WO2006117884A1 - Al-Ni-B ALLOY WIRING MATERIAL AND DEVICE STRUCTURE USING SAME - Google Patents

Al-Ni-B ALLOY WIRING MATERIAL AND DEVICE STRUCTURE USING SAME Download PDF

Info

Publication number
WO2006117884A1
WO2006117884A1 PCT/JP2005/015697 JP2005015697W WO2006117884A1 WO 2006117884 A1 WO2006117884 A1 WO 2006117884A1 JP 2005015697 W JP2005015697 W JP 2005015697W WO 2006117884 A1 WO2006117884 A1 WO 2006117884A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring material
semiconductor layer
alloy wiring
boron
nickel
Prior art date
Application number
PCT/JP2005/015697
Other languages
French (fr)
Japanese (ja)
Inventor
Hironari Urabe
Yoshinori Matsuura
Takashi Kubota
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to KR1020077008127A priority Critical patent/KR100959579B1/en
Priority to US11/666,300 priority patent/US7531904B2/en
Priority to DE602006020265T priority patent/DE602006020265D1/en
Priority to JP2006093701A priority patent/JP3979605B2/en
Priority to AT06730624T priority patent/ATE499455T1/en
Priority to EP06730624A priority patent/EP1878809B1/en
Priority to PCT/JP2006/306676 priority patent/WO2006117954A1/en
Priority to TW095114832A priority patent/TWI326309B/en
Publication of WO2006117884A1 publication Critical patent/WO2006117884A1/en
Priority to US11/851,804 priority patent/US7755198B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • H01L23/53219Aluminium alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an A1-based alloy wiring material used for an element of a display device such as a liquid crystal display, and in particular, an Al—Ni—B alloy wiring material suitable for a display device including a thin film transistor and a transparent electrode. It relates to the element structure used.
  • A1 aluminum
  • A1-based alloy wiring materials made of aluminum (hereinafter sometimes simply referred to as “A1”) alloy have been widely used as a constituent material for display devices such as thin-screen televisions typified by liquid crystal displays.
  • the reason for this is that the specific resistance value of the A1-based alloy wiring material is low and the wiring process is easy.
  • TFT thin film transistor
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • An element is composed of the transparent electrode and a wiring circuit made of an Al-based alloy wiring material.
  • n + -Si phosphorus-doped semiconductor layer
  • the wiring circuit and the transparent A refractory metal material such as molybdenum (Mo) or titanium (Ti) is formed between the electrodes as a so-called cap layer.
  • the thermal process during the manufacturing process prevents the interdiffusion of A1 and Si between the semiconductor layer and the wiring circuit.
  • the same refractory metal material such as molybdenum (Mo) and titanium (Ti) as the cap layer is interposed! /.
  • FIG. Figure 1 shows a schematic cross-sectional view of an a-Si TFT for a liquid crystal display.
  • an electrode made of an A1-based alloy wiring material constituting the gate electrode portion G is formed on the glass substrate 1.
  • a wiring layer 2 and a cap layer 3 made of Mo, Mo—W, or the like are formed.
  • the gate electrode portion G is provided with a SiNx gate insulating film 4 as a protection.
  • an a-Si semiconductor layer 5 On this gate insulating film 4, an a-Si semiconductor layer 5, a channel protective film layer 6, an n + -Si semiconductor layer 7, a cap layer 3, an electrode wiring layer 2, and a cap layer 3 are sequentially deposited.
  • the drain electrode portion D and the source electrode portion S are provided.
  • a surface flattening resin or SiNx insulating film 4 is coated.
  • a contact hole CH is provided in the insulating layer 4 ′, and a transparent electrode layer 7 made of ITO or IZO is formed there.
  • the transparent electrode layer 7 and the electrode between the n + -Si semiconductor layer 6 and the electrode wiring layer 1 or in the contact hole CH is interposed between the wiring layer 1 and the wiring layer 1.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-89864
  • the A1 alloy wiring material according to the prior art described above can be directly bonded to a transparent electrode layer such as ITO or IZO, but it can be connected to a semiconductor layer such as n + -Si. In the case of direct bonding, it did not have sufficient characteristics. For example, when an A1-based alloy wiring material and a semiconductor layer are directly bonded, a diffusion phenomenon of A1 and Si may occur at the bonding interface, and the bonding characteristics may not be satisfied.
  • the present invention has been made in the background as described above, and in a display device including a thin film transistor and a transparent electrode, direct bonding with a transparent electrode such as ITO or IZO is possible. At the same time, it provides A1-based alloy wiring materials that can be directly bonded to semiconductor layers such as n + -Si. Means for solving the problem
  • the nickel content is defined as atomic percentage Xat% of nickel
  • the boron content is defined as atomic percentage Yat%.
  • Al—Ni— ⁇ alloy wiring material in which the balance is within the region satisfying each of the formulas and the balance is aluminum.
  • the Al—Ni—K—alloy wiring material in the present invention does not prevent inevitable impurities from being mixed within a range not departing from the effects of the present invention described below.
  • Nickel has an effect of forming an intermetallic compound with aluminum by heat treatment to improve bonding characteristics in direct bonding with a transparent electrode.
  • the nickel content increases, the specific resistance of the wiring circuit itself increases and becomes impractical.
  • the nickel content is low, the formation of intermetallic compounds with aluminum is reduced, making direct bonding with the transparent electrode impossible, and heat resistance (to prevent plastic deformation of the A1 alloy wiring material due to heat) It tends to decrease.
  • the nickel content must satisfy the above formula (1).
  • the nickel content exceeds 10.0 &%, the specific resistance value of the wiring material becomes too large, and a dimple-like defect called dimple is easily formed on the surface of the wiring material. Heat resistance decreases. On the other hand, if it is less than 0.5 at%, a so-called hillock protrusion is easily formed on the surface of the wiring material, and the heat resistance is lowered. This dimple is a small dent-like defect formed on the surface of the material due to the stress strain generated when heat-treating the A1-based alloy wiring material. Adversely affects the bonding reliability. On the other hand, hillocks, contrary to dimples,
  • the semiconductor layer and the A1-Ni-B alloy wiring material are directly bonded and heat-treated at a predetermined temperature, interdiffusion between A1 and Si is likely to occur at the bonded portion. Furthermore, dimples tend to occur easily. For this reason, the boron content must satisfy the above formula (2).
  • the mutual bonding between A1 and Si at the bonding interface is also in the case of direct bonding with the semiconductor layer, even in a thermal process at a temperature exceeding 240 ° C. It was found that the above formula (3) must be satisfied in order to reliably prevent diffusion. Then, it has been found that in order to reliably maintain the specific resistance of the A1-Ni-B alloy wiring material itself at 10 ⁇ cm or less, the above formula (4) must be satisfied.
  • the dimple is a microscopic defect formed on the surface of the wiring material when the Al—Ni—B alloy wiring material is heat-treated.
  • the surface of the material was observed and the generated dimples (0.3 to 0.5 m) were investigated.
  • the area of all the dimples generated in the observation field was obtained, and the area ratio of the dimples in the observation field was used as the dimple generation rate.
  • the above-mentioned (1) to (4 ) If the nickel content is 4.0 &% or more and the boron content is 0.80at% or less, the dimple is generated even when heat treatment is performed at 350 ° C for 1 hour.
  • the rate can be suppressed to 1.6% or less. If the dimple generation rate is low in this way, even if it passes through the thermal process in the element manufacturing process of the display device, it becomes difficult to generate a bonding defect or the like at the bonding interface directly bonded to the semiconductor layer or the transparent electrode. Reliability is improved.
  • the inventors of the present application have a nickel content of 4.0 at% to 6. Oat% and a boron content of 0.20 at% within the range satisfying the above formulas (1) to (4). It was found that when it is ⁇ 0.8 at%, it becomes a particularly suitable Al—Ni—B alloy wiring material when directly bonding to a semiconductor layer.
  • the inventors of the present application investigated the change in the surface state of the semiconductor layer. This survey is based on the surface roughness Rz (ten-point average roughness) of the semiconductor layer exposed by peeling off the A1 alloy wiring material after direct bonding and heat treatment, and the surface roughness Rz of the semiconductor layer before direct bonding. This was done by comparing From the investigation results of this surface state change, assuming that the semiconductor layer surface roughness value before direct bonding is 1, the amount of change in which the exposed semiconductor layer surface roughness value after direct bonding and heat treatment is 1.5 times or less In the range satisfying the above formulas (1) to (4), the nickel content is 4.0 at% to 6. Oat% and the boron content is 0.20 at% to They also found out that it was necessary to set it at 0.8.
  • Rz ten-point average roughness
  • the amount of change in the surface roughness of this semiconductor layer is a parameter directly related to the interdiffusion between Si and A1, it changes as the heat treatment temperature increases. It has been confirmed that the amount increases.
  • changes in the surface state of the semiconductor layer are expected to be affected by the switching characteristics of the TFT. In other words, it is presumed that this leads to a change in the on / off ratio (onZoff ratio) in the thin film transistor. Therefore, even if direct bonding and heat treatment are performed, the surface state of the semiconductor layer does not change so much. It is expected that the characteristics can be maintained well.
  • the present invention adopts the surface roughness Rz when specifying the semiconductor layer surface state.
  • the surface properties described in JIS B0601 etc. Parameters such as surface roughness Ra (arithmetic mean roughness) can also be adopted.
  • the nickel content is set to an atomic percentage Xat% of nickel, and the boron content is set to boron atoms.
  • the percentage is Yat%, it is preferable to use a sputtering target that is in the range of the region satisfying the above formulas (1) to (4) and the balance being aluminum.
  • the nickel content is 4.0.
  • a sputtering target having at% to 6. Oat% and a boron content of 0.20 at% to 0.80 at% can easily realize a wiring circuit extremely suitable for direct bonding with a semiconductor layer.
  • an Al—Ni—B alloy thin film having almost the same composition as the force target composition, which may be somewhat affected by the film formation conditions during sputtering, can be easily formed.
  • FIG. 1 is a schematic sectional view of a TFT.
  • FIG. 4 is a schematic oblique view of a test sample in which an ITO (IV) electrode layer and an Al alloy electrode layer are crossed and laminated.
  • A1—Ni—B alloy wiring materials having respective compositions of Examples and Comparative Examples shown in Table 1 were formed by sputtering, and the characteristics of the films were evaluated.
  • the sputtering target was prepared by mixing aluminum with metals having the respective compositions shown in Table 1, melting and forging, rolling and molding, and processing the surface to be sputtered flat.
  • the film characteristics of each composition listed in Table 1 were evaluated for Si diffusion heat resistance, film specific resistance, 350 ° C heat resistance, ITO bondability, and IZO bondability. The results are shown in Tables 1 and 2.
  • Comparative example 12 3 3 0 1 ⁇ ⁇ ⁇
  • Si diffusion heat resistance As an evaluation sample of this property, an n +-Si semiconductor layer (30 OA) is formed on a glass substrate by CVD, and sputtering (magnetron 'sputtering equipment, input power 3.OWatt / cm 2 , an argon gas flow rate of 100 ccm, and an argon pressure of 0.5 Pa) were used in which each composition film (2000 A) shown in Table 1 was formed.
  • FIG. 2 and FIG. 3 show typical optical micrographs on the exposed semiconductor layer surface.
  • Fig. 2 shows the surface of the semiconductor layer where no interdiffusion is observed
  • Fig. 3 shows traces of interdiffusion (black spots in the photo).
  • Si diffusion heat resistance the sample with black spots as shown in Fig. 3 is regarded as defective, and among the samples with no mutual diffusion as shown in Fig. 2, the highest heat treatment temperature value is set to Si diffusion heat resistance.
  • Table 2 shows the index values for sex assessment.
  • Specific resistance of film The specific resistance value of each composition film shown in Table 1 is obtained by forming a single film (thickness of about 0.3 m) on a glass substrate by sputtering (the conditions are the same as above), After heat treatment at 300 ° C. for 30 minutes in a gas atmosphere, the measurement was performed with a four-terminal resistance measuring device.
  • Heat resistance at 350 ° C The heat resistance of each composition film shown in Table 1 is that a single film (thickness of about 0.3 m) is formed on a glass substrate by sputtering (the conditions are the same as above), and nitrogen is added.
  • the film surface was observed with a scanning electron microscope (SEM: 10,000 times) after heat treatment for 30 minutes at a temperature in the range of 100 ° C to 400 ° C in a gas atmosphere.
  • SEM scanning electron microscope
  • the 350 ° C heat resistance was evaluated based on whether or not protrusions (hillocks) of sub / zm or more were observed on the observation surface in a heat treatment at 350 ° C for 30 minutes, or a depression (diameter 0) was observed on the observation surface.
  • X was determined to be more than 3 dimple forces of 3 ⁇ m to 0.5 m). A dimple with no protrusions and no more than 3 dimples was marked as ⁇ .
  • ITO bonding property This ITO bonding property is obtained by applying ITO (In O 10w on a glass substrate as shown in FIG.
  • test sample Kervin element formed to cross 0 (thickness of 2000 A, circuit width 10 ⁇ m). This test sample was heat-treated at 250 ° C. for 30 minutes in the air atmosphere, and then the terminal part force continuous energization (3 mA) in the arrow part of the test sample shown in FIG.
  • the resistance measurement conditions at this time were so-called life acceleration test conditions in an air atmosphere of 85 ° C. Under these life acceleration test conditions, each test In the test sample, the time (failure time) when the resistance value changed to 100 or more times the initial resistance value at the start of measurement was examined. A test sample that was not broken under this accelerated life test condition for more than 250 hours was rated as ⁇ .
  • test sample that failed in 250 hours or less under the accelerated life test condition was designated as evaluation X.
  • JIS C 5003 1974, reference literature (book title “Efficient method of accelerated acceleration test and its practicality”: edited by Yoji Kanuma, publisher, Japan Techno Center Co., Ltd.) )
  • IZO bondability This IZO bondability is similar to the IZO bondability evaluation described above.
  • Test sample (Kelvin device) formed on the electrode layer 40 so that each A1 alloy film layer 10 (20000A thickness, circuit width 50 ⁇ m) crosses ).
  • the resistance of this test sample was measured under the same life acceleration test conditions as in the case of the ITO bondability, and IZO bondability was evaluated from the results of the life acceleration test. The evaluation criteria were the same as the ITO bondability.
  • the specific resistance value is 10 ⁇ cm or less, and Comparative Example 9 out of the composition range of the present invention is compared. In Example 11 and Comparative Example 12, the specific resistance value exceeded 10 ⁇ cm.
  • the Al-Ni-B alloy wiring material of each example has a Si diffusion heat resistance of 240 ° C or higher, and even at a high temperature of 330 ° C, A1 and Si There were some cases where no mutual diffusion was observed. As shown in Table 2, it was confirmed that the Al—Ni—B alloy wiring material of each example could be directly bonded to ITO and IZO transparent electrodes. It should be noted that the Si diffusion heat resistance of 240 ° C or higher is considered to be a practically sufficient characteristic considering that the thermal process applied when manufacturing the current TFT device is about 270 ° C. .
  • Comparative Examples 1 to 3 it was confirmed that all the characteristics other than the specific resistance were practically insufficient.
  • Comparative Examples 4 and 5 of the Al-Ni alloy the bonding characteristics with the transparent electrode are good, but the heat resistance and Si diffusion heat resistance are insufficient, and in Comparative Example 6 where the Ni content is high The film specific resistance exceeded 10 ⁇ cm.
  • Comparative Examples 7 to 12 outside the composition range of the present invention, there are problems in direct bonding with ITO (Comparative Example 7), and the Si diffusion heat resistance is 200 ° C. or less (Comparative Example 8).
  • Comparative Example 10 Comparative example 10
  • specific resistance The value exceeded ⁇ cm (Comparative Example 9, Comparative Example 11, Comparative Example 12), and it could not be said that the film characteristics were totally satisfactory.
  • Comparative Example 13 containing silicon (Si) instead of nickel, the result was that the bonding property with the transparent electrode was poor due to the Si diffusion heat resistance.
  • Comparative Example 14 and Comparative Example 15 Although there is no problem in bonding with the transparent electrode, the heat resistance and Si diffusion heat resistance It was confirmed that the characteristics were insufficient.
  • Second Embodiment In this second embodiment, the relationship between the heat resistance and the bonding characteristics of the semiconductor layer is examined in more detail with respect to the composition range of the A1-Ni—B alloy wiring material according to the present invention. The results will be described. Tables 3 to 5 show the results of examining the resistivity value of the film, the dimple generation rate, and the amount of change in the roughness of the semiconductor layer when the nickel content and boron content are varied! / Speak.
  • composition Roughness change Composition Roughness change
  • Table 3 shows the specific resistance value and dimple generation rate of the film in each composition.
  • the measurement conditions of the specific resistance value of the film are the same as in the first embodiment.
  • the dimple generation rate is a result obtained by SEM observation of each evaluation sample with heat treatment temperatures of 350 ° C. and 400 ° C. under the same conditions as the heat resistance evaluation in the first embodiment.
  • the occurrence rate of dimples was examined in order to perform a more detailed heat resistance evaluation than the heat resistance evaluation in the first embodiment.
  • the dimple occurrence rate is determined by detecting the dimples that are indentations (diameter: 0.3 ⁇ !
  • an evaluation sample prepared under the same conditions as those of the Si diffusion heat resistance evaluation described in the first embodiment was used. Specifically, an n + -Si semiconductor layer (300 A) is formed on a glass substrate by CVD, and sputtering (magnetron sputtering device, input power 3. OWatt / cm 2 , argon gas flow rate 100 ccm In this case, an Al—Ni—B alloy film (2000A) having each composition shown in Table 1 was formed under an argon pressure of 0.5 Pa). Then, this evaluation sample was heat-treated at 300, 330, and 350 ° C.
  • Table 5 shows the results of examining the change in the surface state of the semiconductor layer in connection with the above-mentioned investigation of the deteriorated layer.
  • This change in the surface state of the semiconductor layer was carried out by measuring the surface roughness of the semiconductor layer. Specifically, the surface roughness immediately after forming the n + -Si semiconductor layer (300A) on the glass substrate (hereinafter referred to as as-depo roughness) and the exposed semiconductor layer of the evaluation sample of the above-mentioned altered layer investigation The surface roughness (hereinafter referred to as direct bonding roughness) was measured, and (direct bonding roughness value) Z (as-depo roughness value) was calculated.
  • the step / surface roughness (roughness) ) ⁇ Ten-point average roughness R Z was determined according to JIS B0601: 1994 using a fine shape measuring device (KLA Tencor, P-15 type).
  • the roughness change amount in Table 5 shows a tendency that is almost correlated with the result of the altered layer in Table 3. From the results of the roughness change in Table 5, even after heat treatment at 330 ° C after direct bonding, the bonding surface of the semiconductor layer does not become extremely rough, that is, within 1.5 times the as-depo roughness value. It was found that the composition range, which is the amount of change, is 4.0 to 6. Oat% for nickel and 0.20 to 0.60 at% for boron.
  • a cap layer having a high melting point metal material such as Mo is omitted, it can be directly bonded to a transparent electrode such as ITO or IZO, and n + -Si of a thin film transistor can be used. It is possible to form a wiring circuit that can be directly bonded to the semiconductor layer.
  • a thermal process exceeding 240 ° C is applied, the mutual connection between A1 and Si occurs at the bonding interface where the wiring circuit and the semiconductor layer, which are the Al-Ni-B alloy wiring material of the present invention, are directly bonded. Diffusion is suppressed.
  • the Al-Ni-B alloy wiring material according to the present invention has extremely good heat resistance, and its specific resistance is as low as 10 ⁇ cm or less, so it is extremely suitable as a constituent material for large display displays. It is. For this reason, the present invention relates to a material surface, equipment surface, and process in manufacturing a display device such as a liquid crystal display. This is a technology that enables cost reduction and the realization of display devices with superior characteristics.

Abstract

Disclosed is an Al-based alloy wiring material which can be directly bonded not only with a transparent electrode such as ITO or IZO but also with a semiconductor layer such as n+-Si in a display device comprising a thin film transistor and a transparent electrode. Specifically disclosed is an Al-Ni-B alloy wiring material wherein the nickel content and the boron content are within the ranges satisfying the following formulae: 0.5 ≤ X ≤ 10.0, 0.05 ≤ Y ≤ 11.0, Y + 0.25X ≥ 1.0 and Y + 1.15X ≤ 11.5 when the atomic percentage of the nickel content is expressed as X at% and the atomic percentage of the boron content is expressed as Y at%, and the balance is composed of aluminum.

Description

明 細 書  Specification
Al-Ni- B合金配線材料及びそれを用 Vヽた素子構造  Al-Ni-B alloy wiring material and device structure using it
技術分野  Technical field
[0001] 本願発明は、液晶ディスプレイなどの表示デバイスの素子に用いられる A1系合金 配線材料に関し、特に、薄膜トランジスタや透明電極を備える表示デバイスに好適な Al—Ni—B合金の配線材料及びそれを用いた素子構造に関する。  TECHNICAL FIELD [0001] The present invention relates to an A1-based alloy wiring material used for an element of a display device such as a liquid crystal display, and in particular, an Al—Ni—B alloy wiring material suitable for a display device including a thin film transistor and a transparent electrode. It relates to the element structure used.
背景技術  Background art
[0002] 近年、液晶ディスプレイに代表される薄型テレビなどの表示デバイスには、その構 成材料としてアルミニウム(以下、単に A1と記載する場合がある)系合金の配線材料 が広く普及している。この理由は、 A1系合金配線材料の比抵抗値が低ぐ配線加工 が容易な特性を有することによる。  In recent years, wiring materials made of aluminum (hereinafter sometimes simply referred to as “A1”) alloy have been widely used as a constituent material for display devices such as thin-screen televisions typified by liquid crystal displays. The reason for this is that the specific resistance value of the A1-based alloy wiring material is low and the wiring process is easy.
[0003] 例えば、アクティブマトリックスタイプの液晶ディスプレイの場合、スイッチング素子と しての薄膜トランジスタ(Thin Film Transistor、以下、 TFTと略称する)や、 ITO (Ind ium Tin Oxide)或いは IZO (Indium Zinc Oxide)などの透明電極と、 Al系合金配 線材料より形成された配線回路とから素子が構成される。このような素子構造では、 A1系合金配線材料による配線回路を、透明電極と接合させる部分や TFT内におけ る n+— Si (リンドープの半導体層)と接合させる部分が存在する。  [0003] For example, in the case of an active matrix type liquid crystal display, a thin film transistor (hereinafter abbreviated as TFT) as a switching element, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), etc. An element is composed of the transparent electrode and a wiring circuit made of an Al-based alloy wiring material. In such an element structure, there are a portion where a wiring circuit made of an A1-based alloy wiring material is bonded to a transparent electrode and a portion where n + -Si (phosphorus-doped semiconductor layer) is bonded in a TFT.
[0004] 現在使用されている A1系合金配線材料では、上述のような素子を構成する場合、 A1系合金配線材料に形成されるアルミニウム酸ィ匕物の影響を考慮し、配線回路と透 明電極との間に、モリブデン (Mo)やチタニウム (Ti)などの高融点金属材料を、いわ ゆるキャップ層として形成している。また、 n+— Siのような半導体層と配線回路との接 合においては、製造工程中の熱プロセスにより、 A1と Siとが相互拡散することを防止 すべぐ半導体層と配線回路との間に、上記キャップ層と同じモリブデン (Mo)やチタ ユウム (Ti)などの高融点金属材料を介在させるようにして!/、る。  [0004] In the currently used A1 alloy wiring material, when the above-described element is configured, the influence of the aluminum oxide formed on the A1 alloy wiring material is considered, and the wiring circuit and the transparent A refractory metal material such as molybdenum (Mo) or titanium (Ti) is formed between the electrodes as a so-called cap layer. In addition, in the connection between a semiconductor layer such as n + -Si and a wiring circuit, the thermal process during the manufacturing process prevents the interdiffusion of A1 and Si between the semiconductor layer and the wiring circuit. The same refractory metal material such as molybdenum (Mo) and titanium (Ti) as the cap layer is interposed! /.
[0005] 図 1を参照しながら、上記した素子構造について具体的に説明する。図 1には、液 晶ディスプレイに関する a— Siタイプの TFT断面概略図を示している。この TFT構造 では、ガラス基板 1上に、ゲート電極部 Gを構成する A1系合金配線材料カゝらなる電極 配線層 2と、 Moや Mo— Wなどからなるキャップ層 3とが形成されている。そして、この ゲート電極部 Gには、その保護として SiNxのゲート絶縁膜 4が設けられている。また、 このゲート絶縁膜 4上には、 a— Si半導体層 5、チャネル保護膜層 6、 n+— Si半導体 層 7、キャップ層 3、電極配線層 2、キャップ層 3が順次堆積され、適宜パターン形成さ れることにより、ドレイン電極部 Dとソース電極部 Sとが設けられる。このドレイン電極部 Dとソース電極部 Sとの上には、素子の表面平坦ィ匕用榭脂または SiNxの絶縁膜 4, が被覆される。さらに、ソース電極部 S側には、絶縁層 4'にコンタクトホール CHが設 けられ、その部分に ITOや IZOの透明電極層 7が形成される。このように、配線回路 である電極配線層 1に A1系合金配線材料を用いる場合では、 n+ - Si半導体層 6と電 極配線層 1との間や、コンタクトホール CHにおける透明電極層 7と電極配線層 1との 間に、キャップ層 3を介在させる構造となっている。 The above element structure will be specifically described with reference to FIG. Figure 1 shows a schematic cross-sectional view of an a-Si TFT for a liquid crystal display. In this TFT structure, an electrode made of an A1-based alloy wiring material constituting the gate electrode portion G is formed on the glass substrate 1. A wiring layer 2 and a cap layer 3 made of Mo, Mo—W, or the like are formed. The gate electrode portion G is provided with a SiNx gate insulating film 4 as a protection. On this gate insulating film 4, an a-Si semiconductor layer 5, a channel protective film layer 6, an n + -Si semiconductor layer 7, a cap layer 3, an electrode wiring layer 2, and a cap layer 3 are sequentially deposited. By forming the pattern, the drain electrode portion D and the source electrode portion S are provided. On the drain electrode portion D and the source electrode portion S, a surface flattening resin or SiNx insulating film 4 is coated. Further, on the source electrode portion S side, a contact hole CH is provided in the insulating layer 4 ′, and a transparent electrode layer 7 made of ITO or IZO is formed there. As described above, when an A1-based alloy wiring material is used for the electrode wiring layer 1 which is a wiring circuit, the transparent electrode layer 7 and the electrode between the n + -Si semiconductor layer 6 and the electrode wiring layer 1 or in the contact hole CH. The cap layer 3 is interposed between the wiring layer 1 and the wiring layer 1.
[0006] この図 1に示す素子構造では、 Moなどのキャップ層を形成するため、材料や製造 設備などのコストアップは避けられず、製造工程の複雑ィ匕が指摘されていた。そのた め、本願出願人は、このような従来の素子構造におけるキャップ層の省略を可能とす る技術を既に提案している (特許文献 1参照)。この特許文献 1では、 ITOとの直接接 合が可能となる、 A1— C— Ni合金や A1— C— Ni— Si合金の配線材料を開示した。 特許文献 1:特開 2003— 89864号公報 In the element structure shown in FIG. 1, since a cap layer such as Mo is formed, the cost of materials and manufacturing equipment is unavoidably increased, and the complexity of the manufacturing process has been pointed out. For this reason, the applicant of the present application has already proposed a technique that makes it possible to omit the cap layer in such a conventional element structure (see Patent Document 1). In this patent document 1, a wiring material of A1—C—Ni alloy or A1—C—Ni—Si alloy capable of direct bonding with ITO is disclosed. Patent Document 1: Japanese Unexamined Patent Publication No. 2003-89864
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しカゝしながら、上記先行技術による A1系合金配線材料では、 ITOや IZOなどの透 明電極層との直接接合は可能となるものではあるが、 n+— Siなどの半導体層と直接 接合させる場合にあっては十分に満足できる特性を備えるものではな力つた。例えば 、 A1系合金配線材料と半導体層とを直接接合した際に、接合界面において A1と Siと の拡散現象などが生じ、接合特性を満足できな!ヽ傾向を示すことがある。  [0007] However, the A1 alloy wiring material according to the prior art described above can be directly bonded to a transparent electrode layer such as ITO or IZO, but it can be connected to a semiconductor layer such as n + -Si. In the case of direct bonding, it did not have sufficient characteristics. For example, when an A1-based alloy wiring material and a semiconductor layer are directly bonded, a diffusion phenomenon of A1 and Si may occur at the bonding interface, and the bonding characteristics may not be satisfied.
[0008] 本願発明は、以上のような事情を背景になされたものであり、薄膜トランジスタや透 明電極を備える表示デバイスにお 、て、 ITOや IZOなどの透明電極との直接接合が 可能であるとともに、 n+— Siなどの半導体層とも直接接合が可能な A1系合金配線材 料を提供するものである。 課題を解決するための手段 [0008] The present invention has been made in the background as described above, and in a display device including a thin film transistor and a transparent electrode, direct bonding with a transparent electrode such as ITO or IZO is possible. At the same time, it provides A1-based alloy wiring materials that can be directly bonded to semiconductor layers such as n + -Si. Means for solving the problem
[0009] 本願発明者等は、 Al—Ni系合金に関して鋭意検討したところ、 Al— Ni合金に、所 定量のボロン (B)を含有させることにより上記課題が解決できることを見出し、本願発 明を想到するに至った。  [0009] The inventors of the present application have made extensive studies on Al-Ni alloys, and found that the above problems can be solved by adding a certain amount of boron (B) to the Al-Ni alloy. I came up with an idea.
[0010] 本願発明は、アルミニウムにニッケル及びボロンを含有した Al—Ni— B合金配線材 料において、ニッケル含有量をニッケルの原子百分率 Xat%とし、ボロン含有量を原 子百分率 Yat%とした場合、  [0010] In the present invention, in an Al—Ni—B alloy wiring material containing aluminum and nickel and boron, the nickel content is defined as atomic percentage Xat% of nickel, and the boron content is defined as atomic percentage Yat%. ,
式 0. 5≤X≤10. 0 (1)  Equation 0.5 5≤X≤10. 0 (1)
0. 05≤Y≤11. 0 (2)  0. 05≤Y≤11. 0 (2)
Υ+Ο. 25Χ≥1. 0 (3)  Υ + Ο. 25 Χ ≥ 1. 0 (3)
Υ+ 1. 15Χ≤11. 5 · · · · (4)  Υ + 1. 15 Χ ≤ 11.5 (4)
の各式を満足する領域の範囲内にあり、残部がアルミニウムである Al—Ni— Β合金 配線材料とした。尚、本願発明における Al—Ni— Β合金配線材料は、以下に述べる 本願発明の奏する効果を逸脱しない範囲において不可避不純物の混入を妨げるも のではない。  An Al—Ni—Β alloy wiring material in which the balance is within the region satisfying each of the formulas and the balance is aluminum. Incidentally, the Al—Ni—K—alloy wiring material in the present invention does not prevent inevitable impurities from being mixed within a range not departing from the effects of the present invention described below.
[0011] ニッケルは、熱処理によりアルミニウムとの金属間化合物を形成し、透明電極との直 接接合における接合特性を良好にする作用を有する。但し、ニッケル含有量が多く なると、配線回路自体の比抵抗が高くなり実用的でなくなる。また、ニッケル含有量が 少ないと、アルミニウムとの金属間化合物の生成が減少し、透明電極との直接接合が できなくなり、耐熱性 (熱による A1系合金配線材料の塑性変形発生に対する抑止作 用)も低下する傾向となる。これらのことからニッケル含有量は上記(1)式を満足する 必要がある。  [0011] Nickel has an effect of forming an intermetallic compound with aluminum by heat treatment to improve bonding characteristics in direct bonding with a transparent electrode. However, if the nickel content increases, the specific resistance of the wiring circuit itself increases and becomes impractical. In addition, if the nickel content is low, the formation of intermetallic compounds with aluminum is reduced, making direct bonding with the transparent electrode impossible, and heat resistance (to prevent plastic deformation of the A1 alloy wiring material due to heat) It tends to decrease. For these reasons, the nickel content must satisfy the above formula (1).
[0012] 具体的には、ニッケル含有量が 10. 0&%を超えると、配線材料の比抵抗値が大き くなりすぎるとともに、ディンプルと呼ばれる窪み状の欠陥が配線材料表面に形成さ れ易ぐ耐熱性が低下する。また、 0. 5at%未満であると、いわゆるヒロックと呼ばれ る突起物が配線材料表面に形成され易くなり、耐熱性が低下する。このディンプルと は、 A1系合金配線材料を熱処理した際に生じる応力ひずみによって材料表面に形 成される微小な窪み状の欠陥のことをいい、このディンプルが発生すると、接合特性 に悪影響を与え、接合信頼性が低下する。一方、ヒロックとは、ディンプルとは逆に、[0012] Specifically, if the nickel content exceeds 10.0 &%, the specific resistance value of the wiring material becomes too large, and a dimple-like defect called dimple is easily formed on the surface of the wiring material. Heat resistance decreases. On the other hand, if it is less than 0.5 at%, a so-called hillock protrusion is easily formed on the surface of the wiring material, and the heat resistance is lowered. This dimple is a small dent-like defect formed on the surface of the material due to the stress strain generated when heat-treating the A1-based alloy wiring material. Adversely affects the bonding reliability. On the other hand, hillocks, contrary to dimples,
A1系合金配線材料を熱処理した際に生じる応力ひずみによって材料表面に形成さ れる突起物であるが、このヒロックが発生しても、接合特性に悪影響を与え、接合信 頼性が低下する。このディンプルとヒロックとは、熱による A1系合金配線材料の塑性 変形である点で共通するものであり、総称してストレスマイグレーションと呼ばれる現 象で、これらの欠陥の発生レベルにより A1系合金配線材料の耐熱性を判断すること ができる。 Projections formed on the surface of the material due to stress strain generated when heat-treating A1-based alloy wiring material. Even if this hillock occurs, it adversely affects the bonding characteristics and decreases the bonding reliability. These dimples and hillocks are common in that they are plastic deformation of the A1 alloy wiring material due to heat, and are collectively referred to as stress migration. Depending on the level of these defects, the A1 alloy wiring material The heat resistance of can be judged.
[0013] そして、本願発明のように、アルミニウムに、ニッケルにカ卩えてボロンを含有させると 、 n+— Siなどの半導体層と直接接合をした際に、接合界面における A1と Siとの相互 拡散を効果的に防止する作用を奏する。また、このボロンは、ニッケルと同様に耐熱 性にも作用する。ボロンは、 11. OOat%を超える含有量であると配線回路自体の比 抵抗が高くなり実用的でなくなる。逆に、 0. 05at%未満の含有量であると、 A1と Siと の相互拡散の防止能力が低下し、半導体層との直接接合ができなくなる。具体的に は、半導体層と A1— Ni— B合金配線材料を直接接合し、所定温度で熱処理した際 に、接合部分において A1と Siとの相互拡散が生じ易くなるのである。さらにカ卩えて、 ディンプルも発生し易い傾向となる。そのため、ボロンの含有量は上記(2)の式を満 足する必要がある。  [0013] As in the present invention, when boron is added to aluminum in addition to nickel, when A1 and Si are directly bonded to a semiconductor layer such as n + —Si, mutual diffusion between A1 and Si at the bonding interface It has the effect | action which prevents this effectively. Moreover, this boron acts on heat resistance as well as nickel. If the boron content exceeds 11. OOat%, the resistivity of the wiring circuit itself becomes high and becomes impractical. On the other hand, if the content is less than 0.05 at%, the ability to prevent interdiffusion between A1 and Si decreases, and direct bonding to the semiconductor layer becomes impossible. Specifically, when the semiconductor layer and the A1-Ni-B alloy wiring material are directly bonded and heat-treated at a predetermined temperature, interdiffusion between A1 and Si is likely to occur at the bonded portion. Furthermore, dimples tend to occur easily. For this reason, the boron content must satisfy the above formula (2).
[0014] また、本願発明者等の研究によれば、半導体層との直接接合した場合であって、 2 40°Cを超える温度の熱プロセスにおいても、その接合界面で A1と Siとの相互拡散を 確実に防止するためには、上記(3)式を満足する必要があることを見出した。そして 、 A1— Ni— B合金配線材料自体の比抵抗を 10 Ω cm以下に確実に維持するため には、上記 (4)式を満足する必要があることを見出した。  [0014] Further, according to the study by the inventors of the present application, the mutual bonding between A1 and Si at the bonding interface is also in the case of direct bonding with the semiconductor layer, even in a thermal process at a temperature exceeding 240 ° C. It was found that the above formula (3) must be satisfied in order to reliably prevent diffusion. Then, it has been found that in order to reliably maintain the specific resistance of the A1-Ni-B alloy wiring material itself at 10 Ωcm or less, the above formula (4) must be satisfied.
[0015] さらに、上記(1)〜(4)式を満足する範囲のうち、ニッケル含有量が 4. Oat%以上 で、ボロン含有量が 0. 80at%以下であると、上述したディンプルの発生が極力抑制 された Al—Ni—B合金配線材料となり、半導体層や透明電極層に対しても直接接合 をした際の接合信頼性を向上できる。より具体的には、 350°C、 1時間の熱処理を行 つた場合、 Al—Ni—B合金配線材料の表面に生じるディンプルの発生率を 1. 6% 以下に抑制できるのである。 [0016] 上述したように、ディンプルとは Al—Ni—B合金配線材料を熱処理した際に配線材 料表面に形成される微小な窪み状の欠陥であるが、本願発明者等は、 Al-Ni-B 合金配線材料に対し所定の熱処理を行った後、その材料表面を観察し、発生したデ インプル(0. 3〜0. 5 m)を調査した。このディンプル調査において、観察視野内の 発生した全ディンプルの面積を求め、観察視野におけるディンプルの占める面積比 率をディンプル発生率として、配線材料の耐熱特性を調べた結果、上記(1)〜(4) 式を満足する範囲のうち、ニッケル含有量が 4. 0&%以上であり、ボロン含有量が 0 . 80at%以下であると 350°C、 1時間の熱処理を行った場合でも、ディンプルの発生 率を 1. 6%以下に抑制できることを見出したのである。このようにディンプル発生率が 低いと、表示デバイスの素子製造工程における熱プロセスを通過しても、半導体層や 透明電極との直接接合した接合界面において、接合欠陥などを発生しにくくなり、接 合信頼性が向上する。 [0015] Further, in the range satisfying the above formulas (1) to (4), when the nickel content is 4. Oat% or more and the boron content is 0.80 at% or less, the above-mentioned dimples are generated. As a result, Al-Ni-B alloy wiring material is suppressed as much as possible, and the bonding reliability when directly bonding to the semiconductor layer and the transparent electrode layer can be improved. More specifically, when heat treatment is performed at 350 ° C. for 1 hour, the rate of occurrence of dimples generated on the surface of the Al—Ni—B alloy wiring material can be suppressed to 1.6% or less. [0016] As described above, the dimple is a microscopic defect formed on the surface of the wiring material when the Al—Ni—B alloy wiring material is heat-treated. After performing the prescribed heat treatment on the Ni-B alloy wiring material, the surface of the material was observed and the generated dimples (0.3 to 0.5 m) were investigated. In this dimple survey, the area of all the dimples generated in the observation field was obtained, and the area ratio of the dimples in the observation field was used as the dimple generation rate. As a result, the above-mentioned (1) to (4 ) If the nickel content is 4.0 &% or more and the boron content is 0.80at% or less, the dimple is generated even when heat treatment is performed at 350 ° C for 1 hour. It was found that the rate can be suppressed to 1.6% or less. If the dimple generation rate is low in this way, even if it passes through the thermal process in the element manufacturing process of the display device, it becomes difficult to generate a bonding defect or the like at the bonding interface directly bonded to the semiconductor layer or the transparent electrode. Reliability is improved.
[0017] さらに、本願発明者らは、上記(1)〜 (4)式を満足する範囲のうち、ニッケル含有量 が 4. 0at%〜6. Oat%で、ボロン含有量が 0. 20at%〜0. 80at%であると、半導体 層と直接接合させる際に、特に好適な Al—Ni— B合金配線材料となることを見出し た。  [0017] Further, the inventors of the present application have a nickel content of 4.0 at% to 6. Oat% and a boron content of 0.20 at% within the range satisfying the above formulas (1) to (4). It was found that when it is ˜0.8 at%, it becomes a particularly suitable Al—Ni—B alloy wiring material when directly bonding to a semiconductor layer.
[0018] A1系合金配線材料と半導体層とを直接接合した際には、接合界面において A1と Si との拡散現象が生じることが知られている力 本願発明者等の研究によると、この相 互拡散の影響によって、直接接合した際の接合界面に変質層が形成される現象を 確認したのである。この変質層とは、 A1系合金配線材料と半導体層とを直接接合し、 所定の熱処理を加えた後、 A1系合金配線材料を剥離して、その半導体層表面を観 察した際に、半導体層表面に認められる黒点となった変質部分、或いは半導体層表 面の変色や荒れなどの状態 (本明細書においては、このような半導体層表面を変質 層と称する)のことをいう。この変質層は、熱処理温度が高くなるほど発生し易くなる 傾向があり、実用上、 300°C以上の熱処理(1時間)で発生しないことが望ましいと考 えられる。このような変質層を生じない組成範囲を検討した結果、上記(1)〜(4)式を 満足する範囲のうち、ニッケル含有量が 4. 0at%〜6. Oat%で、ボロン含有量が 0. 20at%〜0. 80at%であると、 300°C、 1時間の熱処理においても変質層の形成が 抑制されることを見出した。また、配線材料自体の比抵抗値も 5 Ω cm以下となる。 さら〖こ、上述したようにディンプル発生率も極めて低くなるので、半導体層との直接接 合を実現するための Al— Ni— B合金配線材料として、実用上、非常に好適なものと なる。 [0018] It is known that when an A1-based alloy wiring material and a semiconductor layer are directly bonded, a diffusion phenomenon between A1 and Si occurs at the bonding interface. They confirmed the phenomenon that an altered layer was formed at the joint interface when they were directly joined due to the effect of mutual diffusion. This altered layer is a direct bond between the A1 alloy wiring material and the semiconductor layer, and after applying a predetermined heat treatment, the A1 alloy wiring material is peeled off and the surface of the semiconductor layer is observed. This refers to an altered portion that becomes a black spot recognized on the surface of the layer, or a state of discoloration or roughness of the surface of the semiconductor layer (in this specification, such a surface of the semiconductor layer is referred to as an altered layer). This deteriorated layer tends to be generated more easily as the heat treatment temperature becomes higher, and it is considered that it is desirable that the deteriorated layer should not be generated by heat treatment (1 hour) at 300 ° C or higher. As a result of examining the composition range in which such a deteriorated layer does not occur, the nickel content is 4.0 at% to 6. Oat% in the range satisfying the above formulas (1) to (4), and the boron content is When the temperature is from 0.20 at% to 0.80 at%, the altered layer can be formed even after heat treatment at 300 ° C for 1 hour. It was found to be suppressed. The specific resistance of the wiring material itself is also 5 Ωcm or less. Furthermore, as described above, since the dimple occurrence rate is extremely low, it is practically very suitable as an Al—Ni—B alloy wiring material for realizing direct bonding with the semiconductor layer.
[0019] また、本願発明者等は、半導体層の表面状態変化に関して調査した。この調査は、 直接接合して熱処理した後に、 A1系合金配線材料を剥離して露出させた半導体層 の表面粗さ Rz (十点平均粗さ)と、直接接合前の半導体層表面粗さ Rzとを比較する ことで行った。この表面状態変化の調査結果より、直接接合前の半導体層表面粗さ 値を 1とした場合、直接接合して熱処理後の露出させた半導体層表面粗さ値が 1. 5 倍以下の変化量である配線材料とするには、上記(1)〜 (4)式を満足する範囲のう ち、ニッケル含有量が 4. 0at%〜6. Oat%で、ボロン含有量が 0. 20at%〜0. 80at %とする必要があることも見出したのである。  [0019] Further, the inventors of the present application investigated the change in the surface state of the semiconductor layer. This survey is based on the surface roughness Rz (ten-point average roughness) of the semiconductor layer exposed by peeling off the A1 alloy wiring material after direct bonding and heat treatment, and the surface roughness Rz of the semiconductor layer before direct bonding. This was done by comparing From the investigation results of this surface state change, assuming that the semiconductor layer surface roughness value before direct bonding is 1, the amount of change in which the exposed semiconductor layer surface roughness value after direct bonding and heat treatment is 1.5 times or less In the range satisfying the above formulas (1) to (4), the nickel content is 4.0 at% to 6. Oat% and the boron content is 0.20 at% to They also found out that it was necessary to set it at 0.8.
[0020] この半導体層の表面粗さの変化量が、 Siと A1との相互拡散に直接関連するパラメ ータとなるものかは明確には把握できていないものの、熱処理温度が高くなるほど変 化量が大きくなることは確認されている。また、半導体層の表面状態が変化すること は、 TFTにおけるスイッチング特性に影響されることが予想される。つまり、薄膜トラン ジスタにおけるオン オフ比(onZoff比)の変化に繋がるものと推測され、従って、 直接接合して熱処理を行っても、半導体層の表面状態があまり変化しないことが、ト ランジスタのスイッチング特性を良好に維持できることが予想される。尚、直接接合に おける半導体層の表面状態変化に関し、本願発明では、半導体層表面状態を特定 する際に表面粗さ Rzを採用して 、るが、 JIS B0601などに記載されて 、る表面性状 パラメータ、例えば、表面粗さ Ra (算術平均粗さ)などのパラメータを採用することもで きる。  [0020] Although it is not clear whether the amount of change in the surface roughness of this semiconductor layer is a parameter directly related to the interdiffusion between Si and A1, it changes as the heat treatment temperature increases. It has been confirmed that the amount increases. In addition, changes in the surface state of the semiconductor layer are expected to be affected by the switching characteristics of the TFT. In other words, it is presumed that this leads to a change in the on / off ratio (onZoff ratio) in the thin film transistor. Therefore, even if direct bonding and heat treatment are performed, the surface state of the semiconductor layer does not change so much. It is expected that the characteristics can be maintained well. Regarding the surface state change of the semiconductor layer in direct bonding, the present invention adopts the surface roughness Rz when specifying the semiconductor layer surface state. However, the surface properties described in JIS B0601 etc. Parameters such as surface roughness Ra (arithmetic mean roughness) can also be adopted.
[0021] 上記した本願発明に係る Al— Ni— B合金配線材料により、表示ディスプレイの素 子を製造する場合には、ニッケル含有量をニッケルの原子百分率 Xat%とし、ボロン 含有量をボロンの原子百分率 Yat%とした場合、上記式(1)〜 (4)の各式を満足す る領域の範囲内にあり、残部がアルミニウムであるスパッタリングターゲットを用いるこ とが好ましい。特に、上記(1)〜 (4)式を満足する範囲のうち、ニッケル含有量が 4. 0 at%〜6. Oat%で、ボロン含有量が 0. 20at%〜0. 80at%であるスパッタリングター ゲットであれば、半導体層との直接接合に極めて好適な配線回路を容易に実現でき る。このような組成のスパッタリングターゲットを用いる場合、スパッタリング時の成膜 条件に多少左右されることもある力 ターゲット組成とほぼ同じ組成の Al— Ni— B合 金薄膜を容易に形成できる。 [0021] When an element of a display is manufactured using the Al—Ni—B alloy wiring material according to the present invention described above, the nickel content is set to an atomic percentage Xat% of nickel, and the boron content is set to boron atoms. When the percentage is Yat%, it is preferable to use a sputtering target that is in the range of the region satisfying the above formulas (1) to (4) and the balance being aluminum. In particular, among the ranges satisfying the above formulas (1) to (4), the nickel content is 4.0. A sputtering target having at% to 6. Oat% and a boron content of 0.20 at% to 0.80 at% can easily realize a wiring circuit extremely suitable for direct bonding with a semiconductor layer. When a sputtering target having such a composition is used, an Al—Ni—B alloy thin film having almost the same composition as the force target composition, which may be somewhat affected by the film formation conditions during sputtering, can be easily formed.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]TFT概略断面図。 [0022] FIG. 1 is a schematic sectional view of a TFT.
[図 2]Si拡散耐熱性評価の光学顕微鏡写真。  [Figure 2] Optical micrograph of Si diffusion heat resistance evaluation.
[図 3]Si拡散耐熱性評価の光学顕微鏡写真。  [Figure 3] Optical micrograph of Si diffusion heat resistance evaluation.
[図 4]ITO (ΙΖΟ)電極層と Al合金電極層とをクロスして積層した試験サンプル概略斜 視図。  FIG. 4 is a schematic oblique view of a test sample in which an ITO (IV) electrode layer and an Al alloy electrode layer are crossed and laminated.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本願発明における最良の実施形態について説明する。 Hereinafter, the best embodiment of the present invention will be described.
[0024] 第一実施形態:本実施形態では、表 1に示す実施例及び比較例の各組成の A1— Ni —B合金配線材料についてスパッタリングにより膜形成し、その膜の特性評価を行つ た。スパッタリングターゲットは、アルミニウムに、表 1記載の各組成の金属を混合して 、溶解铸造した後、圧延、成型加工をし、スパッタに供する表面を平面加工して製造 したものを用いた。表 1記載の各組成における膜の特性評価は、 Si拡散耐熱性、膜 の比抵抗、 350°C耐熱性、 ITO接合性、 IZO接合性について行った。その結果を表 1及び表 2に示す。 First Embodiment: In this embodiment, A1—Ni—B alloy wiring materials having respective compositions of Examples and Comparative Examples shown in Table 1 were formed by sputtering, and the characteristics of the films were evaluated. . The sputtering target was prepared by mixing aluminum with metals having the respective compositions shown in Table 1, melting and forging, rolling and molding, and processing the surface to be sputtered flat. The film characteristics of each composition listed in Table 1 were evaluated for Si diffusion heat resistance, film specific resistance, 350 ° C heat resistance, ITO bondability, and IZO bondability. The results are shown in Tables 1 and 2.
[0025] [表 1] [0025] [Table 1]
Figure imgf000009_0002
Figure imgf000009_0002
Figure imgf000009_0004
Figure imgf000009_0003
Figure imgf000009_0004
Figure imgf000009_0003
Figure imgf000009_0001
Figure imgf000009_0001
Si拡散 350^ ITO IZO Si diffusion 350 ^ ITO IZO
耐熱性 耐熱性 接合性 接合性 実施例 1 2 4 0 〇 〇 〇  Heat resistance Heat resistance Bondability Bondability Example 1 2 4 0 ○ ○ ○
実施例 2 2 4 0 〇 〇 〇  Example 2 2 4 0 ○ ○ ○
実施例 3 3 0 0 〇 〇 〇  Example 3 3 0 0 ○ ○ ○
実施例 4 3 3 0 o o 〇  Example 4 3 3 0 o o ○
実施例 5 3 3 0 〇 〇 〇  Example 5 3 3 0 ○ ○ ○
実施例 6 3 3 0 〇 〇 〇  Example 6 3 3 0 ○ ○ ○
実施例 7 3 3 0 I 〇 〇 〇  Example 7 3 3 0 I ○ ○ ○
実施例 8 3 3 0 〇 〇 〇  Example 8 3 3 0 ○ ○ ○
実施例 9 2 4 0 〇 〇 〇  Example 9 2 4 0 ○ ○ ○
実施例 10 2 6 0 1 〇 〇 〇  Example 10 2 6 0 1 ○ ○ ○
実施例 11 3 0 0 〇 〇 〇  Example 11 3 0 0 ○ ○ ○
実施例 12 1 3 3 0 〇 〇 〇  Example 12 1 3 3 0 ○ ○ ○
実施例 13 3 3 0 〇 〇 〇  Example 13 3 3 0 ○ ○ ○
実施例 14 1 3 3 0 〇 〇 〇  Example 14 1 3 3 0 ○ ○ ○
比較例 1 1 7 0 X X X  Comparative Example 1 1 7 0 X X X
比較例 2 1 7 0 X X X  Comparative Example 2 1 7 0 X X X
比較例 3 1 8 0 X X X  Comparative Example 3 1 8 0 X X X
比較例 4 2 0 0 X 〇 〇  Comparative Example 4 2 0 0 X ○ ○
比較例 5 2 5 0 X 〇 〇  Comparative Example 5 2 5 0 X ○ ○
比較例 6 3 0 0 〇 〇 〇  Comparative Example 6 3 0 0 ○ ○ ○
比較例 7 2 3 0 X X X  Comparative Example 7 2 3 0 X X X
比較例 8 2 0 0 X 〇 〇  Comparative Example 8 2 0 0 X ○ ○
比較例 9 3 3 0 〇 〇 〇  Comparative example 9 3 3 0 ○ ○ ○
比較例 10 1 9 0 X 〇 〇  Comparative Example 10 1 9 0 X ○ ○
比較例 11 3 3 0 〇 〇 〇  Comparative Example 11 3 3 0 ○ ○ ○
比較例 12 3 3 0 1 〇 〇 〇  Comparative example 12 3 3 0 1 ○ ○ ○
比較例 13 1 8 0 I X I X X  Comparative Example 13 1 8 0 I X I X X
比較例 14 2 0 0 X 〇 〇  Comparative Example 14 2 0 0 X ○ ○
比較例 15 2 2 0 I X 1 〇 〇 以下に各特性評価の測定条件について説明する。  Comparative Example 15 2 2 0 I X 1 ○ ○ The measurement conditions for each characteristic evaluation are described below.
Si拡散耐熱性:この特性の評価サンプルには、ガラス基板上に n+— Si半導体層(30 OA)を CVDにより形成し、その半導体層上にスパッタリング (マグネトロン'スパッタリ ング装置、投入電力 3. OWatt/cm2,アルゴンガス流量 100ccm、アルゴン圧力 0. 5Pa)により、表 1に示す各組成膜 (2000 A)を形成したものを用いた。そして、評価 サンプルを 150〜350°Cの温度域で 10°C毎に熱処理温度を設定し、窒素ガス雰囲 気中 30分間の熱処理を行った後、リン酸系 A1エッチング液(関東ィ匕学 (株)社製、 A1 混酸エツチャント Z組成 (容量比)リン酸:蓚酸:酢酸:水 = 1: 1: 2: 1)を用いて、液温 32°C、 10分間浸漬させることにより、上層に形成した各組成膜のみを溶解し、半導 体層を露出させた。この露出した半導体層表面を光学顕微鏡 (200倍)にて観察し、 Siと A1との相互拡散が生じて 、るかを調べた。 Si diffusion heat resistance: As an evaluation sample of this property, an n +-Si semiconductor layer (30 OA) is formed on a glass substrate by CVD, and sputtering (magnetron 'sputtering equipment, input power 3.OWatt / cm 2 , an argon gas flow rate of 100 ccm, and an argon pressure of 0.5 Pa) were used in which each composition film (2000 A) shown in Table 1 was formed. Then, the heat treatment temperature of the evaluation sample is set every 10 ° C in the temperature range of 150 to 350 ° C, and after heat treatment for 30 minutes in a nitrogen gas atmosphere, a phosphoric acid-based A1 etching solution (Kanto A1 Mixed Acid Etchant Z Composition (Volume Ratio) Phosphoric Acid: Succinic Acid: Acetic Acid: Water = 1: 1: 2: 1) By soaking at 32 ° C. for 10 minutes, only each composition film formed in the upper layer was dissolved, and the semiconductor layer was exposed. The exposed surface of the semiconductor layer was observed with an optical microscope (200 times) to investigate whether or not interdiffusion between Si and A1 occurred.
[0028] 図 2及び図 3には、露出した半導体層表面における、代表的な光学顕微鏡写真を 示す。図 2は相互拡散が全く認められない半導体層表面であり、図 3は相互拡散の 痕跡 (写真中の黒点)が認められたものである。 Si拡散耐熱性は、図 3のような黒点が 認められたサンプルを不良とし、図 2のように相互拡散が全く認められな力つたサンプ ルのうち、最も高 、熱処理温度値を Si拡散耐熱性の評価の指標値として表 2に記載 した。 FIG. 2 and FIG. 3 show typical optical micrographs on the exposed semiconductor layer surface. Fig. 2 shows the surface of the semiconductor layer where no interdiffusion is observed, and Fig. 3 shows traces of interdiffusion (black spots in the photo). As for Si diffusion heat resistance, the sample with black spots as shown in Fig. 3 is regarded as defective, and among the samples with no mutual diffusion as shown in Fig. 2, the highest heat treatment temperature value is set to Si diffusion heat resistance. Table 2 shows the index values for sex assessment.
[0029] 膜の比抵抗:表 1記載の各組成膜の比抵抗値は、ガラス基板上にスパッタリング (条 件は上記と同様)により単膜 (厚み約 0. 3 m)を形成し、窒素ガス雰囲気中、 300°C 、 30分間の熱処理を行った後、 4端子抵抗測定装置により測定した。  [0029] Specific resistance of film: The specific resistance value of each composition film shown in Table 1 is obtained by forming a single film (thickness of about 0.3 m) on a glass substrate by sputtering (the conditions are the same as above), After heat treatment at 300 ° C. for 30 minutes in a gas atmosphere, the measurement was performed with a four-terminal resistance measuring device.
[0030] 350°C耐熱性:表 1記載の各組成膜の耐熱性は、ガラス基板上にスパッタリング (条 件は上記と同様)により単膜 (厚み約 0. 3 m)を形成し、窒素ガス雰囲気中、 100°C 〜400°C範囲の温度で、 30分間の熱処理後、走査型電子顕微鏡 (SEM : 1万倍)で 膜表面を観察して行った。また、この SEM観察は、各観察試料について観察範囲 1 0 m X 8 mを 5視野確認するようにした。そして、 350°C耐熱性の評価は、 350°C 、 30分間の熱処理において、観察表面にサブ/ z m以上の突起物(ヒロック)が確認さ れたか、或いは観察表面に窪み状部分 (径 0. 3 μ m〜0. 5 m)となったディンプル 力 個以上確認されたものを Xとした。突起物が全く無ぐディンプルが 3個以下のも のを〇とした。  [0030] Heat resistance at 350 ° C: The heat resistance of each composition film shown in Table 1 is that a single film (thickness of about 0.3 m) is formed on a glass substrate by sputtering (the conditions are the same as above), and nitrogen is added. The film surface was observed with a scanning electron microscope (SEM: 10,000 times) after heat treatment for 30 minutes at a temperature in the range of 100 ° C to 400 ° C in a gas atmosphere. In addition, in this SEM observation, 5 fields of observation range 10 m × 8 m were confirmed for each observation sample. The 350 ° C heat resistance was evaluated based on whether or not protrusions (hillocks) of sub / zm or more were observed on the observation surface in a heat treatment at 350 ° C for 30 minutes, or a depression (diameter 0) was observed on the observation surface. X was determined to be more than 3 dimple forces of 3 μm to 0.5 m). A dimple with no protrusions and no more than 3 dimples was marked as ◯.
[0031] ITO接合性:この ITO接合性は、図 4に示すようにガラス基板上に ITO (In O 10w  [0031] ITO bonding property: This ITO bonding property is obtained by applying ITO (In O 10w on a glass substrate as shown in FIG.
2 3 t%SnO )電極層 40 (1000 A厚、回路幅 10 m)を形成し、その上に各組成膜層 1 2 3 t% SnO) electrode layer 40 (1000 A thickness, circuit width 10 m) is formed on each composition film layer 1
2 2
0 (2000 A厚、回路幅 10 μ m)をクロスするように形成した試験サンプル(ケルビン素 子)を用いて評価した。この試験サンプルを、大気雰囲気中、 250°C、 30分間の熱処 理を行った後、図 4に示す試験サンプルの矢印部分の端子部力 連続通電(3mA) をして抵抗を測定した。このときの抵抗測定条件は、 85°Cの大気雰囲気中における 、いわゆる寿命加速試験条件で行った。そして、この寿命加速試験条件の下、各試 験サンプルにお 、て、測定開始における初期抵抗値の 100倍以上の抵抗値に変化 した時間(故障時間)を調べた。この寿命加速試験条件で 250時間を超えても故障し なカゝつた試験サンプルを評価〇とした。また、寿命加速試験条件の下、 250時間以 下で故障した試験サンプルを評価 Xとした。尚、上記した寿命加速試験については 、JIS C 5003 : 1974、参照文献 (著書名「信頼性加速試験の効率的な進め方とそ の実際」:鹿沼陽次 編著、発行所 日本テクノセンター (株))に準拠したものである Evaluation was performed using a test sample (Kelvin element) formed to cross 0 (thickness of 2000 A, circuit width 10 μm). This test sample was heat-treated at 250 ° C. for 30 minutes in the air atmosphere, and then the terminal part force continuous energization (3 mA) in the arrow part of the test sample shown in FIG. The resistance measurement conditions at this time were so-called life acceleration test conditions in an air atmosphere of 85 ° C. Under these life acceleration test conditions, each test In the test sample, the time (failure time) when the resistance value changed to 100 or more times the initial resistance value at the start of measurement was examined. A test sample that was not broken under this accelerated life test condition for more than 250 hours was rated as ○. In addition, the test sample that failed in 250 hours or less under the accelerated life test condition was designated as evaluation X. As for the above-mentioned accelerated life test, JIS C 5003: 1974, reference literature (book title “Efficient method of accelerated acceleration test and its practicality”: edited by Yoji Kanuma, publisher, Japan Techno Center Co., Ltd.) )
[0032] IZO接合性:この IZO接合性は、上記 IZO接合性評価と同様に、 IZO (ln O—10. [0032] IZO bondability: This IZO bondability is similar to the IZO bondability evaluation described above.
2 3 twenty three
7wt%ZnO: 1000A厚、回路幅 50 m)電極層 40の上に、各 A1系合金膜層 10 (20 00 A厚、回路幅 50 μ m)をクロスするように形成した試験サンプル (ケルビン素子)を 用いて評価した。この試験サンプルを、上記 ITO接合性の場合と同様な寿命加速試 験条件により抵抗を測定し、その寿命加速試験結果より IZO接合性評価を行った。 評価基準も上記 ITO接合性と同様にした。 7wt% ZnO: 1000A thickness, circuit width 50m) Test sample (Kelvin device) formed on the electrode layer 40 so that each A1 alloy film layer 10 (20000A thickness, circuit width 50μm) crosses ). The resistance of this test sample was measured under the same life acceleration test conditions as in the case of the ITO bondability, and IZO bondability was evaluated from the results of the life acceleration test. The evaluation criteria were the same as the ITO bondability.
[0033] 表 1に示すように、本願発明に関する各実施例の Al—Ni—B合金配線材料では、 比抵抗値が 10 Ω cm以下であり、本願発明の組成範囲を外れる比較例 9、比較例 11、比較例 12については、 10 Ω cmを超える比抵抗値であった。また、表 2に示 すように、各実施例の Al—Ni—B合金配線材料では、 Si拡散耐熱性は 240°C以上 あり、 330°Cの高温においても、接合界面に A1と Siとの相互拡散が認められないもの が存在した。そして、表 2に示すように、各実施例の Al—Ni—B合金配線材料では、 ITO及び IZOの透明電極との直接接合も可能であることが確認された。尚、 Si拡散 耐熱性が 240°C以上であることは、現状の TFT素子を製造する際に加わる熱プロセ スが約 270°C程度であることを考慮すると、実用上十分な特性と考えられる。  [0033] As shown in Table 1, in the Al-Ni-B alloy wiring material of each Example relating to the present invention, the specific resistance value is 10 Ωcm or less, and Comparative Example 9 out of the composition range of the present invention is compared. In Example 11 and Comparative Example 12, the specific resistance value exceeded 10 Ωcm. In addition, as shown in Table 2, the Al-Ni-B alloy wiring material of each example has a Si diffusion heat resistance of 240 ° C or higher, and even at a high temperature of 330 ° C, A1 and Si There were some cases where no mutual diffusion was observed. As shown in Table 2, it was confirmed that the Al—Ni—B alloy wiring material of each example could be directly bonded to ITO and IZO transparent electrodes. It should be noted that the Si diffusion heat resistance of 240 ° C or higher is considered to be a practically sufficient characteristic considering that the thermal process applied when manufacturing the current TFT device is about 270 ° C. .
[0034] 一方、比較例 1〜3の場合、比抵抗以外の特性がすべて実用上不十分であること が確認された。また、 Al— Ni合金の比較例 4及び 5では、透明電極との接合特性は 良好なものの、耐熱性及び Si拡散耐熱性において不十分な特性であり、 Niの含有 量が高い比較例 6では、膜比抵抗が 10 Ω cmを超えるものとなった。そして、本願 発明の組成範囲外となる比較例 7〜12の場合、 ITOとの直接接合に問題があったり (比較例 7)、 Si拡散耐熱性が 200°C以下であったり(比較例 8、比較例 10)、比抵抗 値が Ω cmを超え (比較例 9、比較例 11、比較例 12)、総合的に満足できる膜特 性とは言えなかった。また、ニッケルの代わりにシリコン (Si)を含有した比較例 13で は、 Si拡散耐熱性ば力りでなぐ透明電極との接合性も悪くなる結果となった。さら〖こ 、本願出願人の提案した従来の A1— Ni— C合金配線材料 (比較例 14、比較例 15) では、透明電極との接合性は問題ないものの、耐熱性及び Si拡散耐熱性において 不十分な特性であることが確認された。 On the other hand, in Comparative Examples 1 to 3, it was confirmed that all the characteristics other than the specific resistance were practically insufficient. In Comparative Examples 4 and 5 of the Al-Ni alloy, the bonding characteristics with the transparent electrode are good, but the heat resistance and Si diffusion heat resistance are insufficient, and in Comparative Example 6 where the Ni content is high The film specific resistance exceeded 10 Ωcm. In the case of Comparative Examples 7 to 12 outside the composition range of the present invention, there are problems in direct bonding with ITO (Comparative Example 7), and the Si diffusion heat resistance is 200 ° C. or less (Comparative Example 8). , Comparative example 10), specific resistance The value exceeded Ωcm (Comparative Example 9, Comparative Example 11, Comparative Example 12), and it could not be said that the film characteristics were totally satisfactory. Further, in Comparative Example 13 containing silicon (Si) instead of nickel, the result was that the bonding property with the transparent electrode was poor due to the Si diffusion heat resistance. Furthermore, with the conventional A1—Ni—C alloy wiring materials proposed by the applicant (Comparative Example 14 and Comparative Example 15), although there is no problem in bonding with the transparent electrode, the heat resistance and Si diffusion heat resistance It was confirmed that the characteristics were insufficient.
[0035] 第二実施形態:この第二実施形態においては、本願発明に係る A1— Ni— B合金配 線材料の組成範囲に関し、耐熱性及び半導体層の接合特性との関係を更に詳細に 検討した結果について説明する。表 3〜表 5には、ニッケル含有量及びボロン含有量 を変化させた際の、膜の比抵抗値、ディンプル発生率、半導体層表面の粗さ変化量 を調べた結果を示して!/ヽる。  Second Embodiment: In this second embodiment, the relationship between the heat resistance and the bonding characteristics of the semiconductor layer is examined in more detail with respect to the composition range of the A1-Ni—B alloy wiring material according to the present invention. The results will be described. Tables 3 to 5 show the results of examining the resistivity value of the film, the dimple generation rate, and the amount of change in the roughness of the semiconductor layer when the nickel content and boron content are varied! / Speak.
[0036] [表 3]  [0036] [Table 3]
Figure imgf000013_0001
Figure imgf000013_0001
[0037] [表 4] /v:/ O /-69SSS00ifcl£ s8/-n900iAV ε_· [0037] [Table 4] / v: / O / -69SSS00ifcl £ s8 / -n900iAV ε_
〔 u〔〕∞εοοs
Figure imgf000014_0001
[U [] ∞εοοs
Figure imgf000014_0001
組成 粗さ変化量 組成 粗さ変化量 Composition Roughness change Composition Roughness change
at% at%  at% at%
Ni B 300^ 330*C 350¾ Ni B 300¾ 330"C 350¾ Ni B 300 ^ 330 * C 350¾ Ni B 300¾ 330 "C 350¾
3.0 0.30 1.59 1.99 3.52 5.0 0.05 1.14 0.98 1.583.0 0.30 1.59 1.99 3.52 5.0 0.05 1.14 0.98 1.58
3.0 0.40 2.21 2.11 3.05 5.0 0.10 1.12 1.02 1.323.0 0.40 2.21 2.11 3.05 5.0 0.10 1.12 1.02 1.32
3.0 0.50 2.33 2.15 2.45 5.0 0.20 1.01 1.10 1.383.0 0.50 2.33 2.15 2.45 5.0 0.20 1.01 1.10 1.38
3.0 0.60 2.14 1.92 2.32 5.0 0.30 1.03 1.08 1.353.0 0.60 2.14 1.92 2.32 5.0 0.30 1.03 1.08 1.35
3.0 0.80 1.88 1.95 2.06 5.0 0.40 1.14 0.92 1.203.0 0.80 1.88 1.95 2.06 5.0 0.40 1.14 0.92 1.20
3.0 1.00 1.65 1.76 1.82 5.0 0.50 1.37 1.42 1.503.0 1.00 1.65 1.76 1.82 5.0 0.50 1.37 1.42 1.50
3.0 1.80 1.30 1.44 1.58 5.0 0.60 1.04 0.99 0.963.0 1.80 1.30 1.44 1.58 5.0 0.60 1.04 0.99 0.96
4.0 0.05 1.55 1.72 1.85 5.0 0.80 1.01 1.01 1.064.0 0.05 1.55 1.72 1.85 5.0 0.80 1.01 1.01 1.06
4.0 0.10 1.29 1.49 1.72 5.0 1.00 0.99 0.97 1.124.0 0.10 1.29 1.49 1.72 5.0 1.00 0.99 0.97 1.12
4.0 0.20 1.13 1.43 1.48 6.0 0.05 1.02 0.95 1.034.0 0.20 1.13 1.43 1.48 6.0 0.05 1.02 0.95 1.03
4.0 0.30 1.41 1.76 1.88 6.0 0.10 1.00 1.08 1.084.0 0.30 1.41 1.76 1.88 6.0 0.10 1.00 1.08 1.08
4.0 0.40 1.15 1.36 1.46 6.0 0.20 1.05 0.98 0.944.0 0.40 1.15 1.36 1.46 6.0 0.20 1.05 0.98 0.94
4.0 0.50 1.30 1.47 1.58 6.0 0.30 1.06 0.91 0.924.0 0.50 1.30 1.47 1.58 6.0 0.30 1.06 0.91 0.92
4.0 0.60 1.12 1.24 1.32 6.0 0.40 0.95 0.93 1.024.0 0.60 1.12 1.24 1.32 6.0 0.40 0.95 0.93 1.02
4.0 0.80 1.11 1.22 1.28 6.0 0.50 1.30 1.20 0.924.0 0.80 1.11 1.22 1.28 6.0 0.50 1.30 1.20 0.92
4.0 1.00 1.02 1.10 1.20 6.0 0.60 0.94 0.93 1.18 4.0 1.00 1.02 1.10 1.20 6.0 0.60 0.94 0.93 1.18
6.0 0.80 0.91 1.03 1.04 6.0 0.80 0.91 1.03 1.04
6.0 1.00 0.95 0.95 1.106.0 1.00 0.95 0.95 1.10
7.0 0.30 1.06 1.12 1.117.0 0.30 1.06 1.12 1.11
8.0 0.50 1.02 0.92 1.088.0 0.50 1.02 0.92 1.08
8.0 1.00 0.91 0.96 1.04 8.0 1.00 0.91 0.96 1.04
[0039] 表 3には、各組成における膜の比抵抗値及びディンプル発生率を示して ヽる。膜の 比抵抗値の測定条件は、上記第一実施形態と同様である。また、ディンプル発生率 は、上記第一実施形態における耐熱性評価と同様の条件で、熱処理温度 350°C、 4 00°Cにした各評価サンプルを SEM観察して得られた結果である。但し、この第二実 施形態における耐熱性評価は、上記第一実施形態の耐熱性評価よりも、さらに詳細 な耐熱性評価をするために、ディンプルの発生率を調べた。このディンプル発生率 は、観察表面に窪み状部分 (径 0. 3 μ π!〜 0. 5 m)となったディンプルを検出し、 その大きさ及び個数力 ディンプルの占める面積を算出し、観察面積に対する割合 を求めた面積比率で代替した値である。また、ディンプル面積の計算については、観 察表面に存在する窪み状部分を画像解析によりニ値ィ匕して、その窪み状部分を円 に近似して行った。尚、表 3に示すディンプル発生率の値は、各観察試料について の観察範囲 10 μ m X 8 mの 5視野における平均値を示して 、る。 [0039] Table 3 shows the specific resistance value and dimple generation rate of the film in each composition. The measurement conditions of the specific resistance value of the film are the same as in the first embodiment. Further, the dimple generation rate is a result obtained by SEM observation of each evaluation sample with heat treatment temperatures of 350 ° C. and 400 ° C. under the same conditions as the heat resistance evaluation in the first embodiment. However, in the heat resistance evaluation in the second embodiment, the occurrence rate of dimples was examined in order to perform a more detailed heat resistance evaluation than the heat resistance evaluation in the first embodiment. The dimple occurrence rate is determined by detecting the dimples that are indentations (diameter: 0.3 μπ! To 0.5 m) on the observation surface, calculating the size and number of power that the dimples occupy. It is a value substituted for the area ratio obtained for the ratio to. The calculation of the dimple area was performed by approximating the hollow portion existing on the observation surface by image analysis and approximating the hollow portion to a circle. The dimple occurrence values shown in Table 3 are average values in 5 fields of observation range 10 μm X 8 m for each observation sample.
[0040] 表 3の比抵抗値の結果より、ニッケルが 6. 0&%以下で、ボロンが 0. 80at%以下 であると、 5 /X Ω cm以下となることが判明した。また、表 3のディンプル発生率の結果 力も判るように、熱処理温度が高いほどその発生率が大きくなる傾向があり、また、二 ッケルが多いほど発生率が小さくなる傾向が認められた。そして、ボロンが増加すると[0040] From the results of specific resistance values in Table 3, it was found that when nickel was 6.0 &% or less and boron was 0.80at% or less, 5 / XΩcm or less. The results of the dimple occurrence rate in Table 3 As can be seen from the graph, the higher the heat treatment temperature, the greater the incidence, and the more the nickel, the smaller the incidence. And when boron increases
、ディンプルの発生率が大きくなる傾向が認められた。この表 3の結果より、 350°C、 3 0分間の熱処理において、ディンプル発生率を 1. 6%以下とするためには、ニッケル が 4. 0&%以上で、ボロンが 0. 80at%以下であればよいことが判明した。 , A tendency to increase the incidence of dimples was observed. From the results shown in Table 3, in order to reduce the dimple generation rate to 1.6% or less in a heat treatment at 350 ° C for 30 minutes, nickel is 4.0% or more and boron is 0.80at% or less. It turned out to be good.
[0041] 次に、表 4に示す接合界面における変質層の発生調査の結果について説明する。 [0041] Next, the results of the investigation of the occurrence of a deteriorated layer at the joint interface shown in Table 4 will be described.
この変質層調査は、上記第一実施形態で説明した Si拡散耐熱性の評価と同様な条 件で作成した評価サンプルを用いた。具体的には、ガラス基板上に n+— Si半導体層 ( 300 A)を CVDにより形成し、その半導体層上にスパッタリング (マグネトロン ·スパッ タリング装置、投入電力 3. OWatt/cm2,アルゴンガス流量 100ccm、アルゴン圧力 0. 5Pa)により、表 1記載の各組成の Al— Ni— B合金膜(2000A)を形成したものを 用いた。そして、この評価サンプルを 300、 330、 350°Cの各温度で、窒素ガス雰囲 気中 30分間の熱処理を行った後、上述したリン酸系 A1エッチング液を用いて、上層 に形成した A1系合金膜のみを溶解し、半導体層を露出させた。この露出した半導体 層表面を光学顕微鏡 (200倍)にて観察し、図 3に示した黒点となった変質部分の存 在や、或いは半導体層表面の変色や荒れの状態を確認した。表 4では、 Siと A1との 相互拡散により多数黒点が認められたものを評価 X、数個以下の黒点の存在或い は黒点は認められないのの観察表面の変色や、荒れた状態が認められたものを評 価△、観察表面に黒点が全く無ぐ変色や荒れた表面状態が認められなかったもの を評価。とした。 In this altered layer investigation, an evaluation sample prepared under the same conditions as those of the Si diffusion heat resistance evaluation described in the first embodiment was used. Specifically, an n + -Si semiconductor layer (300 A) is formed on a glass substrate by CVD, and sputtering (magnetron sputtering device, input power 3. OWatt / cm 2 , argon gas flow rate 100 ccm In this case, an Al—Ni—B alloy film (2000A) having each composition shown in Table 1 was formed under an argon pressure of 0.5 Pa). Then, this evaluation sample was heat-treated at 300, 330, and 350 ° C. for 30 minutes in a nitrogen gas atmosphere, and then the A1 formed on the upper layer using the phosphoric acid-based A1 etching solution described above. Only the alloy film was dissolved to expose the semiconductor layer. The exposed surface of the semiconductor layer was observed with an optical microscope (200 times magnification), and the presence of the altered portion that became a black spot shown in FIG. 3 or the discoloration or roughness of the surface of the semiconductor layer was confirmed. Table 4 evaluates the case where a large number of black spots were observed due to the interdiffusion between Si and A1. X, the presence of several black spots or the presence of black spots was not observed, and the observed surface was discolored or rough. Evaluate what was observed △, and evaluate that no discoloration or rough surface condition with no black spots on the observation surface was observed. It was.
[0042] そして、表 5には、上記変質層調査に伴い、半導体層の表面状態変化を調べた結 果を示している。この半導体層の表面状態変化は、半導体層の表面粗さ測定をする ことで行った。具体的には、ガラス基板上に n+— Si半導体層(300A)を形成した直 後の表面粗度(以下、 as— depo粗さとする)と、上記変質層調査の評価サンプルの 露出した半導体層の表面粗さ(以下、直接接合粗さとする)とを、それぞれ測定し、 ( 直接接合粗さ値) Z (as— depo粗さ値)を算出した。つまり、表 5に示す粗さ変化量の 数値が 1よりも大きくなるほど、直接接合をして熱処理した後の半導体層の表面状態 が荒れていることを示す。尚、半導体層の表面粗さ測定には、段差 ·表面粗さ(あらさ ) ·微細形状測定装置 (KLA Tencor社製: P— 15型)を用い、 JIS B0601 : 1994 に準じて十点平均粗さ RZを求めた。 [0042] Table 5 shows the results of examining the change in the surface state of the semiconductor layer in connection with the above-mentioned investigation of the deteriorated layer. This change in the surface state of the semiconductor layer was carried out by measuring the surface roughness of the semiconductor layer. Specifically, the surface roughness immediately after forming the n + -Si semiconductor layer (300A) on the glass substrate (hereinafter referred to as as-depo roughness) and the exposed semiconductor layer of the evaluation sample of the above-mentioned altered layer investigation The surface roughness (hereinafter referred to as direct bonding roughness) was measured, and (direct bonding roughness value) Z (as-depo roughness value) was calculated. In other words, the larger the numerical value of roughness change shown in Table 5, the more rough the surface state of the semiconductor layer after direct bonding and heat treatment. For measuring the surface roughness of the semiconductor layer, the step / surface roughness (roughness) ) · Ten-point average roughness R Z was determined according to JIS B0601: 1994 using a fine shape measuring device (KLA Tencor, P-15 type).
[0043] 表 4の結果より、ニッケルが多くなるほど、変質層の発生を抑制できる傾向が認めら れた。また、 330oCの熱処理の場合、ニッゲノレ力 S4. 0〜6. Oat0/0で、ボ Pンカ 0. 20 〜0. 80at%であると、変質層の発生が特に抑制されていることが判明した。また、二 ッケノレ力4. 0〜6. Oat%で、ボロン力0. 30〜0. 50at%であると、 350°Cの高温に おいても、変質層が発生しな 、傾向が認められた。 [0043] From the results in Table 4, it was found that the more nickel, the more likely the generation of the altered layer was suppressed. Also, in the case of heat treatment of 330 o C, Niggenore force S4. Less than six. In Oat 0/0, Bo P linker 0.20 to 0. If it is 80at%, the generation of the altered layer is particularly suppressed There was found. In addition, when the Nikkenore force is 4.0 to 6. Oat% and the boron force is 0.30 to 0.50 at%, there is a tendency that a deteriorated layer does not occur even at a high temperature of 350 ° C. It was.
[0044] そして、表 5の粗さ変化量については、表 3の変質層の結果とほぼ相関した傾向が 示すことが判明した。この表 5の粗さ変化量の結果から、直接接合後 330°Cの熱処理 によっても、半導体層の接合表面がひどく荒れた状態にならない、つまり、 as-depo 粗さ値の 1. 5倍以内の変化量である組成範囲は、ニッケルが 4. 0〜6. Oat%、ボロ ンが 0. 20〜0. 60at%であることが判った。  [0044] Then, it was found that the roughness change amount in Table 5 shows a tendency that is almost correlated with the result of the altered layer in Table 3. From the results of the roughness change in Table 5, even after heat treatment at 330 ° C after direct bonding, the bonding surface of the semiconductor layer does not become extremely rough, that is, within 1.5 times the as-depo roughness value. It was found that the composition range, which is the amount of change, is 4.0 to 6. Oat% for nickel and 0.20 to 0.60 at% for boron.
産業上の利用可能性  Industrial applicability
[0045] 以上のように、本願発明によれば、 Moなどの高融点金属材料力もなるキャップ層を 省略しても、 ITOや IZOなどの透明電極と直接接合できるとともに、薄膜トランジスタ の n+— Siなどの半導体層とも直接接合ができる、配線回路を形成することが可能と なる。特に、 240°Cを超える熱プロセスを加えた場合において、本願発明の Al— Ni —B合金配線材料カゝらなる配線回路と半導体層とを直接接合した接合界面では、 A1 と Siとの相互拡散が抑制される。加えて、本願発明に係る Al— Ni— B合金配線材料 は、耐熱性も極めて良好で、その比抵抗が 10 Ω cm以下と低いため、大画面化さ れた表示ディスプレイの構成材料として極めて好適である。このようなことから、本願 発明は、液晶ディスプレイなどの表示デバイスの製造における材料面、設備面、工程
Figure imgf000017_0001
、てコスト削減を可能とし、優れた特性を備えた表示デバイスを 実現可能とする技術である。
[0045] As described above, according to the present invention, even when a cap layer having a high melting point metal material such as Mo is omitted, it can be directly bonded to a transparent electrode such as ITO or IZO, and n + -Si of a thin film transistor can be used. It is possible to form a wiring circuit that can be directly bonded to the semiconductor layer. In particular, when a thermal process exceeding 240 ° C is applied, the mutual connection between A1 and Si occurs at the bonding interface where the wiring circuit and the semiconductor layer, which are the Al-Ni-B alloy wiring material of the present invention, are directly bonded. Diffusion is suppressed. In addition, the Al-Ni-B alloy wiring material according to the present invention has extremely good heat resistance, and its specific resistance is as low as 10 Ωcm or less, so it is extremely suitable as a constituent material for large display displays. It is. For this reason, the present invention relates to a material surface, equipment surface, and process in manufacturing a display device such as a liquid crystal display.
Figure imgf000017_0001
This is a technology that enables cost reduction and the realization of display devices with superior characteristics.

Claims

請求の範囲 The scope of the claims
[1] アルミニウムにニッケルとボロンとを含有した A1— Ni— B合金配線材料にぉ 、て、 ニッケル含有量をニッケルの原子百分率 Xat%とし、ボロン含有量をボロンの原子 百分率 Yat%とした場合、式  [1] A1—Ni—B alloy wiring material containing nickel and boron in aluminum, where the nickel content is nickel atomic percentage Xat%, and the boron content is boron atomic percentage Yat% , Formula
0. 5≤X≤10. 0  0. 5≤X≤10. 0
0. 05≤Y≤1 1. 00  0. 05≤Y≤1 1.00
Υ+ 0. 25Χ≥1. 00  Υ + 0.25Χ≥1.00
Υ+ 1. 15Χ≤1 1 . 50  Υ + 1.15Χ≤1 1.50
の各式を満足する領域の範囲内にあり、残部がアルミニウムであることを特徴とする A ト M— B合金配線材料。  A to M—B alloy wiring material, characterized in that it is within the range of the area satisfying each of the formulas, and the balance is aluminum.
[2] ニッケル含有量が 4. 0&%以上であり、ボロン含有量が 0. 80at%以下である請求 項 1に記載の A1— Ni— B合金配線材料。 [2] The A1-Ni-B alloy wiring material according to claim 1, wherein the nickel content is 4.0% or more and the boron content is 0.80at% or less.
[3] 350°C、 1時間の熱処理後、配線材料表面に生じるディンプル発生率が 1. 6%以下 である請求項 2に記載の A1— Ni— B合金配線材料。 [3] The A1-Ni-B alloy wiring material according to claim 2, wherein the dimple generation rate generated on the surface of the wiring material after heat treatment at 350 ° C. for 1 hour is 1.6% or less.
[4] ニッケル含有量が 4. 0at%〜6. 0&%であり、ボロン含有量が 0. 20at%〜0. 80at[4] Nickel content is 4.0at% ~ 6.0 &%, boron content is 0.20at% ~ 0.80at
%である請求項 1〜請求項 3 、ずれか〖こ記載の A1— Ni— B合金配線材料。 The A1-Ni-B alloy wiring material according to claim 1 to claim 3, wherein the wiring material is at least%.
[5] 比抵抗値が 5. Ο μ Q cm以下である請求項 4に記載の Al— Ni— Β合金配線材料。 [5] The Al—Ni—Β alloy wiring material according to claim 4, wherein the specific resistance value is 5. Ο μ Q cm or less.
[6] 請求項 1〜請求項 5いずれかに記載の A1— Ni— B合金配線材料により形成された 配線回路と、半導体層と、透明電極層とを備える表示デバイスの素子構造であって、 前記配線回路が、半導体層に直接接合された部分を有することを特徴とする表示 デバイスの素子構造。 [6] An element structure of a display device comprising a wiring circuit formed of the A1-Ni-B alloy wiring material according to any one of claims 1 to 5, a semiconductor layer, and a transparent electrode layer, An element structure of a display device, wherein the wiring circuit has a portion directly bonded to a semiconductor layer.
[7] 請求項 1〜請求項 5いずれかに記載の A1— Ni— B合金配線材料により形成された 配線回路と、半導体層と、透明電極層とを備える表示デバイスの素子構造であって、 前記配線回路が、透明電極層に直接接合された部分を有することを特徴とする表 示デバイスの素子構造。  [7] An element structure of a display device comprising a wiring circuit formed of the A1-Ni-B alloy wiring material according to any one of claims 1 to 5, a semiconductor layer, and a transparent electrode layer, An element structure of a display device, wherein the wiring circuit has a portion directly bonded to a transparent electrode layer.
[8] 請求項 6及び請求項 7の素子構造を備える表示デバイスの素子構造。 [8] An element structure of a display device comprising the element structure according to claim 6 and claim 7.
[9] 直接接合された配線回路を剥離した半導体層表面の表面粗さ値 (Rz)が、半導体層 形成後の半導体層表面の表面粗さ値 (Rz)の 1. 5倍以下である請求項 6または請求 項 8に記載の表示デバイスの素子構造。 [9] The surface roughness value (Rz) of the surface of the semiconductor layer from which the directly bonded wiring circuit is peeled is 1.5 times or less of the surface roughness value (Rz) of the semiconductor layer surface after the semiconductor layer is formed. Item 6 or claim Item 9. The element structure of the display device according to Item 8.
[10] 請求項 1〜請求項 5いずれかに記載の Al—Ni—B合金配線材料力もなる配線回路 を形成するためのスパッタリングターゲットであって、 [10] A sputtering target for forming a wiring circuit having the Al—Ni—B alloy wiring material force according to any one of claims 1 to 5,
ニッケル含有量をニッケルの原子百分率 Xat%とし、ボロン含有量をボロンの原子 百分率 Yat%とした場合、式  If the nickel content is nickel atomic percentage Xat% and the boron content is boron atomic percentage Yat%, the formula
0. 5≤X≤10. 0  0. 5≤X≤10. 0
0. 05≤Y≤11. 00  0. 05≤Y≤11.00
Υ+0. 25Χ≥1. 00  Υ + 0.25Χ≥1.00
Υ+ 1. 15Χ≤11. 50  Υ + 1. 15 Χ ≤ 11. 50
の各式を満足する領域の範囲内にあり、残部がアルミニウムであることを特徴とするス パッタリングターゲット。  A sputtering target characterized by being in the range of a region satisfying each of the formulas above, with the balance being aluminum.
PCT/JP2005/015697 2005-04-26 2005-08-30 Al-Ni-B ALLOY WIRING MATERIAL AND DEVICE STRUCTURE USING SAME WO2006117884A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020077008127A KR100959579B1 (en) 2005-04-26 2006-03-30 Al-Ni-B ALLOY WIRING MATERIAL AND ELEMENT STRUCTURE USING THE SAME
US11/666,300 US7531904B2 (en) 2005-04-26 2006-03-30 Al-Ni-B alloy wiring material and element structure using the same
DE602006020265T DE602006020265D1 (en) 2005-04-26 2006-03-30 ELEMENTSTRUCTURE WITH AN AL-NI-B ALLOYING MATERIAL
JP2006093701A JP3979605B2 (en) 2005-04-26 2006-03-30 Al-Ni-B alloy wiring material and element structure using the same
AT06730624T ATE499455T1 (en) 2005-04-26 2006-03-30 ELEMENT STRUCTURE WITH A WIRING MATERIAL MADE OF AL-NI-B ALLOY
EP06730624A EP1878809B1 (en) 2005-04-26 2006-03-30 ELEMENT STRUCTURE USING A Al-Ni-B ALLOY WIRING MATERIAL
PCT/JP2006/306676 WO2006117954A1 (en) 2005-04-26 2006-03-30 Al-Ni-B ALLOY WIRING MATERIAL AND ELEMENT STRUCTURE USING THE SAME
TW095114832A TWI326309B (en) 2005-04-26 2006-04-26 A1-ni-b alloy wiring material and device structure using the same
US11/851,804 US7755198B2 (en) 2005-04-26 2007-09-07 Al-Ni-based alloy wiring material and element structure using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005128670 2005-04-26
JP2005-128670 2005-04-26

Publications (1)

Publication Number Publication Date
WO2006117884A1 true WO2006117884A1 (en) 2006-11-09

Family

ID=37307690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015697 WO2006117884A1 (en) 2005-04-26 2005-08-30 Al-Ni-B ALLOY WIRING MATERIAL AND DEVICE STRUCTURE USING SAME

Country Status (3)

Country Link
JP (1) JP4657882B2 (en)
CN (1) CN100564560C (en)
WO (1) WO2006117884A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003218B2 (en) 2006-10-16 2011-08-23 Mitsui Mining & Smelting Co., Ltd Al-Ni-B alloy material for reflective film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386194B1 (en) * 2007-06-22 2014-04-18 삼성디스플레이 주식회사 Display panel and manufacturing method of the same
JP5330108B2 (en) * 2009-06-04 2013-10-30 三菱電機株式会社 Electronic device, manufacturing method thereof, and electronic apparatus
US8729554B2 (en) * 2011-04-27 2014-05-20 Chimei Innolux Corporation Top-emission organic light-emitting diode structure
JP6473405B2 (en) * 2015-10-05 2019-02-20 浜松ホトニクス株式会社 Manufacturing method of wiring structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140313A (en) * 1974-10-03 1976-04-05 Furukawa Electric Co Ltd DOHIFUKUARUMINIUMUGOKINDOTAI
WO1997013885A1 (en) * 1995-10-12 1997-04-17 Kabushiki Kaisha Toshiba Wiring film, sputter target for forming the wiring film and electronic component using the same
WO1998001598A1 (en) * 1996-07-05 1998-01-15 Japan Energy Corporation Aluminum or aluminum alloy sputtering target
JPH10183337A (en) * 1996-11-01 1998-07-14 Japan Energy Corp Aluminum alloy thin film and aluminum alloy sputtering target
JP2000294556A (en) * 1999-04-05 2000-10-20 Hitachi Metals Ltd Aluminum alloy wiring film excellent in dry etching and target for aluminum alloy wiring film formation
JP2001053024A (en) * 1999-08-11 2001-02-23 Hitachi Metals Ltd Al alloy electrode film and sputtering target
JP2001125123A (en) * 1999-10-25 2001-05-11 Vacuum Metallurgical Co Ltd Electrode, wiring material and sputtering target for liquid crystal display
WO2003029510A1 (en) * 2001-09-18 2003-04-10 Mitsui Mining & Smelting Co.,Ltd. Aluminum alloy thin film and wiring circuit having the thin film and target material for forming the tin film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3038505B2 (en) * 1991-03-26 2000-05-08 日本電信電話株式会社 Thin film formation method
JP2004102150A (en) * 2002-09-12 2004-04-02 Sony Corp Optical mems element, its manufacturing method, glv device, and laser display
JP3940385B2 (en) * 2002-12-19 2007-07-04 株式会社神戸製鋼所 Display device and manufacturing method thereof
JP2004322615A (en) * 2003-04-28 2004-11-18 Toyo Kohan Co Ltd Smooth laminate manufacturing method and method for manufacturing component using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140313A (en) * 1974-10-03 1976-04-05 Furukawa Electric Co Ltd DOHIFUKUARUMINIUMUGOKINDOTAI
WO1997013885A1 (en) * 1995-10-12 1997-04-17 Kabushiki Kaisha Toshiba Wiring film, sputter target for forming the wiring film and electronic component using the same
WO1998001598A1 (en) * 1996-07-05 1998-01-15 Japan Energy Corporation Aluminum or aluminum alloy sputtering target
JPH10183337A (en) * 1996-11-01 1998-07-14 Japan Energy Corp Aluminum alloy thin film and aluminum alloy sputtering target
JP2000294556A (en) * 1999-04-05 2000-10-20 Hitachi Metals Ltd Aluminum alloy wiring film excellent in dry etching and target for aluminum alloy wiring film formation
JP2001053024A (en) * 1999-08-11 2001-02-23 Hitachi Metals Ltd Al alloy electrode film and sputtering target
JP2001125123A (en) * 1999-10-25 2001-05-11 Vacuum Metallurgical Co Ltd Electrode, wiring material and sputtering target for liquid crystal display
WO2003029510A1 (en) * 2001-09-18 2003-04-10 Mitsui Mining & Smelting Co.,Ltd. Aluminum alloy thin film and wiring circuit having the thin film and target material for forming the tin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003218B2 (en) 2006-10-16 2011-08-23 Mitsui Mining & Smelting Co., Ltd Al-Ni-B alloy material for reflective film

Also Published As

Publication number Publication date
JP4657882B2 (en) 2011-03-23
CN101090985A (en) 2007-12-19
JP2006330662A (en) 2006-12-07
CN100564560C (en) 2009-12-02

Similar Documents

Publication Publication Date Title
KR100959579B1 (en) Al-Ni-B ALLOY WIRING MATERIAL AND ELEMENT STRUCTURE USING THE SAME
TWI249070B (en) Electronic device, method of manufacture of the same, and sputtering target
JP5032687B2 (en) Al alloy film, wiring structure having Al alloy film, and sputtering target used for production of Al alloy film
KR101358529B1 (en) Layered interconnection for electronic device, and sputtering target for forming a covering layer
JP3979605B2 (en) Al-Ni-B alloy wiring material and element structure using the same
TWI432589B (en) Aluminum alloy film for display device
JP2010065317A (en) DISPLAY DEVICE, AND Cu ALLOY FILM FOR USE IN THE DISPLAY DEVICE
WO2006117884A1 (en) Al-Ni-B ALLOY WIRING MATERIAL AND DEVICE STRUCTURE USING SAME
KR101010949B1 (en) Element structure of display device and manufacturing method of the same
TWI247812B (en) Aluminum alloy film for wiring and sputter target material for forming the film
JP5416470B2 (en) Display device and Cu alloy film used therefor
TWI547575B (en) Metal thin film and sputtering target material of molybdenum alloy for forming metal thin film
KR20100060003A (en) Display device and cu alloy film for use in the display device
JP5420964B2 (en) Display device and Cu alloy film used therefor
JP4264397B2 (en) Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display
JP4684367B2 (en) Al-Ni alloy wiring electrode material
TWI326309B (en) A1-ni-b alloy wiring material and device structure using the same
JP4646912B2 (en) Thin film circuit junction structure
JP2012032521A (en) Thin film transistor substrate having excellent transparent conductive film pinhole corrosion resistance
JP5464667B2 (en) Connection structure using Cu alloy for wiring and sputtering target made of Cu alloy for wiring
JP2007186779A6 (en) Al-Ni-B alloy wiring material and element structure using the same
JP2007186779A (en) Al-Ni-B ALLOY WIRING MATERIAL, AND ELEMENT STRUCTURE USING THE SAME
JP2007186779A5 (en)
JP2006215279A (en) Display device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05777072

Country of ref document: EP

Kind code of ref document: A1