WO2008050567A1 - Plaque de douche frittée d'un seul tenant avec un élément d'orifice de libération de gaz et procédé de fabrication associé - Google Patents

Plaque de douche frittée d'un seul tenant avec un élément d'orifice de libération de gaz et procédé de fabrication associé Download PDF

Info

Publication number
WO2008050567A1
WO2008050567A1 PCT/JP2007/068613 JP2007068613W WO2008050567A1 WO 2008050567 A1 WO2008050567 A1 WO 2008050567A1 JP 2007068613 W JP2007068613 W JP 2007068613W WO 2008050567 A1 WO2008050567 A1 WO 2008050567A1
Authority
WO
WIPO (PCT)
Prior art keywords
shower plate
plasma
gas
sintered
sintered body
Prior art date
Application number
PCT/JP2007/068613
Other languages
English (en)
French (fr)
Inventor
Masahiro Okesaku
Tadahiro Ohmi
Tetsuya Goto
Takaaki Matsuoka
Toshihisa Nozawa
Atsutoshi Inokuchi
Kiyotaka Ishibashi
Original Assignee
Tokyo Electron Limited
National University Corporation Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, National University Corporation Tohoku University filed Critical Tokyo Electron Limited
Priority to CN2007800387703A priority Critical patent/CN101529563B/zh
Priority to US12/446,913 priority patent/US8915999B2/en
Publication of WO2008050567A1 publication Critical patent/WO2008050567A1/ja
Priority to US14/542,793 priority patent/US9767994B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45568Porous nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/3255Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to a plasma processing apparatus, in particular, a shear plate used in a microwave plasma processing apparatus and a manufacturing method thereof, and a plasma processing apparatus, a plasma processing method, and an electronic device manufacturing method using the shower plate.
  • Plasma processing steps and plasma processing apparatuses are manufacturing ultra-miniaturized semiconductor devices having a gate length of 0.1 l ⁇ m or less, which are recently called so-called deep sub-micron devices or deep sub-quarter micron devices. It is an indispensable technology for manufacturing high-resolution flat panel display devices including liquid crystal display devices.
  • a microwave plasma processing apparatus that uses a high-density plasma excited by a microwave electric field without using a DC magnetic field.
  • a microwave is radiated into a processing chamber from a planar antenna (radial line slot antenna) having a large number of slots arranged so as to generate a uniform microwave, and this microwave electric field is applied to the microwave electric field.
  • a plasma processing apparatus configured to excite plasma by ionizing a gas in the processing chamber (see, for example, Patent Document 1).
  • a microwave plasma excited by such a method can achieve a wide plasma density directly under the antenna, a high plasma density over the region, and a uniform plasma treatment in a short time.
  • the plasma is excited by microwaves, so that damage to the substrate to be processed and metal contamination with low electron temperature can be avoided. Furthermore, since uniform plasma can be easily excited even on a large-area substrate, it is possible to easily cope with a manufacturing process of a semiconductor device using a large-diameter semiconductor substrate and a large-sized liquid crystal display device.
  • a shower plate having a plurality of vertical holes as gas discharge holes is usually used in order to uniformly supply a plasma excitation gas into the processing chamber.
  • the plasma formed directly under the shower plate may flow back into the vertical holes of the shower plate.
  • abnormal discharge and gas deposition occur, and there is a problem that the transmission efficiency of microwaves and the yield for exciting the plasma deteriorate.
  • Patent Document 2 discloses that it is effective to make the diameter of the gas discharge hole at the tip of the vertical hole smaller than twice the sheath thickness of the plasma formed immediately below the shower plate. Yes.
  • simply reducing the diameter of the gas discharge holes is not sufficient as a means for preventing the backflow of plasma.
  • in order damage was the purpose of increasing the reduced processing speed, when trying to increase the plasma density from the conventional 10 12 CM_ 3 about about 10 13 CM_ 3, plasma backflow becomes remarkable, diameter of the gas discharge hole Control of the plasma alone cannot prevent plasma backflow.
  • Patent Document 3 also proposes the use of a shower plate made of a breathable porous ceramic sintered body. This is intended to prevent the backflow of plasma by the walls of a large number of pores constituting the porous ceramic sintered body.
  • the applicant of the present application has previously proposed a means for preventing a back flow of plasma by adjusting the diameter dimension of the gas discharge hole instead of from the structure surface of the shower plate in Patent Document 4. That is, the diameter dimension of the gas discharge hole is set to less than 0.3 mm and less than 0.3 mm, and the tolerance of the diameter dimension is set within ⁇ 0.002 mm to prevent the backflow of plasma and gas. The variation in the amount of release is eliminated.
  • Patent Documents 5 to 7 a plurality of gas discharge holes are provided in the vertical holes of the shower plate serving as a plasma excitation gas discharge path. It was proposed to install individual ceramic members or porous gas distribution bodies with pores communicating in the gas distribution direction.
  • Patent Document 1 JP-A-9 63793
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-33167
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-39972
  • Patent Document 4 International Publication No. 06/112392 Pamphlet
  • Patent Document 5 Japanese Patent Application No. 2006-163357
  • Patent Document 6 Japanese Patent Application No. 2006—198762
  • Patent Document 7 Japanese Patent Application No. 2006—198754
  • the present invention relates to an improvement of the technique previously proposed by the applicant of the present invention in Patent Documents 5 to 7, and the problem is that the problem is placed in the vertical hole of the shower plate to prevent backflow of plasma.
  • Gas discharge hole member (ceramic member! / Is a porous gas distribution body) is integrally sintered and bonded without any gaps, so that it does not fall out of the vertical hole when using the shower plate. Also, gas discharge from each vertical hole
  • An object of the present invention is to provide a shower plate capable of more completely preventing the occurrence of backflow of plasma without variation in the amount and enabling efficient plasma excitation.
  • the present invention solves the above-mentioned problems by sintering and bonding a ceramic member or a porous gas flow member into the vertical hole of the shower plate.
  • the diameter of the gas discharge hole provided in the ceramic member is 20 m to 70 m, preferably the aspect ratio (length / hole diameter) between the length of the gas discharge hole and the hole diameter is 20 or more, and By making the maximum pore diameter of the gas distribution body 75 m or less and the pore diameter of the bottleneck in the gas distribution path 10 m or less, it is possible to more completely prevent the occurrence of plasma backflow.
  • the shower plate of the present invention is disposed in a plasma processing apparatus, and in the shower plate that discharges plasma excitation gas to generate plasma in the apparatus, A ceramic member having a plurality of gas discharge holes with a hole diameter of 20 111 to 70 m and / or a porous material having pores communicating in the gas flow direction with a maximum pore diameter of 75 in or less.
  • the gas distribution body is integrally sintered and bonded.
  • the ceramic member or the porous gas distribution body is integrally sintered and bonded in the vertical hole of the shower plate so that there is no gap that becomes a gas flow path.
  • the porous gas distribution body is securely fixed to the vertical holes of the shower plate, and even if thermal stress or thermal distortion occurs during use of the shower plate, it does not fall off, and the amount of gas released from each vertical hole Can be kept constant without variation.
  • the diameter of the gas discharge holes provided in the ceramic member is 20 m to 70 m
  • the maximum pore diameter of the porous gas distribution body is 75 m or less
  • the pore diameter of the bottleneck in the gas distribution path is 10 m or less.
  • the present invention ceramic member and a porous gas distribution body used in, it is preferably made of a ceramic material having a low dielectric loss in the range of dielectric loss 5 X 1 0_ 3 to 1 X 10_ 5.
  • a ceramic material having a low dielectric loss in the range of dielectric loss 5 X 1 0_ 3 to 1 X 10_ 5.
  • the aspect ratio (length / hole diameter) between the length of the gas discharge hole and the hole diameter of the ceramic member is preferably 20 or more.
  • FIG. 9 is an explanatory diagram showing the relationship between the aspect ratio of the gas discharge hole and the back flow of the plasma.
  • the plasma penetration angle ⁇ shown in FIG. 9 is uniquely determined by the aspect ratio of the gas discharge hole A.
  • the aspect ratio of the gas discharge hole A is set to 20 or more. The Rukoto, it becomes possible to stop dramatically reverse flow of plasma as an increased plasma density of about 10 ld cm_ d.
  • the pore diameter of the bottleneck in the gas flow path formed by the pores communicating with the porous ceramic member having a maximum pore diameter of 75 am or less is 10 m or less.
  • the pore diameter of the bottleneck than 10 m it becomes possible to stop dramatically reverse flow of plasma as an increased plasma density of about 10 13 cm_ 3. That is, in this porous gas distribution body, although the gas flowability is ensured by the connected pores, the gas flow path is bent in a zigzag shape, and the force, and the bottleneck of lO ⁇ m or less are interposed. ing.
  • the electrons and ions that make up the plasma are straight, so that even if the plasma flows back into the porous gas flow body, most of the electrons collide with the pore walls, and further, All of the plasma collides in the 10m or less bottleneck, preventing further backflow.
  • the shower plate of the present invention is a force obtained by integrally sintering and bonding the ceramic member or the porous gas flow member into the vertical hole of the shower plate as described above.
  • the porous gas distribution body can be manufactured by mounting it in the vertical holes of the shower plate before the shower plate is sintered and then simultaneously sintering it.
  • a shower is performed at the stage of a powder molded body obtained by molding the raw material powder into a predetermined shape, a degreased body, a pre-sintered body, or a sintered body.
  • the ceramic material and porous gas distribution body are reduced in the number of the vertical holes of the shower plate at the stage of the green body, the degreased body or the temporary sintered body formed by processing the raw material powder and forming the vertical holes. Both are attached to the tip and then sintered simultaneously.
  • the inner diameter of the vertical hole of the shower plate and the outer diameter of each member mounted in this vertical hole are almost the same force, and the inner diameter of the vertical hole is slightly smaller. Adjust the molding conditions or subsequent degreasing, pre-sintering and sintering conditions.
  • the ceramic member and the porous gas flow body are mounted in the stage before the shower plate is sintered and then sintered at the same time, so that the ceramic member and the porous gas flow body are formed in the vertical holes of the shower plate. It is possible to securely fix it without gaps.
  • a plasma excitation gas is supplied into the plasma processing apparatus, and the supplied plasma excitation gas is excited by microwaves to generate plasma.
  • the substrate can be treated with oxidation, nitridation, oxynitridation, CVD, etching, plasma irradiation, and the like.
  • the ceramic member or the porous gas flow body disposed in the vertical hole of the shower plate is integrally sintered and bonded without any gap to prevent backflow of plasma.
  • FIG. 1 shows a first embodiment of the present invention.
  • a microwave plasma processing apparatus is shown.
  • the illustrated microwave plasma processing apparatus has a processing chamber 102 that is evacuated through a plurality of exhaust ports 101, and a holding table 104 that holds a substrate to be processed 103 is disposed in the processing chamber 102.
  • the processing chamber 102 defines a ring-shaped space around the holding table 104, and the plurality of exhaust ports 101 are arranged at equal intervals so as to communicate with the space, that is, to be processed. They are arranged in axial symmetry with respect to the substrate 103. Due to the arrangement of the exhaust ports 101, the processing chamber 102 is uniformly exhausted from the exhaust ports 101 with a force S.
  • the diameter is 408 mm and the relative dielectric constant is 9.8. and a dielectric alumina low microwave dielectric loss (dielectric loss IX 10- 4 or less), the opening of the large number (23 0), i.e. the vertical holes 105 are plate-shaped shower plate 106 is formed It is attached via an O-ring 107 for the seal. Further, the processing chamber 102 has a shutter. A cover plate 108 made of alumina is attached via another O-ring 109 for sealing on the upper surface side of one plate 106, that is, on the opposite side of the holding plate 104 with respect to the shower plate 106.
  • FIG. 2 is a schematic perspective view showing the arrangement of the shower plate 106 and the cover plate 108.
  • the upper surface of the shower plate 106 and the cover plate 108 are connected through a gas supply hole 111 communicating with the plasma excitation gas supply port 110 and opened in the shower plate 106.
  • a space 112 for filling the supplied plasma excitation gas is formed.
  • the cover plate 108 is provided with a groove so as to be connected to the position corresponding to the vertical hole 105 and the gas supply hole 111 on the surface of the cover plate 108 on the shower plate 106 side.
  • a space 112 is formed between the plates 108. That is, the vertical hole 105 is disposed so as to communicate with the space 112.
  • FIG. 3 shows details of the vertical hole 105.
  • the vertical hole 105 has a length of about 8 to 21 mm and a diameter of 3 mm or less (preferably lmm or less).
  • the porous ceramic sintered body 114 is sinter bonded.
  • Porous ceramics sintered body is made of alumina-based material, the pore diameter of the bottleneck in the gas flow path formed by the pores communicating with the 10 m or less, the dielectric loss 5 X 10 - 3 to IX 10- 5 range, average Shown is an example using a crystal grain size of 10 in or less, porosity of 20 to 75%, average pore size of lO ⁇ m or less, maximum pore size of 75 111 or less, and bending strength of 30 MPa or more. Yes.
  • the spray granulated powder is in a powder state. After calcining at 00 ° C to obtain a pre-sintered powder, the Al O powder for the shower plate
  • a green body obtained by press-molding with addition of 23% by weight is obtained, and a green body obtained by processing the green body into a predetermined shape, a degreased body obtained by firing this at 450 ° C, and fired at 1000 ° C
  • a preliminary sintered body and a sintered body fired at 14 50 ° C. were prepared.
  • the green body for shower plate has a different sintering shrinkage rate depending on the press molding pressure, and the sintering shrinkage rate is 19% for 78 MPa and 16.2% for 147 MPa.
  • the porous ceramic sintered body material changes its sintering shrinkage rate each time the porosity and pore diameter are changed, and also changes depending on the press molding pressure. For each characteristic setting of the sintered body, the sintering shrinkage rate is examined in advance and the dimensions after sintering shrinkage are measured.
  • the inner diameter dimension after sintering of the vertical hole is calculated, and the outer diameter dimension after sintering is equal to or larger than this inner diameter dimension.
  • a powder compact, degreased body, pre-sintered body or sintered body of a large porous ceramic sintered body was mounted in a vertical hole and then sintered simultaneously. As a result, a sinter bonding force is generated between them, so that strong mounting and fixing are ensured.
  • Simultaneous sintered pore diameter of the bottleneck of the porous ceramic sintered body communicating gas flow communication path formed by pores through the after sintering is 2 mu m, the dielectric loss 2. 5 X 10- 4, the average crystal grain The diameter was m. 5 ⁇ m, the maximum crystal particle diameter was 3 Hm, the porosity was 40%, the average pore diameter was 3 ⁇ m, the maximum pore diameter was 5 ⁇ m, and the bending strength was 300 MPa.
  • the same green body for a shower plate as in Production Example 1 was baked at 450 ° C. to obtain a degreased body. Note that the sintered shrinkage ratio of this degreased body is the same as that of the green body.
  • a green body for a shower plate was fired (preliminarily sintered) at 600 to 1000 ° C to obtain a temporarily sintered body.
  • some sintering shrinkage occurs in the pre-sintering stage, so the residual sintering shrinkage rate when the pre-sintered body is main-sintered becomes smaller as the pre-sintering temperature becomes higher. Become.
  • the porous ceramic sintered body material obtained by the same manufacturing method as in Production Example 1 uses powder obtained by pre-sintering spray granulated powder! Slightly smaller sintering shrinkage than green body Outer diameter at same temperature as shower plate sintering temperature By measuring the method or calculating the outer diameter from the shrinkage rate, the outer diameter of the vertical hole of the green body for the shower plate can be designed.
  • the thickness d of the sheath formed on the surface of the object in contact with the plasma is given by the following equation.
  • V is the potential difference between the plasma and the object (unit is V)
  • T is the electron temperature (unit is eV).
  • is the device length given by the following equation.
  • is the magnetic permeability in vacuum
  • k is the Boltzmann constant
  • n is the electron density of the plasma
  • the pore diameter of the porous ceramic sintered body 114 is smaller from the viewpoint of preventing the back flow of the plasma. It can be said.
  • the average pore size is preferably twice or less the plasma sheath thickness, preferably less than the sheath thickness.
  • the bottleneck of pores ie gas flow path of the multi-porous ceramic sintered body 114 in the present invention Ri der below 10 m is 10 13 cm_ 10 m as much a sheath thickness of high-density plasma of 3 or less . By doing so, 10 13 CM_ against 3 high-density plasma, leaving by force S using the shower plate.
  • the gas for plasma excitation introduced from the gas introduction port 110 is introduced into the longitudinal hole 105 through the gas supply hole 111 and the space 112, and processed from the porous ceramic sintered body 114 that is sinter-bonded to the tip portion thereof. Released to chamber 102.
  • a slow wave plate 117 and a coaxial waveguide 118 for introducing a microwave to the antenna are installed.
  • the slow wave plate 117 is sandwiched between the slot plate 116 and the metal plate 119.
  • the metal plate 119 is provided with a cooling channel 120.
  • the plasma excitation gas supplied from the shower plate 106 is ionized by the microwave radiated from the slot plate 116, so that a high density can be obtained in the region of several millimeters immediately below the shower plate 106. Plasma is generated. The generated plasma reaches the substrate 103 to be processed by diffusion.
  • oxygen gas or ammonia gas may be introduced from the shower plate 106 as a gas that actively generates radicals.
  • the lower shower plate 1 made of a conductor such as aluminum or stainless steel is provided between the shower plate 106 and the substrate to be processed 103 in the processing chamber 102. 21 is arranged.
  • the lower shower plate 121 includes a plurality of gas flow paths 121a for introducing the process gas supplied from the process gas supply port 122 to the substrate 103 to be processed in the processing chamber 102, and the process gas is a gas.
  • a large number of nozzles 121b formed on the surface of the flow path 121a corresponding to the substrate to be processed 103 are discharged into the space between the lower shower plate 121 and the substrate to be processed 103.
  • silane gas or disilane gas is introduced when forming a silicon-based thin film
  • CF gas is introduced when forming a low dielectric constant film.
  • the CVD using organometallic gas as a process gas is also possible.
  • organometallic gas as a process gas
  • RIE reactive ion etching
  • silicon oxide film etching CF gas and acid
  • Chlorine gas or HBr gas is introduced for etching of elemental gas, metal film or silicon. If ion energy is required for etching, an RF power source 123 is connected to the electrode installed inside the holding table 104 via a capacitor, and RF power is applied to generate a self-bias voltage. Generate on 103.
  • the gas type of the process gas to flow is not limited to the above, and the gas and pressure to flow through the process are set.
  • the heat flow that flows into the shower plate 106 by being exposed to the high-density plasma is the water flowing into the cooling flow path 120 via the slot plate 116, the slow wave plate 117, and the metal plate 119. Heat is exhausted by the refrigerant.
  • the porous ceramic sintered body 114 that is sintered and bonded to the vertical hole 105 does not fall off during use. Therefore, it is possible to reliably prevent the plasma from flowing backward to the gas introduction side, and to suppress the occurrence of abnormal discharge and gas accumulation inside the shower plate 105, so that transmission of microwaves to excite the plasma is possible. It has become possible to prevent deterioration in efficiency and yield.
  • the plasma excitation gas is uniformly supplied to the substrate 103 to be processed, and the lower stage
  • the process gas flows from the nozzle 121b provided on the lower shower plate 121 to the substrate to be processed 103.
  • decomposition of process gas molecules due to excessive dissociation due to exposure to high-density plasma is reduced, and even if the process gas is a deposition gas, the efficiency of microwave introduction due to deposition on the shower plate 106 is reduced.
  • FIG. 4 shows another configuration example of the vertical hole 105.
  • (a) is a sectional view
  • (b) and (c) are bottom views.
  • a ceramic member 113 is sinter bonded to the vertical hole 105.
  • the ceramic member 113 is made of alumina ceramic and has an outer diameter of 3.0 mm and an overall length of 8 mm.
  • a gas discharge hole 113a having a diameter of 0.05 mm and a length of 8 mm is provided inside the ceramic member 113. That is, the aspect ratio (length / hole diameter) of the gas discharge hole 113a is 8 / 0.05.160.
  • the number of gas discharge holes 113a is not particularly limited.
  • Figures 4 (b) and (c) show the force of 7 to 3 examples. It is better to increase the number as much as possible to reduce the gas release rate.
  • the diameter of the gas discharge hole 113a is reduced to about 0.05 mm as in this example, the outer diameter of the ceramic member 113 is reduced to about 1 mm
  • the length of the gas flow hole 113a is preferably longer than the average free path, which is the average distance until electrons are scattered.
  • Table 2 shows the mean free path of electrons.
  • the mean free path is inversely proportional to the pressure and is 4 mm at 0.1 lTorr. Actually, the pressure on the gas inlet side of the gas flow hole 1 13a is high, so that the mean free path is shorter than 4mm. In this example, the length of the gas discharge hole 1 13a is 8mm, which is greater than the mean free path. Long value.
  • the microwave electric field concentrates on the corner portion on the gas introduction side, and the plasma excitation gas is ignited to prevent the plasma from self-generating. Therefore, a chamfering process 115 is performed.
  • This chamfering is C chamfering, more preferably R chamfering, and the corner can be R chamfered after C chamfering.
  • the shower plate 106 obtained by sintering and bonding the ceramic member 113 can be manufactured by the same method as in the manufacturing examples 1 and 2.
  • the production example is shown below.
  • the body was prepared, and an extrusion molded body was obtained with an extrusion mold in which 24 pins of 80 m were arranged in a mold nozzle having an inner diameter of 16 mm.
  • both the dried and degreased bodies became ceramic members with an outer diameter of 1.0 mm and a gas discharge hole diameter of 50 m, and the shrinkage from the mold dimensions Is
  • the molding pressure of the spray granulated powder was set to 147 MPa
  • the same green body for a shower plate as that prepared in Production Example 1 was prepared, and the size of the vertical hole had an inner diameter of 1.16.
  • Three types of molded products of mm, 1.135 mm and 1.19 mm were produced.
  • the inner diameters of the vertical holes in the molded body were 0.972 mm, 0.951 mm, and 0.999 mm, respectively.
  • the inner diameter of the vertical hole is reduced to the ceramic member.
  • the stresses for tightening are 0.028 mm, 0.049 mm and 0.003 mm in terms of the difference in diameter.
  • the diameter dimension difference that becomes the tightening stress is 0 ⁇ 049 mm (about 50 m), 0.0 28 mm (about 30 m), and 0.003 mm (3 m) from the largest, and the diameter dimension difference is about In the case of 50 m and 30 am, the ceramic member is compressed and crushed, or the vertical holes are expanded and the cracking phenomenon seems to occur. The difference is presumed to have been absorbed by the slight thermoplasticity of each other and the grain boundary slip phenomenon at high temperatures during simultaneous sintering.
  • the outer diameter is larger than the inner diameter of the vertical hole formed in the green body for the shower plate at the extrusion molding stage. It cannot be mounted in the vertical hole.
  • the ceramic member in the vertical hole of the green body for the shower plate at the stage of the extruded molded body (powder molded body) before firing, and simultaneously sinter. It is also possible to attach the degreased body, the pre-sintered body and the sintered body of the body (powder compact) to the vertical hole of the green body for the shower plate and perform simultaneous sintering.
  • the sintering shrinkage rate for each molding pressure of the shower plate is ascertained, and the sintering shrinkage rate for each kneaded body of the ceramic member and each molding pressure is ascertained.
  • the extruded body (powder molded body) of the ceramic member, the degreased body, the temporary sintered body or the sintered body is placed in the vertical hole of the green body for shower plate, the degreased body or the temporary sintered body. It is possible to mount and simultaneously sinter. As a result, the force S can be obtained to obtain a shower bed without gaps in which the ceramic member and the vertical hole of the shower plate are integrally sintered and bonded.
  • a ceramic member sintered at a high temperature of 1500 was mounted in a vertical hole of a pre-sintered shower plate so that the relative density was 96%, and the temperature was 1400 ° C and the pressure was 1500 kg / cm 2 HI.
  • An integrated sintered body with no gaps was also obtained when simultaneously sintered in the P processing apparatus.
  • the low dielectric loss ceramic material der lever forces dielectric loss of 5 X 10_ 3 to 1 X 10_ 5 range with neither in Production Example 1 to 5 of the high-purity alumina-based ceramic material, Alumina ceramic containing a small amount of grain growth inhibitor, YO and mullite
  • Ceramic materials such as SiAlON can be used.
  • the ceramic material for the shower plate and the ceramic material for the gas discharge hole member (porous ceramic sintered body and ceramic member). It is preferable to use a ceramic material.
  • a fine powder of the same material component is applied to the outer surface of the gas discharge hole member to form an adhesive. It was possible to bring out similar effects, and the same results as those obtained in each of the production examples were obtained.
  • FIG. 5 shows still another configuration example of the vertical hole 105.
  • a ceramic member 113 is further arranged on the gas introduction side of the porous gas ceramic sintered body 114 as a double safety measure to prevent the backflow of plasma, and these are connected to the shower. It is sinter-bonded to the vertical hole 105 of the plate 106. Further, in FIG. 5 (b), another porous ceramic sintered body 114a is arranged on the gas introduction side of the porous ceramic sintered body 114, and these are sintered and bonded to the vertical holes 105 of the shower plate 106. is doing.
  • the porous ceramic sintered body 114a on the gas introduction side has a larger porosity and pore diameter than the porous ceramic sintered body 114 on the gas discharge side. (For example, average pore diameter: 10-30111, porosity: 50-75%).
  • the number, diameter, length, and the like of the gas discharge holes 113a opened in the 113 are not limited to the numerical values in this embodiment.
  • FIG. 6 shows a second embodiment of the present invention.
  • a microwave plasma processing apparatus is shown.
  • the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the relative permittivity is 9.8 as a part of the outer wall of the processing chamber 102 at a position corresponding to the target substrate 103 on the holding table 104 at the upper portion of the processing chamber 102. and it is attached via the O-ring 107 for shower plate 200 forces the seal made of a dielectric material of alumina is Teima microphone port wave dielectric loss (dielectric loss 9 X 10- 4 or less).
  • a ring-shaped space 203 surrounded by two sealing O-rings 202 and the side surface of the shower plate 200 at a position corresponding to the side surface of the shower plate 200 on the wall surface 201 constituting the processing chamber 102. Is provided! /
  • the ring-shaped space 203 communicates with a gas introduction port 110 for introducing plasma excitation gas.
  • lateral holes 204 having a diameter of 1 mm in the lateral direction. It is opened toward the center of the shower plate 200.
  • many (230) vertical holes 205 are opened to communicate with the processing chamber 102 so as to communicate with the horizontal holes 204.
  • FIG. 7 shows the arrangement of the horizontal holes 204 and the vertical holes 205 as viewed from the upper surface of the shower plate 200.
  • FIG. 8 is a schematic perspective view showing the arrangement of the horizontal holes 204 and the vertical holes 205.
  • the ceramic member or the porous gas flow body is provided in the vertical hole 205 by sintering bonding. .
  • the shower plate of the present invention can be used in various plasma processing apparatuses such as a microwave plasma processing apparatus, a parallel plate type high frequency excitation plasma processing apparatus, an inductively coupled plasma processing apparatus, and the like.
  • FIG. 1 shows a first embodiment of the present invention.
  • FIG. 2 shows the arrangement of the horizontal and vertical holes of the shower plate shown in FIG.
  • FIG. 3 Details of the vertical holes of the shower plate shown in Fig. 1 are shown.
  • FIG. 4 Another configuration example of the vertical hole is shown.
  • FIG. 5 shows still another configuration example of the vertical hole.
  • FIG. 6 shows a second embodiment of the present invention.
  • FIG. 7 shows the arrangement of horizontal holes and vertical holes as seen from the top surface of the shower plate shown in FIG.
  • FIG. 8 shows the arrangement of the shower plate and cover plate shown in FIG.
  • FIG. 9 is an explanatory diagram showing the relationship between the aspect ratio of the gas discharge hole and the back flow of the plasma.
  • Porous ceramic sintered body (porous gas circulating body)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書
ガス放出孔部材を一体焼結したシャワープレートおよびその製造方法 技術分野
[0001] 本発明は、プラズマ処理装置、とくにマイクロ波プラズマ処理装置に使用するシャヮ 一プレートおよびその製造方法、並びにそのシャワープレートを用いたプラズマ処理 装置、プラズマ処理方法および電子装置の製造方法に関する。
背景技術
[0002] プラズマ処理工程およびプラズマ処理装置は、近年のいわゆるディープサブミクロ ン素子あるいはディープサブクォーターミクロン素子と呼ばれる 0. l ^ m,あるいはそ れ以下のゲート長を有する超微細化半導体装置の製造や、液晶表示装置を含む高 解像度平面表示装置の製造にとって、不可欠の技術である。
[0003] 半導体装置や液晶表示装置の製造に使われるプラズマ処理装置としては、従来よ り様々なプラズマの励起方式が使われて!/、る力 とくに平行平板型高周波励起ブラ ズマ処理装置ある!/、は誘導結合型プラズマ処理装置が一般的である。し力、しこれら 従来のプラズマ処理装置は、プラズマ形成が不均一であり、電子密度の高い領域が 限定されているため大きな処理速度、すなわちスループットで被処理基板全面にわ たり均一なプロセスを行うのが困難である問題点を有している。この問題は、とくに大 径の基板を処理する場合に深刻になる。し力、もこれら従来のプラズマ処理装置では、 電子温度が高いため被処理基板上に形成される半導体素子にダメージが生じ、また 処理室壁のスパッタリングによる金属汚染が大きいなど、いくつかの本質的な問題を 有している。このため、従来のプラズマ処理装置では、半導体装置や液晶表示装置 のさらなる微細化およびさらなる生産性の向上に対する厳しい要求を満たすことが困 難になりつつある。
[0004] これに対して、従来より直流磁場を用いずにマイクロ波電界により励起された高密 度プラズマを使うマイクロ波プラズマ処理装置が提案されている。例えば、均一なマイ クロ波を発生するように配列された多数のスロットを有する平面状のアンテナ(ラジア ルラインスロットアンテナ)から処理室内にマイクロ波を放射し、このマイクロ波電界に より処理室内のガスを電離してプラズマを励起させる構成のプラズマ処理装置が提 案されている(例えば特許文献 1を参照)。このような手法で励起されたマイクロ波ブラ ズマではアンテナ直下の広!/、領域にわたって高!/、プラズマ密度を実現でき、短時間 で均一なプラズマ処理を行うことが可能である。し力、も力、かる手法で形成されたマイク 口波プラズマではマイクロ波によりプラズマを励起するため電子温度が低ぐ被処理 基板のダメージや金属汚染を回避することができる。さらに大面積基板上にも均一な プラズマを容易に励起できるため、大口径半導体基板を使った半導体装置の製造ェ 程や大型液晶表示装置の製造にも容易に対応できる。
[0005] これらのプラズマ処理装置においては、通常、処理室内にプラズマ励起用ガスを均 一に供給するために、ガス放出孔として複数の縦孔を備えたシャワープレートが使用 されている。し力、し、シャワープレートの使用によって、シャワープレート直下に形成さ れたプラズマがシャワープレートの縦孔に逆流することがある。縦孔にプラズマが逆 流すると、異常放電やガスの堆積が発生し、プラズマを励起するためのマイクロ波の 伝送効率や歩留まりの劣化が発生してしまうという問題がある。
[0006] このプラズマの縦孔への逆流を防止するための手段として、シャワープレートの構 造の改良が多く提案されて!/、る。
[0007] 例えば、特許文献 2には、縦孔先端のガス放出孔の孔径をシャワープレートの直下 に形成されるプラズマのシース厚の 2倍より小さくすることが有効であることが開示さ れている。しかし、ガス放出孔の孔径を小さくするだけでは、プラズマの逆流を防止 する手段としては不十分である。とくに、ダメージを低減し処理速度を高める目的のた めに、プラズマ密度を従来の 1012cm_3程度から 1013cm_3程度に高めようとすると、 プラズマの逆流が顕著となり、ガス放出孔の孔径の制御だけではプラズマの逆流を 防止することはできない。また、微細な孔径のガス放出孔をシャワープレート本体に 孔加工により形成することは困難であり、加工性の問題もある。
[0008] また、特許文献 3には、通気性の多孔質セラミックス焼結体からなるシャワープレー トを使用することも提案されている。これは、多孔質セラミックス焼結体を構成する多 数の気孔の壁によりプラズマの逆流を防止しょうとするものである。
[0009] しかし、この常温 ·常圧で焼結された一般的な多孔質セラミックス焼結体からなるシ ャワープレートは、その気孔径が数 mから数十 m程度の大きさまでバラツキが大 きぐさらに最大結晶粒子径が 20 m程度と大きくて組織が均一でないため、表面平 坦性が悪ぐまた、プラズマに接する面を多孔質セラミックス焼結体とすると、実効表 面積が増えてしまい、プラズマの電子'イオンの再結合が増加してしまい、プラズマ励 起の電力効率が悪いという問題点がある。ここで、上記特許文献 3には、シャワープ レート全体を多孔質セラミックス焼結体で構成する代わりに、緻密なアルミナからなる シャワープレートにガス放出用の開口部を形成し、この開口部に常温'常圧で焼結さ れた一般的な多孔質セラミックス焼結体を装着し、この多孔質セラミックス焼結体を介 してガスを放出する構造も開示されている。しかし、この構造においても、常温'常圧 で焼結された一般的な多孔質セラミックス焼結体を使用するので、表面平坦性の悪 さから発生する上記の問題点は解消されない。
[0010] また、本願出願人は、先に、特許文献 4において、シャワープレートの構造面からで はなくガス放出孔の直径寸法の調整によるプラズマの逆流を防止するための手段を 提案した。すなわち、ガス放出孔の直径寸法を 0. ;!〜 0. 3mm未満とし、しかも、そ の直径寸法公差を ± 0. 002mm以内の精度とすることにより、プラズマの逆流を防 止するとともに、ガスの放出量のバラツキをなくしたものである。
[0011] ところ力 このシャワープレートを、プラズマ密度を 1013cm_3に高めた条件で実際 にマイクロ波プラズマ処理装置で使用したところ、図 10に示すように、シャワープレー ト本体 400とカバープレート 401との間に形成されたプラズマ励起用ガスを充填する 空間 402とそれに連通する縦孔 403にプラズマが逆流したためと思われる薄茶色の 変色部分が見られた。
[0012] 以上の問題を解決するために、本願出願人は、先に、特許文献 5〜7において、プ ラズマ励起用ガスの放出経路となるシャワープレートの縦孔内に、ガス放出孔を複数 個有するセラミックス部材あるいはガス流通方向に連通した気孔を有する多孔質ガス 流通体を装着することを提案した。
[0013] これらの特許文献 5〜7で提案したシャワープレートによれば、プラズマ密度を 1013 cm_3に高めた条件化でもプラズマ逆流を防止できるようになった。
[0014] し力、し、このシャワープレートをマイクロ波プラズマ処理装置で繰り返し使用したとこ ろ、シャワープレートの縦孔内に装着したセラミックス部材あるいは多孔質ガス流通体 の一部または全部がシャワープレートの縦孔から脱落するという問題が生じることが あった。これは、シャワープレートの使用時に発生する熱応力あるいは熱歪みにより、 シャワープレートの縦孔とセラミックス部材あるいは多孔質ガス流通体との間の密着 性が低下したことによるものと思われる。
特許文献 1 :特開平 9 63793号公報
特許文献 2 :特開 2005— 33167号公報
特許文献 3:特開 2004— 39972号公報
特許文献 4:国際公開第 06/112392号パンフレット
特許文献 5:特願 2006— 163357号
特許文献 6:特願 2006— 198762号
特許文献 7:特願 2006— 198754号
発明の開示
発明が解決しょうとする課題
[0015] 本発明は、本願出願人が先に特許文献 5〜7で提案した技術の改良に係るもので 、その課題は、プラズマの逆流防止のためにシャワープレートの縦孔内に配置される ガス放出孔部材 (セラミックス部材ある!/、は多孔質ガス流通体)が隙間無く一体的に 焼結結合され、シャワープレートの使用時に縦孔から脱落することがなぐまた各縦 孔からのガス放出量のバラツキがなぐプラズマの逆流の発生をより完全に防止でき 、効率の良いプラズマ励起が可能なシャワープレートを提供することにある。
課題を解決するための手段
[0016] 本発明は、セラミックス部材あるいは多孔質ガス流通体をシャワープレートの縦孔内 に焼結結合させることによって上記課題を解決するものである。また本発明では、セ ラミックス部材に設けるガス放出孔の孔径を 20 m乃至 70 mとし、好ましくはガス 放出孔の長さと孔径とのアスペクト比(長さ/孔径)が 20以上とし、さらに多孔質ガス 流通体の最大気孔径を 75 m以下とし、し力、もガス流通経路における隘路の気孔径 を 10 m以下とすることで、プラズマの逆流の発生をより完全に防止できるようにする [0017] すなわち、本発明のシャワープレートは、プラズマ処理装置に配置され、前記装置 内にプラズマを発生させるためにプラズマ励起用ガスを放出するシャワープレートに おいて、プラズマ励起用ガスの放出経路となる多数個の縦孔内に、孔径が 20 111乃 至 70 mのガス放出孔を複数個有するセラミックス部材、および/または最大気孔 径が 75 in以下のガス流通方向に連通した気孔を有する多孔質ガス流通体が一体 的に焼結結合されていることを特徴とするものである。
[0018] このように、セラミックス部材あるいは多孔質ガス流通体をシャワープレートの縦孔 内に、ガス流通経路となるような隙間が無いように一体的に焼結結合させることで、セ ラミックス部材あるいは多孔質ガス流通体がシャワープレートの縦孔に確実に固定さ れ、シャワープレートの使用時に熱応力あるいは熱歪みが発生したとしても脱落する ことはなく、さらには各縦孔からのガス放出量をバラツキ無く一定量にすることができ る。また、セラミックス部材に設けるガス放出孔の孔径を 20 m乃至 70 m、多孔質 ガス流通体の最大気孔径を 75 m以下で、し力、もガス流通経路における隘路の気 孔径を 10 m以下とすることで、プラズマの逆流の発生をより完全に防止できる。
[0019] 本発明で使用するセラミックス部材および多孔質ガス流通体は、誘電損失が 5 X 1 0_3乃至 1 X 10_5の範囲の低誘電損失のセラミックス材料で構成することが好ましい 。例えば、高純度アルミナおよび微量の粒成長抑制剤や Y Oおよびムライト等を配
2 3
合したアルミナ系セラミックス材料、あるいは Al Oと Y Oとの成分からなる材料、ま
2 3 2 3
たは A1〇と Y〇との化合物であるガーネット成分を含む材料、さらには A1N、 Si〇
2 3 2 3 2
、ムライト、 Si N、 SiAl〇N等が挙げられる。
3 4
[0020] また本発明では、セラミックス部材のガス放出孔の長さと孔径とのアスペクト比(長さ /孔径)は 20以上とすることが好ましい。図 9は、ガス放出孔のアスペクト比とプラズ マの逆流の関係を示す説明図である。プラズマ処理装置の処理室内の圧力が低くな ると平均自由行程が長くなり、プラズマを構成する電子が直線的に進む距離が長くな る。このように、電子が直線的に進むと仮定すると、図 9に示すプラズマの進入可能 角度 Θは、ガス放出孔 Aのアスペクト比によって一義的に決まる。すなわち、ガス放 出孔 Aのアスペクト比を大きくすればプラズマの進入可能角度 Θが小さくなり、プラズ マの逆流を防止することができる。そして、ガス放出孔 Aのアスペクト比を 20以上とす ることにより、プラズマ密度を 10ldcm_d程度に高めたとしてもプラズマの逆流を劇的 に止めることが可能となる。
[0021] また本発明では、最大気孔径が 75 a m以下からなる多孔質セラミックス部材の連 通する気孔によって形成されたガス流通経路における隘路の気孔径は 10 m以下 とすることが好ましい。このように隘路の気孔径を 10 m以下とすることで、プラズマ 密度を 1013cm_3程度に高めたとしてもプラズマの逆流を劇的に止めることが可能と なる。すなわち、この多孔質ガス流通体においては、連通した気孔によりガスの流通 性は確保されているものの、そのガス流通経路はジグザグ状に曲折し、し力、も lO ^ m 以下の隘路が介在している。これに対して、プラズマを構成する電子やイオンは直進 性を有しているので、プラズマが多孔質ガス流通体に逆流してきたとしても、大部分 が気孔の壁に衝突し、さらには気孔の 10 m以下の隘路部でプラズマのすべてが 衝突し、それ以上の逆流が阻止される。
[0022] 本発明のシャワープレートは、上述のとおりセラミックス部材あるいは多孔質ガス流 通体をシャワープレートの縦孔内に一体的に焼結結合したものである力 この本発明 のシャワープレートは、セラミックス部材あるいは多孔質ガス流通体を、シャワープレ ートの焼結前の段階でシャワープレートの縦孔内に装着して、その後同時に焼結す ることによって製造すること力 Sできる。具体的には、セラミックス部材および多孔質ガス 流通体については、その原料粉末を成型して所定形状に加工した粉末成形体、そ の脱脂体、仮焼結体または焼結体の段階で、シャワープレートについては、その原 料粉末を成型して縦孔を加工形成したグリーン体、その脱脂体または仮焼結体の段 階で、セラミックス部材および多孔質ガス流通体をシャワープレートの縦孔の少なくと も先端部に装着し、その後同時に焼結する。この場合、シャワープレートの縦孔の内 径とこの縦孔に装着する各部材の外径との同時焼結後の寸法がほとんど同じ力、、縦 孔の内径の方がわずかに小さくなるように、成型条件あるいはその後の脱脂、仮焼結 および焼結の条件等を調整する。このように、セラミックス部材および多孔質ガス流通 体を、シャワープレートの焼結前の段階で装着して、その後同時に焼結することで、 セラミックス部材および多孔質ガス流通体をシャワープレートの縦孔に隙間無く一体 的に確実に固定することが可能となる。 [0023] そして、この本発明のシャワープレートを用いて、プラズマ励起用ガスをプラズマ処 理装置内に供給し、供給されたプラズマ励起用ガスをマイクロ波で励起してプラズマ を発生させ、該プラズマを用いて酸化、窒化、酸窒化、 CVD、エッチング、プラズマ 照射等を基板に処理することができる。
発明の効果
[0024] 本発明によれば、プラズマの逆流防止のためにシャワープレートの縦孔内に配置さ れるセラミックス部材あるいは多孔質ガス流通体が隙間無く一体的に焼結結合して!/、 るため、各縦孔からのガス放出量のバラツキが無ぐまた、シャワープレートの使用時 にその縦孔から脱落することがなくなり、シャワープレートのプラズマ励起用ガスの放 出経路となる縦孔にプラズマが逆流することを確実に防止でき、シャワープレート内 部での異常放電やガスの堆積の発生を抑えることができるので、プラズマを励起する ためのマイクロ波の伝送効率や歩留まりの劣化を防止することができる。
発明を実施するための最良の形態
[0025] 以下、実施例に基づき本発明の実施の形態を説明する。
実施例 1
[0026] 図 1に、本発明の第一実施例を示す。図 1を参照すると、マイクロ波プラズマ処理装 置が示されている。図示されたマイクロ波プラズマ処理装置は複数の排気ポート 101 を介して排気される処理室 102を有し、処理室 102中には被処理基板 103を保持す る保持台 104が配置されている。処理室 102を均一に排気するため、処理室 102は 保持台 104の周囲にリング状の空間を規定しており、複数の排気ポート 101は空間 に連通するように等間隔で、すなわち、被処理基板 103に対して軸対称に配列され ている。この排気ポート 101の配列により、処理室 102を排気ポート 101より均一に排 気すること力 Sでさる。
[0027] 処理室 102の上部には、保持台 104上の被処理基板 103に対応する位置に、処 理室 102の外壁の一部として、直径が 408mm、比誘電率が 9. 8で、かつ低マイクロ 波誘電損失 (誘電損失が I X 10— 4以下)である誘電体のアルミナからなり、多数(23 0個)の開口部、すなわち縦孔 105が形成された板状のシャワープレート 106が、シ ール用の Oリング 107を介して取り付けられている。さらに、処理室 102には、シャヮ 一プレート 106の上面側、すなわち、シャワープレート 106に対して保持台 104とは 反対側に、アルミナからなるカバープレート 108が、別のシール用の Oリング 109を介 して取り付けられている。
[0028] 図 2は、シャワープレート 106とカバープレート 108の配置を示す斜視模式図である 。図 1および図 2を参照すると、シャワープレート 106上面と、カバープレート 108との 間には、プラズマ励起用ガス供給ポート 110から、シャワープレート 106内に開けられ た連通するガス供給孔 111を介して供給されたプラズマ励起用ガスを充填する空間 112が形成されている。換言すると、カバープレート 108において、カバープレート 1 08のシャワープレート 106側の面の、縦孔 105およびガス供給孔 111に対応する位 置にそれぞれが繋がるように溝が設けられ、シャワープレート 106とカバープレート 1 08の間に空間 112が形成される。すなわち、縦孔 105は空間 112に連通するように 配置されている。
[0029] 図 3に、縦孔 105の詳細を示す。縦孔 105の長さは 8〜21mm程度、直径は 3mm 以下 (好ましくは lmm以下)であり、その先端部に、高さ 2〜6mm程度の円柱状でガ ス流通方向に連通した気孔を有する多孔質セラミックス焼結体 114が焼結結合され ている。多孔質セラミックス焼結体はアルミナ系材料からなり、連通した気孔によって 形成されたガス流通経路における隘路の気孔径が 10 m以下、誘電損失が 5 X 10 — 3乃至 I X 10— 5の範囲、平均結晶粒子径が 10 in以下、気孔率が 20〜75%、平 均気孔径が lO ^ m以下、最大気孔径が 75 111以下、曲げ強さが 30MPa以上のも のを用いた例を示している。
[0030] この多孔質セラミックス焼結体 114を焼結結合したシャワープレート 106の製造例を 以下に示す。
[0031] (製造例 1)
平均粉末粒子径が 0. 6 mで純度が 99. 99%の Al O粉末に 3質量%のワックス
2 3
を配合して得た平均粒子径 70 H mの噴霧造粒粉体を 78〜; 147MPaの各種圧力で プレス成型した後、外径、厚み、横孔および縦孔等を所定寸法に成形加工したシャ ワープレート用グリーン体を準備した。
[0032] 一方、多孔質セラミックス焼結体については、前記噴霧造粒粉体を粉体の状態で 8 00°Cで焼成して仮焼結粉体を得た後、前記シャワープレート用の Al O粉末を 3質
2 3 量%添加混合してプレス成型して得たグリーン体を得、これを所定形状に加工した粉 末成形体と、これを 450°Cで焼成した脱脂体と、 1000°Cで焼成した仮焼結体と、 14 50°Cで焼成した焼結体を準備した。
[0033] なお、前記シャワープレート用グリーン体は、プレス成型圧力によって焼結収縮率 が異なり、因みに 78Mpaの場合は焼結収縮率が 19%で、 147MPaの場合は 16. 2 %である。また、多孔質セラミックス焼結体用材料は、気孔率や気孔径を設定変更す る毎に焼結収縮率が変化し、またプレス成型圧力によっても焼結収縮率が変化する ので、多孔質セラミックス焼結体の特性設定毎にあらかじめ焼結収縮率を調べ焼結 収縮後の寸法を測定しておく。
[0034] 上述したシャワープレート用グリーン体の焼結収縮率から、縦孔の焼結後の内径寸 法を計算しておき、この内径寸法よりも焼結後の外径寸法が同等乃至最大 50 m大 きい多孔質セラミックス焼結体の粉末成形体、脱脂体、仮焼結体または焼結体を縦 孔に装着した後、同時に焼結した。これにより、相互間に焼結結合力が生じるので強 固な装着固定が確保される。
[0035] 同時焼結後の多孔質セラミックス焼結体の連通した気孔によって形成されたガス流 通経路における隘路の気孔径は 2 μ m、誘電損失は 2. 5 X 10— 4、平均結晶粒子径 m. 5 μ m、最大結晶粒子径は 3 H m、気孔率は 40%、平均気孔径は 3 μ m、最大 気孔径は 5 μ m、曲げ強さは 300MPaであった。
[0036] (製造例 2)
前記製造例 1と同じシャワープレート用グリーン体を 450°Cで焼成して脱脂体を得 た。なお、この脱脂体の焼結収縮率はグリーン体のそれと同一である。
[0037] また、シャワープレート用グリーン体を 600〜; 1000°Cで焼成(仮焼結)して仮焼結 体を得た。仮焼結体の場合は、仮焼結段階で若干の焼結収縮が発生するので、仮 焼結体を本焼結する際の残余の焼結収縮率は仮焼結温度が高くなる程小さくなる。
[0038] 一方、前記製造例 1と同じ製法で得た多孔質セラミックス焼結体用材料は、噴霧造 粒粉体を仮焼結した粉体を使用して!/、るので、シャワープレート用グリーン体より焼 結収縮率が若干小さくなる力 シャワープレートの焼結温度と同温度における外径寸 法を実測しておくか、または収縮率から外径寸法を計算しておくことにより、シャワー プレート用グリーン体の縦孔の外径寸法を設計することができる。
[0039] この製造例でも前記製造例 1と同様に、シャワープレート用材料と、その縦孔に装 着した多孔質セラミックス焼結体用材料とを同時に焼結することにより、相互間に焼 結結合力が生じるので強固な装着固定が確保される。
[0040] ここで、プラズマに接している物体表面に形成されるシースの厚み dは次式で与え られる。
[数 1] d = 0.606Ar
[0041] ここで、 Vはプラズマと物体の電位差(単位は V)、 Tは電子温度(単位は eV)であ
0 e
り、 λ は次式で与えられるデバィ長である。
D
[数 2]
= 7.43 x 1が
Figure imgf000012_0001
[0042] ここで、 ε は真空の透磁率、 kはボルツマン定数、 nはプラズマの電子密度である
[0043] 表 1に示すとおり、プラズマの電子密度が上昇するとデバィ長は減少するため、ブラ ズマの逆流を防ぐという観点からは、多孔質セラミックス焼結体 114の孔径はより小さ いことが望ましいといえる。具体的には、平均気孔径の大きさは、プラズマのシース厚 の 2倍以下、望ましくはシース厚以下であることが好ましい。また、本発明における多 孔質セラミックス焼結体 114の気孔すなわちガス流通経路の隘路は 10 m以下であ り、 1013cm_3の高密度プラズマのシース厚である 10 mと同程度以下である。この ようにすることによって、 1013cm_3の高密度プラズマに対しても、本シャワープレート を用いること力 Sでさる。
[表 1] T*=2eV, V0= 12V
Figure imgf000013_0001
[0044] 次に、図 1を参照してプラズマ励起用ガスの処理室への導入方法を示す。ガス導入 ポート 110より導入されたプラズマ励起用ガスは、ガス供給孔 111および空間 112を 経由して縦孔 105へ導入され、その先端部分に焼結結合された多孔質セラミックス 焼結体 114から処理室 102へ放出される。
[0045] シャワープレート 106の上面を覆うカバープレート 108の上面には、マイクロ波を放 射するための、スリットが多数開いたラジアルラインスロットアンテナのスロット板 116、 マイクロ波を径方向に伝播させるための遅波板 117、およびマイクロ波をアンテナへ 導入するための同軸導波管 118が設置されている。また、遅波板 117は、スロット板 1 16と金属板 119により挟みこまれている。金属板 119には冷却用流路 120が設けら れている。
[0046] このような構成において、スロット板 116から放射されたマイクロ波により、シャワー プレート 106から供給されたプラズマ励起用ガスを電離させることで、シャワープレー ト 106の直下数ミリメートルの領域で高密度プラズマが生成される。生成されたプラズ マは拡散により被処理基板 103へ到達する。シャワープレート 106からは、プラズマ 励起用ガスのほかに、積極的にラジカルを生成させるガスとして、酸素ガスやアンモ ユアガスを導入してもよい。
[0047] 図示されたプラズマ処理装置では、処理室 102中、シャワープレート 106と被処理 基板 103との間にアルミニウムやステンレス等の導体からなる下段シャワープレート 1 21が配置されている。この下段シャワープレート 121は、プロセスガス供給ポート 122 力、ら供給されるプロセスガスを処理室 102内の被処理基板 103へ導入するための複 数のガス流路 121 aを備え、プロセスガスはガス流路 121 aの被処理基板 103に対応 する面に形成された多数のノズル 121bにより、下段シャワープレート 121と被処理基 板 103との間の空間に放出される。ここでプロセスガスとしては、 Plasma-Enhanced C hemical Vapor D印 osition(PECVD)プロセスの場合、シリコン系の薄膜形成を行う場 合はシランガスゃジシランガス、低誘電率膜を形成する場合は C Fガスが導入され
5 8
る。またプロセスガスとして有機金属ガスを導入した CVDも可能である。また、 Reactiv e Ion Etching(RIE)プロセスの場合、シリコン酸化膜エッチングの場合は C Fガスと酸
5 8 素ガス、金属膜やシリコンのエッチングの場合は塩素ガスや HBrガスが導入される。 エッチングする際にイオンエネルギーが必要な場合には前記保持台 104内部に設 置された電極に RF電源 123をコンデンサを介して接続して、 RF電力を印加すること で自己バイアス電圧を被処理基板 103上に発生させる。流すプロセスガスのガス種 は上記に限定されることなぐプロセスにより流すガス、圧力を設定する。
[0048] 下段シャワープレート 121には、隣接するガス流路 121aどうしの間に、下段シャヮ 一プレート 121の上部でマイクロ波により励起されたプラズマを被処理基板 103と下 段シャワープレート 121との間の空間に拡散により効率よく通過させるような大きさの 開口部 12 lcが形成されて!/、る。
[0049] また、高密度プラズマに晒されることでシャワープレート 106へ流れ込む熱流は、ス ロット板 116、遅波板 117、および金属板 119を介して冷却用流路 120に流されてい る水等の冷媒により排熱される。
[0050] 以上の構成を有するプラズマ処理装置において上述したシャワープレート 106を使 用することによって、その縦孔 105に焼結結合された多孔質セラミックス焼結体 114 は使用時に脱落することはなぐこれによつてガス導入側にプラズマが逆流することを 確実に防止でき、シャワープレート 105内部での異常放電やガスの堆積の発生を抑 えることができるので、プラズマを励起するためのマイクロ波の伝送効率や歩留まりの 劣化を防止することができるようになった。
[0051] また、被処理基板 103へ均一にプラズマ励起用ガス供給を行ない、さらに下段シャ ワープレート 121からノズル 121bを介してプロセスガスを被処理基板 103へ放出す るようにした結果、下段シャワープレート 121に設けられたノズル 121bから被処理基 板 103へ向力、うプロセスガスの流れが均一に形成され、プロセスガスがシャワープレ ート 106の上部へ戻る成分が少なくなつた。結果として、高密度プラズマに晒されるこ とによる過剰解離によるプロセスガス分子の分解が減少し、かつプロセスガスが堆積 性ガスであってもシャワープレート 106への堆積によるマイクロ波導入効率の劣化な どが起こりづらくなつたため、クリーニング時間の短縮とプロセス安定性と再現性を高 めて生産性を向上させるとともに、高品質な基板処理が可能となった。
[0052] 図 4は、縦孔 105の他の構成例を示す。図 4において、(a)は断面図、(b)、(c)は 底面図である。この例では、縦孔 105にセラミックス部材 113が焼結結合されている。 セラミックス部材 113は、アルミナ系セラミックスからなり、外径が 3· 0mm、全長が 8m mである。そして、セラミックス部材 1 13の内部には直径 0. 05mm X長さ 8mmのガス 放出孔 113aが設けられている。すなわち、ガス放出孔 113aのアスペクト比(長さ/ 孔径)は 8/0. 05 = 160である。ガス放出孔 113aの個数はとくに限定されない。図 4 (b) , (c)には 7〜3個の例を示している力 より好ましくは個数をできる限り多くして ガス放出速度を遅くするのがよい。なお、この例のようにガス放出孔 113aの直径を 0 . 05mm程度まで小さくした場合は、セラミックス部材 113の外径は lmm程度まで小 さくすることあでさる。
[0053] また、ガス流通孔 113aの長さは、電子が散乱されるまでの平均距離である平均自 由行程より長くすることが好ましい。表 2に、電子の平均自由行程を示す。平均自由 行程は圧力に反比例し、 0. lTorrの時に 4mmとなっている。実際にはガス流通孔 1 13aのガス導入側は圧力が高いので平均自由行程は 4mmよりも短くなる力 本実施 例においては、ガス放出孔 1 13aの長さを 8mmとして、平均自由行程よりも長い値と している。
[表 2] Arガス雰画気中における
霄子の平均自由行程
Figure imgf000016_0001
λ en(mm) =0. 4ZP(Torr)
[0054] なお、図 4に示した縦孔 105においては、そのガス導入側の角部に、マイクロ波の 電界が集中してプラズマ励起用ガスに着火してプラズマが自己発生するのを防止す るために、面取り加工 115が施されている。この面取り加工は、 C面取り、より好ましく は R面取り加工とし、 C面取り後にその角部を R面取り加工することもできる。
[0055] この図 4に示すようにセラミックス部材 113を焼結結合したシャワープレート 106は、 前記製造例 1および 2と同様の方法によって製造できる。その製造例を以下に示す。
[0056] (製造例 3)
セラミックス部材については、まず、平均粒子径が 0· 6 mで純度が 99· 99%の A 1 O粉末に、セルロース系の押出成型用バインダーを 4%と適量の水を加えた混練
2 3
体を準備し、内径が 16mmの金型ノズル内に 80 mのピンを 24本配設した押出用 金型で押出成型体を得た。
[0057] 前記押出成型体を乾燥後、この乾燥体と 450°Cの脱脂工程を経た脱脂体とを 150
0°Cの温度で焼結した結果、乾燥体および脱脂体のいずれもが、外径寸法が 1. 0m mでガス放出孔の孔径が 50 mのセラミックス部材となり、金型寸法からの収縮率は
37. 5%であることが判明した。
[0058] 一方、噴霧造粒粉体の成型圧力を 147MPaに設定した以外は前記製造例 1で作 製したのと全く同じシャワープレート用グリーン体を準備し、縦孔の寸法が内径 1. 16 mm、 1. 135mmおよび 1. 19mmからなる 3種類の成形体を作製した。 [0059] このシャワープレート用グリーン体の焼結収縮率は 16. 2%であるので、前記成形 体における縦孔の内径はそれぞれ 0. 972mm, 0. 951mmおよび 0. 997mmにな つた。そして、前記の外径寸法が lmmでガス放出孔の孔径が 50 mのセラミックス 部材をシャワープレート用グリーン体の縦孔内に装着して同時焼結を行うことにより、 縦孔の内径がセラミックス部材を締付ける応力は、直径寸法差でそれぞれ 0. 028m m、 0. 049mmおよび 0. 003mmとなる。
[0060] この締付け応力となる直径寸法差は、大きい方から 0· 049mm (約 50 m)、 0. 0 28mm (約 30 m)および 0. 003mm (3 m)であり、直径寸法差が約 50 mおよ び 30 a mの場合は、セラミックス部材が圧縮されて圧壊したり縦孔が押し広げられて 割れ現象が発生するのではないかと思われる力 それらの現象は発生せず、直径寸 法差は同時焼結する際の高温時点で相互のわずかな熱可塑性および結晶粒界の 滑り現象によって吸収されたものと推定される。
[0061] また、縦孔内面とセラミックス部材外面との接合面は、一体的に焼結結合されてい るので部分的に 2 m程度の隙間は存在するものの、プラズマ励起用ガスの流通経 路となるような隙間が無ぐ結晶粒子が接合境界を形成することなく接合境界を跨い で結晶粒子が連続して存在する均質な結晶構造を有するシャワープレートが得られ た。
[0062] (製造例 4)
前記 1500°Cで焼結したセラミックス部材の代わりに、 1100°Cで仮焼結したセラミツ タス部材を用いた。その外径は 1. 15mmとなり、縦孔の内径を 1. 19mmに成形加 ェしたシャワープレート用グリーン体に装着して同時焼結を行った。この製造例によ つても、製造例 3と同様の効果が有られた。
[0063] (製造例 5)
製造例 3で用いたセラミックス部材の押出成型体は焼結収縮率が大きいので、押出 成型体の段階では外径寸法がシャワープレート用グリーン体に成形加工した縦孔の 内径寸法よりも大きいため、縦孔内に装着することができないことになる。
[0064] しかしながら、製造例 3で用いた押出成型用バインダーを 2%にして解膠剤を 0. 5 %配合すれば、混練体の水分量を少なくすることが可能となる。また、プランジャー式 の押出成型圧力を 1. 5ton/cm2で作製したセラミックス部材の焼結収縮率は金型 寸法に対して 28%であった力 S、押出成型体を乾燥した時点で金型寸法に対して 10 %収縮して外径寸法が 1. 15mmの乾燥体が得られた。すなわち、この乾燥体の焼 結収縮率は 18 %となり、製造例 1で用レ、た 78MPaで成型したシャワープレート用タリ ーン体の焼結収縮率 19%よりも小さい結果が得られた。したがって、シャワープレー ト用グリーン体の縦孔に、セラミックス部材を焼成前の押出成型体 (粉末成形体)の段 階で装着して同時焼結することは可能で、当然のことながら、押出成型体 (粉末成形 体)の脱脂体、仮焼結体および焼結体をシャワープレート用グリーン体の縦孔に装着 して同時焼結することも可能である。
[0065] なお、補足すれば、前述したようにシャワープレートの各種成型圧力毎の焼結収縮 率を把握しておき、また、セラミックス部材の各種混練体や成型圧力毎の焼結収縮率 を把握しておくことにより、シャワープレート用グリーン体、その脱脂体または仮焼結 体の縦孔に、セラミックス部材の押出成型体 (粉末成形体)、その脱脂体、仮焼結体 または焼結体を装着して同時焼結することが可能となる。これによつて、セラミックス 部材とシャワープレートの縦孔とが一体的に焼結結合された隙間のないシャワープレ 一卜を得ること力 Sでさる。
[0066] また、高温の 1500で焼結したセラミックス部材を、相対密度が 96%になるように仮 焼結したシャワープレートの縦孔に装着して温度 1400°C、圧力 1500kg/cm2で HI P処理装置で同時焼結した場合も、隙間の無い一体焼結体が得られた。
[0067] なおまた、製造例 1乃至 5ではいずれも高純度のアルミナ系セラミックス材料を用い た力 誘電損失が 5 X 10_3乃至 1 X 10_5の範囲の低誘電損失セラミックス材料であ れば、微量の粒成長抑制剤や Y Oおよびムライト等を配合したアルミナ系セラミック
2 3
ス材料、あるいは Al Oと Y Oとの成分からなる材料、または Al Oと Y Oとの化合
2 3 2 3 2 3 2 3 物であるガーネット成分を含む材料、さらには A1N、 Si〇、ムライト、 Si N
2 3 4、 SiAlON 等のセラミックス材料を用いることができる。
[0068] さらに、シャワープレート用のセラミックス材料とガス放出孔部材(多孔質セラミックス 焼結体およびセラミックス部材)用のセラミックス材料との組合せにつ!/、ては特に限定 しないが、できれば同じ材料成分系のセラミックス材料とすることが好ましい。 [0069] さらにまた、縦孔内にガス放出孔部材を装着 (揷入)して一体焼結する際に、ガス放 出孔部材の外面に同一材料成分の微粉末を塗布して接着剤と同様の作用効果を発 揮させることも可能で、各製造例で得られたのと同様の結果が得られた。
[0070] 図 5は、縦孔 105のさらに他の構成例を示す。
[0071] 図 5 (a)では、プラズマの逆流を防止する 2重安全対策のために、多孔質ガスセラミ ックス焼結体 114のガス導入側に、さらにセラミックス部材 113を配置し、これらをシャ ワープレート 106の縦孔 105に焼結結合している。また、図 5 (b)では、多孔質セラミ ックス焼結体 114のガス導入側に、さらに別の多孔質セラミックス焼結体 114aを配置 し、これらをシャワープレート 106の縦孔 105に焼結結合している。この場合、プラズ マ励起用ガスの圧損を小さくするために、ガス導入側の多孔質セラミックス焼結体 11 4aとしては、ガス放出側の多孔質セラミックス焼結 114よりも気孔率および気孔径が 大きいものを使用する(例えば平均気孔径: 10〜30 111、気孔率: 50〜75%)。
[0072] なお、以上の実施例において、縦孔 105の個数、直径および長さ、セラミックス部材
113に開けられるガス放出孔 113aの個数、直径および長さ等は、本実施例の数値 に限られることは無い。
実施例 2
[0073] 図 6に、本発明の第二実施例を示す。図 6を参照すると、マイクロ波プラズマ処理装 置が示されている。第一実施例と重複する部分は同一の符号を付し説明を省略する
[0074] 本実施例においては、処理室 102の上部には、保持台 104上の被処理基板 103 に対応する位置に、処理室 102の外壁の一部として、比誘電率が 9. 8で、かつ低マ イク口波誘電損失 (誘電損失が 9 X 10— 4以下)である誘電体のアルミナからなるシャ ワープレート 200力 シール用の Oリング 107を介して取り付けられている。また、処 理室 102を構成する壁面 201において、シャワープレート 200の側面に対応する位 置に、 2本のシール用の Oリング 202とシャワープレート 200の側面とにより囲まれたリ ング状空間 203が設けられて!/、る。リング状空間 203はプラズマ励起用ガスを導入す るガス導入ポート 110と連通している。
[0075] 一方、シャワープレート 200の側面には横方向に直径 lmmの多数の横孔 204がシ ャワープレート 200の中心方向に向かって開けられている。同時に、この横孔 204と 連通するように多数(230個)の縦孔 205が処理室 102へ連通して開けられている。
[0076] 図 7は、シャワープレート 200の上面からみた横孔 204と縦孔 205の配置を示す。
図 8は、横孔 204と縦孔 205の配置を示す斜視模式図である。
[0077] このような構成のシャワープレート 200においても、先の第一実施例と同様に、その 縦孔 205内に、セラミックス部材あるいは多孔質ガス流通体を焼結結合により設ける こと力 Sでさる。
産業上の利用可能性
[0078] 本発明のシャワープレートは、マイクロ波プラズマ処理装置のほ力、、平行平板型高 周波励起プラズマ処理装置、誘導結合型プラズマ処理装置等、各種のプラズマ処理 装置に利用可能である。
図面の簡単な説明
[0079] [図 1]本発明の第一実施例を示す。
[図 2]図 1に示したシャワープレートの横孔と縦孔の配置を示す。
[図 3]図 1に示したシャワープレートの縦孔の詳細を示す。
[図 4]縦孔の他の構成例を示す。
[図 5]縦孔のさらに他の構成例を示す。
[図 6]本発明の第二実施例を示す。
[図 7]図 6に示したシャワープレートの上面からみた横孔と縦孔の配置を示す。
[図 8]図 6に示したシャワープレートとカバープレートの配置を示す。
[図 9]ガス放出孔のアスペクト比とプラズマの逆流の関係を示す説明図である。
[図 10]従来のシャワープレートを示す。
符号の説明
[0080] 101 排気ポート
102 処理室
103 被処理基板
104 保持台
105 縦孔 105a 第一の縦孔
105b 第二の縦孔
106 シャワープレート
107 シール用の Oリング
108 カバープレート
109 シール用の Oリング
110 ガス導入ポート
111 ガス供給孔
112 空間
113 セラミックス部材
113a ガス放出孔
114 多孔質セラミックス焼結体(多孔質ガス流通体)
115 面取り加工
116 スロッ卜板
117 遅波板
118 同軸導波管
119 金属板
120 冷却用流路
121 下段シャワープレート
121a ガス流路
121b ノズノレ
121c 開口部
122 プロセスガス供給ポート
123 RF電源
200 シャワープレート
201 壁面
202 シール用の Oリング
203 リング状空間 205 縦孔

Claims

請求の範囲
[1] プラズマ処理装置に配置され、前記装置内にプラズマを発生させるためにプラズマ 励起用ガスを放出するシャワープレートにぉレ、て、プラズマ励起用ガスの放出経路と なる複数個の縦孔内に、孔径が 20 m乃至 70 mのガス放出孔を複数個有するセ ラミックス部材、および/または最大気孔径が 75 m以下のガス流通方向に連通し た気孔を有する多孔質ガス流通体が設けられ、前記セラミックス部材および/または 前記多孔質ガス流通体が前記シャワープレートと一体的に焼結結合されているシャ ワープレート。
[2] 前記シャワープレートがセラミックス材料からなり、かつ前記セラミックス部材および 前記多孔質ガス流通体が、 5 X 10_3乃至 1 X 10_5の範囲の誘電損失を有するセラミ ックス材料から成る請求項 1に記載のシャワープレート
[3] 前記セラミックス部材のガス放出孔の長さと孔径とのアスペクト比(長さ/孔径)が 2
0以上である請求項 1または請求項 2に記載のシャワープレート
[4] 前記多孔質ガス流通体の連通する気孔によって形成されたガス流通経路における 隘路の気孔径が 10 m以下である請求項 1または請求項 2に記載のシャワープレー 卜。
[5] 請求項 1から請求項 4の!/、ずれかに記載のシャワープレートを製造するシャワープ レートの製造方法にお!/、て、前記セラミックス部材の原料粉末を成型して所定形状に 加工した粉末成形体、その脱脂体、仮焼結体もしくは焼結体、および/または多孔 質ガス流通体の原料粉末を成型して所定形状に加工した粉末成形体、その脱脂体 、仮焼結体もしくは焼結体を、シャワープレートの原料粉末を成型して縦孔を加工形 成したグリーン体の縦孔内に装着後、該グリーン体と同時に焼結するシャワープレー トの製造方法。
[6] 請求項 1から請求項 4の!/、ずれかに記載のシャワープレートを製造するシャワープ レートの製造方法にお!/、て、前記セラミックス部材の原料粉末を成型して所定形状に 加工した粉末成形体、その脱脂体、仮焼結体もしくは焼結体、および/または多孔 質ガス流通体の原料粉末を成型して所定形状に加工した粉末成形体、その脱脂体 、仮焼結体もしくは焼結体を、シャワープレートの原料粉末を成型して縦孔を加工形 成したグリーン体の脱脂体の縦孔内に装着後、該グリーン体の脱脂体と同時に焼結 するシャワープレートの製造方法。
[7] 請求項 1から請求項 4の!/、ずれかに記載のシャワープレートを製造するシャワープ レートの製造方法にお!/、て、前記セラミックス部材の原料粉末を成型して所定形状に 加工した粉末成形体、その脱脂体、仮焼結体もしくは焼結体、および/または多孔 質ガス流通体の原料粉末を成型して所定形状に加工した粉末成形体、その脱脂体 、仮焼結体もしくは焼結体を、シャワープレートの原料粉末を成型して縦孔を加工形 成したグリーン体の仮焼結体の縦孔内に装着後、該グリーン体の仮焼結体と同時に 焼結するシャワープレートの製造方法。
[8] 請求項 1から請求項 4の!/、ずれかに記載のシャワープレートを配置したプラズマ処 理装置。
[9] 請求項 1から請求項 4のいずれかに記載のシャワープレートを用いてプラズマ励起 用ガスをプラズマ処理装置内に供給し、供給されたプラズマ励起用ガスをマイクロ波 で励起してプラズマを発生させ、該プラズマを用いて酸化、窒化、酸窒化、 CVD、ェ ツチング、またはプラズマ照射を基板に対して施すプラズマ処理方法。
[10] 請求項 9に記載のプラズマ処理方法によって基板を処理する工程を含む電子装置 の製造方法。
PCT/JP2007/068613 2006-10-23 2007-09-26 Plaque de douche frittée d'un seul tenant avec un élément d'orifice de libération de gaz et procédé de fabrication associé WO2008050567A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800387703A CN101529563B (zh) 2006-10-23 2007-09-26 一体烧结气体排出孔而成的簇射极板及其制造方法
US12/446,913 US8915999B2 (en) 2006-10-23 2007-09-26 Shower plate sintered integrally with gas release hole member and method for manufacturing the same
US14/542,793 US9767994B2 (en) 2006-10-23 2014-11-17 Shower plate sintered integrally with gas release hole member and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-287934 2006-10-23
JP2006287934A JP5010234B2 (ja) 2006-10-23 2006-10-23 ガス放出孔部材を一体焼結したシャワープレートおよびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/446,913 A-371-Of-International US8915999B2 (en) 2006-10-23 2007-09-26 Shower plate sintered integrally with gas release hole member and method for manufacturing the same
US14/542,793 Division US9767994B2 (en) 2006-10-23 2014-11-17 Shower plate sintered integrally with gas release hole member and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2008050567A1 true WO2008050567A1 (fr) 2008-05-02

Family

ID=39324374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068613 WO2008050567A1 (fr) 2006-10-23 2007-09-26 Plaque de douche frittée d'un seul tenant avec un élément d'orifice de libération de gaz et procédé de fabrication associé

Country Status (6)

Country Link
US (2) US8915999B2 (ja)
JP (1) JP5010234B2 (ja)
KR (1) KR101016624B1 (ja)
CN (1) CN101529563B (ja)
TW (1) TWI392021B (ja)
WO (1) WO2008050567A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100288439A1 (en) * 2007-09-06 2010-11-18 Tokyo Electron Limited Top plate and plasma process apparatus employing the same
JP5377749B2 (ja) * 2010-02-25 2013-12-25 シャープ株式会社 プラズマ生成装置
JP2015118996A (ja) * 2013-12-17 2015-06-25 三菱マテリアル株式会社 プラズマ処理装置用電極板及びその製造方法
TWI728354B (zh) * 2014-10-17 2021-05-21 美商應用材料股份有限公司 用於電漿反應器的氣體分配板

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074127A1 (fr) * 1999-05-26 2000-12-07 Tokyo Electron Limited Dispositif de traitement au plasma
US20080254220A1 (en) * 2006-01-20 2008-10-16 Tokyo Electron Limited Plasma processing apparatus
JP2008047869A (ja) * 2006-06-13 2008-02-28 Hokuriku Seikei Kogyo Kk シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
JP5010234B2 (ja) 2006-10-23 2012-08-29 北陸成型工業株式会社 ガス放出孔部材を一体焼結したシャワープレートおよびその製造方法
JP5697389B2 (ja) * 2010-09-27 2015-04-08 東京エレクトロン株式会社 プラズマエッチング用の電極板及びプラズマエッチング処理装置
JP5718011B2 (ja) * 2010-10-13 2015-05-13 東京エレクトロン株式会社 プラズマ処理装置及びその処理ガス供給構造
US9082593B2 (en) * 2011-03-31 2015-07-14 Tokyo Electron Limited Electrode having gas discharge function and plasma processing apparatus
US9245717B2 (en) * 2011-05-31 2016-01-26 Lam Research Corporation Gas distribution system for ceramic showerhead of plasma etch reactor
US8648315B1 (en) * 2012-08-14 2014-02-11 Transmute, Inc. Accelerator having a multi-channel micro-collimator
JP2014082354A (ja) * 2012-10-17 2014-05-08 Hitachi High-Technologies Corp プラズマ処理装置
US9867269B2 (en) * 2013-03-15 2018-01-09 Starfire Industries, Llc Scalable multi-role surface-wave plasma generator
JP6643096B2 (ja) * 2016-01-18 2020-02-12 東京エレクトロン株式会社 プラズマ処理装置
DE102016207370A1 (de) * 2016-04-29 2017-11-02 Airbus Ds Gmbh Gaseinlass für ein Ionentriebwerk
JP6710783B2 (ja) 2016-06-15 2020-06-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高出力プラズマエッチングプロセスのためのガス分配プレートアセンブリ
DE102016223746B4 (de) * 2016-11-30 2018-08-30 Arianegroup Gmbh Gaseinlass für ein Ionentriebwerk
JP6368808B2 (ja) * 2017-01-31 2018-08-01 株式会社日立ハイテクノロジーズ プラズマ処理装置
US20190032211A1 (en) * 2017-07-28 2019-01-31 Lam Research Corporation Monolithic ceramic gas distribution plate
KR102151810B1 (ko) * 2018-10-01 2020-09-04 세메스 주식회사 기판 처리 장치
KR102390560B1 (ko) * 2018-11-30 2022-04-26 메이덴샤 코포레이션 산화막 형성 장치
JP7224175B2 (ja) * 2018-12-26 2023-02-17 東京エレクトロン株式会社 成膜装置及び方法
CN111613508A (zh) * 2019-02-25 2020-09-01 北京北方华创微电子装备有限公司 进气装置及反应腔室
CN113490765A (zh) * 2019-03-08 2021-10-08 应用材料公司 用于处理腔室的多孔喷头
US11859284B2 (en) * 2019-08-23 2024-01-02 Taiwan Semiconductor Manufacturing Company Ltd. Shower head structure and plasma processing apparatus using the same
CN110656317A (zh) * 2019-09-19 2020-01-07 长江存储科技有限责任公司 喷头组件、沉积设备及沉积方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252270A (ja) * 1999-03-01 2000-09-14 Ebara Corp ガス噴射ヘッド
JP2005033167A (ja) * 2003-06-19 2005-02-03 Tadahiro Omi シャワープレート、プラズマ処理装置、及び、製品の製造方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH640571A5 (fr) * 1981-03-06 1984-01-13 Battelle Memorial Institute Procede et dispositif pour deposer sur un substrat une couche de matiere minerale.
US5962085A (en) * 1991-02-25 1999-10-05 Symetrix Corporation Misted precursor deposition apparatus and method with improved mist and mist flow
US5439524A (en) * 1993-04-05 1995-08-08 Vlsi Technology, Inc. Plasma processing apparatus
JPH10506150A (ja) * 1994-08-01 1998-06-16 フランツ ヘーマン、 非平衡軽量合金及び製品のために選択される処理
JPH0963793A (ja) 1995-08-25 1997-03-07 Tokyo Electron Ltd プラズマ処理装置
US6391690B2 (en) * 1995-12-14 2002-05-21 Seiko Epson Corporation Thin film semiconductor device and method for producing the same
US5996528A (en) * 1996-07-02 1999-12-07 Novellus Systems, Inc. Method and apparatus for flowing gases into a manifold at high potential
US20020011215A1 (en) * 1997-12-12 2002-01-31 Goushu Tei Plasma treatment apparatus and method of manufacturing optical parts using the same
US6182603B1 (en) * 1998-07-13 2001-02-06 Applied Komatsu Technology, Inc. Surface-treated shower head for use in a substrate processing chamber
JP3595853B2 (ja) * 1999-03-18 2004-12-02 日本エー・エス・エム株式会社 プラズマcvd成膜装置
WO2000074127A1 (fr) * 1999-05-26 2000-12-07 Tokyo Electron Limited Dispositif de traitement au plasma
JP2001064777A (ja) * 1999-08-30 2001-03-13 Ebara Corp ガス噴射ヘッド
US6890861B1 (en) * 2000-06-30 2005-05-10 Lam Research Corporation Semiconductor processing equipment having improved particle performance
TWI303084B (en) * 2000-09-08 2008-11-11 Tokyo Electron Ltd Shower head structure, film forming method, and gas processing apparauts
US6797639B2 (en) * 2000-11-01 2004-09-28 Applied Materials Inc. Dielectric etch chamber with expanded process window
US7115184B2 (en) * 2001-03-28 2006-10-03 Tadahiro Ohmi Plasma processing device
JP2002343788A (ja) * 2001-05-21 2002-11-29 Toshiba Ceramics Co Ltd プラズマ処理装置のガスインレット部材
US6793733B2 (en) * 2002-01-25 2004-09-21 Applied Materials Inc. Gas distribution showerhead
US20050081788A1 (en) * 2002-03-15 2005-04-21 Holger Jurgensen Device for depositing thin layers on a substrate
JP4540926B2 (ja) 2002-07-05 2010-09-08 忠弘 大見 プラズマ処理装置
US7431965B2 (en) * 2002-11-01 2008-10-07 Honda Motor Co., Ltd. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
JP2004193484A (ja) * 2002-12-13 2004-07-08 Sumitomo Precision Prod Co Ltd オゾン処理装置
US20040261712A1 (en) * 2003-04-25 2004-12-30 Daisuke Hayashi Plasma processing apparatus
US6921437B1 (en) * 2003-05-30 2005-07-26 Aviza Technology, Inc. Gas distribution system
JP4707959B2 (ja) * 2004-02-20 2011-06-22 日本エー・エス・エム株式会社 シャワープレート、プラズマ処理装置及びプラズマ処理方法
US8074599B2 (en) * 2004-05-12 2011-12-13 Applied Materials, Inc. Plasma uniformity control by gas diffuser curvature
JP2006186306A (ja) * 2004-09-30 2006-07-13 Toshiba Ceramics Co Ltd ガス拡散プレートおよびその製造方法
KR20080014778A (ko) 2005-04-18 2008-02-14 호쿠리쿠세이케고교 가부시키가이샤 샤워 플레이트 및 그 제조 방법
US7718030B2 (en) * 2005-09-23 2010-05-18 Tokyo Electron Limited Method and system for controlling radical distribution
US20080254220A1 (en) * 2006-01-20 2008-10-16 Tokyo Electron Limited Plasma processing apparatus
JP2008047869A (ja) * 2006-06-13 2008-02-28 Hokuriku Seikei Kogyo Kk シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
JP5069427B2 (ja) * 2006-06-13 2012-11-07 北陸成型工業株式会社 シャワープレート、並びにそれを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
JP5463536B2 (ja) 2006-07-20 2014-04-09 北陸成型工業株式会社 シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
JP5010234B2 (ja) * 2006-10-23 2012-08-29 北陸成型工業株式会社 ガス放出孔部材を一体焼結したシャワープレートおよびその製造方法
JP5252613B2 (ja) * 2006-12-25 2013-07-31 国立大学法人東北大学 イオン注入装置およびイオン注入方法
JP5058727B2 (ja) * 2007-09-06 2012-10-24 東京エレクトロン株式会社 天板構造及びこれを用いたプラズマ処理装置
US20090226614A1 (en) * 2008-03-04 2009-09-10 Tokyo Electron Limited Porous gas heating device for a vapor deposition system
JP4590597B2 (ja) * 2008-03-12 2010-12-01 国立大学法人東北大学 シャワープレートの製造方法
JP5396745B2 (ja) * 2008-05-23 2014-01-22 東京エレクトロン株式会社 プラズマ処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252270A (ja) * 1999-03-01 2000-09-14 Ebara Corp ガス噴射ヘッド
JP2005033167A (ja) * 2003-06-19 2005-02-03 Tadahiro Omi シャワープレート、プラズマ処理装置、及び、製品の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100288439A1 (en) * 2007-09-06 2010-11-18 Tokyo Electron Limited Top plate and plasma process apparatus employing the same
JP5377749B2 (ja) * 2010-02-25 2013-12-25 シャープ株式会社 プラズマ生成装置
JP2015118996A (ja) * 2013-12-17 2015-06-25 三菱マテリアル株式会社 プラズマ処理装置用電極板及びその製造方法
TWI728354B (zh) * 2014-10-17 2021-05-21 美商應用材料股份有限公司 用於電漿反應器的氣體分配板

Also Published As

Publication number Publication date
US20150069674A1 (en) 2015-03-12
US20100178775A1 (en) 2010-07-15
KR101016624B1 (ko) 2011-02-23
TW200834723A (en) 2008-08-16
CN101529563B (zh) 2010-11-10
US9767994B2 (en) 2017-09-19
JP2008108796A (ja) 2008-05-08
TWI392021B (zh) 2013-04-01
JP5010234B2 (ja) 2012-08-29
KR20090058004A (ko) 2009-06-08
US8915999B2 (en) 2014-12-23
CN101529563A (zh) 2009-09-09

Similar Documents

Publication Publication Date Title
WO2008050567A1 (fr) Plaque de douche frittée d'un seul tenant avec un élément d'orifice de libération de gaz et procédé de fabrication associé
JP5463536B2 (ja) シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
KR101130111B1 (ko) 샤워 플레이트 및 그 제조 방법, 그리고 그 샤워 플레이트를 이용한 플라즈마 처리 장치, 플라즈마 처리 방법 및, 전자 장치의 제조 방법
US9944561B2 (en) Dielectric material and electrostatic chucking device
JP5069427B2 (ja) シャワープレート、並びにそれを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
EP1521297B1 (en) Plasma processing equipment
CN101501834A (zh) 静电吸盘装置
JP5604622B2 (ja) シャワープレートの製造方法
EP2063463A1 (en) Dry etching method
TWI545995B (zh) Inductively Coupled Plasma Processing Chamber and Corrosion Resistant Insulation Window and Manufacturing Method
KR102339563B1 (ko) 플라즈마 화학기상증착 장치용 배플 구조물 및 이의 제조 방법
CN101467498A (zh) 喷淋板及其制造方法、和使用了它的等离子体处理装置、处理方法及电子装置的制造方法
US20080083979A1 (en) Wafer holder and semiconductor manufacturing apparatus equipped with wafer holder
WO2007023535A1 (ja) 成膜方法、成膜用のマスク、および成膜装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780038770.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097006561

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12446913

Country of ref document: US