WO2012164850A1 - レーザ装置および調整方法 - Google Patents

レーザ装置および調整方法 Download PDF

Info

Publication number
WO2012164850A1
WO2012164850A1 PCT/JP2012/003211 JP2012003211W WO2012164850A1 WO 2012164850 A1 WO2012164850 A1 WO 2012164850A1 JP 2012003211 W JP2012003211 W JP 2012003211W WO 2012164850 A1 WO2012164850 A1 WO 2012164850A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
light output
laser
value
laser element
Prior art date
Application number
PCT/JP2012/003211
Other languages
English (en)
French (fr)
Inventor
谷口 英広
大木 泰
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201280019906.7A priority Critical patent/CN103493315B/zh
Publication of WO2012164850A1 publication Critical patent/WO2012164850A1/ja
Priority to US14/078,547 priority patent/US9276374B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4248Feed-through connections for the hermetical passage of fibres through a package wall
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • H01S5/147External cavity lasers using a fiber as external cavity having specially shaped fibre, e.g. lensed or tapered end portion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • H01S5/02484Sapphire or diamond heat spreaders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • H01S5/02492CuW heat spreaders

Definitions

  • the present invention relates to a laser device and an adjustment method.
  • a semiconductor laser module condenses light output from a semiconductor laser element with a lensed fiber having a lens processed at the tip of the optical fiber, and transmits the light to the outside of the semiconductor laser module through the optical fiber.
  • such a semiconductor laser module starts to oscillate in a single mode when driven with a relatively low drive current in the vicinity of the threshold, and has an unstable optical output in which a single mode and a multimode are mixed when the drive current is increased.
  • the optical output is stabilized by oscillating in multimode. Therefore, such a semiconductor laser module has been used in a driving current range equal to or higher than a predetermined current value that stably oscillates in multimode.
  • a semiconductor laser element and a wavelength selection element that forms a resonator between the reflection surface of the semiconductor laser element to oscillate and output the oscillated laser beam
  • a semiconductor An optical system that is optically coupled to the emission surface of the laser element with a coupling efficiency ⁇ and that inputs light output from the emission surface to the wavelength selection element.
  • the optical system responds to an injection current injected into the semiconductor laser element.
  • a laser device is provided in which the value correlated with the minimum light output in the light output linear region where the light output is linear is less than the value when the coupling efficiency ⁇ is maximum.
  • FIG. 1 shows a configuration example of a laser apparatus according to a first embodiment of the present invention.
  • the side view of the semiconductor laser element and lensed fiber which concern on 1st Embodiment is shown.
  • the top view of the semiconductor laser element and lensed fiber which concern on 1st Embodiment is shown.
  • An example of the relationship of the optical output intensity with respect to the injection current of the conventional laser apparatus is shown.
  • the model figure of the relationship of the optical output intensity with respect to the injection current of the laser apparatus which concerns on 1st Embodiment is shown.
  • An example of the relationship between the value of A of the laser apparatus which concerns on 1st Embodiment, and an optical output linear start point is shown.
  • An example of the relationship between the coupling distance L and M, N, and ⁇ of the laser apparatus according to the first embodiment is shown.
  • An example of the relationship between the coupling distance L and the value of B of the laser apparatus according to the first embodiment is shown.
  • An example of the relationship between the lens curvature radius of the laser device according to the first embodiment and M, N, and ⁇ is shown.
  • An example of the relationship between the lens curvature radius of the laser apparatus which concerns on 1st Embodiment, and the value of B is shown.
  • the side view of the semiconductor laser element and lensed fiber which concern on the 2nd Embodiment of this invention is shown.
  • the top view of the semiconductor laser element and lensed fiber which concern on 2nd Embodiment is shown.
  • the adjustment flow of the optical system of the laser apparatus which concerns on 1st Embodiment is shown.
  • FIG. 1 shows a configuration example of a laser apparatus 500 according to the first embodiment of the present invention.
  • FIG. 1 is an example of a side view in which a housing 502 of the laser device 500 is cut away.
  • the laser device 500 is used in a range of a light output linear region in which the semiconductor laser element 100 is mounted and the light output is linear, and the light output range is adjusted while bringing the minimum drive light output close to the oscillation threshold value of the semiconductor laser element 100. Stabilizes the light output at.
  • the laser device 500 includes a semiconductor laser element 100, a housing 502, a bottom plate portion 504, a cylindrical hole portion 506, a temperature adjusting portion 510, a base portion 520, a mount portion 522, a fiber fixing portion 524, The optical fiber 530, the sleeve part 540, the light-receiving part 550, and the wavelength selection element 560 are provided.
  • the semiconductor laser element 100 is a ridge type semiconductor laser element having a ridge structure as an example.
  • the semiconductor laser element 100 outputs laser light in the 980 nm band or 1480 nm band.
  • the housing 502, the bottom plate portion 504, and the cylindrical hole portion 506 are made of metal.
  • the housing 502, the bottom plate portion 504, and the cylindrical hole portion 506 are formed of copper tungsten (CuW) as an example and seal the inside.
  • the housing 502, the bottom plate portion 504, and the cylindrical hole portion 506 may form a butterfly type package.
  • the temperature adjustment unit 510 is placed on the bottom plate part 504, and keeps the temperature of the upper surface of the temperature adjustment unit 510 opposite to the bottom plate part 504 constant.
  • the temperature adjustment unit 510 may be an electronic cooling device using a Peltier element or the like.
  • the base unit 520 is placed on the upper surface of the temperature adjustment unit 510, and transmits the temperature that the temperature adjustment unit 510 keeps constant to the upper surface of the base unit 520 opposite to the temperature adjustment unit 510.
  • Base portion 520 may be formed of a material including aluminum nitride (AlN), copper tungsten (CuW), Si, or diamond.
  • the mount unit 522 is mounted on the upper surface of the base unit 520 and fixes the semiconductor laser element 100.
  • the mount unit 522 transmits the temperature maintained by the temperature adjustment unit 510 to the semiconductor laser element 100 to maintain the ambient temperature of the semiconductor laser element 100 constant.
  • the mount part 522 may be formed of the same material as the base part 520.
  • the fiber fixing part 524 is placed on the upper surface of the base part 520 and fixes the optical fiber 530.
  • the fiber fixing unit 524 may fix the optical fiber 530 using solder, resin, low-melting glass, adhesive, or the like.
  • the optical fiber 530 is inserted into the housing 502 from the outside of the housing 502 through the cylindrical hole 506. At the tip of the optical fiber 530, an optical system is formed which is optically coupled to the emission surface of the semiconductor laser element 100 with a predetermined coupling efficiency ⁇ and inputs light output from the emission surface to the wavelength selection element 560. Is done.
  • the optical system is a lensed fiber 532 that has one end processed into a lens shape and guides the laser light output from the semiconductor laser element 100 to the wavelength selection element 560.
  • the optical system may be a ball lens or a cylindrical lens formed of quartz glass or the like. Such an optical system is fixed near the light output end face of the semiconductor laser element 100 and condenses the light output of the semiconductor laser element 100.
  • the optical fiber 530 can transmit the optical output of the semiconductor laser element 100 to the outside of the housing 502.
  • the sleeve portion 540 is provided between the housing 502 and the optical fiber 530, and fixes the optical fiber 530 to the housing 502.
  • the sleeve portion 540 may fix the optical fiber 530 using solder, resin, low-melting glass, adhesive, or the like.
  • the light receiving unit 550 receives the light output of the semiconductor laser element 100 and monitors the light output of the semiconductor laser element 100.
  • the light receiving unit 550 may be provided on the highly reflective film side of the semiconductor laser element 100.
  • the light receiving unit 550 may be a photodiode.
  • the wavelength selection element 560 forms a resonator with the reflecting surface of the semiconductor laser element 100 to cause laser oscillation, and outputs the oscillated laser light.
  • the wavelength selection element 560 is a wavelength selection filter that passes a part of the optical output of the semiconductor laser element 100 and reflects the rest.
  • the wavelength selection element 560 is, for example, a fiber Bragg grating that functions as a wavelength selective reflection filter by periodic refractive index modulation in the core of the optical fiber 530.
  • FIG. 2 is a side view of the semiconductor laser device 100 and the lensed fiber 532 according to the first embodiment.
  • FIG. 3 is a top view of the semiconductor laser device and the lensed fiber 532 according to the first embodiment.
  • the semiconductor laser element 100 includes a high reflection film 102 and a low reflection film 104.
  • the highly reflective film 102 is formed on the end surface of the semiconductor laser element 100 opposite to the lensed fiber 532 and reflects the laser light.
  • the highly reflective film 102 forms an optical resonator with a wavelength selection element 560 provided outside the semiconductor laser element 100, and amplifies the laser light within the optical resonator.
  • the highly reflective film 102 is formed by laminating a plurality of dielectric films on the end face formed by cleaving the wafer.
  • the low reflection film 104 is formed on the end surface of the semiconductor laser element 100 on the lensed fiber 532 side, and has a lower reflectivity with respect to the laser light than the high reflection film 102, and a part of the laser light that resonates in the resonator is used as emitted light. Output to the outside.
  • the low reflection film 104 is formed by laminating a plurality of dielectric films on an end face formed by cleaving a wafer.
  • the light output end face of the semiconductor laser element 100 is an end face where the low reflection film 104 is formed and emits outgoing light.
  • the lensed fiber 532 is a fiber whose tip is processed into a convex lens shape in the Z direction, which is one direction, and is not processed in the Y direction and the X direction.
  • the semiconductor laser element 100 and the lensed fiber 532 are fixed at positions separated by a coupling distance L.
  • FIG. 4 shows an example of the relationship between the light output intensity and the injection current of a conventional laser device.
  • the conventional laser apparatus refers to the coupling distance L between the semiconductor laser element 100 and the lensed fiber 532 of the laser apparatus 500 according to the first embodiment, and the optical coupling efficiency between the semiconductor laser element 100 and the lensed fiber 532. It is a device adjusted to the position where becomes the highest.
  • the horizontal axis of FIG. 4 shows the injection current into the semiconductor laser element normalized by the oscillation threshold current of the semiconductor laser element.
  • the vertical axis in FIG. 4 indicates the light output intensity with respect to the injection current of the laser device.
  • the graph shown by the one-dot chain line in the figure shows the relationship between the injection current and the optical output intensity when the laser device oscillates in single mode
  • the graph shown by the dotted line in the figure shows the case when the laser device oscillates in multimode.
  • the relationship between injection current and light output intensity is shown.
  • the laser device oscillates when driven by an injection current that is equal to or higher than a threshold current.
  • the laser device oscillates in a single mode when driven in a relatively low injection current range near the threshold.
  • the injection current is increased, the laser device oscillates with an unstable optical output in which a single mode and a multimode are mixed, and by further increasing the drive current, the laser device oscillates in a multimode and the optical output becomes stable.
  • the laser apparatus in the laser apparatus, the light output becomes unstable in a state where a single mode oscillation or a single mode oscillation and a multimode oscillation coexist in a relatively low injection current range near the threshold. Therefore, conventionally, the minimum optical output to be driven by the laser device is set to be equal to or higher than the optical output at which multimode oscillation starts, for example, 40 mW or higher, and the laser device is driven with a driving current higher than the corresponding injection current. It was. As described above, the laser device is used in a light output linear region where the light output is linear, for example, the light output is 40 mW or more.
  • the laser apparatus 500 moves the range in which the laser apparatus 500 is single mode oscillation or a mixture of single mode oscillation and multimode oscillation to a range of lower light output intensity, so that the laser apparatus 500 The drive minimum light output is reduced.
  • the laser apparatus 500 according to the first embodiment models the light output characteristics of the laser apparatus 500 and determines the conditions for reducing the drive minimum light output of the laser apparatus 500 as follows.
  • FIG. 5 is a model diagram showing the relationship between the light output intensity and the injection current of the laser apparatus 500 according to the first embodiment.
  • the horizontal axis in FIG. 5 indicates the injection current into the semiconductor laser element 100.
  • 5 represents the light output intensity with respect to the injection current of the laser device 500.
  • ⁇ ⁇ S. E A dotted line indicated by S indicates a relationship between an injection current at which the laser apparatus 500 oscillates in a single mode from the threshold current I thS and an optical output intensity.
  • a dotted line indicated by M indicates the relationship between the injection current and the light output intensity when the laser device 500 oscillates in multimode from the threshold current IthM .
  • is a coupling efficiency between the semiconductor laser element 100 and an optical system that inputs light output from the semiconductor laser element 100 to the wavelength selection element 560.
  • I thS is a single mode oscillation threshold value at which the laser apparatus 500 oscillates in a single mode.
  • E. S is the oscillation efficiency for oscillation in single mode.
  • I thM is a multimode oscillation threshold value at which the laser apparatus 500 oscillates in multimode.
  • E. M is the oscillation efficiency for oscillation in multimode.
  • the laser device 500 oscillates in a single mode from around I thS and outputs a laser beam. After passing through a region where single mode oscillation and multimode oscillation coexist, the multimode oscillation starts from the optical output linear start point. It shifts to the light output linear region. That is, the laser device 500 oscillates in a multi-longitudinal mode in a light output range that is equal to or greater than the minimum drive light output that is the light output linear start point.
  • the value A in Expression (1) correlates with the light output linear start point which is the minimum light output in the light output linear region where the light output is linear with respect to the injection current injected into the semiconductor laser device 100.
  • FIG. 6 shows an example of the relationship between the value A of the laser apparatus 500 according to the first embodiment and the light output linear start point.
  • the horizontal axis of FIG. 6 indicates the power of 1/2 of the value A of the laser apparatus 500 (root).
  • the vertical axis in FIG. 6 indicates the light output linear start point of the laser device 500.
  • the optical output characteristics with respect to the injection currents of the plurality of laser devices 500 are measured, respectively, and A in equation (1) and the optical output linear start point are obtained. It is the result of plotting. From FIG. 6, it can be seen that A in the formula (1) to the 1/2 power and the light output linear start point are in a proportional relationship. That is, the laser device 500 can reduce the light output linear start point by reducing the value of A in the equation (1). Furthermore, the light output linear start point can be brought close to zero by making the value of A as small as possible using this correlation. In this case, the value of A to the power of 1/2 approaches 1.
  • the value of A in Expression (1) that correlates with the light output linear start point is set to be less than the allowable value for the drive minimum light output. That is, according to the equation (1), each parameter ⁇ , I thS , I thM , S.M. is set so that the value of A is less than the allowable value for the minimum drive light output.
  • each parameter ⁇ , I thS , I thM , S.M. is set so that the value of A is less than the allowable value for the minimum drive light output.
  • the value allowed as the value of A can be determined to be about 16 from the graph of FIG.
  • the unit of the value of A is mW ⁇ mA. Therefore, using equation (1), the value of each parameter having a value of A of 16 or less is obtained, and the laser device 500 is formed based on each parameter, so that the minimum drive light output of the laser device 500 is 10 mW. Can be.
  • Laser device 500 can adjust the value of each parameter by adjusting the optical system.
  • the laser device 500 can adjust the values of the parameters by adjusting the design values of the semiconductor laser element 100 and manufacturing the laser devices.
  • the laser apparatus 500 can directly change ⁇ by adjusting the arrangement of the optical system.
  • I thS depends on effective mirror loss, internal loss, internal quantum efficiency, confinement coefficient, gain, number of quantum wells, stripe width, and the like.
  • the parameters other than the effective mirror loss are design parameters of the semiconductor laser device 100 and are hardly influenced by the adjustment of the optical system.
  • the effective mirror loss is considered to depend on the element length of the semiconductor laser element 100, the element end face reflectance, the reflectance of the wavelength selection element 560, and the coupling efficiency ⁇ . That is, other than the coupling efficiency ⁇ is a design parameter of the semiconductor laser device 100 or the laser apparatus 500, and is hardly influenced by the adjustment of the optical system.
  • I thS is expected to hardly change by adjusting the optical system.
  • the coupling efficiency ⁇ is changed from 80% to 65% by optical adjustment, an example in which the value of I thS is changed only by about 3.5% has been experimentally obtained.
  • S. E. M is considered to depend on the effective mirror loss, the internal loss, and the internal quantum efficiency, and it is expected that the parameter is hardly changed by adjusting the optical system. Actually, even if the coupling efficiency ⁇ is changed from 80% to 65% by the optical adjustment, the laser device 500 is S.P. E. An example in which the value of M was changed only by about 1% was experimentally obtained.
  • the laser device 500 is designed with the I thS and S.P. E. It can be seen that the value of M can be adjusted. Also, I thS and S.I. E. Since M is the first half of the expression (1) that gives A, the expression excluding the part and the constant is defined as B.
  • the value of B is an expression that gives a portion of the value of A that changes due to optical adjustment.
  • FIG. 7 shows an example of the relationship between the coupling distance L and M, N, and ⁇ of the laser apparatus 500 according to the first embodiment.
  • the coupling distance L is a distance between the semiconductor laser element 100 and the lensed fiber 532.
  • the coupling distance L increases from approximately 10 ⁇ m, the value of ⁇ decreases, and it can be seen that the coupling efficiency is highest when the coupling distance L is approximately 10 ⁇ m in the range of the experimental results.
  • M and N change in a complicated manner as the coupling distance L increases.
  • FIG. 8 shows an example of the relationship between the coupling distance L and the value B of the laser apparatus 500 according to the first embodiment.
  • the value of B changes in a complex manner as the coupling distance L increases, reflecting changes in M and N.
  • the value of B has a peak when the value of the coupling distance L is approximately 11 ⁇ m, and it can be seen that the tendency of change in the value of B is different from the tendency of change in coupling efficiency.
  • the value of A is a value obtained by multiplying the value of B by a parameter that hardly changes in optical adjustment, the tendency of change in the value of A is also different from the tendency of change in coupling efficiency, similar to the value of B. .
  • the laser device 500 may increase the values of A and B even if the value of the coupling efficiency ⁇ is lowered. Therefore, the optical system of the laser apparatus 500 is adjusted so that the value of A is less than the value of A when the coupling efficiency ⁇ is maximum.
  • the lensed fiber 532 is less than the value of A when the coupling efficiency ⁇ is maximum from the position where the coupling efficiency ⁇ is maximized with respect to the laser light emitting end of the semiconductor laser element 100. It is arranged at a distant position.
  • the optical system of the laser apparatus 500 may adjust the value of B to be less than the value of B when the coupling efficiency ⁇ is maximum. That is, the lensed fiber 532 is separated from the laser light emitting end of the semiconductor laser device 100 so that the value of B is less than the value of B when the coupling efficiency ⁇ is maximum from the position where the coupling efficiency ⁇ is maximum. May be placed at different positions. In the example in the figure, for example, the laser apparatus 500 can make the value of B less than the value of B when the coupling efficiency ⁇ is maximum by separating the coupling distance L by 13 ⁇ m or more.
  • the laser apparatus 500 can adjust the value of B determined by the optical adjustment among the values of A by the optical system. Further, by adjusting the design value of the semiconductor laser element 100, I thS and S.I. E. Since M can be determined, the light output linear start point can be determined based on the value of A.
  • FIG. 9 shows an example of the relationship between the lens curvature radius and M, N, and ⁇ of the laser device according to the first embodiment.
  • the lens curvature radius increases from approximately 5 ⁇ m, the value of ⁇ decreases, and it can be seen that the coupling efficiency is highest when the lens curvature radius is approximately 5 ⁇ m in the range of the experimental results.
  • M and N change monotonously with an increase in the radius of curvature of the lens within the range of the experimental results.
  • FIG. 10 shows an example of the relationship between the radius of curvature of the lens and the value of B of the laser device according to the first embodiment. It can be seen that the value of B changes monotonously as the lens curvature radius increases, reflecting changes in M and N. Accordingly, the radius of curvature of the lens may be increased to adjust the value of A or B. That is, the laser device 500 makes the lens curvature radius of the lensed fiber 532 larger than the curvature radius that maximizes the coupling efficiency with respect to the laser light emitting end of the semiconductor laser element 100. Thereby, the laser apparatus 500 can make the value of B less than the value of B when the coupling efficiency ⁇ is maximum.
  • FIG. 11 is a side view of the semiconductor laser device and the lensed fiber 532 according to the second embodiment of the present invention.
  • FIG. 12 is a top view of the semiconductor laser device and the lensed fiber 532 according to the second embodiment.
  • the lensed fiber 532 can reduce the reflection of light at the tip by, for example, performing an AR (Anti Reflection) coating on the tip.
  • the tip of the lensed fiber 532 may cause weak reflected light to enter the semiconductor laser element 100 even if such processing is performed. This reflected light causes unstable oscillation of the semiconductor laser element 100, and when the intensity of the reflected light increases, the light output linear start point of the laser device 500 moves in the direction of higher output.
  • the tip of the lensed fiber 532 is processed to reduce the reflected light from the tip of the lensed fiber 532.
  • the lensed fiber 532 is processed into a lens shape in two or more directions at one end.
  • the lensed fiber 532 is a fiber that is processed into a convex lens shape in the Z direction and the Y direction and is not processed in the X direction.
  • the lensed fiber 532 in the second embodiment can be closer to the semiconductor laser element 100 side than the arrangement position of the lensed fiber 532 of the first embodiment with respect to the semiconductor laser element 100.
  • the laser device 500 according to the second embodiment can increase the light output for the same injection current without changing the light output linear start point, as compared with the laser device 500 according to the first embodiment. Can do.
  • the lensed fiber 532 is the semiconductor laser element 100. May be arranged closer to the position L that maximizes the coupling efficiency ⁇ .
  • the lensed fiber 532 may be disposed at a position L that maximizes the coupling efficiency ⁇ with the semiconductor laser element 100 when adjusting the optical system.
  • the laser device 500 can lower the optical output linear start point in the low output direction while increasing the coupling efficiency ⁇ between the semiconductor laser element 100 and the lensed fiber 532.
  • the radius of curvature of the convex lens processed in the Z direction of the lensed fiber 532 may be larger or smaller than the radius of curvature that maximizes the coupling efficiency. From the results of FIG. 9 and FIG. 10, the lens curvature radius may be adjusted to adjust the value of A or B.
  • the lensed fiber 532 may be a fiber processed in three directions processed into a convex lens shape also in the YZ direction.
  • the lensed fiber 532 may be a fiber processed in more directions.
  • the lensed fiber 532 may be a fiber processed into a spherical surface or an aspherical surface.
  • FIG. 13 shows an adjustment flow of the optical system of the laser apparatus 500 according to the first embodiment.
  • the light output range of the laser device 500 is determined (S900). That is, the minimum drive light output of the laser device 500 is determined. For example, it is determined that the light output range of the laser device 500 is used in a range of 10 mW or more.
  • the minimum linear light output that is the minimum light output in the light output linear region where the light output of the laser device 500 is linear with respect to the injection current injected into the semiconductor laser element 100 according to the determined drive minimum light output.
  • the light output linear start point is determined (S910).
  • the light output linear start point is determined within a range of values less than or equal to the drive minimum light output.
  • the light output linear start point is determined to be 8 mW.
  • the maximum value of A corresponding to the determined light output linear start point is determined (S920).
  • the maximum value of A can be obtained from the graph of FIG.
  • the maximum value of A is determined to be 16 mW ⁇ mA so that the light output linear start point is 8 mW or less.
  • the maximum value of B is obtained based on the determined maximum value of A (S930). That is, I thS and S.I. E. Since M can be determined, the maximum value of B corresponding to the determined maximum value of A can be obtained from the equations (1) and (2).
  • I thS and S.P. E. M is pre-measured and the corresponding I thS and S.P. E.
  • the semiconductor laser element 100 having M may be selected. Further, manufacturing parameters of the semiconductor laser device 100 manufactured in advance and I thS and S.S. E. Record the correlation with M. I thS and S.M. E.
  • the semiconductor laser device 100 corresponding to M may be manufactured.
  • the optical system is adjusted based on the maximum value of B (S940). That is, the optical system is adjusted so that the maximum value of B is not exceeded.
  • the value of B is the maximum coupling efficiency ⁇ with the emission surface of the semiconductor laser element 100 Less than the value of B.
  • the laser device 500 can obtain a specific adjustment target value of the optical system based on the predetermined light output range of the laser device 500.
  • the laser device 500 adjusts the optical system in the laser device 500 so as not to exceed the maximum value of A or B, thereby causing multi-longitudinal mode oscillation in a predetermined light output range of the laser device 500 to output light. Can be stable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 閾値付近の駆動電流で駆動しても安定なマルチモード出力するレーザ装置。半導体レーザ素子と、半導体レーザ素子の反射面との間で共振器を形成してレーザ発振させて、発振させたレーザ光を出力する波長選択素子と、半導体レーザ素子の出射面と結合効率ηで光学的に結合され、出射面から出力される光を波長選択素子に入力させる光学系と、を備え、光学系は、半導体レーザ素子へ注入する注入電流に対して、光出力が線形となる光出力線形領域における最小光出力と相関する値を結合効率ηが最大の場合における値未満とするレーザ装置を提供する。

Description

レーザ装置および調整方法
 本発明は、レーザ装置および調整方法に関する。
 従来、半導体レーザモジュールは、半導体レーザ素子から出力される光を、光ファイバの先端をレンズ加工したレンズドファイバで集光して、当該半導体レーザモジュールの外部へと当該光ファイバで伝送していた(例えば、特許文献1参照)。
 特許文献1 特開2001-235638号公報
 しかしながら、このような半導体レーザモジュールは、閾値付近の比較的低い駆動電流で駆動させるとシングルモードで発振し始め、駆動電流を増加させると、シングルモードおよびマルチモードが混在する不安定な光出力で発振し、さらに駆動電流を増加させることで、マルチモードで発振して光出力が安定になる。したがってこのような半導体レーザモジュールは、マルチモードで安定に発振する予め定められた電流値以上の駆動電流範囲で用いられていた。
 本発明の第1の態様によると、半導体レーザ素子と、半導体レーザ素子の反射面との間で共振器を形成してレーザ発振させて、発振させたレーザ光を出力する波長選択素子と、半導体レーザ素子の出射面と結合効率ηで光学的に結合され、出射面から出力される光を波長選択素子に入力させる光学系と、を備え、光学系は、半導体レーザ素子へ注入する注入電流に対して、光出力が線形となる光出力線形領域における最小光出力と相関する値を結合効率ηが最大の場合における値未満とするレーザ装置を提供する。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本発明の第1の実施形態に係るレーザ装置の構成例を示す。 第1の実施形態に係る半導体レーザ素子およびレンズドファイバの側面図を示す。 第1の実施形態に係る半導体レーザ素子およびレンズドファイバの上面図を示す。 従来のレーザ装置の注入電流に対する光出力強度の関係の一例を示す。 第1の実施形態に係るレーザ装置の注入電流に対する光出力強度の関係のモデル図を示す。 第1の実施形態に係るレーザ装置のAの値と、光出力線形始点の関係の一例を示す。 第1の実施形態に係るレーザ装置の結合距離Lと、M、N、およびηの関係の一例を示す。 第1の実施形態に係るレーザ装置の結合距離Lと、Bの値の関係の一例を示す。 第1の実施形態に係るレーザ装置のレンズ曲率半径と、M、N、およびηの関係の一例を示す。 第1の実施形態に係るレーザ装置のレンズ曲率半径と、Bの値の関係の一例を示す。 本発明の第2の実施形態に係る半導体レーザ素子およびレンズドファイバの側面図を示す。 第2の実施形態に係る半導体レーザ素子およびレンズドファイバの上面図を示す。 第1の実施形態に係るレーザ装置の光学系の調整フローを示す。
 以下、発明の実施の形態を通じて本発明の(一)側面を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本発明の第1の実施形態に係るレーザ装置500の構成例を示す。図1は、レーザ装置500の筐体502を切り欠いて示した側面図の一例である。レーザ装置500は、半導体レーザ素子100を搭載して光出力が線形となる光出力線形領域の範囲で用いられ、駆動最小光出力を半導体レーザ素子100の発振閾値付近に近づけつつ、当該光出力範囲における光出力を安定化させる。
 レーザ装置500は、半導体レーザ素子100と、筐体502と、底板部504と、筒状孔部506と、温度調節部510と、ベース部520と、マウント部522と、ファイバ固定部524と、光ファイバ530と、スリーブ部540と、受光部550と、波長選択素子560とを備える。
 半導体レーザ素子100は、一例として、リッジ構造を有するリッジ型半導体レーザ素子である。半導体レーザ素子100は、980nm帯域または1480nm帯域のレーザ光を出力する。
 筐体502、底板部504、および筒状孔部506は、金属で形成される。筐体502、底板部504、および筒状孔部506は、一例として、銅タングステン(CuW)で形成され、内部を密封する。筐体502、底板部504、および筒状孔部506は、バタフライ型のパッケージを形成してよい。
 温度調節部510は、底板部504上に載置され、温度調節部510の底板部504とは反対側の上面の温度を一定に保つ。温度調節部510は、ペルチエ素子等を用いた電子冷却装置であってよい。ベース部520は、温度調節部510の上面に載置され、ベース部520の温度調節部510とは反対側の上面に、温度調節部510が一定に保つ温度を伝達する。ベース部520は、窒化アルミニウム(AlN)、銅タングステン(CuW)、Si、またはダイヤモンドを含む材料から形成されてよい。
 マウント部522は、ベース部520の上面に載置され、半導体レーザ素子100を固定する。マウント部522は、温度調節部510が一定に保つ温度を半導体レーザ素子100に伝達して、半導体レーザ素子100の周囲温度を一定に保つ。マウント部522は、ベース部520と同じ材料で形成されてよい。
 ファイバ固定部524は、ベース部520の上面に載置され、光ファイバ530を固定する。ファイバ固定部524は、半田、樹脂、低融点ガラス、または接着剤等を用いて光ファイバ530を固定してよい。
 光ファイバ530は、筐体502の外部より筒状孔部506を介して筐体502内に挿入される。光ファイバ530の先端部には、半導体レーザ素子100の出射面と予め定められた結合効率ηで光学的に結合され、出射面から出力される光を波長選択素子560に入力させる光学系が形成される。光学系は、一端がレンズ状に加工され、半導体レーザ素子100から出力されるレーザ光を波長選択素子560に導くレンズドファイバ532である。
 これに代えて、光学系は、石英系ガラス等で形成されたボールレンズまたは円柱型レンズであってもよい。このような光学系は、半導体レーザ素子100の光出力端面の近傍に固定されて半導体レーザ素子100の光出力を集光する。これによって、光ファイバ530は、半導体レーザ素子100の光出力を、筐体502の外部へと伝送することができる。
 スリーブ部540は、筐体502と光ファイバ530の間に設けられ、光ファイバ530を筐体502に固定する。スリーブ部540は、半田、樹脂、低融点ガラス、または接着剤等を用いて光ファイバ530を固定してよい。
 受光部550は、半導体レーザ素子100の光出力を受光して、半導体レーザ素子100の光出力をモニタする。受光部550は、半導体レーザ素子100の高反射膜側に設けられてよい。受光部550は、フォトダイオードでよい。
 波長選択素子560は、半導体レーザ素子100の反射面との間で共振器を形成してレーザ発振させて、発振させたレーザ光を出力する。波長選択素子560は、半導体レーザ素子100の光出力の一部を通過させ、残りを反射する波長選択フィルタである。波長選択素子560は、一例として、光ファイバ530のコア内の周期的な屈折率変調により、波長選択的な反射フィルタとして機能するファイバブラッググレーティングである。
 図2は、第1の実施形態に係る半導体レーザ素子100およびレンズドファイバ532の側面図を示す。図3は、第1の実施形態に係る半導体レーザ素子およびレンズドファイバ532の上面図を示す。半導体レーザ素子100は、高反射膜102と、低反射膜104とを有する。
 高反射膜102は、半導体レーザ素子100のレンズドファイバ532とは反対側の端面に形成され、レーザ光を反射させる。高反射膜102は、半導体レーザ素子100の外部に設けられた波長選択素子560と光共振器を形成して、当該光共振器内でレーザ光を増幅する。高反射膜102は、ウエハを劈開して形成した端面に、複数の誘電体膜を積層することにより形成される。
 低反射膜104は、半導体レーザ素子100のレンズドファイバ532側の端面に形成され、レーザ光に対する反射率が高反射膜102より低く、共振器内で共振するレーザ光の一部を出射光として外部に出射させる。低反射膜104は、ウエハを劈開して形成した端面に、複数の誘電体膜を積層することにより形成される。半導体レーザ素子100の光出力端面は、当該低反射膜104が形成され、出射光を出射する端面である。
 レンズドファイバ532は、先端部が一方向であるZ方向に凸レンズ状に加工され、Y方向およびX方向には加工されないファイバである。半導体レーザ素子100およびレンズドファイバ532は、結合距離Lだけ離れた位置に固定される。
 図4は、従来のレーザ装置の注入電流に対する光出力強度の関係の一例を示す。ここで、従来のレーザ装置とは、第1の実施形態に係るレーザ装置500の半導体レーザ素子100およびレンズドファイバ532間の結合距離Lを、半導体レーザ素子100およびレンズドファイバ532の光結合効率が最も高くなる位置に調整した装置のことである。図4の横軸は、半導体レーザ素子の発振閾値電流で規格化した、半導体レーザ素子への注入電流を示す。また、図4の縦軸は、レーザ装置の注入電流に対する光出力強度を示す。
 図中の一点鎖線で示したグラフは、レーザ装置がシングルモード発振した場合の注入電流と光出力強度の関係を示し、図中の点線で示したグラフは、レーザ装置がマルチモード発振した場合の注入電流と光出力強度の関係を示す。
 レーザ装置は、閾値電流以上の注入電流で駆動することでレーザ発振する。ここで、レーザ装置は、閾値付近の比較的低い注入電流の範囲で駆動させるとシングルモードで発振する。レーザ装置は、注入電流を増加させると、シングルモードおよびマルチモードが混在する不安定な光出力で発振し、さらに駆動電流を増加させることで、マルチモードで発振して光出力が安定になる。
 即ち、レーザ装置は、閾値付近の比較的低い注入電流の範囲において、シングルモード発振、またはシングルモード発振とマルチモード発振が混在する状態で、光出力が不安定になる。そこで、従来は、レーザ装置の駆動させる最小の光出力を、例えば40mW以上といった、マルチモードの発振が開始する光出力以上に設定して、対応する注入電流以上の駆動電流でレーザ装置を駆動していた。このように、レーザ装置は、例えば光出力が40mW以上といった、光出力が線形となる光出力線形領域の範囲で用いる。
 そこで、第1の実施形態に係るレーザ装置500は、レーザ装置500がシングルモード発振、またはシングルモード発振とマルチモード発振が混在する範囲を、より低い光出力強度の範囲に移動させ、レーザ装置500の駆動最小光出力を低下させる。第1の実施形態に係るレーザ装置500は、レーザ装置500の光出力特性をモデル化して、レーザ装置500の駆動最小光出力を低下させる条件を以下のように定める。
 図5は、第1の実施形態に係るレーザ装置500の注入電流に対する光出力強度の関係のモデル図を示す。図5の横軸は、半導体レーザ素子100への注入電流を示す。また、図5の縦軸は、レーザ装置500の注入電流に対する光出力強度を示す。
 図中のη×S.E.で示した点線は、レーザ装置500が閾値電流IthSからシングルモード発振する注入電流と光出力強度の関係を示す。また、図中のη×S.E.で示した点線は、レーザ装置500が閾値電流IthMからマルチモード発振した場合の注入電流と光出力強度の関係を示す。
 ここで、ηは、半導体レーザ素子100と、半導体レーザ素子100から出力される光を波長選択素子560に入力させる光学系との結合効率である。また、IthSは、レーザ装置500がシングルモードで発振するシングルモード発振閾値であり、S.E.は、シングルモードで発振する発振効率である。また、IthMは、レーザ装置500がマルチモードで発振するマルチモード発振閾値であり、S.E.は、マルチモードで発振する発振効率である。
 レーザ装置500は、注入電流の増加に伴い、IthS近辺からシングルモード発振してレーザ光を出力して、シングルモード発振とマルチモード発振が混在する領域を経て、光出力線形始点よりマルチモード発振する光出力線形領域へと移行する。即ち、レーザ装置500は、光出力線形始点である駆動最小光出力以上の光出力範囲において、マルチ縦モード発振する。
 ここで、IthMを通り、-η×S.E.で示す線を図中に引くと、注入電流軸、η×S.E.、および-η×S.E.の各線分によって、面積Aの三角形が形成される。三角形の面積Aは、次の(1)式のように計算することができる。
 A={IthS ・S.E.・η・(M+1)-1・(N-1)}/2 ・・・(1)
 ここで、M=S.E./S.E.、N=IthM/IthSである。式(1)のAの値は、半導体レーザ素子100へ注入する注入電流に対して、光出力が線形となる光出力線形領域における最小光出力である光出力線形始点と相関する。
 図6は、第1の実施形態に係るレーザ装置500のAの値と、光出力線形始点の関係の一例を示す。図6の横軸は、レーザ装置500のAの値の1/2乗(ルート)を示す。また、図6の縦軸は、レーザ装置500の光出力線形始点を示す。
 ここで、図6は、複数のレーザ装置500を実際に作製した後に、複数のレーザ装置500の注入電流に対する光出力特性をそれぞれ測定し、式(1)のAおよび光出力線形始点を求めてプロットした結果である。図6より、式(1)のAの1/2乗と、光出力線形始点とは、比例の関係にあることがわかる。即ち、レーザ装置500は、式(1)のAの値を小さくすることで、光出力線形始点を小さくすることができる。さらに、この相関を用いてAの値を限りなく小さくすることで、光出力線形始点をゼロに近づけることもできる。この場合、Aの1/2乗の値は1に近づく。
 そこで、第1の実施形態に係るレーザ装置500は、光出力線形始点と相関する式(1)のAの値を、駆動最小光出力に対して許容される値未満とする。即ち、式(1)より、Aの値が駆動最小光出力に対して許容される値未満となるように各パラメータη、IthS、IthM、S.E.、およびS.E.を定める。
 例えば、レーザ装置500の駆動最小光出力を10mWにしたい場合、図6のグラフより、Aの値として許容される値を16程度と決めることができる。ここで、Aの値の単位は、mW・mAとなる。したがって、式(1)を用いて、Aの値が16以下となる各パラメータの値を求め、各パラメータに基づいてレーザ装置500を形成することで、当該レーザ装置500の駆動最小光出力を10mWにすることができる。
 レーザ装置500は、光学系を調整することで、各パラメータの値を調節することができる。また、レーザ装置500は、半導体レーザ素子100の設計値を調節して製造することで、各パラメータの値を調節することもできる。例えば、レーザ装置500は、光学系の配置を調整することで、ηを直接変えることができる。
 ここで、IthSは、実効ミラーロス、内部ロス、内部量子効率、閉じ込め係数、利得、量子井戸数、およびストライプ幅等に依存することが考えられる。ここで、実効ミラーロス以外は、半導体レーザ素子100の設計パラメータであり、光学系の調整にはほとんど影響されない。また、実効ミラーロスは、半導体レーザ素子100の素子長、素子端面反射率、波長選択素子560の反射率、および結合効率ηに依存することが考えられる。即ち、結合効率η以外は、半導体レーザ素子100またはレーザ装置500の設計パラメータであり、光学系の調整にはほとんど影響されない。
 このように、IthSは、光学系の調整ではほとんど変化しないことが予想される。実際に、レーザ装置500は、光学調整で結合効率ηを80%から65%に変えても、IthSの値を3.5%程度しか変化させない例が実験的に得られた。
 また、S.E.は、実効ミラーロス、内部ロス、および内部量子効率に依存することが考えられ、当該パラメータも光学系の調整ではほとんど変化しないことが予想される。実際に、レーザ装置500は、光学調整で結合効率ηを80%から65%に変えても、S.E.の値を1%程度しか変化させない例が実験的に得られた。
 以上より、レーザ装置500は、半導体レーザ素子100の設計により、光学系の調整とはほとんど関係なしにIthSおよびS.E.の値を調節することができることがわかる。また、IthSおよびS.E.は、Aを与える式(1)の前半部分であるから、当該部分と定数を除いた式をBとして定義する。
 B=η・(M+1)-1・(N-1) ・・・(2)
 即ち、Bの値は、Aの値のうち、光学調整によって変化する部分を与える式となる。そこで、レーザ装置500が、光学調整によって、B、M、N、およびηがどのように変化するのかを、実験によって次のように明らかにした。
 図7は、第1の実施形態に係るレーザ装置500の結合距離Lと、M、N、およびηの関係の一例を示す。結合距離Lは、半導体レーザ素子100およびレンズドファイバ532間の距離である。本例において、結合距離Lが略10μmから増加するにつれて、ηの値は小さくなり、実験結果の範囲において結合距離Lが略10μmの場合に最も結合効率が高くなることがわかる。その一方で、MおよびNは、結合距離Lの増加に対して複雑に変化することがわかる。
 図8は、第1の実施形態に係るレーザ装置500の結合距離Lと、Bの値の関係の一例を示す。Bの値は、MおよびNの変化を反映して、結合距離Lの増加に対して複雑に変化することがわかる。例えば、Bの値は、結合距離Lの値が略11μmの場合にピークが見られ、当該Bの値の変化の傾向は、結合効率の変化の傾向とは異なることがわかる。ここで、Aの値は、Bの値に光学調整ではほとんど変化のないパラメータを乗じた値なので、Aの値の変化の傾向も、Bの値と同様に結合効率の変化の傾向とは異なる。
 即ち、レーザ装置500は、結合効率ηの値を下げても、AおよびBの値を増加させる場合があることがわかる。そこで、レーザ装置500の光学系は、Aの値を、結合効率ηが最大の場合におけるAの値未満とするように調整される。本実施例において、レンズドファイバ532は、半導体レーザ素子100のレーザ光出射端に対して、結合効率ηを最大とする位置より、Aの値を結合効率ηが最大の場合におけるAの値未満とする離れた位置に配置される。
 このような調整は、Bの値についても同様であるので、レーザ装置500の光学系は、Bの値を、結合効率ηが最大の場合におけるBの値未満とするように調整してよい。即ち、レンズドファイバ532は、半導体レーザ素子100のレーザ光出射端に対して、結合効率ηを最大とする位置より、Bの値を結合効率ηが最大の場合におけるBの値未満とする離れた位置に配置してよい。図中の例において、例えば、レーザ装置500は、結合距離Lを13μm以上離すことで、Bの値を結合効率ηが最大の場合におけるBの値未満にすることができる。
 これによって、レーザ装置500は、Aの値のうち、光学調整で定められるBの値を光学系によって調節することができる。また、半導体レーザ素子100の設計値を調節することで、IthSおよびS.E.を定めることができるので、Aの値に基づき、光出力線形始点を定めることができる。
 図9は、第1の実施形態に係るレーザ装置のレンズ曲率半径と、M、N、およびηの関係の一例を示す。本例において、レンズ曲率半径が略5μmから増加するにつれて、ηの値は小さくなり、実験結果の範囲においてレンズ曲率半径が略5μmの場合に最も結合効率が高くなることがわかる。また、MおよびNは、実験結果の範囲において、レンズ曲率半径の増加に対して単調に変化することがわかる。
 図10は、第1の実施形態に係るレーザ装置のレンズ曲率半径と、Bの値の関係の一例を示す。Bの値は、MおよびNの変化を反映して、レンズ曲率半径の増加に対して単調に変化することがわかる。したがって、AまたはBの値を調整すべく、レンズ曲率半径を増加させてもよい。即ち、レーザ装置500は、レンズドファイバ532のレンズ曲率半径を、半導体レーザ素子100のレーザ光出射端に対して、結合効率を最大とする曲率半径よりも大きくする。これによって、レーザ装置500は、Bの値を結合効率ηが最大の場合におけるBの値未満にすることができる。
 図11は、本発明の第2の実施形態に係る半導体レーザ素子およびレンズドファイバ532の側面図を示す。図12は、第2の実施形態に係る半導体レーザ素子およびレンズドファイバ532の上面図を示す。
 レンズドファイバ532は、例えば、先端部にAR(Anti Reflection)コート等の処理を施して、先端部の光の反射を低減できる。しかしながら、レンズドファイバ532の先端は、このような処理を施しても、半導体レーザ素子100に向けて微弱な反射光を入射させてしまう場合がある。この反射光は、半導体レーザ素子100の不安定な発振の原因となり、反射光の強度が大きくなると、レーザ装置500の光出力線形始点がより高い出力の方向へと移動する。
 本発明の第2の実施形態は、レンズドファイバ532の先端を加工して、レンズドファイバ532の先端からの反射光を低減させる。第2の実施形態において、レンズドファイバ532は、一端において2以上の方向にレンズ状に加工される。図11および図12の例において、レンズドファイバ532は、Z方向およびY方向に凸レンズ状に加工され、X方向には加工されないファイバである。
 このように、レンズドファイバ532の先端を加工することによって、半導体レーザ素子100の方向へと伝搬する反射光を低減させることができる。したがって、第2の実施形態におけるレンズドファイバ532は、第1の実施形態のレンズドファイバ532が半導体レーザ素子100に対する配置位置よりも、半導体レーザ素子100側に近づけることができる。
 これによって、レンズドファイバ532と半導体レーザ素子100との結合係数ηを調整しつつ、レーザ装置500の光出力線形始点をより低い出力の方向へと移動させることができる。即ち例えば、第2の実施形態に係るレーザ装置500は、第1の実施形態に係るレーザ装置500に比べて、光出力線形始点を変えずに、同一の注入電流に対する光出力をより大きくすることができる。
 また、レンズドファイバ532の先端で発生する反射光強度が、光出力線形始点を予め定められた位置よりも高出力方向へと変動しない程度に低い場合、レンズドファイバ532は、半導体レーザ素子100との結合効率ηを最大とする位置Lにより近づけて配置されてよい。一例として、レンズドファイバ532は、光学系を調節する場合に、半導体レーザ素子100との結合効率ηを極大とする位置Lに配置されてよい。これによって、レーザ装置500は、半導体レーザ素子100とレンズドファイバ532との結合効率ηを高くしつつ、光出力線形始点を低出力方向へと下げることができる。
 また、レンズドファイバ532のZ方向に加工する凸レンズの曲率半径を、結合効率が最大となる曲率半径よりも大きく、または小さくしても良い。図9および図10の結果より、AまたはBの値を調整すべく、レンズ曲率半径を調節してよい。
 第2の実施形態において、レンズドファイバ532の一端が2方向にレンズ状に加工された例を説明した。これに代えて、レンズドファイバ532は、YZ方向にも凸レンズ状に加工された3方向に加工されたファイバであってよい。これに代えて、レンズドファイバ532は、より多くの方向に加工されたファイバであってよい。これに代えて、レンズドファイバ532は、球面または非球面に加工されたファイバであってよい。
 図13は、第1の実施形態に係るレーザ装置500の光学系の調整フローを示す。まず、レーザ装置500の光出力範囲を決定する(S900)。即ち、レーザ装置500の駆動最小光出力を決定する。例えば、レーザ装置500の光出力範囲を10mW以上の範囲で用いると決める。
 次に、決定した駆動最小光出力に応じて、半導体レーザ素子100へ注入する注入電流に対して、レーザ装置500の光出力が線形となる光出力線形領域における最小光出力となる最小線形光出力である光出力線形始点を決定する(S910)。ここで、光出力線形始点は、駆動最小光出力以下の値の範囲で決定する。例えば、光出力線形始点を8mWと決める。
 次に、決定した光出力線形始点に対応するAの最大値を決定する(S920)。ここで、Aの最大値は、図6のグラフより得ることができる。例えば、光出力線形始点が8mW以下となるように、Aの最大値を16mW・mAと決定する。
 次に、決定したAの最大値に基づき、Bの最大値を得る(S930)。即ち、用いる半導体レーザ素子100に応じて、IthSおよびS.E.を定めることができるので、式(1)および式(2)より、決定したAの最大値に対応するBの最大値を得ることができる。
 ここで、製造した半導体レーザ素子100のチップ毎に、IthSおよびS.E.を予め測定して、Aおよび/またはBの値に基づいて対応するIthSおよびS.E.を有する半導体レーザ素子100を選別してよい。また、予め製造する半導体レーザ素子100の製造パラメータとIthSおよびS.E.との相関を記録し、IthSおよびS.E.に応じた半導体レーザ素子100を製造してよい。
 次に、Bの最大値に基づき、光学系を調整する(S940)。即ち、Bの最大値を超えないように、光学系を調整する。例えば、半導体レーザ素子100およびレンズドファイバ532間の結合距離Lまたはレンズドファイバ532のレンズ曲率半径を調節して、Bの値を半導体レーザ素子100の出射面との結合効率ηが最大の場合におけるBの値未満にする。
 このように、レーザ装置500は、予め定めたレーザ装置500の光出力範囲に基づき、光学系の具体的な調整目標値を得ることができる。レーザ装置500は、レーザ装置500内部の光学系を、AまたはBの最大値を超えないように調整することで、予め定めたレーザ装置500の光出力範囲においてマルチ縦モード発振させて光出力を安定にすることができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
100 半導体レーザ素子、102 高反射膜、104 低反射膜、500 レーザ装置、502 筐体、504 底板部、506 筒状孔部、510 温度調節部、520 ベース部、522 マウント部、524 ファイバ固定部、530 光ファイバ、532 レンズドファイバ、540 スリーブ部、550 受光部、560 波長選択素子

Claims (14)

  1.  半導体レーザ素子と、
     前記半導体レーザ素子の反射面との間で共振器を形成してレーザ発振させて、発振させたレーザ光を出力する波長選択素子と、
     前記半導体レーザ素子の出射面と結合効率ηで光学的に結合され、前記出射面から出力される光を前記波長選択素子に入力させる光学系と、
     を備え、
     前記光学系は、前記半導体レーザ素子へ注入する注入電流に対して、光出力が線形となる光出力線形領域における最小光出力と相関する次式Aの値を前記結合効率ηが最大の場合におけるAの値未満とするレーザ装置。
     A={IthS ・S.E.・η・(M+1)-1・(N-1)}/2  (1)
     ここで、
      M=S.E./S.E.、N=IthM/IthS
      IthS:シングルモード発振閾値
      IthM:マルチモード発振閾値
      S.E.:シングルモード効率
      S.E.:マルチモード効率
     である。
  2.  前記光出力線形領域において、マルチ縦モード発振する請求項1に記載のレーザ装置。
  3.  前記光学系は、一端がレンズ状に加工され、前記半導体レーザ素子から出力されるレーザ光を前記波長選択素子に導くレンズドファイバである、請求項1に記載のレーザ装置。
  4.  前記レンズドファイバは、前記半導体レーザ素子のレーザ光出射端に対して、結合効率を最大とする位置より離れた位置に配置される請求項3に記載のレーザ装置。
  5.  前記レンズドファイバのレンズ曲率半径は、前記半導体レーザ素子のレーザ光出射端に対して、結合効率を最大とする曲率半径よりも大きい請求項3に記載のレーザ装置。
  6.  前記レンズドファイバは、一端において2以上の方向にレンズ状に加工された請求項3に記載のレーザ装置。
  7.  前記光学系は、前記Aの値を16mW・mA未満とする請求項1に記載のレーザ装置。
  8.  半導体レーザ素子と、
     前記半導体レーザ素子の反射面との間で共振器を形成してレーザ発振させ、発振させたレーザ光を出力する波長選択素子と、
     前記半導体レーザ素子の出射面と結合効率ηで光結合され、前記半導体レーザ素子から出力されるレーザ光を前記波長選択素子に導くレンズドファイバと、
     を備え、
     前記レンズドファイバは、光出力が線形となる光出力線形領域における最小光出力と相関する次式Bの値を前記結合効率ηが最大の場合におけるBの値未満とするレーザ装置。
     B=η・(M+1)-1・(N-1)  (2)
     ここで、
      M=S.E./S.E.、N=IthM/IthS
      IthS:シングルモード発振閾値
      IthM:マルチモード発振閾値
      S.E.:シングルモード効率
      S.E.:マルチモード効率
     である。
  9.  前記レンズドファイバのレンズ曲率半径は、前記半導体レーザ素子のレーザ光出射端に対して、結合効率を最大とする曲率半径よりも大きい請求項8に記載のレーザ装置。
  10.  前記光出力線形領域において、マルチ縦モード発振する請求項8に記載のレーザ装置。
  11.  前記レンズドファイバは、一端において2以上の方向にレンズ状に加工された請求項8に記載のレーザ装置。
  12.  前記波長選択素子は、ファイバブラッググレーティングである請求項1に記載のレーザ装置。
  13.  前記半導体レーザ素子は、980nm帯域または1480nm帯域のレーザ光を出力する請求項12に記載のレーザ装置。
  14.  半導体レーザ素子と、前記半導体レーザ素子の反射面との間で共振器を形成してレーザ発振させる波長選択部と、前記半導体レーザ素子が出力するレーザ光を前記波長選択部に導く光学系と、を有するレーザ装置の光学系の調整方法であって、
     前記レーザ装置の駆動最小光出力を決定する光出力範囲決定段階と、
     前記半導体レーザ素子へ注入する注入電流に対して、前記レーザ装置の光出力が線形となる光出力線形領域における最小光出力となる最小線形光出力を決定する最小線形光出力決定段階と、
     前記最小線形光出力に相関する次式で定義されるA中に含まれる、前記半導体レーザ素子と前記光学系との光結合に相関するBの値の最大値とを定める最大値決定段階と、
    を備え、
     前記最大値決定段階において、前記Bの値を前記半導体レーザ素子の出射面との結合効率ηが最大の場合におけるBの値未満にする調整方法。
     A={IthS ・S.E.・η(M+1)-1・(N-1)}/2  (1)
     B=η(M+1)-1・(N-1)  (2)
     ここで、
      M=S.E./S.E.、N=IthM/IthS
      IthS:シングルモード発振閾値
      IthM:マルチモード発振閾値
      S.E.:シングルモード効率
      S.E.:マルチモード効率
     である。
PCT/JP2012/003211 2011-06-02 2012-05-16 レーザ装置および調整方法 WO2012164850A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280019906.7A CN103493315B (zh) 2011-06-02 2012-05-16 激光装置及其调整方法
US14/078,547 US9276374B2 (en) 2011-06-02 2013-11-13 Laser apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011124621 2011-06-02
JP2011-124621 2011-06-02
JP2012033826A JP5356560B2 (ja) 2011-06-02 2012-02-20 レーザ装置および調整方法
JP2012-033826 2012-02-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/078,547 Continuation US9276374B2 (en) 2011-06-02 2013-11-13 Laser apparatus

Publications (1)

Publication Number Publication Date
WO2012164850A1 true WO2012164850A1 (ja) 2012-12-06

Family

ID=47258727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003211 WO2012164850A1 (ja) 2011-06-02 2012-05-16 レーザ装置および調整方法

Country Status (4)

Country Link
US (1) US9276374B2 (ja)
JP (1) JP5356560B2 (ja)
CN (1) CN103493315B (ja)
WO (1) WO2012164850A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6655287B2 (ja) * 2014-12-25 2020-02-26 古河電気工業株式会社 光学ユニット、光学ユニットの固定構造および半導体レーザモジュール
US10863959B2 (en) * 2015-12-21 2020-12-15 Canon Medical Systems Corporation X-ray CT apparatus
CN106159672A (zh) * 2016-08-30 2016-11-23 中国科学院半导体研究所 基于光纤透镜与光栅集成的窄线宽外腔激光器结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250844A (ja) * 2001-02-23 2002-09-06 Kyocera Corp ファイバスタブ及びそれを用いた光半導体モジュール
JP2003060317A (ja) * 2001-02-06 2003-02-28 Furukawa Electric Co Ltd:The 半導体レーザモジュールと、光帰還機能を有する半導体レーザ素子
JP2004055623A (ja) * 2002-07-16 2004-02-19 Furukawa Electric Co Ltd:The 半導体レーザ装置、半導体レーザモジュールおよびこれを用いたラマン増幅器
WO2008050537A1 (fr) * 2006-10-20 2008-05-02 Ntt Electronics Corporation Dispositif laser à semi-conducteur, et son procédé de commande

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870417A (en) * 1996-12-20 1999-02-09 Sdl, Inc. Thermal compensators for waveguide DBR laser sources
JP3857876B2 (ja) 1999-12-17 2006-12-13 古河電気工業株式会社 レンズ付きファイバ、その製造方法、製造装置及び半導体レーザモジュール
US6614822B2 (en) * 2000-02-03 2003-09-02 The Furukawa Electric Co., Ltd. Semiconductor laser devices, and semiconductor laser modules and optical communication systems using the same
JP2001251014A (ja) 2000-03-03 2001-09-14 Mitsubishi Electric Corp レーザダイオードモジュール
US6763191B1 (en) * 2000-07-25 2004-07-13 Eci Telecom Ltd. Optical switching apparatus and methods
US6912237B2 (en) 2001-02-06 2005-06-28 The Furukawa Electric Co., Ltd. Semiconductor laser module and semiconductor laser device having light feedback function
TW594088B (en) * 2003-04-21 2004-06-21 Univ Nat Sun Yat Sen The method of fabrication asymmetric fiber lens
JP2005136158A (ja) * 2003-10-30 2005-05-26 Matsushita Electric Ind Co Ltd 光送信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060317A (ja) * 2001-02-06 2003-02-28 Furukawa Electric Co Ltd:The 半導体レーザモジュールと、光帰還機能を有する半導体レーザ素子
JP2002250844A (ja) * 2001-02-23 2002-09-06 Kyocera Corp ファイバスタブ及びそれを用いた光半導体モジュール
JP2004055623A (ja) * 2002-07-16 2004-02-19 Furukawa Electric Co Ltd:The 半導体レーザ装置、半導体レーザモジュールおよびこれを用いたラマン増幅器
WO2008050537A1 (fr) * 2006-10-20 2008-05-02 Ntt Electronics Corporation Dispositif laser à semi-conducteur, et son procédé de commande

Also Published As

Publication number Publication date
JP5356560B2 (ja) 2013-12-04
CN103493315A (zh) 2014-01-01
JP2013012708A (ja) 2013-01-17
CN103493315B (zh) 2016-01-27
US9276374B2 (en) 2016-03-01
US20140072007A1 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
US10181694B2 (en) Optical module
JPH09283847A (ja) 半導体レーザモジュール
JPH10221572A (ja) 光装置
US6411639B1 (en) Semiconductor laser module with an external resonator including a band-pass filter and reflective element
JP2008152006A (ja) 光モジュール及び光通信装置
JP2007164132A (ja) 光モジュール及び光通信装置
JP5356560B2 (ja) レーザ装置および調整方法
US7760775B2 (en) Apparatus and method of generating laser beam
JP2015056469A (ja) 外部共振器により波長制御されたダイオードレーザモジュール
JPWO2015190348A1 (ja) 光学デバイスおよび光学デバイスの製造方法
JP2000183445A (ja) 半導体レ―ザモジュ―ル
JP2000208869A (ja) 発光素子モジュ―ル
JP2015135931A (ja) 半導体レーザモジュールおよび半導体レーザモジュールの作製方法
JP3257382B2 (ja) 半導体レ−ザモジュ−ル
JP3412584B2 (ja) 外部共振器型半導体レーザ
JP3936008B2 (ja) 光モジュールの設計方法
JPWO2007116563A1 (ja) 光源
US20020130403A1 (en) Optical semiconductor module and light amplifier
JP7437682B2 (ja) レーザ光源
JP4086260B2 (ja) 発光素子モジュール
JP2007116202A (ja) 光モジュールの設計方法
JPH11163471A (ja) 外部共振器型半導体レーザ
JP2006086184A (ja) レーザダイオード
JPH01231387A (ja) 半導体発光素子
JP2002329925A (ja) 半導体レーザモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793940

Country of ref document: EP

Kind code of ref document: A1