WO2008050537A1 - Dispositif laser à semi-conducteur, et son procédé de commande - Google Patents

Dispositif laser à semi-conducteur, et son procédé de commande Download PDF

Info

Publication number
WO2008050537A1
WO2008050537A1 PCT/JP2007/066780 JP2007066780W WO2008050537A1 WO 2008050537 A1 WO2008050537 A1 WO 2008050537A1 JP 2007066780 W JP2007066780 W JP 2007066780W WO 2008050537 A1 WO2008050537 A1 WO 2008050537A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
light
diffraction grating
optical waveguide
laser device
Prior art date
Application number
PCT/JP2007/066780
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Kondo
Chikara Amano
Original Assignee
Ntt Electronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Electronics Corporation filed Critical Ntt Electronics Corporation
Priority to US12/442,726 priority Critical patent/US8102888B2/en
Priority to JP2008540906A priority patent/JPWO2008050537A1/ja
Priority to EP07806257A priority patent/EP2077606A4/en
Publication of WO2008050537A1 publication Critical patent/WO2008050537A1/ja
Priority to US13/326,078 priority patent/US20120147910A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • H01S5/02446Cooling being separate from the laser chip cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0652Coherence lowering or collapse, e.g. multimode emission by additional input or modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06812Stabilisation of laser output parameters by monitoring or fixing the threshold current or other specific points of the L-I or V-I characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity

Definitions

  • the present invention relates to a semiconductor laser device that generates a light having a predetermined wavelength by reflecting a part of light having a predetermined wavelength out of light generated by a semiconductor laser to a semiconductor laser by a diffraction grating, and a driving method thereof. is there.
  • FIG. 7 shows a configuration of a conventional external resonator type semiconductor laser device 100.
  • the semiconductor laser device 100 includes a power supply 10, a Peltier element 11, a semiconductor laser 12, an optical waveguide 13, and a diffraction grating 14.
  • the semiconductor laser device 100 operates as follows. Current is supplied from the power supply 10 to the semiconductor laser 12 to generate light. In addition, a current is supplied from the power supply 10 to the Peltier element 11 to keep the semiconductor laser 12 at a predetermined temperature. The generated light is coupled to the optical waveguide 13 from the emission end of the semiconductor laser 12, and the light is propagated to the diffraction grating 14. As an external resonator, the diffraction grating 14 reflects a part of light having a predetermined wavelength and resonates only the wavelength. In the semiconductor laser device 100, the wavelength of light generated by the semiconductor laser 12 is stabilized by the Peltier element 11, and the wavelength selectivity of the output light 70 is enhanced by the diffraction grating 14.
  • Patent Document 1 Japanese Patent Laid-Open No. 06-188503
  • FIG. 8 shows the current-optical output characteristics (IL characteristics) of the semiconductor laser device 100.
  • FIG. Increasing the current increases the light output, but if the current exceeds a certain value, the light output becomes unstable (kink). This is presumed that as a result of operating the semiconductor laser at a constant temperature as described above, the longitudinal mode becomes sensitive to disturbance and the longitudinal mode shifts from single to multi. Especially However, there is a problem that it is difficult to use the semiconductor laser device 100 having such an IL characteristic because the kink of the light intensity becomes noise.
  • an object of the present invention is to provide a semiconductor laser device that operates stably in the entire current region and a driving method thereof.
  • the inventors have conducted various experiments to give a periodic fluctuation to the temperature of the semiconductor laser, the optical waveguide or the diffraction grating, to give a mechanical periodic fluctuation to the optical waveguide or the diffraction grating, or to the semiconductor
  • a semiconductor laser oscillates from a low power to a high power without switching between single mode oscillation and multimode oscillation.
  • the present invention was invented based on this discovery.
  • a semiconductor laser device outputs light while periodically changing the temperature of a semiconductor laser, an optical waveguide, or a diffraction grating, or mechanically applies to an optical waveguide or diffraction grating.
  • the light is output with periodic fluctuations.
  • the present invention optically couples a semiconductor laser and a diffraction grating with an optical waveguide, and a part of light having a predetermined wavelength out of the light generated by the semiconductor laser is preceded by the diffraction grating.
  • a semiconductor laser device that reflects light to a semiconductor laser to generate light of the predetermined wavelength
  • the light is output while mechanically varying the diffraction grating or by making the return light whose light intensity or wavelength varies periodically or aperiodically enter the light emitting portion of the semiconductor laser. This is a method for driving the semiconductor laser device.
  • a semiconductor laser device that outputs light while periodically changing a temperature is optically coupled to the semiconductor laser that generates light and the semiconductor laser.
  • a diffraction grating that reflects a part of light having a predetermined wavelength out of light from the semiconductor laser to the semiconductor laser, an optical waveguide that optically couples between the semiconductor laser and the diffraction grating, and Temperature control means for periodically varying the temperature of the semiconductor laser, the diffraction grating, or the optical waveguide.
  • the temperature control means is preferably a Peltier element connected to the semiconductor laser, the diffraction grating, or the optical waveguide, and controlling the temperature of the semiconductor laser, the diffraction grating, or the optical waveguide.
  • the Peltier element does not require a moving part as a refrigerant, and the structure can be simplified because temperature control is easy.
  • a semiconductor laser device that outputs light while giving mechanical periodic fluctuations includes: a semiconductor laser that generates light; and an optical device for the semiconductor laser.
  • the vibration means is a piezo element connected to the optical waveguide or the diffraction grating. Since electrical signals are directly converted into vibrations, it is possible to reduce the size and control the frequency easily.
  • a semiconductor laser device in which return light that fluctuates in a periodic or non-periodic variation is incident on the semiconductor laser includes: a semiconductor laser that generates light; A diffraction grating that is optically coupled to the semiconductor laser and reflects a part of light of a predetermined wavelength out of the light from the semiconductor laser to the semiconductor laser; and an optical path between the semiconductor laser and the diffraction grating. And a return light control means for entering the return light whose light intensity or wavelength fluctuates periodically or non-periodically at the light emitting portion of the semiconductor laser.
  • the return light control unit may directly enter the return light into a portion that emits light of the semiconductor laser, or may enter the portion that emits light of the semiconductor laser through the diffraction grating. .
  • the semiconductor laser is changed from a low output to a high output by outputting light by periodically changing the temperature, outputting light by giving a mechanical periodic change, or irradiating the semiconductor laser with the return light.
  • Multi-mode oscillation up to the output eliminates the transition from single mode to multi mode in the vertical mode and eliminates the IL characteristic kink.
  • the present invention provides an IL characteristic semiconductor laser device in which the current and the optical output are proportional to each other and the semiconductor laser device.
  • the driving method can be provided.
  • the periodic fluctuation of the temperature control means or the vibration means in the semiconductor laser device is sinusoidal.
  • the present invention can provide a semiconductor laser device having an IL characteristic in which current and optical output are proportional to each other and a driving method thereof.
  • the semiconductor laser device according to the present invention By driving the semiconductor laser device according to the present invention by the driving method according to the present invention, the supplied current and the optical output are proportional to each other. Therefore, the semiconductor laser device according to the present invention is used as a light source such as an image application device. Can be used for
  • FIG. 1 is a block diagram showing a configuration of a semiconductor laser device according to the present invention.
  • FIG. 2 is an IL characteristic of the semiconductor laser device according to the present invention.
  • FIG. 3 is a block diagram showing a configuration of a semiconductor laser device according to the present invention.
  • FIG. 4 is a block diagram showing a configuration of a semiconductor laser device according to the present invention.
  • FIG. 5 is a block diagram showing a configuration of a semiconductor laser device according to the present invention.
  • FIG. 6 is a block diagram showing a configuration of a semiconductor laser device according to the present invention.
  • FIG. 7 is a block diagram showing a configuration of a conventional semiconductor laser device.
  • FIG. 8 IL characteristics of a conventional semiconductor laser device.
  • FIG. 9 is a block diagram showing a configuration of a semiconductor laser device according to the present invention.
  • the present embodiment includes a semiconductor laser that generates light, a diffraction grating that is optically coupled to the semiconductor laser and reflects a part of light having a predetermined wavelength out of the light from the semiconductor laser to the semiconductor laser, and
  • a semiconductor laser device comprising: an optical waveguide that optically couples between a semiconductor laser and the diffraction grating; and a temperature control unit that periodically varies the temperature of the semiconductor laser, the diffraction grating, or the optical waveguide.
  • the temperature control means is a Peltier element that is connected to the semiconductor laser, the diffraction grating, or the optical waveguide and controls the temperature of the semiconductor laser, the diffraction grating, or the optical waveguide.
  • FIG. 1 is a block diagram showing a configuration of the semiconductor laser device 101 of the present embodiment.
  • the semiconductor laser device 101 includes a power source 10, a Peltier element 11, a semiconductor laser 12, an optical waveguide 13, and a diffraction grating 14.
  • the Peltier element 11 is an element that cools the surface with a supplied current, and the surface temperature varies with the current value. In some cases, the surface temperature of the Peltier element 11 varies with voltage or power.
  • the semiconductor laser 12 generates light having a wavelength corresponding to the band gap of the active layer by the supplied current.
  • the semiconductor laser 12 may generate light by voltage or power.
  • the optical waveguide 13 confines light inside and propagates from one to the other.
  • An example of the optical waveguide 13 is an optical fiber planar optical waveguide.
  • the diffraction grating 14 reflects light of a predetermined wavelength in the incident direction.
  • a fiber Bragg grating (FBG) may be used as the diffraction grating 14.
  • the power supply 10 has a semiconductor laser driving unit that supplies a current for driving the semiconductor laser 12.
  • the semiconductor laser driver controls the current value in order to control the intensity of light generated by the semiconductor laser 12.
  • the semiconductor laser driving unit may drive the semiconductor laser 12 with voltage or power.
  • the power supply 10 may have a circuit that monitors the light intensity output from the semiconductor laser device 101 and feeds back the result to the semiconductor laser driving unit.
  • the power supply 10 has a Peltier element driving unit that supplies a current to drive the Peltier element 11. Since the Peltier element driving section periodically varies the temperature of the Peltier element 11, it has a function of periodically varying the current value. For example, the Peltier element driving unit can add a sine wave of ⁇ Isin cot generated by a high-frequency generation circuit to the steady current Io and supply it to the Peltier element 11. The Peltier element driving unit may drive the Peltier element 11 with voltage or power.
  • the power supply 10 may have a circuit that measures the surface temperature of the semiconductor laser 12 and the Peltier element 11 and feeds back the result to the Peltier element driving unit.
  • the power source 10 is connected to the Peltier element 11 and the semiconductor laser 12.
  • the cooling surface of the Peltier element 11 is connected to the semiconductor laser 12.
  • the semiconductor laser 12 may be in direct contact.
  • the semiconductor laser 12 may be connected via a substrate such as a metal plate.
  • One end of the optical waveguide 13 is connected to the light emitting end of the semiconductor laser 12.
  • a diffraction grating 14 is connected to the other end of the optical waveguide 13.
  • the semiconductor laser 12 and the diffraction grating 14 are optically coupled by an optical waveguide 13 to provide a semiconductor laser.
  • a method of driving the semiconductor laser device 101 for generating a light having the predetermined wavelength by reflecting a part of the light having a predetermined wavelength out of the light generated by the semiconductor laser 12 with the diffraction grating 14 is as follows. It is characterized in that light is output while periodically changing the temperature.
  • the semiconductor laser device 101 operates as described for the semiconductor laser device 100 of FIG. Furthermore, by supplying a current including a sine wave of the Peltier element driving unit of the power supply 10, the temperature of the cooling surface of the Peltier element 11 periodically varies, and the temperature of the semiconductor laser 12 also varies periodically. Therefore, the semiconductor laser 12 oscillates in a multimode from a low output to a high output.
  • FIG. 2 shows the IL characteristics of the semiconductor laser device 101. As shown in FIG. 2, there is no kink in the IL characteristic, and the current supplied to the semiconductor laser 12 and the optical output of the output light 70 are proportional. Therefore, the semiconductor laser device 101 can be used as a light source such as an image application device that is sensitive to a change in light intensity with a force S.
  • the light from the semiconductor laser 12 connected to the semiconductor laser device 101 by the optical waveguide 13 passes through the air and is coupled to the diffraction grating 14, or the diffraction grating 14 is directly connected to the output end of the semiconductor laser 12. Even in this case, the same effect can be obtained.
  • FIG. 3 is a block diagram showing the configuration of the semiconductor laser device 103 of the present embodiment.
  • the same reference numerals as those used in FIG. 1 denote the same components.
  • the difference between the semiconductor laser device 103 and the semiconductor laser device 101 of FIG. 1 is that the semiconductor laser device 103 includes a Peltier element 31.
  • the Peltier element 31 is the same element as the Peltier element 11, but is connected to the optical waveguide 13.
  • the force S described so as to cover the optical waveguide 13 may be in contact with the optical waveguide 13 or through a substrate such as a metal. Further, a current including a sine wave is also supplied to the Peltier element 31 from the Peltier element driving unit of the power source 10.
  • the semiconductor laser device 103 operates in the same manner as the semiconductor laser device 101 of FIG. Furthermore, by supplying a current including a sine wave of the Peltier element driving unit of the power supply 10, the temperature of the cooling surface of the Peltier element 31 periodically varies, and the temperature of the optical waveguide 13 also varies periodically. Therefore, the longitudinal mode of light propagating through the optical waveguide 13 is multi. Therefore, the IL characteristic of the semiconductor laser device 103 is as shown in FIG. 2, and the semiconductor laser device 103 can obtain the same effect as the semiconductor laser device 101 of FIG.
  • the Peltier element 11 may be controlled so that the temperature of the semiconductor laser 12 becomes constant. Since the temperature of the semiconductor laser 12 is constant, the wavelength of light generated by the semiconductor laser 12 is low.
  • light from the semiconductor laser 12 connected to the semiconductor laser device 103 by the optical waveguide 13 passes through the air and is coupled to the diffraction grating 14 or is diffracted at the output end of the semiconductor laser 12.
  • the grating 14 is directly connected, the same effect can be obtained by bringing a Peltier element into contact with the light emitting end of the semiconductor laser 12 or the light incident end of the diffraction grating 14 to give a periodic temperature change. You can get power.
  • FIG. 4 is a block diagram showing the configuration of the semiconductor laser device 104 of the present embodiment.
  • the same reference numerals as those used in FIG. 1 denote the same components.
  • the difference between the semiconductor laser device 104 and the semiconductor laser device 101 of FIG. 1 is that the semiconductor laser device 104 includes a Peltier element 41.
  • the Peltier element 41 is connected to the force S and diffraction grating 14 which are the same elements as the Peltier element 11.
  • the Peltier element 41 may be in direct contact with the diffraction grating 14, but may be in contact with a metal substrate. Further, a current including a sine wave is also supplied to the Peltier element 41 from the Peltier element driving unit of the power source 10.
  • the Peltier element 41 gives a periodic temperature change to the diffraction grating 14, the longitudinal mode of the light reflected by the diffraction grating 14 becomes multi. Accordingly, the IL characteristic of the semiconductor laser device 104 is as shown in FIG. 2, and the semiconductor laser device 104 can obtain the same effects as those of the semiconductor laser device 101 of FIG. 1 and the semiconductor laser device 103 of FIG.
  • the present embodiment includes a semiconductor laser that generates light, a diffraction grating that is optically coupled to the semiconductor laser and reflects a part of light having a predetermined wavelength out of the light from the semiconductor laser to the semiconductor laser, and
  • a semiconductor laser device comprising: an optical waveguide that optically couples between a semiconductor laser and the diffraction grating; and vibration means that applies mechanical periodic fluctuations to the optical waveguide or the diffraction grating.
  • the vibration means is a piezo element connected to the optical waveguide or the diffraction grating.
  • FIG. 5 is a block diagram showing a configuration of the semiconductor laser device 105 of the present embodiment.
  • the same reference numerals as those used in FIG. 1 denote the same components.
  • the difference between the semiconductor laser device 105 and the semiconductor laser device 101 of FIG. 1 is that the semiconductor laser device 105 includes a piezo element 51 as a means of mechanical periodic fluctuation, and the power source 10 includes a piezo element driver. There is a moving part.
  • the piezo element 51 is a piezoelectric element that expands and contracts due to voltage fluctuations.
  • the piezo element 51 is connected to the optical waveguide 13.
  • the piezo element 51 is electrically connected to the power source 10, and a sine wave voltage of soil Vsin cot is applied as a periodic fluctuation. Due to this voltage, the piezo element 51 vibrates with a sine wave as a mechanical periodic fluctuation, and transmits the vibration to the optical waveguide 13.
  • the semiconductor laser 12 and the diffraction grating 14 are optically coupled by the optical waveguide 13, and the semiconductor laser
  • a method of driving the semiconductor laser device 105 that generates a light having the predetermined wavelength by reflecting a part of the light having a predetermined wavelength out of the light generated in the semiconductor laser 12 with the diffraction grating 14 is mechanically applied to the optical waveguide 13. It is characterized in that light is output while giving periodic fluctuations.
  • the semiconductor laser device 105 operates as described for the semiconductor laser device 100 of FIG. 7, and outputs the output light 70. Further, when the piezo element 51 applies vibration to the optical waveguide 13, the longitudinal mode of the propagating light becomes multi. Accordingly, the IL characteristic of the semiconductor laser device 105 is as shown in FIG. 2, and the semiconductor laser device 105 can be obtained with the force S to obtain the same effect as the semiconductor laser device 101 of FIG.
  • the semiconductor laser device 105 uses the optical waveguide 13 to multiplex the longitudinal modes of the light, as described in the semiconductor laser device 103 in FIG. 3, the Peltier so that the temperature of the semiconductor laser 12 becomes constant.
  • the element 11 may be controlled to stabilize the wavelength of light generated by the semiconductor laser 12.
  • FIG. 6 is a block diagram showing a configuration of the semiconductor laser device 106 of the present embodiment.
  • the same reference numerals as those used in FIGS. 1 and 5 indicate the same components.
  • the difference between the semiconductor laser device 106 and the semiconductor laser device 105 of FIG. 5 is that the semiconductor laser device 106 does not include the piezo element 51 but includes the piezo element 61.
  • the piezo element 61 is connected to the force S and the diffraction grating 14 which are the same elements as the piezo element 51. Similarly to the piezo element 51, a sine wave voltage is applied to the piezo element 61 from the piezo element drive unit of the power supply 10.
  • the semiconductor laser device 106 operates in the same manner as the semiconductor laser device 101 of FIG. Further, when the piezo element 61 applies vibration to the diffraction grating 14, the light reflected by the diffraction grating 14 is reflected. The vertical mode is multi. Therefore, the IL characteristics of the semiconductor laser device 106 are as shown in FIG. 2, and the semiconductor laser device 106 can obtain the same effects as the semiconductor laser device 101 of FIG. 1 and the semiconductor laser device 105 of FIG.
  • FIG. 9 is a block diagram showing a configuration of the semiconductor laser device 107 of the present embodiment.
  • the same reference numerals as those used in FIG. 1 denote the same components.
  • the difference between the semiconductor laser device 107 and the semiconductor laser device 101 of FIG. 1 is that the return light 71 whose light intensity or wavelength varies periodically or aperiodically is incident on the light emitting portion of the semiconductor laser 12. is there.
  • the return light 71 may be generated by return light control means (not shown) provided in the semiconductor laser device 107. Further, it may be made incident as return light 72 from the output light side of the diffraction grating 14 by a return light control means (not shown) provided outside the semiconductor laser device 107.
  • the return light 72 propagates through the optical waveguide 13 and enters the part where the light of the semiconductor laser 12 is emitted as the return light 71.
  • the return light control means is a light source whose light intensity and wavelength can be varied.
  • a reflecting plate that can change the intensity of the reflected light may be used.
  • the semiconductor laser devices 101, 103, 104, 105, 106, and 107 can obtain IL characteristics in which current and light output are proportional.
  • the periodic fluctuations of temperature and vibration described in the above description may be non-periodic with a fluctuation equivalent to the response speed of the element to which these fluctuations are applied.
  • the driving method of the semiconductor laser device according to the present invention can also be applied to a gas laser, a liquid laser, and a solid-state laser that are not limited to the semiconductor laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

明 細 書
半導体レーザ装置及びその駆動方法
技術分野
[0001] 本発明は、半導体レーザで発生した光のうち所定波長の光の一部を回折格子で半 導体レーザへ反射して所定波長の光を発生させる半導体レーザ装置及びその駆動 方法に関するものである。
背景技術
[0002] 半導体レーザが出力する光の波長は、半導体レーザの温度変化で大きく変動する ことが知られている。そのため、半導体レーザ装置ではペルチェ素子等による半導体 レーザの温度を所定温度に維持させて出力光の波長を安定させている(例えば、特 許文献 1参照。)。
[0003] 図 7に従来の外部共振器型の半導体レーザ装置 100の構成を示す。半導体レー ザ装置 100は、電源 10、ペルチェ素子 11、半導体レーザ 12、光導波路 13及び回折 格子 14を含む。半導体レーザ装置 100は以下のように動作する。電源 10から半導 体レーザ 12へ電流が供給され光が発生する。また、電源 10からペルチェ素子 11に 電流が供給され、半導体レーザ 12を所定温度に保つ。発生した光は半導体レーザ 1 2の出射端から光導波路 13へ結合され、当該光は回折格子 14へ伝搬される。回折 格子 14は外部共振器として所定波長の光の一部を反射して、当該波長のみを共振 させる。半導体レーザ装置 100はペルチヱ素子 11により半導体レーザ 12で発生す る光の波長が安定し、回折格子 14により出力光 70の波長選択性が高くなる。
特許文献 1:特開平 06— 188503号公報
発明の開示
発明が解決しょうとする課題
[0004] 半導体レーザ装置 100の電流一光出力特性 (IL特性)を図 8に示す。電流を増加 させると光出力も増加するが、一定の電流値を超えると光出力が不安定 (キンク)とな る。これは、前述のように半導体レーザを一定温度で動作させた結果、縦モードが外 乱に敏感になり、縦モードがシングルからマルチに移行すると推定される。特にィメー ジ応用装置等は光強度のキンクがノイズとなるため、このような IL特性の半導体レー ザ装置 100を利用することが困難であるという課題があった。
[0005] そこで、係る課題を解決するため、本発明は、全電流域において安定に動作する 半導体レーザ装置及びその駆動方法を提供することを目的とする。
課題を解決するための手段
[0006] 発明者らは、様々な実験を重ね、半導体レーザ、光導波路若しくは回折格子の温 度に周期的変動を与えること、光導波路若しくは回折格子に機械的な周期的変動を 与えること又は半導体レーザに戻り光を入射させることで、半導体レーザはシングル モード発振とマルチモード発振との間を移行することなぐ低出力から高出力までマ ルチモード発振することを発見した。本発明はこの発見を基に発明されたものである
[0007] 上記目的を達成するために、本発明に係る半導体レーザ装置は半導体レーザ、光 導波路若しくは回折格子の温度を周期的に変動させつつ光を出力する又は光導波 路若しくは回折格子に機械的な周期的変動をさせつつ光を出力することとした。
[0008] 具体的には、本発明は、半導体レーザと回折格子とを光導波路で光学的に結合し 、前記半導体レーザで発生した光のうち所定波長の光の一部を前記回折格子で前 記半導体レーザへ反射して前記所定波長の光を発生させる半導体レーザ装置の駆 動方法において、前記半導体レーザ、前記回折格子若しくは前記光導波路の温度 に周期的変動を与えながら、前記光導波路若しくは前記回折格子に機械的な周期 的変動を与えながら又は前記半導体レーザの光を出射する部分に周期的若しくは 非周期的に光強度又は波長が変動する戻り光を入射させながら光を出力することを 特徴とする半導体レーザ装置の駆動方法である。
[0009] 本発明に係る半導体レーザ装置の駆動方法のうち、温度を周期的に変動させつつ 光を出力する半導体レーザ装置は、光を発生する半導体レーザと、前記半導体レー ザに光学的に結合され、前記半導体レーザからの光のうち所定波長の光の一部を前 記半導体レーザへ反射する回折格子と、前記半導体レーザと前記回折格子との間を 光学的に結合する光導波路と、前記半導体レーザ、前記回折格子又は前記光導波 路の温度に周期的変動を与える温度制御手段と、を備える。 [0010] 前記温度制御手段は、前記半導体レーザ、前記回折格子又は前記光導波路に接 続され、前記半導体レーザ、前記回折格子又は前記光導波路の温度を制御するぺ ルチェ素子であることが好ましい。ペルチェ素子は、冷媒ゃ可動部が不要であり、温 度制御が容易のため構造を簡素化することができる。
[0011] 一方、本発明に係る半導体レーザ装置の駆動方法のうち、機械的な周期的変動を 与えながら光を出力する半導体レーザ装置は、光を発生する半導体レーザと、前記 半導体レーザに光学的に結合され、前記半導体レーザからの光のうち所定波長の光 の一部を前記半導体レーザへ反射する回折格子と、前記半導体レーザと前記回折 格子との間を光学的に結合する光導波路と、前記光導波路又は前記回折格子に機 械的な周期的変動を与える振動手段と、を備える。
[0012] 前記振動手段は、前記光導波路又は前記回折格子に接続されたピエゾ素子であ ること力 S好ましい。電気信号を直接振動に変換するため、小型化が可能で且つ振動 数の制御が容易である。
[0013] また、本発明に係る半導体レーザ装置の駆動方法のうち、周期的又は非周期的な 変動に変動する戻り光が半導体レーザに入射する半導体レーザ装置は、光を発生 する半導体レーザと、前記半導体レーザに光学的に結合され、前記半導体レーザか らの光のうち所定波長の光の一部を前記半導体レーザへ反射する回折格子と、前記 半導体レーザと前記回折格子との間を光学的に結合する光導波路と、前記半導体レ 一ザの光を出射する部分に周期的若しくは非周期的に光強度又は波長が変動する 戻り光を入射する戻り光制御手段と、を備える。
[0014] 前記戻り光制御手段は、直接前記半導体レーザの光を出射する部分に前記戻り光 を入射してもよく、前記回折格子を通して前記半導体レーザの光を出射する部分に 入射してもよい。
[0015] 温度を周期的に変動させて光を出力すること、機械的周期的変動を与えて光を出 力すること又は半導体レーザに戻り光を照射することで、半導体レーザは低出力から 高出力までマルチモード発振するため、縦モードのシングルからマルチへの移行が 無くなり IL特性のキンクが解消する。
[0016] 従って、本発明は、電流と光出力とが比例する IL特性の半導体レーザ装置及びそ の駆動方法を提供することができる。
[0017] また、温度変動又は機械的変動の周期を制御しやすくするため、前記半導体レー ザ装置における前記温度制御手段又は前記振動手段の前記周期的変動は正弦波 状であることが好ましい。
[0018] 従って、本発明は、電流と光出力とが比例する IL特性の半導体レーザ装置及びそ の駆動方法を提供することができる。
発明の効果
[0019] 本発明に係る半導体レーザ装置を本発明に係る駆動方法で駆動することで、供給 する電流と光出力とが比例するため、本発明に係る半導体レーザ装置をイメージ応 用装置等の光源に使用することができる。
図面の簡単な説明
[0020] [図 1]本発明に係る半導体レーザ装置の構成を示すブロック図である。
[図 2]本発明に係る半導体レーザ装置の IL特性である。
[図 3]本発明に係る半導体レーザ装置の構成を示すブロック図である。
[図 4]本発明に係る半導体レーザ装置の構成を示すブロック図である。
[図 5]本発明に係る半導体レーザ装置の構成を示すブロック図である。
[図 6]本発明に係る半導体レーザ装置の構成を示すブロック図である。
[図 7]従来の半導体レーザ装置の構成を示すブロック図である。
[図 8]従来の半導体レーザ装置の IL特性である。
[図 9]本発明に係る半導体レーザ装置の構成を示すブロック図である。
符号の説明
[0021] 図面において使用されている符号は以下の通りである。
100、 皿、 103、 104、 105、 106、 107 半導体レーザ装置
10 電源
11、 31、 41 ペルチェ素子
12 半導体レーザ
13 光導波路
14 回折格子 51、 61 ピエゾ素子
70 出力光
71、 72 戻り光
A シングルモード領域
B マノレチモード領域
発明を実施するための最良の形態
[0022] 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態 は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。
[0023] (実施の形態 1)
本実施形態は、光を発生する半導体レーザと、前記半導体レーザに光学的に結合 され、前記半導体レーザからの光のうち所定波長の光の一部を前記半導体レーザへ 反射する回折格子と、前記半導体レーザと前記回折格子との間を光学的に結合する 光導波路と、前記半導体レーザ、前記回折格子又は前記光導波路の温度に周期的 変動を与える温度制御手段と、を備える半導体レーザ装置である。
[0024] また、前記温度制御手段は、前記半導体レーザ、前記回折格子又は前記光導波 路に接続され、前記半導体レーザ、前記回折格子又は前記光導波路の温度を制御 するペルチェ素子である。
[0025] 図 1は、本実施形態の半導体レーザ装置 101の構成を示すブロック図である。半導 体レーザ装置 101は電源 10、ペルチェ素子 11、半導体レーザ 12、光導波路 13及 び回折格子 14を含む。
[0026] ペルチェ素子 11は、供給される電流で表面を冷却する素子であり、表面温度は電 流値で変化する。ペルチェ素子 11の表面温度が電圧又は電力で変化する場合もあ る。半導体レーザ 12は、供給された電流により活性層のバンドギャップに応じた波長 の光を発生する。半導体レーザ 12は電圧又は電力で光を発生する場合もある。光導 波路 13は光を内部に閉じ込めて一方から他方へ伝搬する。光導波路 13として光フ アイバゃプレーナ型光導波路が例示できる。回折格子 14は所定の波長の光を入射 方向へ反射する。回折格子 14としてファイバブラッググレーティング (FBG)を使用し てもよい。 [0027] 電源 10は、半導体レーザ 12を駆動する電流を供給する半導体レーザ駆動部を持 つ。半導体レーザ駆動部は半導体レーザ 12で発生する光の強度を制御するため、 電流値を制御する。なお、半導体レーザ駆動部は半導体レーザ 12を電圧又は電力 で駆動してもよい。また、電源 10は、半導体レーザ装置 101から出力される光強度を モニタし、その結果を半導体レーザ駆動部にフィードバックする回路を有していてもよ い。
[0028] また、電源 10は、ペルチェ素子 11を駆動するため電流を供給するペルチェ素子駆 動部を持つ。前記ペルチェ素子駆動部はペルチェ素子 11の温度を周期的に変動さ せるため、電流値を周期的に変動させる機能を持つ。例えば、前記ペルチェ素子駆 動部は定常電流 Ioに高周波発生回路で発生させた ± Isin co tの正弦波を加算して ペルチェ素子 11に供給すること力 Sできる。ペルチェ素子駆動部はペルチェ素子 11を 電圧又は電力で駆動してもよい。また、電源 10は、半導体レーザ 12やペルチヱ素子 11の表面温度を測定し、その結果をペルチェ素子駆動部にフィードバックする回路 を有していてもよい。
[0029] 電源 10はペルチェ素子 11と半導体レーザ 12とに接続される。ペルチェ素子 11は 冷却面が半導体レーザ 12に接続している。半導体レーザ 12に直接接触してもよぐ 金属板等の基板を介して半導体レーザ 12に接続してもよい。半導体レーザ 12の光 の出射端に光導波路 13の一端が接続される。光導波路 13の他端には回折格子 14 が接続される。
[0030] 半導体レーザ 12と回折格子 14とを光導波路 13で光学的に結合し、半導体レーザ
12で発生した光のうち所定波長の光の一部を回折格子 14で半導体レーザ 12へ反 射して前記所定波長の光を発生させる半導体レーザ装置 101の駆動方法は、半導 体レーザ 12の温度に周期的変動を与えながら光を出力することに特徴がある。
[0031] 半導体レーザ装置 101は、図 7の半導体レーザ装置 100で説明したように動作して 出力光 70を出力する。さらに、電源 10の前記ペルチェ素子駆動部の正弦波を含む 電流の供給により、ペルチェ素子 11の冷却面の温度が周期的に変動し、半導体レ 一ザ 12の温度も周期的に変動する。そのため、半導体レーザ 12は低出力から高出 力までマルチモード発振する。 [0032] 半導体レーザ装置 101の IL特性を図 2に示す。図 2に示すように、 IL特性にキンク は生じず、半導体レーザ 12に供給する電流と出力光 70の光出力とは比例している。 従って、半導体レーザ装置 101は、光強度の変化に敏感なイメージ応用装置等の光 源、として禾 IJ用すること力 Sでさる。
[0033] なお、半導体レーザ装置 101に光導波路 13がなぐ半導体レーザ 12からの光が気 中を通過して回折格子 14へ結合される場合又は半導体レーザ 12の出射端に回折 格子 14が直接接続している場合であっても同様の効果を得ることができる。
[0034] (実施の形態 2)
図 3は、本実施形態の半導体レーザ装置 103の構成を示すブロック図である。図 3 において図 1で使用した符号と同じ符号は同じ構成要素を示す。半導体レーザ装置 103と図 1の半導体レーザ装置 101との違いは、半導体レーザ装置 103にペルチェ 素子 31が含まれることである。
[0035] ペルチヱ素子 31はペルチヱ素子 11と同様の素子であるが、光導波路 13に接続さ れている。図 3では光導波路 13を覆うように記載している力 S、光導波路 13と接触又は 金属等の基板を介して接触してもよい。さらに、ペルチェ素子 31にも電源 10の前記 ペルチェ素子駆動部から正弦波を含む電流が供給される。
[0036] 半導体レーザ装置 103は、図 1の半導体レーザ装置 101と同様に動作する。さらに 、電源 10の前記ペルチェ素子駆動部の正弦波を含む電流の供給により、ペルチェ 素子 31の冷却面の温度が周期的に変動し、光導波路 13の温度も周期的に変動す る。そのため、光導波路 13を伝搬する光の縦モードがマルチとなる。従って、半導体 レーザ装置 103の IL特性は図 2のようになり、半導体レーザ装置 103は図 1の半導体 レーザ装置 101と同様の効果が得られる。
[0037] また、半導体レーザ装置 103は光導波路 13で光の縦モードをマルチ化しているた め、半導体レーザ 12の温度が一定になるようにペルチェ素子 11を制御してもよい。 半導体レーザ 12の温度が一定のため、半導体レーザ 12で発生する光の波長が安 疋 。
[0038] なお、半導体レーザ装置 103に光導波路 13がなぐ半導体レーザ 12からの光が気 中を通過して回折格子 14へ結合される場合又は半導体レーザ 12の出射端に回折 格子 14が直接接続している場合は、半導体レーザ 12の光の出射端又は回折格子 1 4の光の入射端にペルチェ素子を接触させて周期的温度変化を与えることで同様の ¾]果を得ること力できる。
[0039] (実施の形態 3)
図 4は、本実施形態の半導体レーザ装置 104の構成を示すブロック図である。図 4 において図 1で使用した符号と同じ符号は同じ構成要素を示す。半導体レーザ装置 104と図 1の半導体レーザ装置 101との違いは、半導体レーザ装置 104にペルチェ 素子 41が含まれることである。
[0040] ペルチェ素子 41はペルチェ素子 11と同様の素子である力 S、回折格子 14に接続さ れている。ペルチェ素子 41は回折格子 14と直接接触してもよいが、金属等の基板を 介して接触してもよい。さらに、ペルチェ素子 41にも電源 10の前記ペルチェ素子駆 動部から正弦波を含む電流が供給される。
[0041] ペルチェ素子 41が回折格子 14に周期的温度変化を与えることで、回折格子 14で 反射する光の縦モードがマルチとなる。従って、半導体レーザ装置 104の IL特性は 図 2のようになり、半導体レーザ装置 104は図 1の半導体レーザ装置 101及び図 3の 半導体レーザ装置 103の効果と同様の効果を得ることができる。
[0042] (実施の形態 4)
本実施形態は、光を発生する半導体レーザと、前記半導体レーザに光学的に結合 され、前記半導体レーザからの光のうち所定波長の光の一部を前記半導体レーザへ 反射する回折格子と、前記半導体レーザと前記回折格子との間を光学的に結合する 光導波路と、前記光導波路又は前記回折格子に機械的な周期的変動を与える振動 手段と、を備える半導体レーザ装置である。
[0043] また、前記振動手段は、前記光導波路又は前記回折格子に接続されたピエゾ素子 である。
[0044] 図 5は、本実施形態の半導体レーザ装置 105の構成を示すブロック図である。図 5 において図 1で使用した符号と同じ符号は同じ構成要素を示す。半導体レーザ装置 105と図 1の半導体レーザ装置 101との違いは、半導体レーザ装置 105に機械的な 周期的変動の手段としてピエゾ素子 51が含まれること及び電源 10にピエゾ素子駆 動部があることである。
[0045] ピエゾ素子 51は、電圧の変動で伸縮する圧電素子である。ピエゾ素子 51は光導 波路 13と接続している。また、ピエゾ素子 51は電源 10と電気的に接続され、周期的 変動として土 Vsin co tの正弦波の電圧が印加される。この電圧によりピエゾ素子 51は 機械的な周期的変動として正弦波で振動し、その振動を光導波路 13に伝達する。
[0046] 半導体レーザ 12と回折格子 14とを光導波路 13で光学的に結合し、半導体レーザ
12で発生した光のうち所定波長の光の一部を回折格子 14で半導体レーザ 12へ反 射して前記所定波長の光を発生させる半導体レーザ装置 105の駆動方法は、光導 波路 13に機械的な周期的変動を与えながら光を出力することに特徴がある。
[0047] 半導体レーザ装置 105は、図 7の半導体レーザ装置 100で説明したように動作して 出力光 70を出力する。さらに、ピエゾ素子 51が光導波路 13に振動を加えることで、 伝搬する光の縦モードがマルチとなる。従って、半導体レーザ装置 105の IL特性は 図 2のようになり、半導体レーザ装置 105は図 1の半導体レーザ装置 101と同様の効 果を得ること力 Sでさる。
[0048] また、半導体レーザ装置 105は光導波路 13で光の縦モードをマルチ化しているた め、図 3の半導体レーザ装置 103で説明したように半導体レーザ 12の温度が一定に なるようにペルチェ素子 11を制御し、半導体レーザ 12で発生する光の波長を安定さ せてもよい。
[0049] (実施の形態 5)
図 6は、本実施形態の半導体レーザ装置 106の構成を示すブロック図である。図 6 において図 1及び図 5で使用した符号と同じ符号は同じ構成要素を示す。半導体レ 一ザ装置 106と図 5の半導体レーザ装置 105との違いは、半導体レーザ装置 106に ピエゾ素子 51がなく、ピエゾ素子 61が含まれることである。
[0050] ピエゾ素子 61はピエゾ素子 51と同様の素子である力 S、回折格子 14に接続されて いる。ピエゾ素子 61にもピエゾ素子 51と同様に電源 10の前記ピエゾ素子駆動部か ら正弦波の電圧が印加される。
[0051] 半導体レーザ装置 106は、図 1の半導体レーザ装置 101と同様に動作する。さらに 、ピエゾ素子 61が回折格子 14に振動を加えることで、回折格子 14で反射する光の 縦モードがマルチとなる。従って、半導体レーザ装置 106の IL特性は図 2のようにな り、半導体レーザ装置 106は図 1の半導体レーザ装置 101及び図 5の半導体レーザ 装置 105と同様の効果を得ることができる。
[0052] (実施の形態 6)
図 9は、本実施形態の半導体レーザ装置 107の構成を示すブロック図である。図 9 において図 1で使用した符号と同じ符号は同じ構成要素を示す。半導体レーザ装置 107と図 1の半導体レーザ装置 101の違いは、半導体レーザ 12の光を出射する部分 に周期的若しくは非周期的に光強度又は波長が変動する戻り光 71が入射されてい ることである。戻り光 71は、半導体レーザ装置 107が備える戻り光制御手段(不図示 )により生成してもよい。また、半導体レーザ装置 107の外部に備える戻り光制御手 段(不図示)により回折格子 14の出力光側から戻り光 72として入射してもよい。戻り 光 72は光導波路 13を伝搬し、戻り光 71として半導体レーザ 12の光を出射する部分 に入射する。例えば、戻り光制御手段は光強度や波長を可変できる光源である。反 射する光強度を可変できる反射板であってもよい。戻り光 71が半導体レーザ 12の光 を出射する部分に入射されると、半導体レーザ 12は常に縦モードがマルチモード発 振するため、図 2のような I— L特性を得ることができる。
[0053] 以上説明したように、半導体レーザ装置 101、 103、 104、 105、 106及び 107は電 流と光出力とが比例する IL特性が得られる。なお、以上の説明で述べた温度や振動 の周期的変動は、それら変動を加える素子の応答速度と同程度の変動でよぐ非周 期的であってもよい。
産業上の利用可能性
[0054] 本発明に係る半導体レーザ装置の駆動方法は、半導体レーザだけでなぐガスレ 一ザ、液体レーザ、固体レーザにも応用することができる。

Claims

請求の範囲
[1] 光を発生する半導体レーザと、
前記半導体レーザに光学的に結合され、前記半導体レーザからの光のうち所定波 長の光の一部を前記半導体レーザへ反射する回折格子と、
前記半導体レーザと前記回折格子との間を光学的に結合する光導波路と、 前記半導体レーザ、前記回折格子又は前記光導波路の温度に周期的変動を与え る温度制御手段と、
を備える半導体レーザ装置。
[2] 前記温度制御手段は、前記半導体レーザ、前記回折格子又は前記光導波路に接 続され、前記半導体レーザ、前記回折格子又は前記光導波路の温度を制御するぺ ルチェ素子であることを特徴とする請求項 1に記載の半導体レーザ装置。
[3] 光を発生する半導体レーザと、
前記半導体レーザに光学的に結合され、前記半導体レーザからの光のうち所定波 長の光の一部を前記半導体レーザへ反射する回折格子と、
前記半導体レーザと前記回折格子との間を光学的に結合する光導波路と、 前記光導波路又は前記回折格子に機械的な周期的変動を与える振動手段と、 を備える半導体レーザ装置。
[4] 前記振動手段は、前記光導波路又は前記回折格子に接続されたピエゾ素子であ ることを特徴とする請求項 3に記載の半導体レーザ装置。
[5] 請求項 1若しくは 2に記載の半導体レーザ装置における前記温度制御手段又は請 求項 3若しくは 4に記載の半導体レーザ装置における前記振動手段の前記周期的変 動は正弦波状であることを特徴とする半導体レーザ装置。
[6] 半導体レーザと回折格子とを光導波路で光学的に結合し、前記半導体レーザで発 生した光のうち所定波長の光の一部を前記回折格子で前記半導体レーザへ反射し て前記所定波長の光を発生させる半導体レーザ装置の駆動方法において、 前記半導体レーザ、前記回折格子若しくは前記光導波路の温度に周期的変動を 与えながら、前記光導波路若しくは前記回折格子に機械的な周期的変動を与えな 力 ¾又は前記半導体レーザの光を出射する部分に周期的若しくは非周期的に光強 度又は波長が変動する戻り光を入射させながら光を出力することを特徴とする半導 体レーザ装置の駆動方法。
[7] 光を発生する半導体レーザと、
前記半導体レーザに光学的に結合され、前記半導体レーザからの光のうち所定波 長の光の一部を前記半導体レーザへ反射する回折格子と、
前記半導体レーザと前記回折格子との間を光学的に結合する光導波路と、 前記半導体レーザの光を出射する部分に周期的若しくは非周期的に光強度又は 波長が変動する戻り光を入射する戻り光制御手段と、
を備える半導体レーザ装置。
[8] 前記戻り光制御手段は、前記戻り光を前記回折格子を介して前記半導体レーザの 光を出射する部分に入射することを特徴とする請求項 7に記載の半導体レーザ装置
PCT/JP2007/066780 2006-10-20 2007-08-29 Dispositif laser à semi-conducteur, et son procédé de commande WO2008050537A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/442,726 US8102888B2 (en) 2006-10-20 2007-08-29 Semiconductor laser device and driving method of the same
JP2008540906A JPWO2008050537A1 (ja) 2006-10-20 2007-08-29 半導体レーザ装置及びその駆動方法
EP07806257A EP2077606A4 (en) 2006-10-20 2007-08-29 SEMICONDUCTOR LASER DEVICE AND ITS CONTROL METHOD
US13/326,078 US20120147910A1 (en) 2006-10-20 2011-12-14 Semiconductor laser device and driving method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-285795 2006-10-20
JP2006285795 2006-10-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/326,078 Division US20120147910A1 (en) 2006-10-20 2011-12-14 Semiconductor laser device and driving method of the same

Publications (1)

Publication Number Publication Date
WO2008050537A1 true WO2008050537A1 (fr) 2008-05-02

Family

ID=39324347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066780 WO2008050537A1 (fr) 2006-10-20 2007-08-29 Dispositif laser à semi-conducteur, et son procédé de commande

Country Status (4)

Country Link
US (2) US8102888B2 (ja)
EP (1) EP2077606A4 (ja)
JP (1) JPWO2008050537A1 (ja)
WO (1) WO2008050537A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164850A1 (ja) * 2011-06-02 2012-12-06 古河電気工業株式会社 レーザ装置および調整方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188503A (ja) 1992-12-18 1994-07-08 Olympus Optical Co Ltd 波長安定化装置
JP2000031603A (ja) * 1998-07-15 2000-01-28 Sumitomo Electric Ind Ltd 半導体発光モジュール
WO2001004999A1 (en) 1999-07-07 2001-01-18 Cyoptics Ltd. Laser wavelength stabilization
JP2002329925A (ja) * 2001-02-28 2002-11-15 Furukawa Electric Co Ltd:The 半導体レーザモジュール
JP2003332680A (ja) * 2002-05-08 2003-11-21 Furukawa Electric Co Ltd:The レーザモジュール
EP1503457A1 (de) 2003-07-30 2005-02-02 Yazaki Europe Ltd. Kontaktbuchse für einen Flachstecker

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2677543B1 (fr) * 1991-06-13 1993-09-24 Oreal Composition cosmetique filtrante a base d'acide benzene 1,4-di(3-methylidene-10-camphosulfonique) et de nanopigments d'oxydes metalliques.
US5265115A (en) * 1991-08-30 1993-11-23 Hoya Corporation Solid-state laser device having a feedback loop
JP3392931B2 (ja) * 1994-02-14 2003-03-31 東北パイオニア株式会社 光波長変換装置
US5485481A (en) * 1994-06-28 1996-01-16 Seastar Optics Inc. Fibre-grating-stabilized diode laser
DE69529378T2 (de) * 1994-09-14 2003-10-09 Matsushita Electric Industrial Co., Ltd. Verfahren zur Stabilisierung der Ausgangsleistung von höheren harmonischen Wellen und Laserlichtquelle mit kurzer Wellenlänge die dasselbe benutzt
EP0784881A4 (en) * 1994-10-03 1997-09-17 Sdl Inc TUNABLE BLUE LASER DIODE
US5835650A (en) * 1995-11-16 1998-11-10 Matsushita Electric Industrial Co., Ltd. Optical apparatus and method for producing the same
US6021141A (en) * 1996-03-29 2000-02-01 Sdl, Inc. Tunable blue laser diode
US5870417A (en) * 1996-12-20 1999-02-09 Sdl, Inc. Thermal compensators for waveguide DBR laser sources
US5898718A (en) * 1997-05-19 1999-04-27 Altos Inc. Method and apparatus for optimizing the output of a multi-peaked frequency harmonic generator
JP3337403B2 (ja) * 1997-09-19 2002-10-21 日本電信電話株式会社 周波数安定化レーザ
EP1067644B1 (en) * 1999-01-27 2014-07-30 Furukawa Electric Co., Ltd. Semiconductor laser module
US6707072B2 (en) 2001-02-28 2004-03-16 The Furukawa Electric Co., Ltd. Semiconductor laser module
JP3682417B2 (ja) * 2001-05-01 2005-08-10 古河電気工業株式会社 半導体レーザ装置、半導体レーザモジュールおよびこれを用いたラマン増幅器
US6829285B2 (en) * 2001-09-28 2004-12-07 The Furukawa Electric Co., Ltd. Semiconductor laser device and method for effectively reducing facet reflectivity
US7649921B2 (en) * 2002-05-08 2010-01-19 The Furukawa Electric Co., Ltd. Laser module
US6665321B1 (en) * 2002-12-31 2003-12-16 Intel Corporation Tunable laser operation with locally commensurate condition
DE10307524B4 (de) * 2003-02-21 2007-12-13 Litef Gmbh Hochstabile Breitband-Lichtquelle und dafür geeignetes Stabilisierungsverfahren
DE10339886B9 (de) * 2003-08-29 2009-02-26 Infineon Technologies Ag Verfahren zur Neusynchronisation eines Mobilfunkempfängers bei einem Umschalten zwischen zwei unterschiedlichen Modulationsverfahren
US20050281298A1 (en) * 2004-04-02 2005-12-22 K2 Optronics Analog external cavity laser
CA2547450A1 (en) * 2005-05-23 2006-11-23 Raman Kashyap Light source
US7295582B2 (en) * 2005-06-30 2007-11-13 Intel Corporation Thermo-optic tunable laser apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188503A (ja) 1992-12-18 1994-07-08 Olympus Optical Co Ltd 波長安定化装置
JP2000031603A (ja) * 1998-07-15 2000-01-28 Sumitomo Electric Ind Ltd 半導体発光モジュール
WO2001004999A1 (en) 1999-07-07 2001-01-18 Cyoptics Ltd. Laser wavelength stabilization
JP2002329925A (ja) * 2001-02-28 2002-11-15 Furukawa Electric Co Ltd:The 半導体レーザモジュール
JP2003332680A (ja) * 2002-05-08 2003-11-21 Furukawa Electric Co Ltd:The レーザモジュール
EP1503457A1 (de) 2003-07-30 2005-02-02 Yazaki Europe Ltd. Kontaktbuchse für einen Flachstecker

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACHTENHAGEN M. ET AL.: "L-I Characteristics of Fiber Bragg Grating Stabilized 980-nm Pump Lasers", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 13, no. 5, May 2001 (2001-05-01), pages 415 - 417, XP001101319 *
PETERMAN K. ET AL.: "Noise and Distortion Characteristics of Semiconductor Lasers in Optical Fiber Communication Systems", IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. QE-18, no. 4, April 1982 (1982-04-01), XP003022382 *
See also references of EP2077606A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164850A1 (ja) * 2011-06-02 2012-12-06 古河電気工業株式会社 レーザ装置および調整方法
JP2013012708A (ja) * 2011-06-02 2013-01-17 Furukawa Electric Co Ltd:The レーザ装置および調整方法
US9276374B2 (en) 2011-06-02 2016-03-01 Furukawa Electric Co., Ltd. Laser apparatus

Also Published As

Publication number Publication date
EP2077606A4 (en) 2012-06-20
EP2077606A1 (en) 2009-07-08
US20120147910A1 (en) 2012-06-14
US20090316742A1 (en) 2009-12-24
US8102888B2 (en) 2012-01-24
JPWO2008050537A1 (ja) 2010-02-25

Similar Documents

Publication Publication Date Title
JP4945907B2 (ja) 波長可変レーザ
KR101381235B1 (ko) 이중 모드 반도체 레이저 및 이를 이용한 테라헤르츠파 장치
JP2006278769A (ja) 波長可変レーザ
JP2006245346A (ja) 波長可変共振器、波長可変レーザ、光モジュール及びそれらの制御方法
JP5282712B2 (ja) 光変調装置及び光変調集積装置
JP5689955B2 (ja) 光源装置、分析装置、及び光生成方法
JP2024510991A (ja) 高速同調可能な集積型レーザー用チップ上の電気的に同調可能な光共振器
JP2011507263A (ja) 波長可変半導体レーザー装置
JP6636505B2 (ja) 改良されたレーザ構造
JP7016653B2 (ja) 変調光源
JP2009182158A (ja) 波長変換レーザ装置
WO2008050537A1 (fr) Dispositif laser à semi-conducteur, et son procédé de commande
WO2006112412A1 (ja) レーザ光発生装置および発生方法
JP2008117980A (ja) 光モジュール
JP5333238B2 (ja) 波長可変レーザ装置及びその波長切替方法
JP4799911B2 (ja) 半導体レーザ装置及び半導体増幅装置
JP2009070979A (ja) 半導体レーザモジュールおよびレーザ光源
JP2011158869A (ja) 波長変換装置
JP2000208849A (ja) 半導体レ―ザ励起固体レ―ザ装置
JP2021150309A (ja) レーザ光源
JP2020134602A (ja) 波長可変光源装置および波長可変光源装置の制御方法
JP2000031603A (ja) 半導体発光モジュール
JP4862960B2 (ja) 波長変換レーザ装置および画像表示装置
JP2010206615A (ja) 光マイクロ波発振器
JP5083306B2 (ja) 波長変換レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12442726

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008540906

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007806257

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE