TWI326309B - A1-ni-b alloy wiring material and device structure using the same - Google Patents

A1-ni-b alloy wiring material and device structure using the same Download PDF

Info

Publication number
TWI326309B
TWI326309B TW095114832A TW95114832A TWI326309B TW I326309 B TWI326309 B TW I326309B TW 095114832 A TW095114832 A TW 095114832A TW 95114832 A TW95114832 A TW 95114832A TW I326309 B TWI326309 B TW I326309B
Authority
TW
Taiwan
Prior art keywords
layer
alloy
wiring material
wiring
semiconductor layer
Prior art date
Application number
TW095114832A
Other languages
Chinese (zh)
Other versions
TW200643186A (en
Inventor
Hironari Urabe
Yoshinori Matsuura
Takashi Kubota
Original Assignee
Mitsui Mining & Smelting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2005/015697 external-priority patent/WO2006117884A1/en
Application filed by Mitsui Mining & Smelting Co filed Critical Mitsui Mining & Smelting Co
Publication of TW200643186A publication Critical patent/TW200643186A/en
Application granted granted Critical
Publication of TWI326309B publication Critical patent/TWI326309B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The present invention provides an Al alloy wiring material, which is capable of being directly bonded to transparent electrode layers such as ITO, IZO and the like, further to semiconductor layers such as n+-Si, in a display device provided with a thin-film transistor or a transparent electrode layer. In an Al-Ni-B alloy wiring material according to the present invention, when a nickel content is assumed X at% as an atomic percent of nickel and a boron content is assumed Y at% as an atomic percent of boron, formulae 0.5 ≤ X ≤ 10.0, 0.05 ≤ Y ≤ 11.0, Y+0.25X ≥ 1.0, and Y+1.15X ≤ 11.5 are all satisfied in terms of scope, and the balance being aluminum.

Description

1326309 九、發明說明: •【發明所屬之技術領域】 本發明係關於液晶顯示器等顯示裝置的元件所採用之 A1系合金配線材料,尤其是關於一種適用於具備薄膜電晶 體及透明電極之顯示裝置之A1 — Ni — B合金配線材料及使 用該Al-Ni—B合金配線材料之元件構造。 …【先前技術】 近年來,於以液晶顯示器為代表之薄型電視等顯示裝 鲁置中,鋁(以下有時僅記載為A1)系合金配線材料乃做為該 構成材料而廣為普及。其理由為A1系合金配線材料之比電 阻值低,且具有容易進行配線加工之特性。 - 例如為主動矩陣型液晶顯示器時,係由作為切換元件 ; 之薄膜電晶體(Thin Film Transistor 1以下簡稱為TFT)、 .ITO(Indium Tin Oxide :氧化銦錫)或 IZO(Indium Zinc Oxide :氧化銦鋅)等透明電極(以下有時稱為透明電極 層),以及由Al系合金配線材料所形成之配線電路(以下有 *時稱為配線電路層),而構成元件。於如此的元件構造中係 存在有使以Al系合金配線材料所形成之配線電路接合於 透明電極之部分、及接合於TFT内的n+—Si(磷摻雜半導 體層)之部分。 於目前所使用的Al系合金配線材料中,於構成上述的 元件時,係考量到形成於Al系合金配線材料之鋁氧化物的 影響,而於配線電路與透明電極之間,形成由鉬(Mo)或鈦 (Ti)等高熔點金屬材料來作為所謂的覆蓋層(cap layer)。此 5 318169 1326309 :外’於n — Si之類的半導體層與配線電路之接合中,為了 •防止因製程中的熱製程導致A1及Si的相互擴散,而於半 導體層與配線電路之間’介在有與上述覆蓋層相同之鉬 (Mo)或鈦(Ti)等高熔點金屬材料。 以下參照第1圖來具體說明上述元件構造。第1圖係 顯示關於液晶顯示器之a-Si(非晶矽)型的TFT概略剖面 .、圖。於此TFT構造中’係於玻璃基板1上’形成有由構成 閘極電極部G之A1系合金配線材料所組成之電極配線電 鲁路層2、以及由Mo或Mo—W等所組成之覆蓋層此外, 於此閘極電極部G係設置有作為該保護膜之siNx的閘極 絕緣膜4。此外,於此閘極絕緣膜4上,依序沈積a_Si半 ‘導體層5、通道保護膜層6、n+—Si半導體層7、覆蓋層3、 ··電極配線電路層2、覆蓋層3,藉由形成適當的圖案,而設 -有汲極電極部D及源極電極部s。於此沒極電極部d及源 極電極部S之上,係被覆有用於元件表面平坦化之樹脂或 鲁SiNx之絕緣膜4’。此外,於源極電極部s側,係於絕緣膜 4 β又置接觸孔CH,於該部分形成ITO或IZO之透明電極 層7。於上述電極配線電路層2採用Α1系合金配線材料 -時,係形成於η+一 si半導體層7及電極配線電路層2之 、間、以及於接觸孔CH中之透明電極層7,與電極配線電路 層2之間’介在有覆蓋層3之構造。 於第1圖所示的元件構造中,由於形成M〇等覆蓋層, 因此無法避免材料及製造設備等之成本上升,並導致製程 複雜化。因此,本案申請人化合物係已提出可省略上述習 318169 6 1326309 。知疋件構造中的覆蓋層之技術(參照專利文獻1;)。於此專利 文獻1中,係揭示有可與IT〇直接接合之A1—c_Ni合金 及A1—C—Ni—Si合金的配線材料。 專利文獻1 ··日本專利特開2〇〇3_89864號公報 【發明内容】 (發明所欲解決之課題) ; 然而,於上述專利文獻1的A1系合金配線材料中,雖 然可與ITO或IZ〇等透明電極層直接接合,但於與n+_si 等半導體層直接接合時,並未具備可充分滿足之特性。例 將由A1系合金配線材料組成之配線電路層與半導體層 直接接合時,於接合界面會產生^與&之擴散現象等, 而具有無法滿足接合特性之傾向。 更具體而言,於省略第1圖所示之元件構造的覆蓋層 時,係要求可滿足下列特性之^系合金配線材料。關於第 1、圖的元件構造之閘極電極部G的電極配線電路層2,雖 然未圖示,但於拉引配線部分必須可與IT0等透明曰電極層 直接接合’較理想為可収35忙以上的耐熱性。其理由 為在形成閘極電極部G之上所形成之閘極絕緣膜時,由於 施加有高溫的熱經歷(thermal history),因此即使於聰 以上的溫度中’亦必須具有使電極配線電路層不會 i(hlll〇ck)等缺陷之耐熱性。此外,關於第1圖的元件構 D及源極電極部s的電極配線電路層2, 係ITO等透明電極層直接接合,且可與n+ — 體層直接接合。於此,與n+—si等半導體層直接接合中, 318169 7 1326309 即使施加以上的熱經歷,亦必須不會產生A1與Si •之擴散現象等。此外,於此没極電極部D及源極電極部s -的電極配線電路層2中,亦要求須具有即使施加2贼左 右之熱經歷亦不會產生突起等缺陷之耐熱性。再者於間 極電極部G、没極電極部D、源極電極部s及形成其他配 線部分之A1系合金配線材料中,當然亦要求比電阻低之特 •-性,亦即為滿;1 以下,較理想為⑽⑽以下的比 -·電阻值之特性。亦即,目前係深切期望 ⑩性之系合金配線材料。 一要欠特 此外,於習知的A丨系合金配線材料中,係推測出於配 線電路中存在金屬間化合物等析出物,並由於此析出物的 存在而可與透明電極層(像素電極)直接接合(參照例如專 利文獻2)。然而,由A1系合金配線材料所形成之配線電 路中的析出物,於何種分散狀態時會影響直接接合者,就 本申請案的發明人等所知的範圍内,並未明確地研究出。 _ :此為了實現更理想之直接接合,關於此A1系合金配線 料的析出物’乃要求更進—步地對此現象進行研究。 專利文獻2:日本專利特開2〇〇4-2146〇6號公報 此外’於習知的A1系合金配線材料中,於形成配線電 、的由機鍵而成膜之A1系合金膜的表面處於極為粗糙 系人態已為人所知。於如此之粗縫的表面狀態下,於該μ ^金膜上直接疊層透明電極層及半導體層等時,會有無 法藉由該疊層材料而充分進行良好的覆蓋之疑慮,亦即無 从疊層材料而完全被覆表面凹凸的凹部分。因此,關於 318169 1326309 -將用以形成配線電路之A1系合金膜的表面狀態形成為平 滑之技術’乃要求更進一步的探討。 本發明係以上述情況為背景而研創出之發明,目的在 於長供種於具備薄膜電晶體及透明電極層之顯示裝置 中,可與ITO或:[Z0等透明電極層直接接合,且可與n+ — Si等半導體層直接接合之A1系合金配線材料。此外, 丨由A1系合金配線材料所形成之配線電路層係關於一種具 ,有可與透明電極層或半導體層直接接合之構造的顯示裝置 ♦的元件,並提出一種於直接接合時不會產生接觸電阻值的 增加及接合不良之顯示裝置之元件構造。 (用以解決課題之手段) • 纟申請案的發明人等在對A1_Ni系合金進行精心研 ••究之後,發現到可藉由於A1—Ni合金中包含預定量的獨⑻ •而解決上述課題,因而完成本發明。 本發明為-種Al-Ni-B合金配線材料,係於紹中含 •有鎳及硼者’其特徵為:於將鎳含量設為鎳的原子百分比 X祕,將哪含量設為硼的原子百分比加%時,係位於滿 〇*5^X^i〇q......(1) 〇.〇5^Υ^ιι.〇......(2) Y+0.25X^1.00 ......(3) Υ+1·15Χ^11.5......(4) 域的範圍内,且剩餘部分為紹。其中,本發明之Μ 1合金配線材料,係於未脫離以下所述之本發明可 318169 9 1326309 -達成的效果之範圍内,例如於材料製程、配線電路形成製 程或70件製程等中,並非用以阻礙可能產生混入之氣體成 分及其他不可避免之雜質的混入者。 鎳係具有可藉由熱處理而形成與鋁之金屬間化合物, 而達到與透明電極層直接接合時之良好接合特性之作用。 准若鎳含量過多,則使配線電路本身的比電阻增高而變得 、較不實用。此外,若鎳含量過少,則與鋁之金屬間化合物 · ·的產生量減少,無法進行與透明電極層直接接合,且具有 鲁财熱性(對於因熱而使A1系合金配線材料產生塑性變形之 抑制作用)亦會降低之傾向。從這些理由來看,鎳含有量必 須滿足上述第(1)式。 . 具體而言,若鎳含量超過l〇.〇at%,則配線材料的比 :電阻值變得過大,並且容易於配線材料表面形成被稱為凹 '陷(dimP〗e)之凹狀缺陷,而具有無法確保耐熱性之傾向。 此外,若未滿0.5at%,則容易於配線材料表面形成被稱為 鲁小丘(hillock)之突起物,而具有無法確保耐熱性之傾向。 所謂的凹陷,是指因對A1系合金配線材料進行熱處理時所 產生之應力應變’而形成於材料表面之微小的凹狀缺陷, •若產生此凹陷,則會對接合特性產生不良影響,使接合可 菲度降低。另一方面,所謂的小丘,係與凹陷相反,是指 因對A1系合金配線材料進行熱處理時所產生之應力應 變,而形成於材料表面之突起物,若產生此小丘,亦會對 接合特性產生不良影響,使接合可靠度降低。此凹陷及小 丘,就因熱而使A1系合金配線材料產生塑性變形之方面來 318169 10 1326309 -·看為共通,通稱為應力遷移(stress migration)現象,可藉由 •這些缺陷的產生等級’來判斷出A1系合金配線材料的耐熱 •性。 此外如本案發明所述,若於鋁之中含有鎳及硼,則 於與n Sl等半導體層直接接合時,可發揮有效防止接合 界面中A1及Si的相互擴散之作用。此夕卜,删亦與錄相同, 係具有耐熱性之作用。若硼含量超過11〇〇at%,則配線電 -·路本身的比電阻會增高,而變得較不實用。此外,若硼含 鲁量未滿0.05at%,則使防止A1& ^相互擴散之能力降低, 而無法與半導體層直接接合。具體而言,於將半導體層與1326309 IX. Description of the Invention: The present invention relates to an A1 alloy wiring material used for components of a display device such as a liquid crystal display, and more particularly to a display device suitable for a thin film transistor and a transparent electrode. A1 — Ni—B alloy wiring material and component structure using the Al—Ni—B alloy wiring material. [Prior Art] In recent years, in a display device such as a thin-type television such as a liquid crystal display, aluminum (hereinafter sometimes referred to as A1)-based alloy wiring material has been widely used as a constituent material. The reason for this is that the A1 alloy wiring material has a low specific resistance value and has a characteristic that wiring processing is easy. - For example, in the case of an active matrix type liquid crystal display, it is used as a switching element; thin film transistor (hereinafter referred to as TFT), .ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide: oxidation) A transparent electrode such as indium zinc (hereinafter sometimes referred to as a transparent electrode layer) and a wiring circuit formed of an Al-based alloy wiring material (hereinafter referred to as a wiring circuit layer when *) constitute an element. In such an element structure, a portion where a wiring circuit formed of an Al-based alloy wiring material is bonded to a transparent electrode and a portion where n+-Si (phosphorus-doped semiconductor layer) is bonded to the TFT is present. In the Al-based alloy wiring material used in the prior art, in order to constitute the above-mentioned element, the influence of the aluminum oxide formed on the Al-based alloy wiring material is considered, and molybdenum is formed between the wiring circuit and the transparent electrode. A high melting point metal material such as Mo) or titanium (Ti) is used as a so-called cap layer. 5 318169 1326309 : In the junction of the semiconductor layer such as n-Si and the wiring circuit, in order to prevent the mutual diffusion of A1 and Si due to the thermal process in the process, between the semiconductor layer and the wiring circuit' A high melting point metal material such as molybdenum (Mo) or titanium (Ti) is provided in the same manner as the above coating layer. The above-described element structure will be specifically described below with reference to Fig. 1 . Fig. 1 is a schematic cross-sectional view showing an a-Si (amorphous germanium) type TFT of a liquid crystal display. In the TFT structure, 'on the glass substrate 1' is formed with an electrode wiring electric circuit layer 2 composed of an A1 alloy wiring material constituting the gate electrode portion G, and a composition composed of Mo or Mo-W or the like. In addition, the gate electrode portion G is provided with a gate insulating film 4 of siNx as the protective film. Further, on the gate insulating film 4, an a-Si semi-conductor layer 5, a channel protective film layer 6, an n+-Si semiconductor layer 7, a cap layer 3, an electrode wiring circuit layer 2, and a cap layer 3 are sequentially deposited. By forming an appropriate pattern, the drain electrode portion D and the source electrode portion s are provided. On the electrodeless electrode portion d and the source electrode portion S, a resin or a SiNx insulating film 4' for planarizing the surface of the device is coated. Further, on the side of the source electrode portion s, a contact hole CH is formed in the insulating film 4?, and a transparent electrode layer 7 of ITO or IZO is formed in this portion. When the iridium-based alloy wiring material is used for the electrode wiring circuit layer 2, it is formed between the η+-Si semiconductor layer 7 and the electrode wiring layer 2, and the transparent electrode layer 7 in the contact hole CH, and the electrode. The wiring circuit layer 2 is sandwiched between the layers 3 having a structure. In the element structure shown in Fig. 1, since a cover layer such as M〇 is formed, the cost of the material, the manufacturing equipment, and the like cannot be avoided, and the process is complicated. Therefore, the applicant's compound has been proposed to omit the above-mentioned 318169 6 1326309. A technique of covering a cover layer in a structure (refer to Patent Document 1;). In Patent Document 1, a wiring material of an A1-c_Ni alloy and an A1-C-Ni-Si alloy which can be directly bonded to IT〇 is disclosed. In the A1 series alloy wiring material of the above-mentioned Patent Document 1, it is possible to use ITO or IZ 〇 专利 专利 _ _ _ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ITO ; ITO ITO ITO ITO ITO ITO ITO ITO ITO When the transparent electrode layer is directly bonded, when it is directly bonded to a semiconductor layer such as n+_si, it does not have a characteristic that can be sufficiently satisfied. In the case where the wiring circuit layer composed of the A1 alloy wiring material is directly bonded to the semiconductor layer, a diffusion phenomenon such as & More specifically, when the coating layer of the element structure shown in Fig. 1 is omitted, a metal wiring material which satisfies the following characteristics is required. The electrode wiring layer 2 of the gate electrode portion G of the device structure of the first embodiment is not shown, but it is necessary to directly bond the transparent wiring layer such as IT0 to the drawing wiring portion. Busy heat resistance. The reason for this is that when the gate insulating film formed over the gate electrode portion G is formed, since a thermal history of high temperature is applied, it is necessary to have an electrode wiring circuit layer even in a temperature higher than the temperature of Cong. It does not have the heat resistance of defects such as i (hlll〇ck). Further, in the electrode wiring layer 2 of the element structure D and the source electrode portion s of Fig. 1, a transparent electrode layer such as ITO is directly bonded and directly bonded to the n + - body layer. Here, in the direct bonding with a semiconductor layer such as n+-si, 318169 7 1326309, even if the above thermal history is applied, it is necessary to prevent the diffusion phenomenon of A1 and Si. Further, in the electrode wiring circuit layer 2 of the electrodeless electrode portion D and the source electrode portion s -, it is required to have heat resistance which does not cause defects such as protrusions even if a heat history of 2 thieves is applied. Further, in the interpole electrode portion G, the electrodeless electrode portion D, the source electrode portion s, and the A1 alloy wiring material in which other wiring portions are formed, of course, the specific resistance is also required to be low, that is, full; 1 is more preferably a characteristic of the ratio - resistance value of (10) (10) or less. That is to say, at present, it is deeply desired that the alloy wiring material of the ten-sex is desired. In addition, in the conventional A-based alloy wiring material, it is presumed that a precipitate such as an intermetallic compound exists in the wiring circuit, and the transparent electrode layer (pixel electrode) can be formed by the presence of the precipitate. Direct bonding (see, for example, Patent Document 2). However, in the dispersion state of the precipitates formed in the wiring circuit formed of the A1 alloy wiring material, the direct bond is affected, and the inventors of the present application do not explicitly study the range known to the inventors of the present application. . _ : In order to achieve a more desirable direct bonding, the precipitation of the A1 alloy wiring material is required to further study this phenomenon. In the conventional A1 alloy wiring material, the surface of the A1 alloy film formed by the machine bond is formed in the conventional A1 alloy wiring material. It is known to be in a very rough human form. When the transparent electrode layer, the semiconductor layer, or the like is directly laminated on the μ gold film in such a rough surface state, there is a fear that the laminate material cannot be sufficiently covered well, that is, The concave portion of the surface unevenness is completely covered from the laminated material. Therefore, regarding 318169 1326309 - the technique of forming the surface state of the A1 alloy film for forming a wiring circuit to be smooth is required to be further explored. The present invention has been developed in view of the above circumstances, and aims to be used for a display device having a thin film transistor and a transparent electrode layer, and can be directly bonded to an ITO or a transparent electrode layer such as Z0. n+—A1 alloy wiring material directly bonded to a semiconductor layer such as Si. Further, the wiring circuit layer formed of the A1-based alloy wiring material is an element having a display device ♦ having a structure that can be directly bonded to the transparent electrode layer or the semiconductor layer, and proposes that it does not occur in direct bonding. The increase in contact resistance value and the component configuration of the display device with poor bonding. (Means for Solving the Problem) • After inventing the A1_Ni alloy, the inventors of the 纟 application found that the above problem could be solved by the inclusion of a predetermined amount of exclusive (8) in the A1-Ni alloy. Thus, the present invention has been completed. The invention relates to a kind of Al-Ni-B alloy wiring material, which is characterized in that: nickel and boron are contained in Shaozhong, and the characteristic is: the nickel content is set to the atomic percentage of nickel X, and the content is set to boron. When the atomic percentage is increased by %, it is located at full 〇*5^X^i〇q......(1) 〇.〇5^Υ^ιι.〇...(2) Y+0.25X ^1.00 ......(3) Υ+1·15Χ^11.5......(4) Within the range of the domain, and the remainder is the same. Wherein, the 配线 1 alloy wiring material of the present invention is within the range of the effect achieved by the invention 318169 9 1326309 described below, for example, in a material process, a wiring circuit forming process, or a 70 process, etc., Used to hinder the incorporation of gas components and other unavoidable impurities that may be mixed. Nickel has an effect of forming an intermetallic compound with aluminum by heat treatment to achieve good bonding characteristics when directly bonded to a transparent electrode layer. If the nickel content is too large, the specific resistance of the wiring circuit itself is increased and it is less practical. In addition, when the nickel content is too small, the amount of the intermetallic compound with aluminum is reduced, and it is impossible to directly bond to the transparent electrode layer, and it has a luke heat (the plastic deformation of the A1 alloy wiring material due to heat) Inhibition) also tends to decrease. For these reasons, the nickel content must satisfy the above formula (1). Specifically, if the nickel content exceeds l〇.〇at%, the ratio of the wiring material: the resistance value becomes excessively large, and it is easy to form a concave defect called a concave depression (dimP) in the surface of the wiring material. However, there is a tendency that heat resistance cannot be ensured. Further, when it is less than 0.5 at%, it is easy to form a projection called a hillock on the surface of the wiring material, and there is a tendency that heat resistance cannot be ensured. The term "dent" refers to a small concave defect formed on the surface of the material due to the stress strain generated when the A1 alloy wiring material is heat-treated. If this recess occurs, the joint characteristics are adversely affected. The joint ketone is reduced. On the other hand, the so-called hillocks, in contrast to the depressions, refer to the protrusions formed on the surface of the material due to the stress strain generated when the A1 alloy wiring material is heat-treated, and if this hillock is generated, The joint characteristics have an adverse effect, and the joint reliability is lowered. This depression and hillock are made of plastic deformation of the A1 alloy wiring material due to heat. 318169 10 1326309 - See common, commonly known as stress migration phenomenon, by the level of generation of these defects 'To determine the heat resistance of the A1 alloy wiring material. Further, when nickel and boron are contained in aluminum as described in the present invention, it is effective in preventing mutual diffusion of A1 and Si in the joint interface when directly bonded to a semiconductor layer such as n Sl. In addition, the deletion is the same as the recording, and has the effect of heat resistance. When the boron content exceeds 11 〇〇 at%, the specific resistance of the wiring electric circuit itself is increased, and it becomes less practical. Further, if the boron content is less than 0.05 at%, the ability to prevent the mutual diffusion of A1 & ^ is lowered, and the semiconductor layer cannot be directly bonded. Specifically, the semiconductor layer is

Al—Ni —B合金配線材料直揍接合,並於預定溫度下進行 .熱處理時,於接合部分容易產生A1及Si的相互擴散。此 ••外,亦具有容易產生凹陷之傾向。因此,硼含量必須滿足 上述第(2)式。 此外,本案發明人等係發現到於與半導體層直接接合 _時於超過240 C的溫度之熱製程(thermal process)中,為 了於該接合界面確實防止Α1& Si的相互擴散,必須滿足 上述第(3)式。此外,為了確實將A1_Ni—B合金配線材料 本身的比電阻維持在10 〇μΩεηι以下,必須滿足上述第(4) 式。 曰此外,於滿足上述第(1)式至第(4)式的範圍内,若鎳含 量為4.0at%以上,且硼含量為〇迦%以下,則成為儘量 抑制上述凹陷產生之A1_Ni_B合金配線材料,因此可提 升與半導體層及透明電極層直接接合時之接合可靠度。更 318169 11 1326309 ,具體而言,於35(TC下進行3〇分鐘的熱處理時,可將^ :Ni-B合金配線材料的表面所產生之凹陷的產生率抑制 在1.6%以下,因而較為理想。 如上所述,所謂的凹陷是指於對Al—Ni—B合金配線 材料進行熱處理時,形成於配線材料表面之微小的凹狀缺 2 ’本案發明人等係在對A1—Ni_B合金配線材料進行預 :疋的熱處理之後,觀察其材料表面,並調查所產生之凹陷 龜·(O.Spni至〇.5μιη)β於此凹陷調查中,係求取於觀察視野中 所產生之所有的凹陷面積,以觀察視野之凹陷所佔的面積 比率係為凹陷產生率,於對配線材料的耐熱特性進行調查 後發現’於滿足上述第(1)式至第(4)式的範圍内,若鎳含量 •為4.0at%以上,且硼含量為〇 8〇at%以下,則即使於35〇亡 '下進行30分鐘的熱處理時,亦可將凹陷產生率抑制在16 -%以下。由於最好儘量不要產生凹陷,因此若此凹陷產生 率低即使通過顯示裝置的元件製程之熱製程,於與半導 鲁體層及透明電極層直接接合之接合界面,亦不易產生接合 缺陷等,而可提升接合可靠度,因而較為理想。此外,若 將凹陷產生率抑制在16%以下,則可使例如具有與半導 •體層直接接合的構造之TFT的導通一關斷(ΟΝ/OFF比)達 到穩定’而可提升連接可靠度。本發明之A1_Ni—B合金 配線材料’雖然適用於與半導體層及透明電極層之直接接 合’但是亦不會阻礙到對例如於半導體層側設置由M〇等 南炫點金屬材料所組成的覆蓋層之元件構造之適用。此 外’除了上述與半導體層及透明電極層直接接合的用途之 12 318169 1326309 外,亦可適用本發明之AI —Ni—B合金配線材料, 所謂的反射膜。 乍為 此外,本案發明人等係發現於滿足上述第式至第 式的範圍内,若鎳含量為4.0at%至6〇at%,且硼含量為 〇.20at%至0.80at% ’則可成為特別適用於與半導體層直接 接合時之AI — Ni — B合金配線材料。 • ' 由A1系合金配線材料組成之配線電路層與半導體芦 直接接合時’係於接合界面產生八】與以之擴散現象乃為 •人所知,根據本案發明人等之研究,係霉認出由於此相互 擴散的影響,而於直接接合時的接合界面會形成變質層之 現象。所謂的變質層係指於使A1系合金配線材料與半導體 -層直接接合並進行預定的熱處理之後,將A1系合金配線材 料予以剝離而觀察該半導體層表面時,於該半導體層表面 -所觀察出之黑點的變質部分,或是半導體層表面的變色及 粗鏠等狀態(於本說明書中’係將此半導體層表面稱為變質 籲層)奋此變質層係具有熱處理溫度愈高愈容易產生之傾向, 就只用上而σ,較理想為於2〇〇。〇以上的熱處理(3〇分鐘) 中不會產生。此外,若考量到以CVD(化學氣相沈積)來形 -成^緣層時所施加之熱經歷,則較理想為於24〇r至300°c 7高溫範圍中不會產生變質層者,此外’為了讓元件的製 程^各熱經歷所施加之製造條件的適用範圍具有較大的容 許乾圍,較理想為抑制33〇ΐ以上之變質層的產生。因此, ;對不會產生該變貝層之組成範圍進行探討後發現,於滿 足上述第(1)式至第⑷式的範圍内’若鎳含量為4遍%至 318169 13 1326309 «* 6.〇at% ’且硼含量為〇 2〇扣%至〇 8〇扣%,則即使於 下進行30分鐘的熱處理時,亦具有可抑制變質層產生之傾 向。此外,於此組成範圍t,I線電路本身❾匕電阻值亦 為5.ΟμΩοπι以下。亦即,若位於此組成範圍,則如上所述 可儘量抑制凹陷的產生,且使比電阻值降低,因此就實用 上,乃成為非常適用於用以實現與半導體層直接接合之A1 .B合金配線材料。 -· 此外,本案發明人等係針對半導體層的表面狀態變化 參進行調查4b調查係進行直接接合及熱處理之後將^系合 金配線材料剝離後所露出之半導體層的表面粗糙度Rz(十 點平均粗糙度、JIS B0601 : 1994)、與直接接合前之半導 體層的表面粗糙度rz之間的比較。由該表面狀態變化的 :調查結果發現,於本發明之A1—Ni_B合金配線材料中, '在滿足上述第(1)式至第(4)式的範圍内,若鎳含量為4〇at %至6.0at%、且硼含量為〇2〇at%至〇8〇at%之組成範 _圍,則將直接接合前之半導體層的表面粗糙度設為】時, 可使進行直接接合及熱處理後所露出之半導體層的表面粗 糙度’成為1.5倍以下的變化量。 - 此半導體層的表面粗链度之變化量是否為與A1與Si 之相互擴散具有直接關聯之參數,到目前為止仍未明確的 掌握,但可確認出熱處理溫度愈高,該變化量愈大。此外, 半導體層的表面狀態產生變化,係可預見會對TFT之切換 特性產生影響。亦即’可推測為與TFT的導通—關斷比 (ΟΝ/OFF比)之變化有關,因此,與半導體層直接接合並進 14 318169 1326309 « ,、行熱處理後’亦不會使半導體層的表面狀態產生較大變 化,亦可預測為可維持電晶體之良好的切換特性。因此, 將直接接合前之半導體層的表面粗輪度設為】時,進行直 接接合及熱處理之後將A1系合金配線材料剝離後所露出 之半導體層的表面粗糖度Rz,成為直接接合前之半導體層 的表面粗糖度之L5倍以下的變化量,係可充分媒保考量 到TFT之切換特性等之連接可靠度。於本發明中,關於直 ..接接合之半導體層的表面狀態變化,於界定該表面狀態 鲁時’係採用表面粗糖度Rz,但亦可採用JIS娜〇1等所記 載之表面性狀參數,例如表面粗縫度Ra(算術平均粗糖度) 等參數。 此外,關於一種A1系合金配線材料具有與透明電極 :層或半導體層直接接合之構造之顯示裝置的元件構造,本 案發明人等係以於直接接合時會產生接觸電阻值的增加及 接5不良為主要因素,對A1系合金膜的表面粗經度以進 籲行研九,而發現到以A1—Ni_B合金配線材料所形成之 合金膜的表面粗糙度^較理想為至2〇 〇 。i A1 Ni B合金配線材料係構成與半導體層及/或透 明電極層直接接合的上述配線電路。本發明之“—Ni 一 b 合金+配線材料所形成之Al—Ni—B合金膜的表面粗糙度 Ra若未滿2.0 A,則與透明電極層直接接合時,該接合強 度會降低,另一方面,若超過2〇〇 A,則確認出接觸電阻 值會顯著增加之傾向。其中,此表面粗链度Ra是指成膜 灸之A1 Ni B合金膜的表面粗糙度。由於顯示裝置的製 318169 15 1326309 : 造方法之不同,而可能於成膜後的Al—Ni—B合金膜,於 交錯(stagger)構造時更形成半導體層,於反交錯構造時更 形成透明電極層之構造。此表面粗糙度Ra係藉由原子力 顯微鏡(AFM : Atomic Force Microscope)而進行非接觸測 定,係依據JIS B0601-1982而計算出Ra。 關於以本發明之Al-Ni—B合金配線材料所形成之 …Al —Ni-B合金膜,其膜厚較理想為1000 A至3000 A, -.若Al—Ni—B合金膜厚未滿1000 A,則於形成配線電路 •時的實效電阻值難以滿足實用性的水準,若超過3000 A, 則Al — Ni-B合金膜上所疊層之上層的覆蓋率不一致,而 具有不易形成實用的元件構造之傾向。 • 此外,根據本案發明人等的研究,係發現到在本發明 : 之Al—Ni—B合金配線材料所形成之配線電路層中,於構 成元件時所分散析出於配線電路層中之析出物,並不會產 生偏析(segregation)而可均勻地分散。 I 於本案發明人等的研究中,係確認出以往所提倡之A1 系合金配線材料的特定組成中,於配線電路中所析出之化 合物,亦即所謂的金屬間化合物係具有偏析的傾向。例如, 於上述專利文獻2中所揭不之包含Nd之A1 — Ni — Nd合金 配線材料中,係表示出由於形成元件時之熱處理,而使配 線電路層中的析出物具有偏析的傾向(參照第5圖)。 如此,當於配線電路層中產生析出物的偏析時,則會 有因與配線電路層的接合位置之不同,而無法使直接接合 的接合特性達到良好之疑慮。亦即,由於配線電路層中所 16 318169 1326309 ,析出之金屬間化合物會對直接接合的接合電阻等產生影 響’因此’於透明電極層及半導體層直接接合於產生配線 電路層的偏析之部分時,以及於直接接合於未產生偏析之 部分時,該接合特性會有所不同。此外,於對由Ai系合金 配線材料所形成之薄膜進行蝕刻而形成配線電路時,由於 產生偏析之部分與未產生偏析之部分的蝕刻速度不同,因 此亦會產生無法形成適當形狀的配線電路的情形。 / 另一方面,在本發明之Al —Ni—B合金配線材料所形 癱成之配線電路層中,於構成元件時,Ni化合物係分散析 出,於配線電路層剖面之與配線電路層的厚度方向正交的 線上之Ni化合物的存在率,係於配線電路層厚度方向上為 25%至45%。亦即,於配線電路層的整體厚度中,见化合 :物並未表示出偏析的傾向(參照第6圖)。因此,並不需如 .上述A1 —Ni —Nd合金配線材料般,需特定出使透明電極 層及半導體層直接接合之部位,此外’更可藉由蝕刻而確 鲁實形成適當電路形狀的配線電路。 在本發明之A1 — Ni — B合金配線材料所形成之配線電 路層中所分散析出之Ni化合物,主要為Al3Ni相的金屬間 :化合物。於本發明人等對Ni化合物進行調查之結果,確認 出於以掃描式電子顯微鏡(SEM)來觀察配線電路表面時, 存在有大小為直徑20nm至160nm者,且各個觀察視野之 平均粒彼為8〇ηπι至140nm。此外,該Ni化合物佔觀察視 野的面積比為5至20%,該Ni化合物的密度為1〇〇〇個 /ΙΟΟμιη2至5000個/ΙΟΟμιη2。此外,以穿透式電子顯微鏡 17 318169 1326309 ,-(TEM)來觀察配線電路層剖面時,Ni化合物的大小係相對 配線電路層的厚度200nm之10%至80%的粒徑,各個Ni 化合物的相互間隔為l〇nm至150nm的距離。 於藉由上述本發明之Al—Ni-B合金配線材料而製造 顯示器的元件時,較理想為採用:將鎳含量設為鎳的原子 百分比Xat%,且硼含量設為硼的原子百分比Yat%時,位 …於滿足上述第(1)式至第(4)式的範圍内,且剩餘部分為鋁之 -龙鍍靶。尤其是於滿足上述第(1)式至第(4)式的範圍内,若 •鎳含量為4.0at%至6.0at%,且硼含量為0.20at%至0,80at %之濺鍍靶,則可容易實現非常適用於與半導體層直接接 合之配線電路。於採用如此組成的濺鍍靶時,雖然亦多少 —受到濺鍍時的成膜條件之影響,但可容易地形成大致與濺 鍍組成為相同組成之A1 — Ni — B合金薄膜。 本發明之Al —Ni—B合金配線材料,就實用上而言, 較理想為如上所述藉由濺鍍法而成膜者,但亦可採用其他 φ不同的方法。例如可採用蒸鍍法或是喷霧復位(spray homing)法等乾式法,或採用由本發明之Al— Ni— B合金 組成所構成之合金粒子作為配線材料,以氣霧沉積(aerosol deposition)法來形成配線電路,或以喷墨法來形成配線電 路。 ' 【實施方式】 以下係說明本發明之最佳實施形態。 第一實施形態:於本實施形態中,係藉由濺鍍而形成 第1表所示之實施例及比較例的各組成之Al— Ni— B合金 18 318169 1326309 ,並對該臈進行特性評估。濺鍍靶係採用於鋁中 . 所記载之各組成的金屬加以混合,於真空中熔解 攪拌後’於惰性氣體環境中進行镑造後,對所獲得的金屬 錠進行壓延及成型加工,並對供濺鍍之表面進行平面加工 而製造出者。關於第1表所記載之各組成的膜的特性評 估,係進行與半導體層直接接合時之Si擴散耐熱性、膜的 --比電阻、膜的35(TC耐熱性、與透明電極層直接接合時之 --ITO接合性及IZO接合性。其結果係如第j表及第2表所 •示。The Al—Ni—B alloy wiring material is bonded directly and at a predetermined temperature. When heat treatment, mutual diffusion of A1 and Si is likely to occur at the joint portion. In addition to this, there is also a tendency to easily form depressions. Therefore, the boron content must satisfy the above formula (2). Further, the inventors of the present invention found that in the thermal process at a temperature exceeding 240 C when directly bonded to the semiconductor layer, in order to surely prevent interdiffusion of Α1 & Si at the bonding interface, it is necessary to satisfy the above-mentioned (3) Formula. Further, in order to surely maintain the specific resistance of the A1_Ni-B alloy wiring material itself at 10 〇μΩ εηι or less, the above formula (4) must be satisfied. In addition, when the nickel content is 4.0 at% or more and the boron content is 〇% or less in the range satisfying the above formula (1) to the formula (4), the A1_Ni_B alloy wiring which suppresses the occurrence of the above-described depression is suppressed. The material can thus improve the bonding reliability when directly bonded to the semiconductor layer and the transparent electrode layer. Further, 318169 11 1326309, specifically, when the heat treatment is performed for 3 minutes at 35 (TC), the generation rate of the depression generated on the surface of the :Ni-B alloy wiring material can be suppressed to 1.6% or less, which is preferable. As described above, the so-called recess refers to a small concave shape formed on the surface of the wiring material when heat-treating the Al—Ni—B alloy wiring material. The inventor of the present invention is in the A1—Ni—B alloy wiring material. After the heat treatment of the 预:, the surface of the material was observed, and the resulting sag turtle (O.Spni to 〇.5μιη) β was investigated in this sag investigation, and all the depressions generated in the observation field were obtained. The area ratio of the area in which the depression of the observation field is occupied is the rate of generation of the depression. When the heat resistance of the wiring material is investigated, it is found that the range of the above formula (1) to the formula (4) is satisfied. When the content is 4.0 at% or more and the boron content is 〇8 〇 at% or less, the heat generation rate can be suppressed to 16-% or less even when heat treatment is performed for 30 minutes under 35 。 '. Try not to create depressions, Therefore, if the generation rate of the recess is low, even through the thermal process of the component process of the display device, the bonding interface directly bonded to the semiconductive layer and the transparent electrode layer is less likely to cause bonding defects and the like, and the bonding reliability can be improved. In addition, if the generation rate of the depression is suppressed to 16% or less, for example, the ON-OFF (ΟΝ/OFF ratio) of the TFT having the structure directly bonded to the semiconductor layer can be stabilized, and the connection can be improved reliably. The A1_Ni-B alloy wiring material of the present invention is suitable for direct bonding with a semiconductor layer and a transparent electrode layer, but does not hinder the formation of a metal material such as M〇, which is disposed on the side of the semiconductor layer, for example. In addition to the above-mentioned 12 318 169 1326309 for the purpose of directly bonding the semiconductor layer and the transparent electrode layer, the AI-Ni-B alloy wiring material of the present invention, a so-called reflective film, can also be applied. In addition, the inventors of the present invention found that within the range satisfying the above formulas to the formula, if the nickel content is 4.0 at% to 6 〇 at%, and boron The content of 〇.20at% to 0.80at%' can be used as an AI-Ni-B alloy wiring material which is particularly suitable for direct bonding with a semiconductor layer. • 'The wiring circuit layer composed of the A1 alloy wiring material and the semiconductor reed directly When joining, it is known that the diffusion phenomenon is caused by the joint interface. According to the research by the inventors of the present invention, the mold recognizes the influence of the mutual diffusion, and the joint interface at the time of direct bonding will In the case where the A1 -based alloy wiring material is directly bonded to the semiconductor-layer and subjected to a predetermined heat treatment, the A1 -based alloy wiring material is peeled off and the surface of the semiconductor layer is observed. The surface of the semiconductor layer - the altered portion of the observed black dot, or the state of discoloration and roughness of the surface of the semiconductor layer (in the present specification, the surface of the semiconductor layer is referred to as a metamorphic layer) The higher the heat treatment temperature, the more likely it is to be produced, and only the upper σ is used, and it is preferably 2 Å.不会 The above heat treatment (3 〇 minutes) does not occur. In addition, if the thermal history applied by the CVD (Chemical Vapor Deposition) is formed, it is preferable that the metamorphic layer does not occur in the high temperature range of 24 〇r to 300 ° c. In addition, in order to allow the application range of the manufacturing conditions imposed by the heat history of the component to have a large allowable dry circumference, it is preferable to suppress the generation of the deteriorated layer of 33 Å or more. Therefore, it is found that the composition range of the deformed shell layer is not found, and it is found that the nickel content is 4 times % to 318169 13 1326309 «* 6. When 硼at%' and the boron content is 〇2〇%% to 〇8〇%, the tendency of the altered layer can be suppressed even when the heat treatment is performed for 30 minutes. Further, in this composition range t, the I line circuit itself has a ❾匕 resistance value of 5. ΟμΩοπι or less. That is, if it is in this composition range, as described above, the generation of the depression can be suppressed as much as possible, and the specific resistance value can be lowered, so that it is practically applicable to the A1.B alloy for directly bonding to the semiconductor layer. Wiring material. In addition, the inventors of the present invention investigated the surface state change of the semiconductor layer, and investigated the surface roughness Rz of the semiconductor layer exposed by peeling off the alloy wiring material after direct bonding and heat treatment (ten point average) Roughness, JIS B0601: 1994), comparison with the surface roughness rz of the semiconductor layer before direct bonding. In the A1-Ni_B alloy wiring material of the present invention, it is found that the nickel content is 4 〇 at % in the range satisfying the above formulas (1) to (4). When the composition of the semiconductor layer before the direct bonding is set to 6.0at% and the boron content is 〇2〇at% to 〇8〇at%, direct bonding and heat treatment can be performed. The surface roughness ' of the semiconductor layer exposed later becomes a change amount of 1.5 times or less. - Whether the amount of change in the surface roughness of the semiconductor layer is directly related to the interdiffusion of A1 and Si, and it has not been clearly understood so far, but it can be confirmed that the higher the heat treatment temperature, the larger the amount of change . Further, variations in the surface state of the semiconductor layer are expected to affect the switching characteristics of the TFT. That is, it can be presumed to be related to the change of the on-off ratio (ΟΝ/OFF ratio) of the TFT. Therefore, it is directly bonded to the semiconductor layer and enters 14 318169 1326309 « , and after heat treatment, the surface of the semiconductor layer is not made. A large change in state can also be predicted to maintain good switching characteristics of the transistor. Therefore, when the surface roughness of the semiconductor layer before the direct bonding is set to 】, the surface roughness Rz of the semiconductor layer exposed after the A1 alloy wiring material is peeled off after direct bonding and heat treatment is performed, and the semiconductor is directly bonded. The amount of change in the surface roughness of the layer of L5 or less is sufficient to ensure the connection reliability of the TFT switching characteristics and the like. In the present invention, regarding the change in the surface state of the semiconductor layer which is bonded to the bonding, when the surface state is defined, the surface roughness Rz is used, but the surface property parameters described in JIS Na〇1 or the like may be used. For example, the surface roughness Ra (arithmetic mean coarse sugar) and other parameters. Further, the element structure of a display device having a structure in which an A1-based alloy wiring material has a structure in which a transparent electrode layer or a semiconductor layer is directly bonded is used, and the inventors of the present invention have an increase in contact resistance value and a poor connection when directly bonding. As a main factor, the surface roughness of the A1 alloy film was investigated, and it was found that the surface roughness of the alloy film formed of the A1—Ni—B alloy wiring material was preferably 2 Å. The i A1 Ni B alloy wiring material constitutes the above-described wiring circuit directly bonded to the semiconductor layer and/or the transparent electrode layer. When the surface roughness Ra of the Al—Ni—B alloy film formed by the “—Ni—b alloy + wiring material of the present invention is less than 2.0 A, the bonding strength is lowered when directly bonded to the transparent electrode layer, and the bonding strength is lowered. On the other hand, if it exceeds 2 〇〇A, it is confirmed that the contact resistance value tends to increase remarkably. The surface roughness degree Ra refers to the surface roughness of the film forming moxibustion A1 Ni B alloy film. 318169 15 1326309 : The difference in the manufacturing method is that the Al—Ni—B alloy film after film formation may form a semiconductor layer in a staggered structure and a transparent electrode layer in an inverted staggered structure. The surface roughness Ra is measured by an atomic force microscope (AFM: Atomic Force Microscope), and the Ra is calculated according to JIS B0601-1982. The Al-Ni-B alloy wiring material of the present invention is formed... The Al—Ni—B alloy film preferably has a film thickness of 1000 A to 3000 A. - If the film thickness of the Al—Ni—B alloy is less than 1000 A, the effective resistance value when forming the wiring circuit is difficult to satisfy. Sexual level, if more than 3000 A Then, the coverage of the upper layer laminated on the Al-Ni-B alloy film is inconsistent, and it tends to be difficult to form a practical element structure. Further, according to the study by the inventors of the present invention, it has been found in the present invention: In the wiring circuit layer formed of the Al—Ni—B alloy wiring material, the precipitates in the wiring circuit layer are dispersed and precipitated when the components are formed, and segregation is not generated, and the dispersion can be uniformly dispersed. In the study of the human and the like, it has been confirmed that the compound deposited in the wiring circuit, that is, the so-called intermetallic compound, tends to segregate in the specific composition of the conventional A1 alloy wiring material. For example, in the above patent In the A1-Ni-Nd alloy wiring material including Nd, which is disclosed in Document 2, the precipitation in the wiring circuit layer tends to be segregated due to the heat treatment in forming the device (see Fig. 5). As described above, when segregation of precipitates occurs in the wiring circuit layer, there is a difference in bonding position with the wiring circuit layer, and bonding that cannot be directly bonded is possible. The characteristics are good. That is, due to the 16 318169 1326309 in the wiring circuit layer, the precipitated intermetallic compound affects the bonding resistance of the direct bonding, and so on. Therefore, the transparent electrode layer and the semiconductor layer are directly bonded to the wiring circuit. When the portion of the layer is segregated and the portion directly bonded to the portion where no segregation occurs, the bonding property is different. Further, when the wiring formed by the Ai-based alloy wiring material is etched to form a wiring circuit, The portion where segregation occurs is different from the etching rate at which no segregation occurs, and thus a wiring circuit in which an appropriate shape cannot be formed may occur. On the other hand, in the wiring circuit layer formed by the Al—Ni—B alloy wiring material of the present invention, when the element is formed, the Ni compound is dispersed and precipitated, and the thickness of the wiring circuit layer and the thickness of the wiring circuit layer are formed. The existence ratio of the Ni compound on the line orthogonal to the direction is 25% to 45% in the thickness direction of the wiring circuit layer. That is, in the overall thickness of the wiring circuit layer, the compound does not show a tendency to segregate (see Fig. 6). Therefore, it is not necessary to specify a portion where the transparent electrode layer and the semiconductor layer are directly bonded as in the above-mentioned A1-Ni-Nd alloy wiring material, and it is also possible to form a wiring having an appropriate circuit shape by etching. Circuit. The Ni compound dispersed and deposited in the wiring circuit layer formed of the A1-Ni-B alloy wiring material of the present invention is mainly an intermetallic compound of the Al3Ni phase. As a result of investigation of the Ni compound by the present inventors, it was confirmed that when the surface of the wiring circuit was observed by a scanning electron microscope (SEM), there were a diameter of 20 nm to 160 nm, and the average particle diameter of each observation field was 8〇ηπι to 140nm. Further, the area ratio of the Ni compound to the observation field is 5 to 20%, and the density of the Ni compound is 1 ΙΟΟ /ΙΟΟμιη2 to 5000 / ΙΟΟμιη2. Further, when the cross section of the wiring circuit layer is observed by a transmission electron microscope 17 318169 1326309, -(TEM), the size of the Ni compound is 10% to 80% of the thickness of the wiring circuit layer of 200 nm, and the respective Ni compounds are The distance between each other is from 1 〇 nm to 150 nm. When the element of the display is manufactured by the above-described Al-Ni-B alloy wiring material of the present invention, it is preferable to use the nickel content as the atomic percentage Xat% of nickel, and the boron content as the atomic percentage of boron, Yat%. At the time, the position is within the range satisfying the above formulas (1) to (4), and the remainder is an aluminum-long plating target. In particular, in the range satisfying the above formulas (1) to (4), if the nickel content is 4.0 at% to 6.0 at%, and the boron content is 0.20 at% to 0,80 at% of the sputtering target, A wiring circuit that is very suitable for direct bonding with a semiconductor layer can be easily realized. When the sputtering target having such a composition is used, it is somewhat affected by the film formation conditions at the time of sputtering, but an Al-Ni-B alloy film having substantially the same composition as that of the sputtering composition can be easily formed. In the practical use of the Al-Ni-B alloy wiring material of the present invention, it is preferable to form a film by sputtering as described above, but other methods of φ may be employed. For example, a dry method such as a vapor deposition method or a spray homing method, or an alloy particle composed of the Al—Ni—B alloy of the present invention may be used as a wiring material, and aerosol deposition method may be employed. To form a wiring circuit, or to form a wiring circuit by an inkjet method. [Embodiment] Hereinafter, the best mode for carrying out the invention will be described. First Embodiment: In the present embodiment, Al-Ni-B alloy 18 318169 1326309 of each of the examples and comparative examples shown in the first table is formed by sputtering, and the characteristics of the crucible are evaluated. . The sputtering target system is used in aluminum. The metals of the respective compositions are mixed, melted and stirred in a vacuum, and then subjected to pounding in an inert gas atmosphere, and then the obtained ingot is subjected to calendering and molding, and Produced by planar processing of the surface to be sputtered. The evaluation of the characteristics of the film of each composition described in the first table is performed by directly bonding the semiconductor layer to Si diffusion heat resistance, film-specific resistance, film 35 (TC heat resistance, and direct bonding to the transparent electrode layer). At the time - ITO bondability and IZO bondability. The results are shown in Tables j and 2 above.

318169 19 1326309 [第1表] 組成at% 比電阻y Ω cm 實施例1 Al-3.0Ni-0.50B 4.13 實施例2 Al-3.0Ni-0.68B 4.18 實施例3 Al-4.7Ni-0.13B 4.16 實施例4 Al-4.7Ni-0.50B 4.35 實施例5 Al-4.7Ni-0.68B 4.41 實施例6 Al-4.7Ni-0.86B 4.62 實施例7 Al-4.7Ni-l.02B 4.64 實施例8 Al-4.7Ni-l.46B 4.96 實施例9 Al-l.0Ni-l.00B 3.94 實施例10 Al-l.0Ni-5.00B 7.05 實施例11 Al-l.0Ni-9.00B 9.86 實施例12 Al-5.0Ni-3.00B 6.63 實施例13 Al-5.0Ni-5.00B 8.19 實施例14 Al-8.0Ni-2.00B 8.05 比較例1 A1 3.01 比較例2 A1-0.3C 3.32 比較例3 Al-0.2Si 3.15 比較例4 Al-3.0Ni 3.70 比較例5 Al-4.8Ni 4.12 比較例6 Al-ll.ONi 10.60 比較例7 Al-0.3Ni-5.00B 3.58 比較例8 AM.0Ni-0.50B 3.55 比較例9 AM.0Ni-12.00B 12.50 比較例10 Al-5.0Ni-0.01B 4.03 比較例11 Al-5.0Ni-6.00B 10.20 比較例12 Al-8.0Ni-3.00B 10.40 比較例13 Al-0.2Si-0.68B 3.48 比較例14 Al-3.0Ni-0.30C 3.76 比較例15 Al-3.0Ni-0.30C-0.2Si 3.84 20 318169 1326309 [第2表]318169 19 1326309 [Table 1] Composition at% specific resistance y Ω cm Example 1 Al-3.0Ni-0.50B 4.13 Example 2 Al-3.0Ni-0.68B 4.18 Example 3 Al-4.7Ni-0.13B 4.16 Implementation Example 4 Al-4.7Ni-0.50B 4.35 Example 5 Al-4.7Ni-0.68B 4.41 Example 6 Al-4.7Ni-0.86B 4.62 Example 7 Al-4.7Ni-l.02B 4.64 Example 8 Al-4.7 Ni-l.46B 4.96 Example 9 Al-1.0 Ni-l.00B 3.94 Example 10 Al-1.0 Ni-5.00B 7.05 Example 11 Al-1.0 Ni-9.00B 9.86 Example 12 Al-5.0Ni -3.00B 6.63 Example 13 Al-5.0Ni-5.00B 8.19 Example 14 Al-8.0Ni-2.00B 8.05 Comparative Example 1 A1 3.01 Comparative Example 2 A1-0.3C 3.32 Comparative Example 3 Al-0.2Si 3.15 Comparative Example 4 Al-3.0Ni 3.70 Comparative Example 5 Al-4.8Ni 4.12 Comparative Example 6 Al-ll. ONi 10.60 Comparative Example 7 Al-0.3Ni-5.00B 3.58 Comparative Example 8 AM.0Ni-0.50B 3.55 Comparative Example 9 AM.0Ni- 12.00B 12.50 Comparative Example 10 Al-5.0Ni-0.01B 4.03 Comparative Example 11 Al-5.0Ni-6.00B 10.20 Comparative Example 12 Al-8.0Ni-3.00B 10.40 Comparative Example 13 Al-0.2Si-0.68B 3.48 Comparative Example 14 Al-3.0Ni-0.30C 3.76 Comparative Example 15 Al-3.0Ni-0.30C-0.2Si 3.84 20 318169 1326309 [Table 2]

Si擴散耐熱性°C 350°C耐熱性 ιτο接合性 IZO接合性 實施例1 240 〇 〇 〇 實施例2 240 〇 〇 〇 實施例3 300 〇 〇 〇 實施例4 330 〇 〇 〇 實施例5 330 〇 〇 〇 實施例6 330 〇 〇 〇 實施例7 330 〇 〇 〇 實施例8 330 〇 〇 δ 實施例9 240 〇 〇 〇 ,實施例10 260 〇 〇 〇 實施例11 300 〇 〇 〇 實施例12 330 〇 〇 〇 實施例13 330 〇 〇 〇 實施例14 330 〇 〇 〇 比較例1 170 X X X 比較例2 170 X X X 比較例3 180 X X X 比較例4 200 X 〇 〇 比較例5 250 X 〇 〇 比較例6 300 X 〇 〇 比較例7 230 X X X 比較例8 200 X 〇 〇 比較例9 330 〇 〇 〇 比較例10 190 X 〇 〇 比較例11 330 〇 〇 〇 比較例12 330 〇 〇 〇 比較例13 180 X X X 比較例14 200 X 〇 〇 比較例15 220 X 〇 〇 以下說明各特性評估之測定條件。Si diffusion heat resistance ° C 350 ° C heat resistance ιτο conjugate IZO bondability Example 1 240 〇〇〇 Example 2 240 〇〇〇 Example 3 300 〇〇〇 Example 4 330 〇〇〇 Example 5 330 〇 〇〇Example 6 330 〇〇〇Example 7 330 〇〇〇Example 8 330 〇〇δ Example 9 240 〇〇〇, Example 10 260 〇〇〇 Example 11 300 〇〇〇 Example 12 330 〇 〇〇 Example 13 330 〇〇〇 Example 14 330 〇〇〇 Comparative Example 1 170 XXX Comparative Example 2 170 XXX Comparative Example 3 180 XXX Comparative Example 4 200 X 〇〇 Comparative Example 5 250 X 〇〇 Comparative Example 6 300 X 〇〇 Comparative Example 7 230 XXX Comparative Example 8 200 X 〇〇 Comparative Example 9 330 〇〇〇 Comparative Example 10 190 X 〇〇 Comparative Example 11 330 〇〇〇 Comparative Example 12 330 〇〇〇 Comparative Example 13 180 XXX Comparative Example 14 200 X 〇〇Comparative Example 15 220 X 〇〇 The measurement conditions for evaluation of each characteristic are described below.

Si擴散耐熱性:關於此特性的評估樣本,係使用藉由 CVD於玻璃基板上形成n+- Si半導體層(300 A),藉由濺 21 318169 !326309 :鐘(磁控賤鍍裝置、投入電力3.0Watt/Cm2、氬氣流量 lOOsccm、氬氣壓力〇.5Pa),於該半導體層上形成第丨表所 不之各組成膜(2000 A)者。之後於150至35〇。〇的溫度範 圍内以母隔10C對評估樣本進行熱處理溫度的設定,於氮 氣環境下進行30分鐘的熱處理之後,浸入於磷酸系八丨蝕 刻液(關東化學株式會社(日本)製、液溫32ΐ下的A1混合 酸蝕刻劑/組成(容量比)碟酸:草酸:醋酸:水=16 :〗:2 : .1)中10分鐘,僅使形成於上層之各組成膜溶解,而使半導 鲁體層路出。以光學顯微鏡(200倍)觀察此露出的半導體層表 面,而調查是否產生Si與A1之相互擴散。 第2圖及第3圖係顯示所露出的半導體層表面之代表 I·生的光學顯微鏡照片。第2圖係顯示完全未觀察到相互擴 -散之半導體層表面,第3圖係顯示觀察到相互擴散的痕跡 (照片中的黑點)之半導體層表面。⑴擴散耐熱性係以觀察 到如第3圖的黑點之樣本為不良,並以第2圖之完全未觀 鲁察到相互擴散之樣本中,以最高的熱處理溫度值作為& 擴散耐熱性評估的指標值,並記载於第2表。 膜的比電阻:關於第1表所記載之各組成膜的比電阻 -值’係藉由賤鑛(條件與上述相同)於玻璃基板上形成單膜 (厚度約0.3μιη) ’於氮氣環境下於獅。c中進行%分鐘的 熱處理^後,藉心點端子電阻測定裝置來測定。 35^:耐熱H ·關於第丨表所記載之各組成膜的耐熱 係藉由錢鍍(條件與上述相同)於玻璃基板上形成單膜 β度、’勺(λ3μιη) ’於氮氣環境下’於剛至棚。c的溫度範 318169 22 1326309 圍内進行30分鐘的熱處理之後,以掃描式電子顯微鏡 ’(SEM : 1萬倍)來觀察膜表面。此外,此SEM觀察係對各 &察試料以觀察範圍為1〇μπι><8μπι進行5個視野的確認。 之後,關於350°C耐熱性的評估係於350°C、30分鐘的熱 處理中,確認是否於觀察表面具有直徑為0.1 μιη以上的突 起物(小丘),或是於觀察表面具有凹狀部分(直徑〇.3μπι至 --0.5μιη)之凹陷為4個以上者,若有則標示為X。完全無突起 -,物且凹陷為3個以下者則標示為〇。 • ΙΤΟ接合性:關於此ΙΤΟ接合性係如第4圖的概略斜 視圖所示,於玻璃基板上形成IT0(In203— 10wt%SnO2)電 極層(厚度1000 A、電路寬度ΙΟμιη),並以交叉之方式將 -各組成膜層(厚度2000 A、電路寬度ΙΟμιη)形成於上述ΙΤΟ -電極層上,之後採用此試驗樣本(飢氏(Kelvin)元件)進行評 -估。 關於此試驗樣本的製作,首先採用上述組成的各A1 |系合金靶,於上述濺鍍條件下於玻璃基板上形成厚度2000 A的A1系合金膜。此時之濺鍍時的基板溫度,係如第6 表所示進行設定而成膜。之後,於各A1系合金膜表面被覆 光阻(OFPR800 :東京應化株式會社(日本)製),配置ΙΟμιη 寬度之電路形成用圖案薄膜並進行曝光處理,以包含濃度 2.38%、液溫23°C之氫氧化四甲銨之驗性顯像液(以下簡稱 為TMAH顯像液)進行顯像處理。顯像處理後,藉由磷酸 系混合酸蝕刻液(關東化學株式會社(日本)製)進行電路形 成,並以二甲基亞礙(Dimethyl Sulfoxide)(以下簡稱為 23 318169 1326309 :DMSO)剝離液去除光阻,而形成ΙΟμπι寬度之A1系合金膜 ,電路。 ' 之後對形成有ΙΟμπι寬度的A1系合金膜電路之基板進 行純水洗淨及乾燥處理,於其表面形成SiNx的絕緣層(厚 度4200 A)。關於此絕緣層的成膜係採用濺鍍裝置,於投 入電力 RF3.0Watt/cm2、氬氣流量90sccm、氮氣流量 .、10sccm、壓力0.5Pa、基板溫度300°C之濺鍍條件下進行。 接著,於絕緣層表面被覆正型光阻(東京應化株式會社 # (日本)製:TFR— 970),配置ΙΟμιηχΙΟμπι見方的接觸孔開 口用圖案薄膜並進行曝光處理,以ΤΜΑΗ顯像液進行顯像 處理。之後採用CF4之乾式蝕刻氣體而形成接觸孔。接觸 孔的形成條件為:CF4氣體流量50sccm、氧氣流量5sccm、 壓力4.0Pa、輸出150W。 藉由上述DMSO剝離液進行光阻的剝離處理。之後採 用異丙醇去除殘存的剝離液之後,進行水洗及乾燥處理。 I對於結束此光阻的剝離處理後之各樣本,係採用ITO靶(組 成In2〇3 — l〇wt% Sn〇2),於接觸孔内及其周圍形成ITO透 明電極層。關於ITO透明電極層的形成,係進行濺鍍(基板 温度70°C、投入電力1.8Watt/cm2、氬氣流量80sccm、氧 氣流量0.7 seem、壓力0.3 7Pa),而形成厚度1000 A的ITO 膜。 於此ITO膜表面被覆光阻(東京應化株式會社(日本) 製:OFPR800),配置圖案薄膜並進行曝光處理,以TMAH 顯像液進行顯像處理,藉由草酸系混合酸蝕刻液(關東化學 24 318169 1326309 * : 株式會社(曰本)製:ITO05N)而形成ΙΟμπι寬度之電路。於 ΙΤΟ膜電路形成後,以DMSO剝離液去除光阻。 對於由上述製作方法所製作.出之各試驗樣本,於大氣 環境下於250°C中進行30分鐘的熱處理之後,從第4圖所 示之試驗樣本的箭頭部分之端子部進行連續通電(3mA)來 測定電阻。此時之電阻測定條件係於8 5 °C的大氣環境中以 所謂的壽命加速試驗條件來進行。之後,於此壽命加速試 -_驗條件下,針對各試驗樣本,調查出改變至測定開始的初 •期電阻值的1〇〇倍以上之電阻值之時間(故障時間)。於此 壽命加速試驗條件下,對於即使超過250小時亦不會故障 之試驗樣本,係評估為〇。此外,於此壽命加速試驗條件 下,對於250小時以下時產生故障之試驗樣本,係評估為 :X。關於上述壽命加速試驗條件,係依據日本JIS C 5003 : 1974、參考文獻(書名「可靠性加速試驗之有效率進行方法 及其實務」:鹿沼陽次編著、發行所日本科技申心(股))。 IZO接合性:關於此IZO接合性,係與上述ITO接合 9 . 性評估相同,於 IZO(In2〇3 — l〇.7wt% ZnO :厚度 1000 A、 電路寬度50μιη)電極層上方,以交叉方式形成各A1系合金 膜層(厚度2000 A、電路寬度ΙΟμπι),之後採用此試驗樣 本(凱氏元件)進行評估。此試驗樣本的製作條件係與上述 ΙΤΟ接合性的情形相同。並藉由與上述ΙΤΟ接合性的情形 相同之壽命加速試驗條件,對此試驗樣本測定電阻,並由 該壽命加速試驗結果進行ΙΖΟ接合性評估。評估基準亦與 上述ΙΤΟ接合性相同。 25 318169 1326309 :—如第1表所示,於關於本發明之各實施例的A1—Ni —B合金配線材料中,比電阻值為1〇μΩειη以下而在本 申請案發明的組成範圍以外之比較例9、比較例η、比較 例12’為超過lOp^cm之比電阻值。此外,如第2表所示, 於各實施例的Al—Ni —B合金配線材料中,Si擴散耐埶性 為24(TC以上,即使於330。〇的高溫下,亦存在有於接合界 面未觀察到Si及A1相互擴散者。此外,如第2表所示, ' -於各實施例的Al—Ni —B合金配線材料中,亦確認出可與 鲁打〇或IZ0之透明電極層的直接接合。此si擴散耐熱性: 就實用上較理想為於200 C以上的熱處理中不會產生,若 考量到以CVD來形成絕緣層時所施加之熱經歷,則較理 .想為於240。(:至30(TC的高溫範圍内不會產生變質層者。此 外為了使元件的製程之各熱經歷所施加之製造條件的適 用範圍具有較大的容許範圍,較理想為具有33〇。〇以上的 S i擴散耐熱性。 • 另一方面,於比較例1至3時,係確認出除了比電阻 以外,其他特性就實用上均為不足。此外,於A〗—犯合金 的比較例4及5中,雖然與透明電極層之接合特性為良好, 但耐熱性及Si擴散耐熱性不足,於Ni含量較高之比較例 6中,膜的比電阻係超過】^於本發明的組成範圍以 外之比較例7至12中,與IT0之直接接合具有問題(比較 例7),Si擴散耐熱性為2〇〇〇c以下(比較例8、比較例1 〇)、 比電阻值超過10# Ω cm(比較例9、比較例π、比較例12), 因此這些膜特性係無法達到整體要求。此外,於含有矽(Si) 318169 26 1326309 以取代鎳之比較例13中,不僅Si擴散耐熱性差,並且與 透明電極層之接合特性亦差。此外,於本案申請人所提出 之習知Al—Ni—C合金配線材料(比較例14、比較例15) 中’雖然與透明電極層之接合性不具有問題,但係確認出 財熱性及Si擴散对熱性不足。 第二實施形態:於第二實施形態中,係關於本發明之 ._A1—Ni—B合金配線材料的組成範圍,係針對膜的耐熱性 -及半導體層的接合特性之間的關係,進行更深入的探討而 擊說明。第3表至第5表係表示,於改變錄含量及棚含量時 之膜的比電阻值及膜的凹陷產生率,以及與半導體層直接 接合時之變質層的產生狀況及半導體層的表面粗糙度變化 •量之結果。Si diffusion heat resistance: An evaluation sample for this characteristic is to form an n+-Si semiconductor layer (300 A) on a glass substrate by CVD, by sputtering 21 318169 !326309 : clock (magnetron plating device, power input) 3.0Watt/Cm2, argon gas flow rate lOOsccm, argon gas pressure 〇.5Pa), and each of the constituent films (2000 A) of the second layer was formed on the semiconductor layer. After 150 to 35 〇. In the temperature range of the crucible, the heat treatment temperature of the evaluation sample was set to 10 C. The heat treatment was carried out for 30 minutes in a nitrogen atmosphere, and then immersed in a phosphoric acid-based barium etchant (manufactured by Kanto Chemical Co., Ltd. (Japan) at a liquid temperature of 32 ΐ. Under the A1 mixed acid etchant / composition (capacity ratio) dish acid: oxalic acid: acetic acid: water = 16: :: 2: .1) 10 minutes, only the film formed in the upper layer is dissolved, so that the semi-conductive The Lu body layer is out. The exposed surface of the semiconductor layer was observed with an optical microscope (200 times) to investigate whether or not interdiffusion of Si and A1 occurred. Fig. 2 and Fig. 3 are optical micrographs showing the surface of the exposed semiconductor layer. Fig. 2 shows that the surface of the semiconductor layer which is mutually diffused is not observed at all, and Fig. 3 shows the surface of the semiconductor layer where the trace of mutual diffusion (black spots in the photograph) is observed. (1) Diffusion heat resistance is determined by observing a sample of black spots as shown in Fig. 3, and in the sample which is completely unobserved to interdiffusion in Fig. 2, the highest heat treatment temperature value is taken as & diffusion heat resistance The value of the indicator evaluated is described in Table 2. The specific resistance of the film: the specific resistance-value of each of the constituent films described in the first table is formed by a tantalum ore (conditions as described above) on a glass substrate to form a single film (thickness of about 0.3 μm) in a nitrogen atmosphere. Yu Shi. After heat treatment for % minutes in c, it was measured by a terminal resistance measuring device. 35^: heat-resistant H · The heat-resistant system of each constituent film described in the second table is formed by monolithic β-degree, 'spoon (λ3μιη)' in a nitrogen atmosphere by money plating (conditions are the same as above). Yu Gang to the shed. Temperature of c 318169 22 1326309 After heat treatment for 30 minutes, the surface of the film was observed by a scanning electron microscope 'SEM (10,000 times). Further, this SEM observation was carried out for 5 fields of view in each of the & samples in an observation range of 1 μm μ>< 8 μm. After that, the evaluation of the heat resistance at 350 ° C was carried out in a heat treatment at 350 ° C for 30 minutes, and it was confirmed whether or not the protrusion (valiform) having a diameter of 0.1 μm or more on the observation surface or the concave portion on the observation surface was observed. The number of depressions (diameter 〇.3μπι to -0.5μιη) is four or more, and if any, it is marked as X. There are no protrusions at all, and those with a depression of 3 or less are marked as 〇. ΙΤΟ ΙΤΟ : : : : ΙΤΟ ΙΤΟ ΙΤΟ ΙΤΟ ΙΤΟ IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT In this manner, each constituent film layer (thickness 2000 A, circuit width ΙΟμηη) was formed on the above-mentioned ΙΤΟ-electrode layer, and then this test sample (Kelvin element) was used for evaluation. For the preparation of this test sample, first, an A1 alloy film having a thickness of 2000 A was formed on a glass substrate under the above sputtering conditions using each of the A1 | alloy target having the above composition. The substrate temperature at the time of sputtering at this time was set as shown in Table 6, and the film was formed. After that, the surface of each of the A1 alloy films was coated with a photoresist (OFPR800: manufactured by Tokyo Ohka Co., Ltd.), and a pattern film for circuit formation having a width of ΙΟμηη was disposed and exposed to a concentration of 2.38% and a liquid temperature of 23°. The test imaging solution of C tetramethylammonium hydroxide (hereinafter referred to as TMAH developing solution) is subjected to development processing. After the development, the circuit was formed by a phosphoric acid mixed acid etching solution (manufactured by Kanto Chemical Co., Ltd., Japan), and a dimethyl sulfide (hereinafter referred to as 23 318169 1326309: DMSO) stripping solution was used. The photoresist is removed to form an A1 alloy film having a width of ΙΟμπι, and an electric circuit. Then, the substrate on which the A1 alloy film circuit having a width of ΙΟμπι was formed was subjected to pure water washing and drying treatment, and an insulating layer (thickness 4200 A) of SiNx was formed on the surface. The film formation of this insulating layer was carried out by sputtering using a sputtering apparatus under the conditions of sputtering power of RF 3.0 Watt/cm 2 , argon flow rate of 90 sccm, nitrogen gas flow rate, 10 sccm, pressure of 0.5 Pa, and substrate temperature of 300 °C. Then, the surface of the insulating layer is coated with a positive photoresist (Toku-Tokyo, manufactured by Tokyo Ohka Co., Ltd. (Japan): TFR-970), and a pattern film for contact hole opening of ΙΟμηηχΙΟμπι square is placed and exposed to light. Like processing. Thereafter, a dry etching gas of CF4 is used to form a contact hole. The contact holes were formed under the conditions of a CF4 gas flow rate of 50 sccm, an oxygen flow rate of 5 sccm, a pressure of 4.0 Pa, and an output of 150 W. The photoresist stripping treatment was performed by the above DMSO stripping solution. Thereafter, the remaining stripping liquid was removed by using isopropyl alcohol, followed by washing with water and drying. I. For each sample after the stripping treatment to terminate the photoresist, an ITO target (composition of In2〇3 - l〇wt% Sn〇2) was used to form an ITO transparent electrode layer in and around the contact hole. The formation of the ITO transparent electrode layer was performed by sputtering (substrate temperature: 70 ° C, input power: 1.8 Watt/cm 2 , argon gas flow rate: 80 sccm, oxygen gas flow rate of 0.7 seem, pressure: 0.37 Pa) to form an ITO film having a thickness of 1000 A. The surface of the ITO film was coated with a photoresist (OFPR800, manufactured by Tokyo Ohka Co., Ltd., Japan), and a patterned film was placed and exposed to light. The image was processed with a TMAH developing solution, and an acid etching solution was mixed with oxalic acid (Kanto). Chemical 24 318169 1326309 * : A system of ΙΟμπι width formed by ITO05N. After the formation of the ruthenium circuit, the photoresist was removed with a DMSO stripper. Each of the test samples produced by the above production method was subjected to heat treatment at 250 ° C for 30 minutes in an atmospheric environment, and then continuously energized (3 mA from the terminal portion of the arrow portion of the test sample shown in Fig. 4 ) to determine the resistance. The resistance measurement conditions at this time were carried out in an atmospheric environment of 85 ° C under the so-called life acceleration test conditions. Then, under the condition of the accelerated life test, the time (fault time) of the resistance value changed to 1 〇〇 or more of the initial resistance value at the start of the measurement was investigated for each test sample. Under this life-sustaining test condition, a test sample that does not fail even if it exceeds 250 hours is evaluated as 〇. In addition, under this life accelerated test condition, the test sample that caused failure under 250 hours was evaluated as: X. The above-mentioned life-sustaining test conditions are based on Japanese JIS C 5003: 1974, References (title "Efficient Methods and Practices for Accelerated Accelerated Tests": Edited by Lukang Yangji, and issued by Japan Science and Technology Corporation (shares) . IZO bondability: This IZO bondability is the same as the above-mentioned ITO bond. The same as the IZO (In2〇3 - l〇.7wt% ZnO: thickness 1000 A, circuit width 50 μιη) electrode layer, in a crossover manner Each of the A1 alloy film layers (thickness 2000 A, circuit width ΙΟμπι) was formed, and then evaluated using this test sample (Kjeldahl element). The conditions for the preparation of this test sample were the same as those for the above-mentioned ΙΤΟ bondability. Further, the test specimen was subjected to the test conditions under the same life as the above-described crucible bondability, and the electric resistance was measured for the test specimen, and the crucible joint evaluation was performed from the life accelerating test result. The evaluation criteria are also the same as the above-mentioned enthalpy. 25 318169 1326309: As shown in the first table, in the A1-Ni-B alloy wiring material according to each embodiment of the present invention, the specific resistance value is 1 〇μΩ ειη or less and is outside the composition range of the present invention. Comparative Example 9, Comparative Example η, and Comparative Example 12' were specific resistance values exceeding 10 μcm. Further, as shown in the second table, in the Al—Ni—B alloy wiring material of each of the examples, the Si diffusion resistance is 24 (TC or more, even at 330. The high temperature is also present at the bonding interface. No interdiffusion of Si and A1 was observed. Further, as shown in Table 2, - in the Al-Ni-B alloy wiring material of each of the examples, a transparent electrode layer which can be combined with Lusa or IZ0 was also confirmed. Direct bonding. This Si diffusion heat resistance: It is practically not required to be generated in a heat treatment of 200 C or more. If the thermal history applied when forming an insulating layer by CVD is considered, it is reasonable. 240. (: to 30 (there is no deterioration layer in the high temperature range of TC. In addition, in order to make the applicable range of the manufacturing conditions applied by the thermal history of the component process have a large allowable range, it is preferable to have 33〇 On the other hand, in Comparative Examples 1 to 3, it was confirmed that other characteristics except for the specific resistance were practically insufficient. In Examples 4 and 5, the bonding property with the transparent electrode layer was However, in heat resistance and Si diffusion heat resistance, in Comparative Example 6 in which the Ni content is high, the specific resistance of the film exceeds the comparative examples 7 to 12 outside the composition range of the present invention, and is directly related to IT0. The bonding has a problem (Comparative Example 7), Si diffusion heat resistance is 2 〇〇〇 c or less (Comparative Example 8 and Comparative Example 1 〇), and specific resistance value exceeds 10 # Ω cm (Comparative Example 9, Comparative Example π, Comparative Example) 12) Therefore, the film characteristics were not able to meet the overall requirements. Further, in Comparative Example 13 containing yttrium (Si) 318169 26 1326309 instead of nickel, not only the Si diffusion heat resistance was poor, but also the bonding property with the transparent electrode layer was inferior. Further, in the conventional Al-Ni-C alloy wiring material proposed by the applicant of the present application (Comparative Example 14 and Comparative Example 15), although the bonding property with the transparent electrode layer was not problematic, the heat and Si were confirmed. Diffusion is insufficient in heat. Second Embodiment: In the second embodiment, the composition range of the ._A1—Ni—B alloy wiring material according to the present invention is between the heat resistance of the film and the bonding property of the semiconductor layer. Relationship, deeper The third table to the fifth table indicate the specific resistance of the film and the generation rate of the film when changing the content and the content of the shed, and the occurrence of the altered layer when directly bonded to the semiconductor layer. And the result of the change in the surface roughness of the semiconductor layer.

318169 27 1326309 [第3表]318169 27 1326309 [Table 3]

組成at% 比電阻# Ω cm 凹陷產生率% 組成at% 比電阻 β Q cm 凹陷產生率% Ni B 350〇C 400°C Ni B 350〇C 400。。 3.0 0.30 4.07 1.61 2.03 5.0 0.05 4.03 0.53 1.42 3.0 0.40 4.11 1.63 1.63 5.0 0.10 4.07 0.57 1.60 3.0 0.50 4.13 1.70 1.67 5.0 0.20 4.53 0.67 1.62 3.0 0.60 4.18 1.67 2.11 5.0 0.30 4.50 1.27 1.50 3.0 0.80 4.22 1.75 3.55 5.0 0.40 4.55 1.52 1.73 3.0 1.00 4.28 1.71 4.15 5.0 0.50 4.58 1.56 1.79 3.0 1.80 4.35 1.87 4.97 5.0 0.60 4.62 1.50 1.73 4.0 0.05 3.85 1.21 1.72 5.0 0.80 4.67 1.60 185 4.0 0.10 3.92 1.20 1.65 5.0 1.00 4.73 1.72 1.94 4.0 0.20 4.01 1.22 1.97 6.0 0.05 4.30 0.60 1.32 4.0 0.30 4.06 1.24 1.57 6.0 0.10 4.38 0.68 1.42 4.0 0.40 4.22 1.21 1.60 6.0 0.20 4.52 0.67 1.48 4.0 0.50 4.41 1.32 1.60 6.0 0.30 4.65 0.77 1.20 4.0 0.60 4.31 1.80 1.63 6.0 0.40 4.67 0.80 1.15 4.0 0.80 4.50 1.60 1.80 6.0 0.50 4.69 0.80 1.23 4.0 1.00 4.52 1.73 1.90 6.0 0.60 4.74 0.98 1.33 6.0 0.80 4.98 1.42 1.65 6.0 1.00 5.05 1.70 1.88 7.0 0.30 5.19 0.87 1.23 8.0 0.50 5.50 1.22 1.57 8.0 1.00 5.70 1.75 1.95 28 318169 1326309 [第4表] 組·成at% 變質層 組成at% 變質層 Ni B 300°C 330〇C 350〇C Ni Β 300°C 330〇C 350〇C 3.0 0.30 Δ Δ X 5.0 0.05 〇 Δ △ 3.0 0.40 Δ Δ X 5.0 0.10 〇 〇 △ 3.0 0.50 Δ Δ X 5.0 0.20 〇 〇 △ 3.0 0.60 Δ Δ X 5.0 0.30 〇 〇 〇 3.0 0.80 〇 Δ X 5.0 0.40 〇 〇 〇 3.0 1.00 〇 Δ X 5.0 0.50 〇 〇 〇 3.0 1.80 〇 〇 Δ 5.0 0.60 〇 〇 △ 4.0 0.05 〇 Δ Δ 5.0 0.80 〇 〇 Δ 4.0 0.10 〇 Δ Δ 5.0 1.00 〇 〇 Δ 4.0 0.20 〇 〇 Δ 6.0 0.05 〇 〇 Δ 4.0 0.30 〇 〇 Δ 6.0 0.10 〇 〇 △ 4.0 0.40 〇 〇 〇 6.0 0.20 〇 〇 △ 4.0 0.50 〇 〇 Δ 6.0 0.30 〇 〇 △ 4.0 0.60 〇 〇 Δ 6.0 0.40 〇 〇 〇 4.0 0.80 〇 〇 Δ 6.0 0.50 〇 〇 △ 4.0 1.00 〇 〇 Δ 6.0 0.60 〇 〇 △ 6.0 0.80 〇 〇 Δ 6.0 1.00 〇 〇 △ 7.0 0.30 〇 〇 △ 8.0 0.50 〇 〇 △ 8.0 1.00 〇 〇 Δ 29 318169Composition at% specific resistance # Ω cm depression generation rate % composition at% specific resistance β Q cm depression generation rate Ni B 350 〇 C 400 ° C Ni B 350 〇 C 400. . 3.0 0.30 4.07 1.61 2.03 5.0 0.05 4.03 0.53 1.42 3.0 0.40 4.11 1.63 1.63 5.0 0.10 4.07 0.57 1.60 3.0 0.50 4.13 1.70 1.67 5.0 0.20 4.53 0.67 1.62 3.0 0.60 4.18 1.67 2.11 5.0 0.30 4.50 1.27 1.50 3.0 0.80 4.22 1.75 3.55 5.0 0.40 4.55 1.52 1.73 3.0 1.00 4.28 1.71 4.15 5.0 0.50 4.58 1.56 1.79 3.0 1.80 4.35 1.87 4.97 5.0 0.60 4.62 1.50 1.73 4.0 0.05 3.85 1.21 1.72 5.0 0.80 4.67 1.60 185 4.0 0.10 3.92 1.20 1.65 5.0 1.00 4.73 1.72 1.94 4.0 0.20 4.01 1.22 1.97 6.0 0.05 4.30 0.60 1.32 4.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.0 1.00 4.52 1.73 1.90 6.0 0.60 4.74 0.98 1.33 6.0 0.80 4.98 1.42 1.65 6.0 1.00 5.05 1.70 1.88 7.0 0.30 5.19 0.87 1.23 8.0 0.50 5.50 1.22 1.57 8.0 1.00 5.70 1.75 1.95 28 318169 1326309 [Table 4] Group·at at% Metamorphic layer Composition at% metamorphic layer Ni B 300 °C 330〇C 350〇C Ni Β 300°C 330〇C 350〇C 3.0 0.30 Δ Δ X 5.0 0.05 〇Δ △ 3.0 0.40 Δ Δ X 5.0 0.10 〇〇△ 3.0 0.50 Δ Δ X 5.0 0.20 〇〇△ 3.0 0.60 Δ Δ X 5.0 0.30 〇〇〇3.0 0.80 〇Δ X 5.0 0.40 〇〇〇3.0 1.00 〇Δ X 5.0 0.50 〇〇〇3.0 1.80 〇〇Δ 5.0 0.60 〇〇△ 4.0 0.05 〇Δ Δ 5.0 0.80 〇〇Δ 4.0 0.10 〇Δ Δ 5.0 1.00 〇〇Δ 4.0 0.20 〇〇Δ 6.0 0.05 〇〇Δ 4.0 0.30 〇〇Δ 6.0 0.10 〇〇△ 4.0 0.40 〇〇〇6.0 0.20 〇〇△ 4.0 0.50 〇〇Δ 6.0 0.30 〇〇△ 4.0 0.60 〇〇Δ 6.0 0.40 〇〇〇4.0 0.80 〇〇Δ 6.0 0.50 〇〇△ 4.0 1.00 〇〇Δ 6.0 0.60 〇〇△ 6.0 0.80 〇〇Δ 6.0 1.00 〇〇△ 7.0 0.30 〇〇△ 8.0 0.50 〇〇△ 8.0 1.00 〇〇Δ 29 318169

組成at% 粗糙度變化量 Ni B 300°C 330〇C 350〇C 5.0 0.05 1.14 0.98 1.58 5.0 0.10 1.12 1.02 1.32 5.0 0.20 1.01 1.10 1.38 5.0 0.30 1.03 1.08 1.35 5.0 0.40 1.14 0.92 1.20 5.0 0.50 1.37 1.42 1.50 5.0 0.60 1.04 0.99 0.96 5.0 0.80 1.01 1.01 1.06 5.0 1.00 0.99 0.97 1.12 6.0 0.05 1.02 0.95 1.03 6.0 0.10 1.00 1.08 1.08 6.0 0.20 1.05 0.98 0.94 6.0 0.30 1.06 0.91 0.92 6.0 0.40 0.95 0.93 1.02 6.0 0.50 1.30 1.20 0.92 6.0 0.60 0.94 0.93 1.18 6.0 0.80 0.91 1.03 1.04 6.0 1.00 0.95 0.95 1.10 7.0 0.30 1.06 1.12 1.11 8.0 0.50 1.02 0.92 1.08 8.0 1.00 0.91 0.96 1.04 第3表係表示各組成之膜的比電阻值及凹陷產生率。 /臈的比電阻值之測定條件,係與上述第一實施形態相 #評祍此外,凹陷產生率係在與上述第一實施形態的耐熱性 評相同之條件下,對熱處理溫度為35〇。〇、4〇〇t:下的各 1羡本進行sem觀察而獲得之結果。由於係對此第二實 ^之耐熱性評估,進行比上述第—實施形態的耐熱性 -凹陷^為詳細之探討’因此係進行凹陷產生率的調查。此 0產生率係於觀察表面檢測出成為凹狀部分(直护 佔:二0.5m)之凹陷’並從其大小及個數來算出凹陷; 來做’而求取該凹陷面積相對觀察面積之面積比例, 來做為此凹陷產生率之值。關於此凹陷面積的計算,係以 318169 30 影像解析對存在於觀家矣 使該凹狀部分近似=面:凹狀部分進行二值化處理, 陷時為大約'在測定幾個凹 係對各觀察試料以• 所不之凹陷產生率之值, 均值。_㈣察_為叫㈣卿之5個視野的平 從第3表的比電阻值之結果來 -6.0at%以下,硼含詈Α Λ〇η _ 仲夭舌鎳含 嗍3量為0.80at%以下,則比 ·5.0μΩ(;ιη以下。此外,铋笸 值為 認出,係具有埶處理,、w厗各一 手之、,,σ果可相 曰趙各夕 愈兩’則該產生率愈大之傾向, 產生率愈小之傾向。且確認出當-增加時, 35〇m 變大的傾向。從帛3表的結果可得知,於 350C下進行30分鐘的轨處理往或 町…慝理時,為了使凹陷產生率抑制 在1.6M下,只需使鎳含量為(μ心上 〇.80at%以下即可。 ’ 3里為 接著說明第4表所示之接合界面中之變y層的產生調 查結果。此變質層調查係採用與上述第一實施形態所說明 之Si擴散耐熱性的評估相同條件所製作出之評估樣本。具 體而言,係藉由CVD於玻璃基板上形成n+—以半導體層 (300 A)’藉由濺鍍(磁控濺鍍裝置、投入電力3 〇Wat^m2、 虱氣流量l〇〇sccm、氬氣壓力05Pa),於該半導體層上形 成第4表所示之各組成的A1_Ni_B合金膜(2〇〇〇 A卜之 後對於該評估樣本於300、33〇、35〇<t的各個溫度中,於 氮氣環境下進行30分鐘的熱處理之後,採用上述麟酸系 A1蝕刻液,僅使形成於上層之A1系合金膜溶解,而使半 318169 31 1326309 ·,導體層露出。以光學顯微鏡(200倍)觀察此露出的半導體層 表面’而確認成為第3圓所示的黑點之變質部分的存在, 或是半導體層表面的變色或粗糙之狀態。於第4表中,若 由於Si與A1的相互擴散而觀察出多數個黑點,係評估為 x,若雖然觀察出數個以下的黑點的存在或未觀察出黑 點,但觀察出觀察表面的變色及粗糙狀態者,則評估為△, -若觀察表面完全不存在黑點,且未觀察出變色或粗糙的表 -·面狀態者,則評估為〇。 • 接著,第5表係表示伴隨著上述變質層調查,而調查Composition at% Roughness variation Ni B 300°C 330〇C 350〇C 5.0 0.05 1.14 0.98 1.58 5.0 0.10 1.12 1.02 1.32 5.0 0.20 1.01 1.10 1.38 5.0 0.30 1.03 1.08 1.35 5.0 0.40 1.14 0.92 1.20 5.0 0.50 1.37 1.42 1.50 5.0 0.60 1.04 0.99 0.96 5.0 0.80 1.01 1.01 1.06 5.0 1.00 0.99 0.97 1.12 6.0 0.05 1.02 0.95 1.03 6.0 0.10 1.00 1.08 1.08 6.0 0.20 1.05 0.98 0.94 6.0 0.30 1.06 0.91 0.92 6.0 0.40 0.95 0.93 1.02 6.0 0.50 1.30 1.20 0.92 6.0 0.60 0.94 0.93 1.18 6.0 0.80 0.91 1.03 1.04 6.0 1.00 0.95 0.95 1.10 7.0 0.30 1.06 1.12 1.11 8.0 0.50 1.02 0.92 1.08 8.0 1.00 0.91 0.96 1.04 The third table shows the specific resistance value and the generation rate of the depression of the film of each composition. The measurement conditions of the specific resistance value of 臈 are evaluated in the same manner as in the first embodiment described above, and the heat generation temperature is 35 Torr under the same conditions as those of the heat resistance of the first embodiment. 〇, 4〇〇t: The results obtained by sem observation of each of the 1 羡. In order to evaluate the heat resistance of the second embodiment, the heat resistance-depression of the above-described first embodiment was examined in detail. Therefore, the investigation of the generation rate of the depression was performed. The 0 generation rate is determined by the observation surface to be a concave portion (straight protection: two 0.5 m), and the depression is calculated from the size and number thereof; and the depression area is determined relative to the observation area. The area ratio is used to determine the value of the depression. The calculation of the area of the depression is performed by 318169 30 image analysis for the existence of the concave part of the concave part: the concave part is binarized, and the trapping time is about 'in the measurement of several concave pairs Observe the value of the rate of occurrence of the sag of the sample, and the mean value. _ (4) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In the following, the ratio is 5.0 μΩ (; ηη or less. In addition, the 铋笸 value is recognized, the 埶 is processed, and the 厗 厗 厗 , , , , , , , , , 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各The tendency to increase is the tendency to be smaller, and the tendency to increase 35 〇m is confirmed when the increase is increased. From the results of the 帛3 table, it can be known that the rail treatment is carried out at 350C for 30 minutes. In order to suppress the generation rate of the depression at 1.6 M, it is only necessary to set the nickel content to be (in the case of 心.80 at% or less in the center of the heart. The third is in the joint interface shown in Table 4). The investigation result of the change of the y layer was carried out. The metamorphic layer investigation was an evaluation sample prepared under the same conditions as the evaluation of the Si diffusion heat resistance described in the first embodiment, specifically, by CVD on a glass substrate. Form n + - with semiconductor layer (300 A) 'by sputtering (magnetron sputtering device, input power 3 〇 Wat ^ m2, helium flow L〇〇sccm, argon pressure 05Pa), an A1_Ni_B alloy film of each composition shown in Table 4 is formed on the semiconductor layer (after 2〇〇〇Abu, the evaluation sample is 300, 33〇, 35〇< At each temperature of t, after heat treatment for 30 minutes in a nitrogen atmosphere, the above-mentioned linonic acid-based A1 etching solution was used to dissolve only the A1-based alloy film formed on the upper layer, and the conductor layer was exposed by half 318169 31 1326309. The surface of the exposed semiconductor layer was observed by an optical microscope (200 times), and the presence of a modified portion of the black dot indicated by the third circle was confirmed, or the surface of the semiconductor layer was discolored or roughened. In Table 4 If a large number of black spots are observed due to the interdiffusion of Si and A1, it is evaluated as x. If the presence or absence of several black spots is observed or no black spots are observed, the discoloration and roughness of the observed surface are observed. The state is evaluated as △, - if the surface is completely free of black spots, and no discolored or rough surface-surface state is observed, it is evaluated as 〇. • Next, the fifth table indicates that the above deterioration is accompanied. Layer survey check

出半導體層的表面狀態變.化之結果。此半導體層的表面狀 態變化,係藉由測定半導體層的表面粗糙度而進行。具體 .而言,係分別測定出於玻璃基板上形成n+—Si半導體層 (300 A )後的表面粗链度(以下稱為as_dep〇粗链度),以及 -上述變質層調查的評估樣本中所露出的半導體層的表面粗 糙度(以下稱為直接接合粗糙度),並算出(直接接合粗糙度 籲之值)/(aS-deP〇粗糙度之值亦即,若第5表所示之粗糙 度變化量的數值較1愈大,則進行直接接合及熱處理後之 半導體層的表面狀態愈粗糙。關於半導體層的表面粗糙度 之測疋,係採用段差/表面粗縫度/細微形狀測定裝置(KLAThe surface state of the semiconductor layer is changed. The change in the surface state of the semiconductor layer is carried out by measuring the surface roughness of the semiconductor layer. Specifically, the surface roughness (hereinafter referred to as as_dep〇 thick chain degree) after forming the n+—Si semiconductor layer (300 A) on the glass substrate, and the evaluation sample of the above-described metamorphic layer investigation are respectively measured. The surface roughness of the exposed semiconductor layer (hereinafter referred to as direct joint roughness) is calculated (the value of the direct joint roughness call) / (the value of the aS-deP〇 roughness, that is, as shown in the fifth table) The larger the value of the amount of roughness change is, the coarser the surface state of the semiconductor layer after direct bonding and heat treatment. The measurement of the surface roughness of the semiconductor layer is determined by the step/surface roughness/fine shape. Device (KLA

Tencor公司製:p_i5型),並依據b〇601 : 1994而求出 十點平均粗糙度RZ。 從第4表的結果可確認出,具有鎳愈多愈可抑制變質 層產生之傾向。此外確認出,於33〇。〇的熱處理時,若鎳 含量為4.0at%至6』at%,硼含量為〇 20at%至〇 8〇at%, 318169 32 1326309 .. 則更可抑制變質層的產生。此外亦確認出,若鎳含量為 4.0at% 至 6.0at%,硼含量為 0.30at% 至 0.50at%,則即使 於350°C的高溫中,亦具有不產生變質層之傾向。 關於第5表的粗糙度變化量,可得知係表示出與第3 表之變質層的結果大致相關之傾向。從該第5表的粗糙度 變化量之結果可得知,即使於直接接合後進行330°C的熱 -處理,亦不會使半導體層的接合表面產生極為粗糙的狀 .態,亦即as-depo粗糖度之值之1.5倍以内的變化量之組成 •範圍,為鎳含量為4.Oat%至6.Oat%,硼含量為0.20at%至 0.60at%。 第三實施形態:於第三實施形態中,係說明以錢鍍成 膜時之表面粗糙度的調查結果。於此第三實施形態中,係 對本發明之Al-Ni—B合金配線材料中之Al-5.0 at%Ni —0.4at% B的組成(實施例15)之A1 — Ni—B合金膜、比較 用之純A1膜(與上述第一實施形態相同,係設定為比較例 鲁1)、以及Al-2.0 at%Nd合金膜(比較例16)進行調查。 首先,關於實施例15、比較例1及比較例16的成膜 條件,係採用上述組成的A1系合金靶,於濺鍍條件為投入 電力3.0Watt/cm2、氬氣流量lOOsccm、氬氣壓力0.5Pa下, 採用磁控減;鍍裝置(Tokki公司(日本)製:Multichamber • Type濺鍍裝置MSL464),於玻璃基板(康寧公司(美國)製、 #1737)上形成厚度2000 A的各合金膜。此外,濺鍍時的基 板溫度係如第6表進行設定而成膜。 接著測定第6表所示之各合金膜的表面粗糙度Ra。此 33 318169 1326309 -,表面粗糙度的測定係採用原子力顯微鏡(Seik0 Instruments 株式會社(日本)製.SPI— 3800N),而求取出算術平均粗糙 度Ra(JIS B0601-1982)。此外,此測定係對各合金膜表面 的5處進行測定而算出該平均值。該結果如第6表所示。 第6表中,實施例15 — 1至3係表示基板溫度1〇〇它至25〇。〇 之A1-5.0 at%Ni—〇.4at%B合金膜之結果。此外,於此 -第6表中,以基板溫度於室溫時之A]—5〇 合金膜之結果為比較例17,以基板溫度於3t時之 參A1-5.0 at%Ni-〇.4at%B合金膜之結果為比較例18。此 外,比較例1係表示純刈膜,比較例16係表示Al—2.〇at 合金膜之結果。此外,玻璃基板表面的平均表面粗糙 度之值(Ra)為1.8 A。 [第6表] 1板溫度(°δΤTencor company: p_i5 type), and according to b〇601: 1994, the ten point average roughness RZ is obtained. From the results of the fourth table, it was confirmed that the more nickel, the more the tendency of the metamorphic layer to be suppressed. Also confirmed, at 33 〇. In the heat treatment of bismuth, if the nickel content is 4.0 at% to 6 』at%, the boron content is 〇20 at% to 〇 8 〇 at%, 318169 32 1326309 .., the occurrence of the metamorphic layer is more inhibited. Further, it has been confirmed that if the nickel content is from 4.0 at% to 6.0 at% and the boron content is from 0.30 at% to 0.50 at%, the deterioration layer is not formed even at a high temperature of 350 °C. Regarding the amount of change in the roughness of the fifth table, it was found that the tendency to be roughly related to the result of the altered layer of the third table was exhibited. As a result of the amount of change in the roughness of the fifth table, it was found that even after the direct bonding and the heat treatment at 330 ° C, the joint surface of the semiconductor layer did not become extremely rough, that is, as The composition of the amount of change within -1.5 times the value of -depo coarseness is from 4.Oat% to 6.Oat%, and the boron content is from 0.20 at% to 0.60 at%. Third Embodiment: In the third embodiment, the results of investigation of the surface roughness when the film is formed by money plating will be described. In the third embodiment, the A1-Ni-B alloy film of the composition of Al-5.0 at%Ni - 0.4 at% B in the Al-Ni-B alloy wiring material of the present invention (Example 15) is compared. The pure A1 film (the same as the first embodiment described above was set as Comparative Example 1) and the Al-2.0 at% Nd alloy film (Comparative Example 16) were investigated. First, the film formation conditions of Example 15, Comparative Example 1, and Comparative Example 16 were the A1 alloy target of the above composition, and the sputtering conditions were an input power of 3.0 Watt/cm 2 , an argon flow rate of 100 sccm, and an argon pressure of 0.5. Under Pa, a magnetically controlled reduction; a plating apparatus (manufactured by Tokki Co., Ltd.: Multichamber • Type sputtering apparatus MSL464) was used to form each alloy film having a thickness of 2000 A on a glass substrate (manufactured by Corning Incorporated (USA), #1737). . Further, the substrate temperature at the time of sputtering was set as shown in Table 6. Next, the surface roughness Ra of each alloy film shown in Table 6 was measured. In the measurement of the surface roughness, an atomic force microscope (SPI-3800N, manufactured by Seik0 Instruments Co., Ltd., Japan) was used to obtain an arithmetic mean roughness Ra (JIS B0601-1982). Further, this measurement was carried out by measuring five points on the surface of each alloy film to calculate the average value. The result is shown in Table 6. In Table 6, Examples 15 - 1 to 3 show the substrate temperature of 1 Torr to 25 Å. 〇 The result of A1-5.0 at%Ni—〇.4at%B alloy film. Further, in this - the sixth table, the result of the A]-5 alloy film at the substrate temperature at room temperature is Comparative Example 17, and the substrate temperature is 31-times at the time of A1-5.0 at%Ni-〇.4at The result of the %B alloy film was Comparative Example 18. Further, Comparative Example 1 shows a pure ruthenium film, and Comparative Example 16 shows the result of an Al-2. 〇at alloy film. Further, the value of the average surface roughness (Ra) of the surface of the glass substrate was 1.8 A. [Table 6] 1 plate temperature (°δΤ

i較例17 f施例15 15^2 從第6表的結果可確認出Α1 —州―6合金膜的表面粗 链度係因基板溫度的不同而變化。此外,於比較例1之純 A1膜中係形成非常粗糙的表面狀態,於比較例16之A1-2.0 at/Nd合金膜中,即使基板溫度為刚。c左右,亦為 318169 34 1326309 ^ Ra超過20 A之粗縫表面狀態。 接著說明與透明電極層直接接合之接觸電阻值及該接 合強度之調查結果。首先說明接觸電阻值的測定。如上述 表面粗糙度測定之說明,係採用上述組成的A1系合金靶, 於上述濺鍍條件下於玻璃基板上形成厚度2000 A的A1系 合金膜。此時之濺鍍時的基板溫度係以第6表所示之溫度 -進行各成膜。之後,於各A1系合金膜表面被覆光阻 _(OFPR800 :東京應化株式會社(日本)製),配置20μπι寬度 •之電路形成用圖案薄膜並進行曝光處理,以上述第一實施 形態中所說明之ΤΜΑΗ顯像液進行顯像處理。顯像處理 後,藉由上述第一實施形態中所說明之磷酸系混合酸蝕刻 液進行電路形成,並以DMSO剝離液去除光阻,而形成 20μιη寬度之Α1系合金膜電路。 之後對形成有20μιη寬度的Α1系合金膜電路之基板進 行純水洗淨及乾燥處理,於其表面形成SiNx的絕緣層(厚 $度4200 A)。關於此絕緣層的成膜係採用濺鍍裝置,於投 入電力RF3.0Watt/cm2、氬氣流量90sccm、氮氣流量 lOsccm、壓力0.5Pa、基板溫度300°C之濺鍍條件下進行。 接著於絕緣層表面被覆正型光阻(東京應化株式會社 (曰本)製:TFR— 970),配置ΙΟμπίχΙΟμιη見方的接觸孔開 口用圖案薄膜並進行曝光處理,以ΤΜΑΗ顯像液進行顯像 處理。之後採用CF4之乾式蝕刻氣體而形成接觸孔。接觸 孔的形成條件為:CF4氣體流量50sccm、氧氣流量5sccm、 壓力4.0Pa、輸出150W。 35 318169 1326309 . 之後藉由DMSO剝離液進行光阻的剝離處理。採用異 丙醇去除殘存的剝離液之後,進行水洗及乾燥處理。對於 結束此光阻的剝離處理後之各樣本,係採用ITO靶(組成 ln203- 10wt%SnO2),於接觸孔内及其周圍形成ITO透明 電極層。關於透明電極層的形成,係進行濺鍍(基板溫度 70°C、投入電力1.8Watt/cm2、氬氣流量80sccm、氧氣流量 -0.7sccm、壓力0.37Pa),而形成厚度1000 A的ITO膜。 . 於此ITO膜表面被覆光阻(東京應化株式會社(日本) _製:OFPR800),配置圖案薄膜並進行曝光處理,以TMAH 顯像液進行顯像處理,藉由草酸系混合酸蝕刻液(關東化學 株式會社(日本)製:ITO05N)而形成20μιη寬度之電路。於 • ΙΤΟ膜電路形成後,以DMSO剝離液去除光阻。 對於以上述步驟形成接觸孔,並經由接觸孔使Α1系合 -金膜與透明電極層直接接合之評估樣本,進行其接觸電阻 值的測定。此接觸電阻值的測定法,係根據第4圖所示之 I四點端子法,於大氣中對評估樣本的元件進行250°C、30 分鐘之退火處理後,進行各評估樣本的電阻值測定。此接 觸電阻值的測定結果如第7表所示。第4圖所示之四點端 子法,係從熱處理後的評估樣本的端子部分進行1〇〇μΑ的 通電,而測定該電阻。 接著說明與透明電極層直接接合之接合強度的測定。 關於此接合強度係藉由根據JISC 5012之棋盤目試驗而進 行。與上述表面粗糙度的測定之情形相同,於玻璃基板上 先形成各Α1系合金膜(2000 Α),並於其上方疊層ΙΤΟ膜 36 318169 1326309 (1000 A)。成膜條件係與上述濺鍍條件相同。 對如此裝作出的各評估樣本,採用㈣器從其1了〇膜 表面侧開始’以形成40個每—邊為5mm的正方形之方式: 形成方格狀的切痕(5mm見方的正方形為縱向4個(2〇神 橫向H)個(50mm))。之後於其表面貼附谬帶㈣e),之後將 膠帶剝離,並以目視來確認膠帶剝離後的Ιτ〇膜表面所設 置之方格狀態。並測定出於4〇個正方形中,膜產生剝落之 部分的面積’以算出相冑4〇個正方形的全部面積之比例 (剝離率%),而評估各評估樣本的接合強度4剝離率〇 至20%為〇,以剝離率21至6〇%為△,以剝離率至 %為\。此接合強度的試驗結果如第7表所示。 [第7表]i Comparative Example 17 f Example 15 15^2 From the results of Table 6, it was confirmed that the surface roughness of the Α1 - State-6 alloy film varies depending on the substrate temperature. Further, in the pure Al film of Comparative Example 1, a very rough surface state was formed, and in the A1-2.0 at/Nd alloy film of Comparative Example 16, even if the substrate temperature was just. c or so, also 318169 34 1326309 ^ Ra over 20 A rough surface state. Next, the results of investigation of the contact resistance value directly bonded to the transparent electrode layer and the bonding strength will be described. First, the measurement of the contact resistance value will be described. As described above for the measurement of the surface roughness, an A1 alloy film having a thickness of 2000 A was formed on the glass substrate under the above sputtering conditions using the A1 alloy target of the above composition. At this time, the substrate temperature at the time of sputtering was each formed at the temperature shown in Table 6. After that, the surface of each of the A1 alloy films is coated with a photoresist _ (OFPR800: manufactured by Tokyo Ohka Co., Ltd.), and a pattern film for circuit formation of 20 μm width is placed and exposed, and the first embodiment is used. Explain the development of the imaging solution. After the development process, the circuit was formed by the phosphoric acid mixed acid etching solution described in the first embodiment, and the photoresist was removed by a DMSO stripping solution to form a 20 μm wide tantalum 1 alloy film circuit. Thereafter, the substrate on which the Α1 series alloy film circuit having a width of 20 μm was formed was subjected to pure water washing and drying treatment to form an insulating layer of SiNx (thickness: 4200 A) on the surface thereof. The film formation of this insulating layer was carried out by using a sputtering apparatus under the sputtering conditions of a power of RF of 3.0 Watt/cm 2 , an argon flow rate of 90 sccm, a nitrogen gas flow rate of 10 sccm, a pressure of 0.5 Pa, and a substrate temperature of 300 °C. Then, a positive-type photoresist (TFR-970, manufactured by Tokyo Ohka Co., Ltd.) was placed on the surface of the insulating layer, and a pattern film for contact hole opening of ΙΟμπίχΙΟμιη square was placed and exposed to light to perform development with a sputum developing solution. deal with. Thereafter, a dry etching gas of CF4 is used to form a contact hole. The contact holes were formed under the conditions of a CF4 gas flow rate of 50 sccm, an oxygen flow rate of 5 sccm, a pressure of 4.0 Pa, and an output of 150 W. 35 318169 1326309. The photoresist stripping treatment was then carried out by a DMSO stripper. After the residual stripping solution was removed by using isopropyl alcohol, it was washed with water and dried. For each sample after the stripping treatment to terminate the photoresist, an ITO target (composition ln203 - 10 wt% SnO2) was used to form an ITO transparent electrode layer in and around the contact hole. The formation of the transparent electrode layer was performed by sputtering (substrate temperature: 70 ° C, input power: 1.8 Watt/cm 2 , argon gas flow rate: 80 sccm, oxygen gas flow rate - 0.7 sccm, pressure: 0.37 Pa) to form an ITO film having a thickness of 1000 A. The surface of the ITO film is coated with a photoresist (Tokyo Kasei Co., Ltd. (Japan) _: OFPR800), and a patterned film is placed and exposed to light. The development process is carried out with TMAH developing solution, and the oxalic acid mixed acid etching solution is used. (made by Kanto Chemical Co., Ltd. (Japan): ITO05N) to form a circuit having a width of 20 μm. After the • film circuit is formed, remove the photoresist with a DMSO stripper. The contact resistance was measured for the evaluation sample in which the contact hole was formed in the above-described step, and the Α1 conjugated-gold film and the transparent electrode layer were directly bonded via the contact hole. This contact resistance value is measured by the I four-point terminal method shown in Fig. 4, after the components of the evaluation sample are annealed at 250 ° C for 30 minutes in the atmosphere, and the resistance value of each evaluation sample is measured. . The measurement results of this contact resistance value are shown in Table 7. The four-point terminal method shown in Fig. 4 measures the resistance by energizing 1 〇〇 μΑ from the terminal portion of the heat-treated evaluation sample. Next, the measurement of the bonding strength directly bonded to the transparent electrode layer will be described. This joint strength was carried out by a checkerboard test according to JIS C 5012. In the same manner as in the measurement of the above surface roughness, each of the ruthenium-based alloy films (2000 Å) was formed on the glass substrate, and the ruthenium film 36 318169 1326309 (1000 A) was laminated thereon. The film formation conditions are the same as those described above. For each evaluation sample made in this way, use the (four) device from the side of the enamel surface to form 40 squares with 5 mm per side: a square-shaped cut (a square of 5 mm square is vertical) 4 (2 〇 god horizontal H) (50mm)). Thereafter, the tape (4) e) was attached to the surface, and then the tape was peeled off, and the state of the square set on the surface of the film after peeling of the tape was visually confirmed. And measuring the area of the portion of the film which was peeled off in 4 squares to calculate the ratio of the total area of the squares of 4 squares (peeling rate %), and evaluating the bonding strength 4 peeling rate of each evaluation sample to 20% is 〇, with a peeling rate of 21 to 6〇% as Δ, and a peeling rate to %. The test results of this joint strength are shown in Table 7. [Table 7]

從第6表及第7表的結果可得知,具有Α1系合金膜的 表面粗縫度愈大’元件形成時之接觸電阻值愈大之傾向, 相反地’接合強度係具有表面粗糙度愈小則愈小之傾向。 從以上的結果可知,接觸電阻值為200Ω以下時,可確保 實用上的接合強度之表面粗糙度,較理想為Ra為2.0 Α至 37 318169 1326309 * ,20 A的範圍’更理想為Ra為10 A至20 A的範圍。 第四實施形態:於第四實施形態中,係說明以本發明 之Al—Ni—B合金配線材料所形成之配線電路的析出物之 調查結果。此配線電路中的析出物之調查,係藉由解析該 分散狀態而進行。 在此說明此第四實施形態之剖面觀察用樣本的製法。 -此剖面觀察用樣本係藉由濺鍍法,分別於玻璃基板上形成 厚度為 200nm 之 Al-5.0 at%Ni-0.4at%B 合金膜、入1- ♦ 2.0 at%Ni~~ i.0at%Nd 合金膜、A1_3 〇 at%Ni 合金膜,於 各合金膜上形成ITO膜之後,於大氣中進行250°C的熱處 理後而形成者。第5圖及第6圖係顯示於Al-2.0at%Ni -1.0at%Nd 合金及 Al — 5.0at%Ni — 0.4at%B 合金時以穿 -透型電子顯微鏡(日立製作所(日本)製/η- 9000 TEM:倍率 200萬倍)觀察配線電路層(膜)剖面之結果的概略剖面圖。 第5圖及第6圖的符號Α為ΙΤ〇膜,符號Β為玻璃基板。 φ 接著說明從上述ΤΕΜ觀察照片中評估析出物的分散 狀態之方法。第6圖的中央帶狀部分係顯示配線電路屠, 於其中所分散者為Ni化合物(Al—Ni系金屬間化合物關 於Νι化合物的分布狀態,係測定出如概略剖面圖所示與配 線電路層的厚度方向正交的線切斷Ni化合物之合計的長 度(1ι+丨2+丨3+ U+ ls+ 1ό=Σ1),並求出相對該線的整體長度 之比例(%),並以該值作為Ni化合物的存在率。此外,藉 由EDX分析而鑑定犯化合物時,為A1_5 〇 at%Ni—〇 4肘 %B合金配線材料時,配線電路層中所分散析出之Ni化合From the results of the sixth table and the seventh table, it is found that the larger the rough surface degree of the Α1 alloy film, the greater the contact resistance value at the time of element formation, and the opposite the 'joint strength has the surface roughness. The smaller the smaller the tendency. From the above results, it is understood that when the contact resistance value is 200 Ω or less, the surface roughness of the practical joint strength can be ensured, and it is preferable that Ra is 2.0 Α to 37 318169 1326309 *, and the range of 20 A is more preferably Ra 10 A to 20 A range. Fourth Embodiment In the fourth embodiment, a result of investigation of precipitates of a wiring circuit formed of the Al-Ni-B alloy wiring material of the present invention will be described. The investigation of the precipitates in the wiring circuit is performed by analyzing the dispersion state. Here, the method of producing the sample for cross-sectional observation of the fourth embodiment will be described. - The sample for cross-section observation was formed by sputtering to form an Al-5.0 at%Ni-0.4at%B alloy film having a thickness of 200 nm on a glass substrate, and entering 1-♦ 2.0 at%Ni~~ i.0at The %Nd alloy film and the A1_3 〇at%Ni alloy film were formed by forming an ITO film on each alloy film and then heat-treating at 250 ° C in the air. Fig. 5 and Fig. 6 show a through-transmission electron microscope (manufactured by Hitachi, Ltd.) in Al-2.0at%Ni -1.0at%Nd alloy and Al - 5.0at%Ni - 0.4at%B alloy. /η- 9000 TEM: 2 million times magnification) A schematic cross-sectional view of the result of observing the cross section of the wiring circuit layer (film). The symbols 第 in FIGS. 5 and 6 are enamel films, and the symbol Β is a glass substrate. φ Next, a method of evaluating the dispersion state of the precipitate from the above-mentioned ΤΕΜ observation photograph will be described. The central strip portion of Fig. 6 shows the wiring circuit, and the disperse therein is a Ni compound (the distribution state of the Al-Ni-based intermetallic compound with respect to the Νι compound, and the wiring circuit layer is measured as shown in the schematic cross-sectional view. The line orthogonal to the thickness direction cuts the total length of the Ni compound (1 ι + 丨 2+ 丨 3 + U + ls + 1 ό = Σ 1), and finds the ratio (%) to the overall length of the line, and takes the value In addition, when the compound is identified by EDX analysis, it is an A1_5 〇at%Ni—〇4 elbow% B alloy wiring material, and the Ni compound is dispersed and deposited in the wiring circuit layer.

3S 318169 1326309 , 物為Al3Ni相的金屬間化合物。於Al—2.0at%Ni-1.0at % Nd合金配線材料時,係析出A1 — Ni系、A1 — Nd系、 Al —Ni—Nd系的金屬間化合物。此外,如第5圖的概略圖 所示,為A1 — 2.Oat%Ni — 1.0at%Nd合金時’係確認出於 玻璃基板側(符號B)偏析出較多的Al—Ni —Nd系的金屬間 化合物。另一方面’為A1 — 5.0 at%Ni — 0.4at%B合金時’ -配線電路層中的析出物為Al3Ni相的金屬間化合物,並不 -會特別偏析出,而可均勻地分散。 鲁第7圖係顯示於各配線電路層的厚度方向中預定厚度 位置上之Ni化合物的存在率之調查結果。如第7圖所示, 為Al—2.0at%Ni— 1.0at%Nd合金時,可得知Ni化合物的 ^存在率係從玻璃基板侧(B)至ITO膜面側(A)由75%變化至 0%。同樣地,關於A1—3.0 at%Ni合金配線材料,亦對 -Ni化合物的存在率進行調查後得知,該存在率係從基板側 至膜面側中由40%變化至0%。另一方面,為本發明之A1 $ -5.0 at%Ni-0.4at%B合金配線材料時,Ni化合物的存 在率係從基板侧至膜面侧並未存在較大的數值差距,大約 在25%至45%的範圍内,可得知並未產生Ni化合物的偏 析而可均勻地分散。 (產業上之利用可能性) 如上所述,根據本發明,即使省略由Mo等高熔點金 屬材料所組成的覆蓋層,亦可形成能與ITO或IZO等透明 電極層直接接合、且可與薄膜電晶體之n+—Si等半導體層 直接接合之配線電路。尤其是於超過240°C的溫度之熱製 39 318169 1326309 程中,在使由本發明之A1 —Ni —B合金配線材料所組成之 配線電路與半導體層直接接合之接合界面,可抑制A1及 Si的相互擴散。 此外,本發明之Al—Ni-B合金配線材料,由於耐熱 性極為優良,且其比電阻為10.0pQCm以下之較低的值, 因此係適用於作為大畫面化之顯示器的構成材料。如此, -就液晶顯示器等顯示裝置的製造之材料面、設備面、製程 -面之所有方面而言,本發明為可降低成本且可實 •良特性的顯示裝置之技術。 八 【圖式簡單說明】 第1圖係TFT的概略剖面圖。 第2圖係Si擴散耐熱性評估之光學顯微鏡照片。 第3圖係Si擴散耐熱性評估之光學顯微鏡照片。 第4圖係使ITO(IZO)電極層與A1合金電極層交叉而 疊層之減驗樣本的概略斜視圖。 • 第 5 圖係 Al—2.0at%Ni—l.〇at%Nd 合金時之 ΤΕΜ 觀 察照片的概略圖。 第6圖係Al—5.0at%Ni—〇.4at%B合金時之ΤΕΜ觀 察照片的概略圖。 - 第7圖係Ni化合物的存在率之測定曲線圖。 【主要元件符號說明】 破璃基板 2 電極配線電路層 覆盘層 4 閘極絕緣膜 4’ 絕緣膜 5a_Si半導體層 318169 40 1326309 6 通道保護膜層 7n+- Si 半導體層 7, 透明電極層 G 閘極電極部 D 汲極電極部 S 源極電極部 41 3181693S 318169 1326309, an intermetallic compound of the Al3Ni phase. In the case of Al-2.0 at% Ni-1.0 at % Nd alloy wiring material, an intermetallic compound of A1 - Ni system, A1 - Nd system, Al - Ni - Nd system is precipitated. Further, as shown in the schematic view of Fig. 5, when A1 - 2.Oat%Ni - 1.0 at% Nd alloy is used, it is confirmed that a large amount of Al-Ni-Nd system is segregated on the glass substrate side (symbol B). Intermetallic compound. On the other hand, when it is A1 - 5.0 at%Ni - 0.4at% B alloy - the precipitate in the wiring circuit layer is an intermetallic compound of the Al3Ni phase, and it is not particularly segregated, and can be uniformly dispersed. Lu 7 shows the results of investigation of the existence rate of Ni compound at a predetermined thickness position in the thickness direction of each wiring circuit layer. As shown in Fig. 7, when it is Al-2.0at%Ni-1.0at%Nd alloy, it can be known that the existence ratio of the Ni compound is 75% from the glass substrate side (B) to the ITO film surface side (A). Change to 0%. Similarly, with respect to the A1 - 3.0 at% Ni alloy wiring material, the presence rate of the -Ni compound was also investigated, and it was found that the existence ratio was changed from 40% to 0% from the substrate side to the film surface side. On the other hand, in the case of the A1 $ -5.0 at%Ni-0.4at%B alloy wiring material of the present invention, the existence ratio of the Ni compound does not have a large numerical difference from the substrate side to the film surface side, about 25 In the range of % to 45%, it was found that segregation of the Ni compound did not occur and the dispersion was uniform. (Industrial Applicability) As described above, according to the present invention, even if a coating layer composed of a high melting point metal material such as Mo is omitted, it can be formed to be directly bonded to a transparent electrode layer such as ITO or IZO, and can be bonded to a film. A wiring circuit in which a semiconductor layer such as n+-Si of a transistor is directly bonded. In particular, in the process of heat generation at a temperature exceeding 240 ° C, in the process of bonding the wiring circuit composed of the A1-Ni-B alloy wiring material of the present invention directly to the semiconductor layer, A1 and Si can be suppressed. Mutual diffusion. Further, the Al-Ni-B alloy wiring material of the present invention is excellent in heat resistance and has a specific resistance of 10.0 pQCm or less, and is therefore suitable as a constituent material of a display having a large screen. As described above, the present invention is a technology of a display device which can reduce cost and can achieve good characteristics in all aspects of the material surface, the equipment surface, and the process-surface of the manufacture of a display device such as a liquid crystal display. Eight [Simplified description of the drawings] Fig. 1 is a schematic cross-sectional view of a TFT. Fig. 2 is an optical micrograph of the evaluation of Si diffusion heat resistance. Fig. 3 is an optical micrograph of the evaluation of Si diffusion heat resistance. Fig. 4 is a schematic perspective view showing a test sample in which an ITO (IZO) electrode layer and an A1 alloy electrode layer are laminated and laminated. • Figure 5 is an overview of the photograph of Al-2.0at%Ni—l.〇at%Nd alloy. Fig. 6 is a schematic view of a photograph of an Al-5.0 at% Ni-〇.4 at% B alloy. - Fig. 7 is a graph showing the measurement of the existence rate of the Ni compound. [Main component symbol description] Glass substrate 2 Electrode wiring circuit layer Covering layer 4 Gate insulating film 4' Insulating film 5a_Si Semiconductor layer 318169 40 1326309 6 Channel protective film layer 7n+- Si Semiconductor layer 7, Transparent electrode layer G Gate Electrode portion D drain electrode portion S source electrode portion 41 318169

Claims (1)

13263091326309 知[丨月修 iE.3 專利範圍: 號專利申請案 T丄丄月4日) 1.—種A1—Ni—B合金配線材料,係於具憊由鋁中含有 • 鎳及硼之A1—Ni—B合金配線材料所形成之配線電路 層、及半導體層或透明電極層中至少一者的顯示裝置之 元件構造中所使用的Al—Ni—B合金配線材料^其 徵為: 、 將鎳含量設為鎳的原子百分比Xat%,將硼含量嗖 為删的原子百分比Yat%時,係位於滿足下列各式里。又 • 〇.5^X^l〇.〇 0.05^Y^ll.〇〇 Υ+0.25X^1.〇〇 Y+l.15X^11.5〇 之區域的範圍内,且剩餘部分為鋁。 • 2·如申請專利範圍第!項之A1 —见―金配線材料, 其中,鎳含量為4.0at%以上,硼含量為〇 8〇at%以下。 #3.如申請專利範圍第2項之A1_Ni — B$金配線材料, 其中,於350。〇下進行30分鐘的熱處理後,於配線材 料表面所產生之凹陷產生率為i 以下。 4. 如申請專利範圍第1項至第3項中任—項之A1—Ni_B 合金配線材料,其中,鎳含量為4.〇at%至6.0at%,硼 含量為 0.20at% 至 〇.80at%。 5. 如申請專利範圍第4項之A1_Ni—β合金配線材料, 其中’比電阻值為5.0μΩοιη以下。 6. —種顯不裝置之元件構造,係以由申請專利範圍第1 (修正本)318169 • 第95114832號專利申請案 T5T-杜产 (98年11月4日> 項至第5項中任一項之AI —Ni〜B合金配線材料所形 成之配線電路層、及半導體層或透明電極層中至少一者 . 與上述配線電路層直接接合而成者,其特徵為: _ 於上述配線電路層上分散析出有Ni化合物; 配線電路層剖面之與配線電路層厚度方向正交的 線上之上述Ni化合物的存在率,於配線電路層厚度方 向係為25%至45% ; _ 將直接接合的配線電路層予以剝離後之半導體層 表面的表面粗糙度(Rz)’為半導體層形成後之半導體層 表面的表面粗糙度(RZ)的1.5倍以下; • 由Al-Ni-B合金配線材料所形成之A1—Ni_B 合金膜的表面粗糙度Ra為2·0 A至20·0 A,而謂A1 .—Nl — B合金配線材料係形成與半導體層及/或透明電 極層直接接合的上述配線電路層者。 7. —種濺鍍靶,係用以形成由申請專利範圍第i項至苐$ _項巾任-項之A1_Ni—B合金喊材制形成之配線 電路者’其特徵為: 將鎳含里设為鎳的原子百分比Xat%,且將硼含量 設為硼的原子百分比Yat%時,係位於滿足下列各式 〇·5^Χ^ι〇.〇 〇.〇5^Y^ ii.oo Y+0.25X^ l.oo Y+l.15X^11.50 之區域的範圍内,且剩餘部分為鋁。 (修正本)3】8169 43Know [丨月修iE.3 Patent scope: No. 4 patent application T丄丄月4日) 1. A kind of A1—Ni—B alloy wiring material, which is made of aluminum containing a nickel and boron A1— The Al—Ni—B alloy wiring material used in the element structure of the wiring circuit layer formed of the Ni—B alloy wiring material and the display device of at least one of the semiconductor layer and the transparent electrode layer is: The content is set to the atomic percentage Xat% of nickel, and the boron content is determined to be the atomic percentage Yat% of the deletion, which is in the following formula. Also • 〇.5^X^l〇.〇 0.05^Y^ll.〇〇 0.25+0.25X^1.〇〇 Y+l.15X^11.5〇 The area of the area, and the remaining part is aluminum. • 2· If you apply for a patent scope! Item A1 - See "Gold wiring material" in which the nickel content is 4.0 at% or more and the boron content is 〇 8 〇 at% or less. #3. For example, the A1_Ni — B$ gold wiring material of the second item of the patent application scope, wherein, at 350. After the heat treatment for 30 minutes under the armpit, the generation rate of the depression generated on the surface of the wiring material was i or less. 4. For the A1—Ni_B alloy wiring material in any of the items 1 to 3 of the patent application, wherein the nickel content is 4.〇at% to 6.0at%, and the boron content is 0.20at% to 〇.80at. %. 5. The A1_Ni-β alloy wiring material according to item 4 of the patent application, wherein the 'specific resistance value is 5.0 μΩ οηη or less. 6. The component structure of the display device is determined by the patent application scope 1 (amendment) 318169 • Patent No. 95114832, T5T-production (November 4, 1998 > to item 5) Any one of a wiring circuit layer formed of an AI-Ni-B alloy wiring material, and a semiconductor layer or a transparent electrode layer. The wiring layer is directly bonded to the wiring circuit layer, and is characterized in that: The Ni compound is dispersed and deposited on the circuit layer; the existence ratio of the Ni compound on the line perpendicular to the thickness direction of the wiring layer of the wiring circuit layer is 25% to 45% in the thickness direction of the wiring layer; _ will be directly bonded The surface roughness (Rz) of the surface of the semiconductor layer after peeling off the wiring circuit layer is 1.5 times or less of the surface roughness (RZ) of the surface of the semiconductor layer after the semiconductor layer is formed; • Al-Ni-B alloy wiring material The surface roughness Ra of the formed Al-Ni_B alloy film is 2·0 A to 20·0 A, and the A1—Nl—B alloy wiring material is formed by directly bonding the semiconductor layer and/or the transparent electrode layer. Wiring circuit layer 7. A sputter target used to form a wiring circuit formed by the A1_Ni-B alloy shouting material of the scope of the patent application range i to 苐$ _ towel--the characteristic is: nickel When the inner content is set to the atomic percentage Xat% of nickel, and the boron content is set to the atomic percentage Yat% of boron, the system is located in the following formula: 〇·5^Χ^ι〇.〇〇.〇5^Y^ ii. Oo Y+0.25X^ l.oo Y+l.15X^11.50 within the range of the area, and the rest is aluminum. (Revised) 3] 8169 43
TW095114832A 2005-04-26 2006-04-26 A1-ni-b alloy wiring material and device structure using the same TWI326309B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005128670 2005-04-26
PCT/JP2005/015697 WO2006117884A1 (en) 2005-04-26 2005-08-30 Al-Ni-B ALLOY WIRING MATERIAL AND DEVICE STRUCTURE USING SAME
JP2005302900 2005-10-18
JP2005302871A JP4657882B2 (en) 2005-04-26 2005-10-18 Element structure of display device
JP2006006676 2006-03-30

Publications (2)

Publication Number Publication Date
TW200643186A TW200643186A (en) 2006-12-16
TWI326309B true TWI326309B (en) 2010-06-21

Family

ID=43646158

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095114832A TWI326309B (en) 2005-04-26 2006-04-26 A1-ni-b alloy wiring material and device structure using the same

Country Status (3)

Country Link
AT (1) ATE499455T1 (en)
DE (1) DE602006020265D1 (en)
TW (1) TWI326309B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683370B2 (en) 2005-08-17 2010-03-23 Kobe Steel, Ltd. Source/drain electrodes, transistor substrates and manufacture methods, thereof, and display devices
WO2010004783A1 (en) * 2008-07-07 2010-01-14 三井金属鉱業株式会社 Al-ni-based alloy wiring electrode material

Also Published As

Publication number Publication date
DE602006020265D1 (en) 2011-04-07
ATE499455T1 (en) 2011-03-15
TW200643186A (en) 2006-12-16

Similar Documents

Publication Publication Date Title
KR100959579B1 (en) Al-Ni-B ALLOY WIRING MATERIAL AND ELEMENT STRUCTURE USING THE SAME
TWI437107B (en) Display device
TWI437697B (en) Wiring structure and a display device having a wiring structure
JP5032687B2 (en) Al alloy film, wiring structure having Al alloy film, and sputtering target used for production of Al alloy film
WO2010053135A1 (en) Al alloy film for display device, display device and sputtering target
JP3979605B2 (en) Al-Ni-B alloy wiring material and element structure using the same
JPH113873A (en) Al-ni-y alloy thin film for semiconductor electrode and spattering target for forming al-ni-y alloy thin film for semiconductor electrode
TW200415429A (en) Electronic device, method of manufacture of the same, and sputtering target
KR20060052390A (en) Copper alloy thin films, copper alloy sputtering targets and flat panel displays
JP5491947B2 (en) Al alloy film for display devices
TWI326309B (en) A1-ni-b alloy wiring material and device structure using the same
TWI373674B (en) Wiring laminated film and wiring circuit
WO2008050710A1 (en) Al-BASE ALLOY WIRING MATERIAL AND ELEMENT STRUCTURE USING THE SAME
TW200823298A (en) Al-Ni-B alloy material for reflection film
WO2006117884A1 (en) Al-Ni-B ALLOY WIRING MATERIAL AND DEVICE STRUCTURE USING SAME
TWI247812B (en) Aluminum alloy film for wiring and sputter target material for forming the film
JP5416470B2 (en) Display device and Cu alloy film used therefor
TWI305585B (en) A wiring substrate and method using the same
JP2011017944A (en) Aluminum alloy film for display device, display device, and aluminum alloy sputtering target
JP2010258347A (en) DISPLAY DEVICE AND Cu ALLOY FILM USED FOR THE SAME
WO2007043645A1 (en) Process for production of devices
JP2007186779A (en) Al-Ni-B ALLOY WIRING MATERIAL, AND ELEMENT STRUCTURE USING THE SAME
JP2007186779A6 (en) Al-Ni-B alloy wiring material and element structure using the same
JP2012032521A (en) Thin film transistor substrate having excellent transparent conductive film pinhole corrosion resistance
TW201006937A (en) Al-Ni-based alloy wiring electrode material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees