となる。これらのことからニッケル含有量は上記(式 1 )を満 足する必要がある。
[0021] 具体的には、ニッケル組成割合が 10at. %を超えると、配線材料の比抵抗値が大き くなりすぎるとともに、ディンプルと呼ばれる窪み状の欠陥が配線材料表面に形成さ れ易ぐ耐熱性を確保できなくなる傾向となる。また、 0. 5at. %未満であると、いわゆ るヒロックと呼ばれる突起物が配線材料表面に形成され易くなり、耐熱性を確保でき なくなる傾向となる。このディンプルとは、 A1系合金配線材料を熱処理した際に生じる 応力ひずみによって材料表面に形成される微小な窪み状の欠陥のことをいい、この ディンプルが発生すると、接合特性に悪影響を与え、接合信頼性が低下する。一方 、ヒロックとは、ディンプルとは逆に、 A1系合金配線材料を熱処理した際に生じる応力 ひずみによって材料表面に形成される突起物である力 このヒロックが発生しても、接 合特性に悪影響を与え、接合信頼性が低下する。さらに、ニッケル組成割合が 0. 5a t. %未満であると、 ITOとの直接接合時の接合抵抗も高くなり実用的でない。このデ インプルとヒロックとは、熱による A1系合金配線材料の塑性変形である点で共通する ものであり、総称してストレスマイグレーションと呼ばれる現象で、これらの欠陥の発生 レベルにより A1系合金配線材料の耐熱性を判断することができる。
[0022] そして、本発明のように、アルミニウムに、ニッケルに加えてボロンを含有させると、 n +— Siなどの半導体層と直接接合をした際に、接合界面における A1と Siとの相互拡 散を効果的に防止する作用を奏する。また、このボロンは、ニッケルと同様に耐熱性 にも作用する。ボロンの組成割合は、 l lat.%を超えると配線回路自体の比抵抗が高 くなり実用的でなくなる。逆に、 0. 05at.%未満であると、 A1と Siとの相互拡散の防止 能力が低下し、半導体層との直接接合ができなくなる。具体的には、半導体層と A1 —Ni— B系合金配線材料を直接接合し、所定温度で熱処理した際に、接合部分に おいて A1と Siとの相互拡散が生じ易くなるのである。さらに加えて、ディンプルも発生 し易い傾向となる。そのため、ボロンの組成割合は上記(式 2)を満足する必要がある
[0023] また、本発明に係る A1系合金配線材料は、半導体層と直接接合する場合、 240°C を超える温度の熱プロセスにおいても、その接合界面で A1と Siとの相互拡散を確実 に防止するためには、上記(式 3)を満足することが望ましい。そして、 A1系合金配線 材料自体の比抵抗を 10 Ω cm以下に確実に維持するためには、上記(式 4)を満 足することが望ましい。
[0024] さらに、上記(式 1)〜(式 5)式を満足する範囲のうち、ニッケル組成割合が 4at.% 以上で、ボロン組成割合が 0. 8at. %以下であると、上述したディンプルの発生が極 力抑制された Al系合金配線材料となり、半導体層や透明電極層に対しても直接接 合をした際の接合信頼性を向上できる。より具体的には、 350°C、 30分間の熱処理 を行った場合、 A1系合金配線材料の表面に生じるディンプルの発生率を 1. 6%以 下に抑制できるため、より好ましいものとなる。
[0025] 上述したように、ディンプルとは A1系合金配線材料を熱処理した際に配線材料表 面に形成される微小な窪み状の欠陥であるが、本発明者等は、 A1系合金配線材料 に対し所定の熱処理を行った後、その材料表面を観察し、発生したディンプル (0. 3 〜0· δ πι)を調査した。このディンプル調査において、観察視野内に発生した全デ インプルの面積を求め、観察視野におけるディンプルの占める面積比率をディンプ ノレ発生率として、配線材料の耐熱特性を調べた結果、上記(式 1)〜(式 5)を満足す る範囲のうち、ニッケル組成割合が 4at.%以上であり、ボロン組成割合が 0. 80at. % 以下であると 350°C、 30分間の熱処理を行った場合でも、ディンプルの発生率を 1. 6%以下に抑制できる。このディンプルは極力発生しないことが望ましいものであり、 このディンプル発生率が低いと、表示デバイスの素子製造工程における熱プロセスを 通過しても、半導体層や透明電極層との直接接合した接合界面において、接合欠陥 などを発生しにくくなり、接合信頼性が向上するため、より好ましいものとなる。また、 ディンプル発生率が 1. 6%以下に抑制されたものであると、半導体層と直接接合し た構造を備える TFTにおけるオン オフ比(on/off比)が安定し、接続信頼性が向 上するものと考えられる。尚、本発明に係る A1系合金配線材料は、半導体層や透明 電極層との直接接合に好適なものではある力 例えば、半導体層側に Moなどの高 融点金属材料からなるキャップ層を設けた素子構造において適用することを妨げるも のではない。
[0026] さらに、本発明に係る A1系合金配線材料は、上記(式 1)〜(式 5)を満足する範囲 のうち、ニッケルの組成割合が 4at.%〜6at.%で、ボロンの組成割合が 0. 2at. %〜 0. 8at. %であると、半導体層と直接接合させる際に、特に好適な A1系合金配線材料 となる。
[0027] A1系合金配線材料力もなる配線回路層と半導体層とを直接接合した際には、接合 界面において A1と Siとの拡散現象が生じることが知られている力 S、本発明者等の研 究によると、この相互拡散の影響によって、直接接合した際の接合界面に変質層が 形成される現象を確認したのである。この変質層とは、 A1系合金配線材料と半導体 層とを直接接合し、所定の熱処理を加えた後、 A1系合金配線材料を剥離して、その 半導体層表面を観察した際に、半導体層表面に認められる黒点となった変質部分、 或いは半導体層表面の変色や荒れなどの状態(本明細書においては、このような半 導体層表面を変質層と称する)のことをいう。この変質層は、熱処理温度が高くなるほ ど発生し易くなる傾向があり、実用上 200°C以上の熱処理(30分間)で発生しないこ とが望ましい。また、 CVDにより絶縁層を形成する際に加わる熱履歴を考慮すると、 2 40°C〜300°Cの高温域においても変質層が生じないことが望ましぐさらに、素子の 製造工程における各熱履歴の加わる製造条件の適用範囲に余裕を持たせるために は、 330°C以上での変質層の発生が抑制されていることが望ましいものと考えられる 。そこで、このような変質層を生じない組成範囲を検討した結果、上記(1)〜(5)式を 満足する範囲のうち、ニッケル組成割合が 4at.%〜6at.%で、ボロンの組成割合が 0 . 2at.%〜0. 8at. %であると、 330°C、 30分間の熱処理においても変質層の形成が 抑制される傾向を見出した。そして、この組成範囲では配線材料自体の比抵抗値も 5 a Ω cm以下となる。つまり、このような組成であれば、上述したようにディンプルの発 生が極めて抑制され、比抵抗値も低いものとなるので、半導体層との直接接合を実 現するための A1系合金配線材料として、実用上、非常に好適なものとなる。
実施例
[0028] 続いて、本発明の実施例について説明する。この実施例では、 A1— Ni— B系合金層 として、 A1— 5· Oat. %Ni-0. 4at.%B膜(比抵抗値 4· 2 μ Q cm)を用いて、 Siによ る半導体層と直接接合させて、その素子の特性評価を行った。 Siと直接接合する際 には、 Siと Al— Ni— B合金層との間に、 Al— Ni— B— N合金層が形成された状態に なるように制御して行った。
[0029] まず、窒素含有量の異なる Al— Ni— B系合金層についての作製方法について説 明する。評価サンプルについては、次にようにして作製した。まず、ガラス基板上に、 前記組成の A1合金ターゲットを用い、スパッタリング条件、投入電力 3. OWatt/cm2 、アルゴンガス流量 100ccm、アルゴン圧力 0. 5Paとしてマグネトロン'スパッタリング 装置を用い、厚み 1000 の八1—^— 8系合金層を形成した。このスパッタリング時 には、アルゴンガス中に窒素ガスを導入し、全ガス実流量(アルゴンガス実流量 +窒 素実流量)に対し窒素実流量が 0%〜40%になるように調整して、 A1— Ni— B系合 金層表面の窒素含有量を変化させた各種サンプルを作製した。
[0030] Al— Ni— B系合金層の窒素含有量は、 1018atoms/cm3以上の場合、二次ィォ ン質量分析装置 (Dynamic SIMS)により測定した。二次イオン質量分析装置 (Dyn amic SIMS)により、 Al— Ni— B系合金層の窒素を測定すると、図 2に示すような分 析結果が得られる。図 2では、窒素を含有させた A1— Ni— B合金配線膜を二次ィォ ン質量分析装置により深さ方向へ、窒素を分析した結果を概念的に示している。例 えば、膜に窒素が含有されている場合には、窒素を含有した厚みに相当する部分で 窒素が検出される。図 2で示した窒素含有量は、窒素として検出された部分の平均 値を示している。また、この平均値の窒素濃度は、ある程度の一定な測定値が検出さ れた測定深さの範囲における平均値を示すものである。具体的には、図 2に示す 2. 5 X 1018 (実線データ)の場合、測定深さ 0〜; 18nm範囲の測定値は除き、 18nm〜7 5nm範囲の測定値から平均値を求めた。
[0031] また、窒素含有量が 1018atomS/cm3以下の場合は、 X線光電子分光分析装置( XPS)により Si半導体層の深さ方向に 50〜; !OOA程度スパッタを行い、その後、その スパッタ部分を X線光電子分光分析装置 (XPS)により測定し、窒素含有量が既知の サンプル測定の結果より得られた窒素検出ピークの積分強度と比較して、その窒素 含有量を算出した。尚、この窒素含有量の測定は、二次イオン質量分析装置、 X線 光電子分光分析装置のどちらでも測定可能であるが、二次イオン質量分析装置の検 出限界付近の含有量の場合、その測定値の信頼性の観点から X線光電子分光分析 装置による測定を行う場合がある。
[0032] また、窒素含有量の異なる各 Al— Ni— B系合金層の比抵抗値は、 300°C、 30分 間の熱処理を行った後、 4端子抵抗測定装置により測定した。
[0033] 次に、窒素含有量の異なる各 Al— Ni— B合金層と半導体層との接合性について 調査した結果について説明する。ここでは、半導体層と接合した際の拡散耐熱性と 素子のスイッチング特性(on/off比)を調べた。 [0034] 拡散耐熱性評価は、ガラス基板(コーユング社製: # 1737)上に n+— Si半導体層( 300 A)を CVDにより形成し、その半導体層上に Al— Ni— B系合金層(2000 A)を 形成したものを評価サンプルとした。この時、 n+— Si層上に Al— Ni— B— N合金層 を 100A厚で成膜し、その上に Al— Ni— B合金層を 1900A厚で成膜するようにし た。 Al— Ni— B— N合金層の成膜は、スパッタリング条件(マグネトロン'スパッタリン グ装置、投入電力 3· OWatt/cm2,アルゴンガス流量 100sccm、アルゴン圧力 0· 5Pa)として、このスパッタリング時には、アルゴンガス中に窒素ガスを導入し、全ガス 実流量 (アルゴンガス実流量 +窒素実流量)に対し窒素実流量が 0%〜40%の範囲 で調整した。また、その上に成膜した Al— Ni— B合金層は、窒素ガスを導入すること なく上記条件で行った。
[0035] そして、各評価サンプルを 200〜380°Cの温度域で 10°C毎に熱処理温度を設定 し、窒素ガス雰囲気中 30分間の熱処理を行った後、リン酸系 A1エッチング液(関東 化学 (株)社製、液温 32°Cの A1混酸エツチャント/組成 (容量比)リン酸:蓚酸:酢酸: 水 = 16: 1: 2: 1)に 10分間浸漬させることにより、上層に形成した各組成膜のみを溶 解し、半導体層を露出させた。この露出した半導体層表面を光学顕微鏡(200倍)に て観察し、 Siと A1との相互拡散が生じて!/、るかを調べた。
[0036] 図 3及び図 4には、露出した半導体層表面における、代表的な光学顕微鏡写真を 示す。図 3は相互拡散が全く認められない半導体層表面であり(評価結果:〇)、図 4 は相互拡散の痕跡(写真中の黒点)が認められたものである(評価結果: X )。そして 、各熱処理温度の中で、評価結果が〇の最高温度を、その評価サンプルの拡散耐 熱性温度とした。尚、この図 3及び図 4に示した観察写真は、拡散耐熱性を評価する 際に参考としたイメージ写真であり、本第一実施例の具体的なサンプル結果を示す ものではない。
[0037] 次に、 TFT素子におけるスイッチング特性としては、 on/off比を測定することによ つて行った。評価サンプルは、次の手順に従って作製した。
[0038] まず、ガラス基板(コーユング社製: # 1737)上に、厚み 3000 の八1—^— 8合 金層となる A1系合金膜を形成した。スパッタリング条件は、基板加熱温度 100°C、 D CPowerl000W (3. lWatt/cm2)、アルゴンガス流量 100sccm、アルゴン圧力 0 . 5Paで行った。
[0039] 続いて、フォトリソグラフィにより A1系合金膜をエッチングして、ゲート配線幅 50 μ m を形成し、ゲート電極幅 15 111を形成した(図 5参照)。フォトリソグラフィ条件は、 A1 系合金膜表面にレジスト (TFR- 970:東京応化工業 (株)社製/塗布条件:スピンコ 一ター 3000rpm、ベーキング後レジスト厚 1 m目標)を被覆し、プリべ一キング処 理(110°C、 1. 5分間)を行い、所定のパターンフィルムを配置して露光処理(マスク アナイラ一 MA— 20 :ミカサ(株)社製/露光条件 15mj/cm2)を行った。続いて、 濃度 2· 38%、液温 23°Cのテトラメチルアンモニゥムハイド口オキサイドを含むアル力 リ現像液(以下、 TMAH現像液と略す)で現像処理をし、現像処理後、ホットプレート によりポストべ一キング処理(110°C、 3分間)を行い、リン酸系混酸エッチング液(関 東化学 (株)社製/組成 リン酸:硝酸:酢酸:水 = 16: 1: 2: 1 (容量比) )により回路 形成を行った。このような条件で回路形成を行うことで、回路のテーパー角が 45° と なるように制卸した。
[0040] エッチング処理後、剥離液(ST106 :東京応化工業 (株)社製)によりレジストの除去 を行い、ゲート配線回路の形成後、 RFスパッタリングにより、絶縁層となる SiNxを厚 さ 4200 Aで成膜した。成膜条件は、基板加熱温度 350°C、 RF Powerl000W (3 . 1 Watt/cm2) ,アルゴンガス流量 90sccm、窒素ガス流量 10sccm、圧力 0. 5Pa とした。さらに、この絶縁層の上に、 CVDにより、アモルファスの i— Si、リンドープの n +— Siを随時成膜した。 i Si (ノンドープ Si膜)の成膜条件は、基板加熱温度 200°C 、 RF PowerlOOW (0. 31 Watt/cm2) , SiH流量(10%アルゴンガス希釈) 300
4
sccmで、厚み 2000 Aとした。窒素添加 n+ Si (P (リン)ドープ膜)の成膜条件は、 基板加熱温度 200°C、 RF PowerlOOW (0. 31 Watt/cm2) , SiH流量(8%アル
4
ゴンガス希釈) 300sccm、 P含有ガス流量(8%アルゴンガス希釈) 50sccmにして厚 み 500 Aの n+ Si層を形成した。
[0041] その後、 n+— Si層上に、始めにガラス基板上に成膜したものと同じ組成の A1系合 金膜を厚み 2000Aで成膜した。この時、 n+— Si層上に Al— Ni— B— N合金層を 1 ΟθΑ厚で成膜し、その上に Al— Ni— B合金層を 1900A厚で成膜するようにした。 A 1— Ni— B— N合金層の成膜条件は、このスパッタリング時には、アルゴンガス中に窒 素ガスを導入し、全ガス実流量 (アルゴンガス実流量 +窒素実流量)に対し窒素実流 量が 0%〜40%の範囲で調整した。また、その上に成膜した Al— Ni— B合金層は、 上記ゲート配線の場合と同じ条件で行った。成膜条件は、上記ゲート配線と同条件 で fiつた。
[0042] そして、フォトリソグラフィによりソース配線、ドレイン配線、及び電極を形成した。こ のフォトリソグラフィ条件は、上記ゲート配線と同じである。この時、 A1系合金膜のエツ チング後は、n+— Si層のドライエッチングを行った。ドライエッチング条件は、 RF P ower50W、 SFガス流量 30sccm、圧力 lOPaで行った。その後、剥離液(ST106 :
6
東京応化工業 (株)社製)によりレジストの除去を行った。
[0043] 次に、パシベーシヨンとなる SiNx絶縁膜を 2500A厚さで成膜し、ゲート、ソース、ド レインの各電極部分のみ、ドライエッチングにより露出させた。ドライエッチング条件 は、 RF Power 100W, SFガス流量 30sccm、 Oガス流量 5sccm、圧力 lOPaで
6 2
行った。上記条件により、チャネル幅 25 m、チャネル長 5 mのトランジスタを形成 した(図 5参照)。
[0044] 以上のようにして作成した評価サンプルについて、 3端子法により素子のスィッチン グ特性の on/off比を測定した。測定機はアジレント'テクノロジ一社製の B1500A 装置を用い、 Vg— Id測定を行った。そして、 Vg=— 10V、 + 10Vでの Id値力も on /off比を計算した。
[0045] 表 1に、上記した窒素含有量、比抵抗、拡散耐熱性 on/off比につ!/、ての評価結 果を示す。
[0046] [表 1]
窒素 窒素含有量 比抵抗 拡散耐熱性 On/Off比 (%) Atoms/ cm3 Ω c m
0 ―
4.2X10一6 2 3 0
2.13X10°
5 2 5 0
2.0X1017 5.5X10— 5 1.03X105
1 0 3 0 0
2.5X1018 8.9X10— 4 1.02X106
1 1 3 5 0
6.9X1018 4.0X10—3 1.50X106
1 2 3 5 0
3.2X10 2.1X10-1 1.05X106
1 3 3 5 0
5.7X1020 4.1X10 l 1.28X106
1 4 91 1.0 3 5 0
1.3X10 3.60X106
1 5 91 3.4 3 5 0
5.3X10 2.30X106
1 8 91 7.7 3 6 0
7.7X10 5.30X106
2 0 21 11.5 3 6 0
8.1X10 6.40X105
3 0 43.5 3 6 0
9.0X1021 5.50X104
3 5 67.2 3 6 0
9.8X1021 4.30X104
4 0 96.2 3 8 0
2.1X1022 5.90X104
[0047] 表 1に示すように、スパッタリング時の窒素導入量(アルゴンガス実流量に対する窒 素実流量)が 5%〜20%の時、拡散耐熱性が 250°C以上であり、 on/off比が 5桁( on電流 10_5A、 off電流 10_ΐαΑのときの on/off比は 5桁)以上となることが判明し た。また、窒素導入量が 10%〜; 18%であると、拡散耐熱性が 300°C以上で、 on/of f比が 6桁を実現できることが判った。この結果より、 A1系合金配線材料の窒素含有 量は、 2X1017atoms/cm3〜8X1021atoms/cm3であることが好ましぐ 2. 5X1 018atoms/cm3〜7. 7 X 1021atoms/cm3であればより好ましいことが判った。
[0048] 参考例 1:この参考例 1では、表 2に示す参考実施例及び参考比較例の各組成の A1 系合金配線材料にっレ、てスパッタリングにより膜形成し、その膜の特性評価を行った 。スパッタリングターゲットは、アルミニウムに、表 2記載の各組成の金属を混合して、 真空中で溶解攪拌した後、不活性ガス雰囲気中で铸造した後、得られたインゴットを 圧延、成型加工をし、スパッタに供する表面を平面加工して製造したものを用いた。 表 2記載の各組成における膜の特性評価は、半導体層と直接接合した際の Si拡散 耐熱性、膜の比抵抗、膜の 350°C耐熱性、透明電極層と直接接合した際の ITO接 合性及び IZO接合性について行った。その結果を表 2及び表 3に示す。尚、比較とし て、 Al— Ni— B合金以外の組成についても評価した。
[表 2]
組 成 比抵抗 at% μ Ω cm 参考実施例 1 Al-3.0Ni-0.50B 4. 13 参考実施例 2 Al-3.0Ni-0.68B 4. 18 参考実施例 3 Al-4.7Ni-0.13B 4. 16 参考実施例 4 Al-4.7Ni-0.50B 4. 35 参考実施例 5 Al-4.7Ni-0.68B 4. 41 参考実施例 6 Al-4.7Ni-0.86B 4. 62 参考実施例 7 Al-4.7Ni-l.02B 4. 64 参考実施例 8 Al-4.7Ni-l.46B 4. 96 参考実施例 9 Al-l.0Ni-l.00B 3. 94 参考実施例 10 Al-l.0Ni-5.00B 7. 05 参考実施例 11 Al-l.0Ni-9.00B 9. 86 参考実施例 12 Al-5.0Ni-3.00B 6. 63 参考実施例 13 Al-5.0Ni-5.00B 8. 19 参考実施例 14 Al-8.0Ni-2.00B 8. 05 参考比較例 1 A1 3. 01 参考比較例 2 A1-0.3C 3. 32 参考比較例 3 Al-0.2Si 3. 15 参考比較例 4 Al-3.0Ni 3. 70 参考比較例 5 Al-4.8Ni 4. 12 参考比較例 6 Al-11.0Ni 10. 60 参考比較例 7 Al-0.3Ni-5.00B 3. 58 参考比較例 8 Al-l.0Ni-0.50B 3. 55 参考比較例 9 Al-l.0Ni-12.00B 12. 50 参考比較例 10 Al-5.0Ni-0.01B 4. 03 参考比較例 11 Al-5.0Ni-6.00B 10. 20 参考比較例 12 Al-8.0Ni-3.00B 10. 40 参考比較例 13 Al-0.2Si-0.68B 3. 48 参考比較例 14 Al-3.0Ni-0.30C 3. 76 参考比較例 15 Al-3.0Ni-0.30C-0.2Si 3. 84 3] Si拡散 350°C ITO IZO 耐熱性 耐熱性 接合性 接合性 X
参考実施例 1 2 4 0 〇 〇 〇 参考実施例 2 2 4 0 〇 〇 〇 参考実施例 3 3 0 0 〇 〇 〇 参考実施例 4 3 3 0 〇 〇 〇 参考実施例 5 3 3 0 〇 〇 〇 参考実施例 6 3 3 0 〇 〇 〇 参考実施例 7 3 3 0 〇 〇 〇 参考実施例 8 3 3 0 〇 〇 〇 参考実施例 9 2 4 0 〇 〇 〇 参考実施例 10 2 6 0 〇 〇 〇 参考実施例 11 3 0 0 〇 〇 〇 参考実施例 12 3 3 0 〇 〇 〇 参考実施例 13 3 3 0 〇 〇 〇 参考実施例 14 3 3 0 〇 〇 〇 参考比較例 1 1 7 0 X X X 参考比較例 2 1 7 0 X X X 参考比較例 3 1 8 0 X X X 参考比較例 4 2 0 0 X 〇 〇 参考比較例 5 2 5 0 X 〇 〇 参考比較例 6 3 0 0 X 〇 〇 参考比較例 7 2 3 0 X X X 参考比較例 8 2 0 0 X 〇 〇 参考比較例 9 3 3 0 〇 〇 〇 参考比較例 10 1 9 0 X 〇 〇 参考比較例 11 3 3 0 〇 〇 〇 参考比較例 12 3 3 0 〇 〇 〇 参考比較例 13 1 8 0 X X X 参考比較例 14 2 0 0 X 〇 〇 参考比較例 15 2 2 0 X 〇 〇 下に各特性評価の測定条件について説明する。 Si拡散耐熱性:この特性の評価サンプルには、ガラス基板上に n+— Si半導体層(30 OA)を CVDにより形成し、その半導体層上にスパッタリング (マグネトロン'スパッタリ ング装置、投入電力 3· OWatt/cm2,アルゴンガス流量 100sccm、アルゴン圧力 0 . 5Pa)により、表 2に示す各組成膜(2000 A)を形成したものを用いた。そして、評 価サンプルを 150〜350°Cの温度域で 10°C毎に熱処理温度を設定し、窒素ガス雰 囲気中 30分間の熱処理を行った後、リン酸系 A1エッチング液(関東化学 (株)社製、 液温 32°Cの A1混酸エツチャント/組成(容量比)リン酸:蓚酸:酢酸:水 = 16: 1: 2: 1 )に 10分間浸漬させることにより、上層に形成した各組成膜のみを溶解し、半導体層 を露出させた。この露出した半導体層表面を光学顕微鏡(200倍)にて観察し、 Siと A1との相互拡散が生じているかを調べた。尚、この拡散耐熱性の評価は、上記実施 例で説明した図 3及び図 4を参照して行ったものである。
[0052] 膜の比抵抗:表 2記載の各組成膜の比抵抗値は、ガラス基板上にスパッタリング (条 件は上記と同様)により単膜 (厚み約 0. 3 111)を形成し、窒素ガス雰囲気中、 300°C 、 30分間の熱処理を行った後、 4端子抵抗測定装置により測定した。
[0053] 350°C耐熱性:表 2記載の各組成膜の耐熱性は、ガラス基板上にスパッタリング (条 件は上記と同様)により単膜 (厚み約 0. 3 111)を形成し、窒素ガス雰囲気中、 100°C 〜400°Cの温度範囲で、 30分間の熱処理後、走査型電子顕微鏡(SEM : 1万倍)で 膜表面を観察して行った。また、この SEM観察は、各観察試料について観察範囲 1 0〃m X 8 mを 5視野確認するようにした。そして、 350°C耐熱性の評価は、 350°C 、 30分間の熱処理において、観察表面に径 0. 1 m以上の突起物(ヒロック)が確認 されたか、或いは観察表面に窪み状部分 (径 0· 3 ^ 111-0. 5 111)となったディンプ ノレが 4個以上確認されたものを Xとした。突起物が全く無ぐディンプルが 3個以下の ものを〇とした。
[0054] ITO接合性:この ITO接合性は、図 6の概略斜視図に示すようにガラス基板上に ITO
(In O - 10wt%SnO )電極層(1000 A厚、回路幅 10 m)を形成し、その上に各
2 3 2
組成膜層(2000 A厚、回路幅 10 m)をクロスするように形成した試験サンプル (ケ ルビン素子)を用いて評価した。
[0055] この試験サンプルの作製は、まず、ガラス基板上に、前記組成の各 A1系合金ター ゲットを用い、上記スパッタリング条件にて、厚み 2000 Aの A1系合金膜を形成した。 このときのスパッタリング時の基板温度については、表 6に示すように設定して各成膜 を行った。そして、各 A1系合金膜表面にレジスト (TFR— 970 :東京応化工業 (株)) を被覆し、 10 πι幅回路形成用パターンフィルムを配置して露光処理をし、濃度 2. 38 %、液温 23°Cのテトラメチルアンモニゥムハイド口オキサイドを含むアルカリ現像液 (以下、 TMAH現像液と略す)で現像処理をした。現像処理後、リン酸系混酸エッチ ング液(関東化学 (株)社製)により回路形成を行い、ジメチルスルフォキシド (以下 D MSOと略す)剥離液によりレジストの除去を行って、 10 μ m幅の A1系合金膜回路を 形成した。
[0056] そして、 10 μ m幅の A1系合金膜回路を形成した基板を、純水洗浄、乾燥処理を行 い、その表面に SiNxの絶縁層(厚み 4200 A)を形成した。この絶縁層の成膜は、ス パッタリング装置を用い、投入電力 RF3. OWatt/cm2,アルゴンガス流量 90sccm 、窒素ガス流量 10sccm、圧力 0. 5Pa、基板温度 300°Cのスパッタ条件により行った
[0057] 続いて、絶縁層表面にポジ型レジスト (東京応化工業 (株)社製: TFR— 970)を被 覆し、 Ι Ο , πι Χ ΙΟ , m角のコンタクトホール開口用パターンフィルムを配置して露光 処理をし、 TMAH現像液により現像処理をした。そして、 CFのドライエッチングガス
4
を用いて、コンタクトホールを形成した。コンタクトホール形成条件は、 CFガス流量 5
4
Osccm、酸素ガス流量 5sccm、圧力 4· 0Pa、出力 150Wとした。
[0058] 上記した DMSO剥離液によりレジストの剥離処理を行った。そして、イソプロピルァ ルコールを用いて残存剥離液を除去した後、水洗、乾燥処理を行った。このレジスト の剥離処理が終了した各サンプルに対し、 ITOターゲット(組成 In O - 10wt%Sn
2 3
O )を用いて、コンタクトホール内及びその周囲に ITOの透明電極層を形成した。透
2
明電極層の形成は、スパッタリング (基板温度 70°C、投入電力 1 · 8Watt/cm2、ァ ノレゴンガス流量 80sccm、酸素ガス流量 0· 7sccm、圧力 0· 37Pa)を行い、厚み 10 00 Aの ITO膜を形成した。
[0059] この ITO膜表面にレジスト (TFR— 970 :東京応化工業 (株))を被覆し、パターンフ イルムを配置して露光処理をし、 TMAH現像液で現像処理をし、しゅう酸系混酸エツ チング液(関東化学 (株)社製: ITO05N)により 10 m幅回路の形成を行った。 ITO 膜回路形成後、 DMSO剥離液によりレジストを除去した。
[0060] 以上のような作製方法により得られた各試験サンプルを、大気雰囲気中、 250°C、
30分間の熱処理を行った後、図 6に示す試験サンプルの矢印部分の端子部から連 続通電(3mA)をして抵抗を測定した。このときの抵抗測定条件は、 85°Cの大気雰 囲気中における、いわゆる寿命加速試験条件で行った。そして、この寿命加速試験 条件の下、各試験サンプルにおいて、測定開始における初期抵抗値の 100倍以上 の抵抗値に変化した時間(故障時間)を調べた。この寿命加速試験条件で 250時間 を超えても故障しな力 た試験サンプルを評価〇とした。また、寿命加速試験条件の 下、 250時間以下で故障した試験サンプルを評価 Xとした。尚、上記した寿命加速 試験については、 JIS C 5003 : 1974、参照文献 (著書名「信頼性加速試験の効 率的な進め方とその実際」:鹿沼陽次 編著、発行所 日本テクノセンター (株))に準 拠したものである。
[0061] IZO接合性:この IZO接合性は、上記 IZO接合性評価と同様に、 IZO (In O 10.
2 3
7wt%ZnO: 1000 A厚、回路幅 50 μ m)電極層の上に、各 A1系合金膜層(2000 A 厚、回路幅 50 a m)をクロスするように形成した試験サンプル (ケルビン素子)を用い て評価した。試験サンプルの作製条件は、上記 ITO接合性と同様とした。この試験サ ンプルを、上記 ITO接合性の場合と同様な寿命加速試験条件により抵抗を測定し、 その寿命加速試験結果より IZO接合性評価を行った。評価基準も上記 ITO接合性と 同様にした。
[0062] 表 2に示すように、本発明に関する各参考実施例の A1— Ni— B合金配線材料では 、比抵抗値が 10 Ω cm以下であり、本発明の組成範囲を外れる参考比較例 9、参 考比較例 11、参考比較例 12については、 10 μ Ω cmを超える比抵抗値であった。ま た、表 3に示すように、各参考実施例の A1— Ni— B合金配線材料では、 Si拡散耐熱 性は 240°C以上あり、 330°Cの高温においても、接合界面に A1と Siとの相互拡散が 認められないものが存在した。そして、表 3に示すように、各参考実施例の A1— Ni— B合金配線材料では、 ITO及び IZOの透明電極層との直接接合も可能であることが 確認された。尚、この Si拡散耐熱性は、実用上 200°C以上の熱処理で発生しないこ とが望ましぐ CVDにより絶縁層を形成する際に加わる熱履歴を考慮すると、 240°C 〜300°Cの高温域においても変質層が生じないことが望ましい。さらに、素子の製造 工程における各熱履歴の加わる製造条件の適用範囲に余裕を持たせるためには、 3 30°C以上での Si拡散耐熱性を備えることが望ましいものである。尚、表 3で示す Si拡 散耐熱性評価においては、直接接合した半導体層(n+— Si)に窒素が含有されたも のであるために、高い耐熱温度値となったものである。また、 n+— Siの半導体層にお ける窒素の含有は、 CVDにより成膜する際に、水素で希釈した SiHガス、 P含有ガ
4
スの導入に加えて、 Nガスを添加することによって行い、この表 3の場合は 4 X 1019a
2
toms/cm3の窒素が n+— Siに含有されたものである。
[0063] 一方、参考比較例;!〜 3の場合、比抵抗以外の特性がすべて実用上不十分である ことが確認された。また、 Al— Ni合金の参考比較例 4及び 5では、透明電極層との接 合特性は良好なものの、耐熱性及び Si拡散耐熱性にお!/、て不十分な特性であり、 N iの含有量が高い参考比較例 6では、膜比抵抗が 10 Ω cmを超えるものとなった。 そして、本発明の組成範囲外となる参考比較例 7〜; 12の場合、 ITOとの直接接合に 問題があったり(参考比較例 7)、 Si拡散耐熱性が 200°C以下であったり(参考比較 例 8、参考比較例 10)、比抵抗値が 10 Ω cmを超え(参考比較例 9、参考比較例 1 1、参考比較例 12)、総合的に満足できる膜特性とは言えなかった。また、ニッケルの 代わりにシリコン(Si)を含有した参考比較例 13では、 Si拡散耐熱性ばかりでなぐ透 明電極層との接合性も悪くなる結果となった。さらに、本願出願人の提案した従来の A1— Ni— C合金配線材料 (参考比較例 14、参考比較例 15)では、透明電極層との 接合性は問題な!/、ものの、耐熱性及び Si拡散耐熱性にお!/、て不十分な特性である ことが確認された。
[0064] 参考例 2:この参考例 2にお!/、ては、本発明に係る Al— Ni— B合金配線材料の組成 範囲に関し、膜の耐熱性及び半導体層の接合特性との関係を更に詳細に検討した 結果について説明する。表 4〜表 6には、ニッケル含有量及びボロン含有量を変化さ せた際の、膜の比抵抗値、膜のディンプル発生率、半導体層と直接接合した際の変 質層の発生状況及び半導体層表面の粗さ変化量を調べた結果を示している。
[0065] [表 4] 組 成 比抵抗 ^インフ'ル発生率 組成 比抵抗 ィンフ'ル発生率 at% μ Ω cm % at% μ Q cm %i B 350で 400V Ni B 350*C 400V0 0.30 4.07 1.61 2.03 5.0 0.05 4.03 0.53 1.420 0.40 4.11 1.63 1.63 5.0 0.10 4.07 0.57 1.600 0.50 4.13 1.70 1.67 5.0 0.20 4.53 0.67 1.620 0.60 4.18 1.67 2.11 5.0 0.30 4.50 1.27 1.500 0.80 4.22 1.75 3.55 5.0 0.40 4.55 1.52 1.730 1.00 4.28 1.71 4.15 5.0 0.50 4.58 1.56 1.790 1.80 4.35 1.87 4.97 5.0 0.60 4.62 1.50 1.730 0.05 3.85 1.21 1.72 5.0 0.80 4.67 1.60 1.850 0.10 3.92 1.20 1.65 5.0 1.00 4.73 1.72 1.940 0.20 4.01 1.22 1.97 6.0 0.05 4.30 0.60 1.320 0.30 4.06 1.24 1.57 6.0 0.10 4.38 0.63 1.420 0.40 4.22 1.21 1.60 6.0 0.20 4.52 0.67 1.480 0.50 4.41 1.32 1.60 6.0 0.30 4.65 0.77 1.200 0.60 4.31 1.30 1.63 6.0 0.40 4.67 0.80 1.150 0.80 4.50 1.60 1.80 6.0 0.50 4.69 0.80 1.230 1.00 4.52 1.73 1.90 6.0 0.60 4.74 0.98 1.33
6.0 0.80 4.98 1.42 1.65
6.0 1.00 5.05 1.70 1.88
7.0 0.30 5.19 0.87 1.23
8.0 0.50 5.50 1.22 1.57
8.0 1.00 5.70 1.75 1.95 5]
0067
Figure imgf000024_0001
組成 粗さ変化量 組成 粗さ変化量
at% at%
Ni B 300で 330で 350で Ni B 300で 330で 350¾
3.0 0.30 1.59 1.99 3.52 5.0 0.05 1.14 0.98 1.58
3.0 0.40 2.21 2.11 3.05 5.0 0.10 1.12 1.02 1.32
3.0 0.50 2.33 2.15 2.45 5.0 0.20 1.01 1.10 1.38
3.0 0.60 2.14 1.92 2.32 5.0 0.30 1.03 1.08 1.35
3.0 0.80 1.88 1.95 2.06 5.0 0.40 1.14 0.92 1.20
3.0 1.00 1.65 1.76 1.82 5.0 0.50 1.37 1.42 1.50
3.0 1.80 1.30 1.44 1.58 5.0 0.60 1.04 0.99 0.96
4.0 0.05 1.55 1.72 1.85 5.0 0.80 1.01 1.01 1.06
4.0 0.10 1.29 1.49 1.72 5.0 1.00 0.99 0.97 1.12
4.0 0.20 1.13 1.43 1.48 6.0 0.05 1.02 0.95 1.03
4.0 0.30 1.41 1.46 1.88 6.0 0.10 1.00 1.08 1.08
4.0 0.40 1.15 1.36 1.46 6.0 0.20 1.05 0.98 0.94
4.0 0.50 1.30 1.47 1.58 6.0 0.30 1.06 0.91 0.92
4.0 0.60 1.12 1.24 1.32 6.0 0.40 0.95 0.93 1.02
4.0 0.80 1.11 1.22 1.28 6.0 0.50 1.30 1.20 0.92
4.0 1.00 1.02 1.10 1.20 6.0 0.60 0.94 0.93 1.18
6.0 0.80 0.91 1.03 1.04
6.0 1.00 0.95 0.95 1.10
7.0 0.30 1.06 1.12 1.11
8.0 0.50 1.02 0.92 1.08
8.0 1.00 0.91 0.96 1.04
表 4には、各組成における膜の比抵抗値及びディンプル発生率を示している。膜の 比抵抗値の測定条件は、上記参考例 1と同様である。また、ディンプル発生率は、上 記参考例 1における耐熱性評価と同様の条件で、熱処理温度 350°C、 400°Cにした 各評価サンプルを SEM観察して得られた結果である。但し、この参考例 2における 耐熱性評価は、上記参考例 1の耐熱性評価よりも、さらに詳細な検討をするため、デ インプルの発生率を調べた。このディンプル発生率は、観察表面に窪み状部分 (径 0 . 3 111〜0. 5 m)となったディンプルを検出し、その大きさ及び個数からディンプ ルの占める面積を算出し、観察面積に対する割合を求めた面積比率で代替した値 である。このディンプル面積の計算については、観察表面に存在する窪み状部分を 画像解析により二値化して、その窪み状部分を円に近似して行った。尚、このディン プルの深さは、幾つかのディンプルを測定したところ、約 100Aであった。また、表 4 に示すディンプル発生率の値は、各観察試料につ!、ての観察範囲 10 m X 8 m の 5視野における平均値を示している。 [0069] 表 4の比抵抗値の結果より、ニッケルが 6. Oat. %以下で、ボロンが 0. 80at. %以下 であると、 5 μ Ω cm以下となることが判明した。また、表 4のディンプル発生率の結果 力、ら判るように、熱処理温度が高いほどその発生率が大きくなる傾向があり、また、二 ッケルが多いほど発生率が小さくなる傾向が認められた。そして、ボロンが増加すると 、ディンプルの発生率が大きくなる傾向が認められた。この表 4の結果より、 350°C、 3 0分間の熱処理において、ディンプル発生率を 1. 6 %以下とするためには、ニッケノレ が 4. Oat. %以上で、ボロンが 0. 80at. %以下であればよいことが判明した。
[0070] 次に、表 5に示す接合界面における変質層の発生調査の結果について説明する。
この変質層調査は、上記参考例 1で説明した Si拡散耐熱性の評価と同様な条件で 作成した評価サンプルを用いた。具体的には、ガラス基板上に n+— Si半導体層(30 O A)を CVDにより形成し、その半導体層上にスパッタリング (マグネトロン'スパッタリ ング装置、投入電力 3· OWatt/cm2,アルゴンガス流量 100sccm、アルゴン圧力 0 . 5Pa)により、表 4記載の各組成の Al— Ni— B合金膜(2000A)を形成したものを 用いた。そして、この評価サンプルを 300、 330、 350°Cの各温度で、窒素ガス雰囲 気中 30分間の熱処理を行った後、上述したリン酸系 A1エッチング液を用いて、上層 に形成した A1系合金膜のみを溶解し、半導体層を露出させた。この露出した半導体 層表面を光学顕微鏡(200倍)にて観察し、黒点となった変質部分の存在や、或いは 半導体層表面の変色や荒れの状態を確認した。表 5では、 Siと A1との相互拡散によ り多数黒点が認められたものを評価 X、数個以下の黒点の存在或いは黒点は認めら れないのの観察表面の変色や、荒れた状態が認められたものを評価△、観察表面 に黒点が全く無ぐ変色や荒れた表面状態が認められな力 たものを評価〇とした。
[0071] そして、表 6には、上記変質層調査に伴い、半導体層の表面状態変化を調べた結 果を示している。この半導体層の表面状態変化は、半導体層の表面粗さ測定をする ことで行った。具体的には、ガラス基板上に n+— Si半導体層(300 A)を形成した直 後の表面粗度(以下、 as— depo粗さとする)と、上記変質層調査の評価サンプルの 露出した半導体層の表面粗さ(以下、直接接合粗さとする)とを、それぞれ測定し、 ( 直接接合粗さ値) / (as— depo粗さ値)を算出した。つまり、表 5に示す粗さ変化量の 数値が 1よりも大きくなるほど、直接接合をして熱処理した後の半導体層の表面状態 が荒れていることを示す。尚、半導体層の表面粗さ測定には、段差'表面粗さ(あらさ ) ·微細形状測定装置(KLA Tencor社製: P— 15型)を用い、 JIS B0601 : 1994 に準じて十点平均粗さ Rzを求めた。
[0072] 表 5の結果より、ニッケルが多くなるほど、変質層の発生を抑制できる傾向が認めら れた。また、 330°Cの熱処理の場合、ニッケルが 4· 0〜6. Oat.%で、ボロンが 0. 20 〜0. 80at. %であると、変質層の発生が特に抑制されていることが判明した。また、 ニッケノレが 4· 0〜6· Oat. %で、ボロンが 0· 30—0. 50at.%であると、 350°Cの高温 にお!/、ても、変質層が発生しな!/、傾向が認められた。
[0073] そして、表 6の粗さ変化量については、表 5の変質層の結果とほぼ相関した傾向を 示すことが判明した。この表 6の粗さ変化量の結果から、直接接合後 330°Cの熱処理 によっても、半導体層の接合表面がひどく荒れた状態にならない、つまり、 as -depo 粗さ値の 1. 5倍以内の変化量である組成範囲は、ニッケルが 4. 0〜6. Oat.%、ポロ ンが 0. 20—0. 60at. %であることが判った。
産業上の利用可能性
[0074] 本発明によれば、 Moなどの高融点金属材料からなるキャップ層を省略しても、配 線回路と半導体層とを直接接合した接合界面において A1と Siとの相互拡散が抑制さ れる。

Claims

請求の範囲
[1] アルミニウムにニッケルとボロンとを含有した Al系合金配線材料において、
窒素 (N)を含有することを特徴とする A1系合金配線材料。
[2] 窒素含有量は、 2 X 1017atoms/cm3以上 9 X 1021atoms/cm3未満である請求 項 1に記載の A1系合金配線材料。
[3] アルミニウムとニッケルとボロンとの関係において、ニッケルの組成割合 X at. %、ボ ロンの組成割合 y at.%、アルミニウムの組成割合を z at.%とし、 x+y+z = 100と 定義した場合、
式 0. 5≤x≤10. 0
0. 05≤y≤l l . 00
y+ 0. 25x≥l . 00
y+ 1. 15x≤l l . 50
の各式を満足し、残部に窒素が含有されている請求項 1または請求項 2に記載の Al 系合金配線材料。
[4] 請求項 1〜請求項 31/、ずれかに記載の A1系合金配線材料により形成された配線回 路層と、半導体層とを備える表示デバイスの素子構造であって、
前記配線回路層が、半導体層に直接接合された部分を有することを特徴とする表 示デバイスの素子構造。
[5] 配線回路層が、 Al— Ni— B合金と Al— Ni— B— N合金とを積層したものである請求 項 4に記載の表示デバイスの素子構造。
[6] アルミニウムにニッケルとボロンとを含有したスパッタリングターゲットを用い、窒素含 有雰囲気中でスパッタリング処理を行うことを特徴とする A1系合金配線膜の製造方法
[7] 請求項 6に記載の A1系合金配線膜の製造方法に用いる A1— Ni— B合金スパッタリ ングターケットであって、
ニッケル含有量をニッケルの原子百分率 Xat.%とし、ボロン含有量をボロンの原子 百分率 Yat.%とした場合、式
0. 5≤X≤10. 0
0. 05≤Y≤11. 00
Y + 0. 25Χ≥1. 00
Υ+ 1. 15Χ≤11. 50
の各式を満足する領域の範囲内にあり、残部がアルミニウムである Al— Ni— B合金 スパッタリングターゲット。
PCT/JP2007/070531 2006-10-26 2007-10-22 Al-BASE ALLOY WIRING MATERIAL AND ELEMENT STRUCTURE USING THE SAME WO2008050710A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800031101A CN101375378B (zh) 2006-10-26 2007-10-22 显示装置的元件结构及其制造方法
JP2008514993A JP4160110B2 (ja) 2006-10-26 2007-10-22 表示デバイスの素子構造及びその製造方法
TW096140011A TW200828347A (en) 2006-10-26 2007-10-25 AI-based alloy wiring material and element structure using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-291617 2006-10-26
JP2006291617 2006-10-26

Publications (1)

Publication Number Publication Date
WO2008050710A1 true WO2008050710A1 (en) 2008-05-02

Family

ID=39324507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070531 WO2008050710A1 (en) 2006-10-26 2007-10-22 Al-BASE ALLOY WIRING MATERIAL AND ELEMENT STRUCTURE USING THE SAME

Country Status (5)

Country Link
JP (1) JP4160110B2 (ja)
KR (1) KR101010949B1 (ja)
CN (1) CN101375378B (ja)
TW (1) TW200828347A (ja)
WO (1) WO2008050710A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177621A (ja) * 2009-02-02 2010-08-12 Mitsubishi Electric Corp 半導体装置及びその製造方法、並びに表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424392B (zh) * 2010-01-29 2014-01-21 Prime View Int Co Ltd 主動元件陣列基板及使用其之平面顯示器
CN102213878B (zh) * 2010-04-09 2013-04-10 元太科技工业股份有限公司 有源元件阵列基板及具有该基板的平面显示器
KR102329426B1 (ko) * 2020-01-03 2021-11-24 와이엠씨 주식회사 배선전극용 합금 조성물 및 그의 제조방법
KR102329427B1 (ko) * 2020-01-03 2021-11-24 와이엠씨 주식회사 배선전극용 합금 조성물 및 그의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260194A (ja) * 1995-10-12 2004-09-16 Toshiba Corp 配線膜、配線膜形成用のスパッタターゲットおよびそれを用いた電子部品
JP2006113577A (ja) * 1997-12-24 2006-04-27 Toshiba Corp 液晶表示装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281913A (zh) * 2005-02-17 2008-10-08 株式会社神户制钢所 显示器和用于制备该显示器的溅射靶

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260194A (ja) * 1995-10-12 2004-09-16 Toshiba Corp 配線膜、配線膜形成用のスパッタターゲットおよびそれを用いた電子部品
JP2006113577A (ja) * 1997-12-24 2006-04-27 Toshiba Corp 液晶表示装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177621A (ja) * 2009-02-02 2010-08-12 Mitsubishi Electric Corp 半導体装置及びその製造方法、並びに表示装置

Also Published As

Publication number Publication date
KR101010949B1 (ko) 2011-01-26
JPWO2008050710A1 (ja) 2010-02-25
JP4160110B2 (ja) 2008-10-01
CN101375378B (zh) 2010-06-02
TW200828347A (en) 2008-07-01
CN101375378A (zh) 2009-02-25
KR20080068906A (ko) 2008-07-24

Similar Documents

Publication Publication Date Title
US7531904B2 (en) Al-Ni-B alloy wiring material and element structure using the same
TWI249070B (en) Electronic device, method of manufacture of the same, and sputtering target
JP4542008B2 (ja) 表示デバイス
KR101124831B1 (ko) 표시 장치, 그 제조 방법 및 스퍼터링 타깃
WO2012043490A1 (ja) Al合金膜、Al合金膜を有する配線構造、およびAl合金膜の製造に用いられるスパッタリングターゲット
JP3979605B2 (ja) Al−Ni−B合金配線材料及びそれを用いた素子構造
JP2010065317A (ja) 表示装置およびこれに用いるCu合金膜
WO2008050710A1 (en) Al-BASE ALLOY WIRING MATERIAL AND ELEMENT STRUCTURE USING THE SAME
WO2006117884A1 (ja) Al-Ni-B合金配線材料及びそれを用いた素子構造
JP5374111B2 (ja) 表示装置およびこれに用いるCu合金膜
WO2008047667A1 (en) Multilayer film for wiring and wiring circuit
WO2008047511A1 (fr) MATÉRIAU D'ALLIAGE Al-Ni-B POUR UN FILM RÉFLÉCHISSANT
JP5357515B2 (ja) 表示装置用Al合金膜、表示装置およびスパッタリングターゲット
TWI484637B (zh) A display device and a Cu alloy film used therewith
JP5420964B2 (ja) 表示装置およびこれに用いるCu合金膜
KR20080086997A (ko) 소자의 접합 구조
TWI326309B (en) A1-ni-b alloy wiring material and device structure using the same
JP2012032521A (ja) 耐透明導電膜ピンホール腐食性に優れた薄膜トランジスタ基板
JP2007186779A (ja) Al−Ni−B合金配線材料及びそれを用いた素子構造
JP2007186779A6 (ja) Al−Ni−B合金配線材料及びそれを用いた素子構造
WO2005093505A1 (ja) 薄膜回路の接合構造
JP2008108975A (ja) 素子の接合構造
JP2009282504A (ja) 表示デバイス
JP2011091352A (ja) 薄膜トランジスタ基板およびその製造方法並びに表示装置
JP2010236023A (ja) Al−Ni系合金配線材料及びそれを用いた素子構造

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2008514993

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087013512

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780003110.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830265

Country of ref document: EP

Kind code of ref document: A1