WO2008047707A1 - Procédé de fabrication d'un dérivé biphényle - Google Patents

Procédé de fabrication d'un dérivé biphényle Download PDF

Info

Publication number
WO2008047707A1
WO2008047707A1 PCT/JP2007/069957 JP2007069957W WO2008047707A1 WO 2008047707 A1 WO2008047707 A1 WO 2008047707A1 JP 2007069957 W JP2007069957 W JP 2007069957W WO 2008047707 A1 WO2008047707 A1 WO 2008047707A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
biphenyl derivative
producing
integer
chlorine
Prior art date
Application number
PCT/JP2007/069957
Other languages
English (en)
French (fr)
Inventor
Tamio Hayashi
Jiro Nakatani
Original Assignee
Toray Fine Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co., Ltd. filed Critical Toray Fine Chemicals Co., Ltd.
Priority to CN2007800356156A priority Critical patent/CN101516809B/zh
Priority to US12/377,892 priority patent/US8722942B2/en
Priority to JP2007555416A priority patent/JP5210639B2/ja
Priority to KR20097003605A priority patent/KR101482594B1/ko
Priority to EP07829693.6A priority patent/EP2075241B1/en
Publication of WO2008047707A1 publication Critical patent/WO2008047707A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • C07C43/2055Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring containing more than one ether bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B49/00Grignard reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/26Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/325Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom
    • C07C1/326Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom the hetero-atom being a magnesium atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/12Polycyclic non-condensed hydrocarbons
    • C07C15/14Polycyclic non-condensed hydrocarbons all phenyl groups being directly linked
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/2632Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions involving an organo-magnesium compound, e.g. Grignard synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic

Definitions

  • the present invention relates to a method for producing a biphenyl derivative, and more particularly to a method for producing an industrially superior biphenyl derivative.
  • Biphenyl derivatives are compounds widely used in the fields of organic chemistry and polymer chemistry, and are useful in a wide range of industrial applications, such as fine chemicals, raw materials for medicines and agricultural chemicals, plastic materials, plastic materials, electronic information materials, and optical materials. Compound.
  • Patent Document 1 proposes reacting an aromatic chlorinated Grignard reagent with an aromatic bromide in the presence of a nickel catalyst.
  • Non-Patent Documents 1 and 2 react an aromatic iodide or aromatic bromide with magnesium to convert it to a Grignard reagent, and then use an iron (III) chloride catalyst in the presence of an oxidizing agent in the presence of an oxidant. The manufacturing method which couples reagents is proposed.
  • Non-Patent Document 1 when the substrate to be reacted with the Grignard reagent is an aromatic chlorinated product, the yield of the biphenyl derivative is low, and it cannot be industrially applied.
  • the production methods described in Non-Patent Documents 1 and 2 are highly reactive as starting materials, expensive aromatic iodinated products or aromatic brominated products are used, so that the produced biphenyl derivatives are also expensive. It had become a thing.
  • the oxidizing agents described in Non-Patent Documents 1 and 2 are 1,2-dibromoethane and 1,2-dichloroethane, which are evaluated by the International Agency for Research on Cancer (IARC) for carcinogenicity. They are classified as Group 2A (substances that are probably carcinogenic to humans) and Group 2B (substances that may or may not be carcinogenic to humans). In particular, 1,2-dichloroethane is designated as a prohibited substance in Europe.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 63-295520 (Examples 1, 2, 3, 4)
  • Non-Patent Document 1 Organic 'Letters (ORGANIC LETTERS) Vol.7, No.3 (2005), 49 1 -493
  • Non-patent document 2 Organic 'Letters (ORGANIC LETTERS) Vol.7, No.10 (2005), 1 943-1946
  • An object of the present invention is to provide a method for producing a biphenyl derivative having an industrially high yield and excellent productivity by using an inexpensive raw material having low toxicity.
  • the method for producing a biphenyl derivative of the present invention is a method for producing a biphenyl derivative represented by the following general formula (1), wherein the chlorine atom of the benzene derivative represented by the following general formula (2) is replaced with magnesium metal.
  • the reaction is converted into a Grignard reagent, and the Grignard reagents are subjected to a coupling reaction in the presence of a catalyst and dichloropropane.
  • A represents at least one selected from an alkyl group, an alkoxy group, an alkoxymethyl group, a bur group, a phenyl group, and chlorine, and n is an integer from! To 4).
  • A is an alkyl group, an alkoxy group, an alkoxymethyl group, a bur group, a phenyl group. Represents at least one selected from the group chlorine, and n is an integer from! )
  • the method for producing a biphenyl derivative of the present invention can produce a Grignard reagent as an intermediate at low cost by using an inexpensive aromatic chlorinated product as a starting substrate.
  • dichloropropane having a low oxidant as an oxidizing agent and carrying out a coupling reaction it is possible to effectively produce a biphenyl derivative in a high yield.
  • the method for producing a biphenyl derivative of the present invention uses a benzene derivative represented by the following general formula (2) as a starting substrate.
  • A represents at least one selected from an alkyl group, an alkoxy group, an alkoxymethyl group, a bur group, a phenyl group, and chlorine, and n is an integer from! To 4).
  • n is an integer of 1 to 4, preferably 1 or 2. This is because when n is 1 or 2, a cheaper starting substrate can be used, and the reaction proceeds more efficiently because the steric reaction inhibition effect by the substituents is small in this reaction.
  • Substituent A is at least one selected from an anolenoquinole group, an alkoxy group, an alkoxymethyl group, a vinyleno group, a phenyl group, and chlorine.
  • the alkyl group include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, and a tertiary butyl group.
  • Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a normal propoxy group, an isopropoxy group, a normal butoxy group, and a tertiary butoxy group.
  • alkoxymethyl group examples include a methoxymethyl group, a methoxyethyl group, and a methoxy group.
  • examples include chicalemalpropyl group and methoxyisopropyl group.
  • the phenyl group may be an unsubstituted phenyl group or a substituted phenyl group.
  • the starting substrate include: o chlorotoluene, m chlorotoluene, p chlorotonolene, o chloroethino benzene, m-chloro ethino benzene, p chloro ethino millze ronono remanole.
  • o-necked toluene m-chloro-necked toluene, p-chlorotonolene, 4-chloro-o-xylene, p-chloroanis Sonore, p Dichlorobenzene, p-Chloromethoxymethylbenzene.
  • the chlorine atom of the benzene derivative (2) is reacted with magnesium metal to be converted into a Grignard reagent.
  • the conversion reaction to the Grignard reagent can be a known conversion reaction without particular limitation.
  • the magnesium metal is not particularly limited, but it is preferable to use a powdered metal.
  • the reaction to convert to a Grignard reagent is performed in a dehydrated system. Use dehydrated solvent V, or add cheap Grignard reagent to remove water! /.
  • iodine, bromine, or an inexpensive compound containing these may be added in order to take a surface oxide film of magnesium metal and increase the reactivity.
  • Preferred examples of such a compound include methyl iodide, methyl bromide, iodinated chill, brominated til, and the like.
  • the catalyst used for the coupling reaction between Grignard reagents is preferably Fe, Ag, Cu, Co, Zn, Ni, Pd metal or a compound thereof.
  • the compounds chlorides, bromides, iodides, fluorides, acetates, acetyl cetate salts, carbonates, hydroxides and nitrates of these metals are preferably used.
  • ferrous chloride (11), ferric chloride (111), ferrous bromide, and ferric bromide are preferable.
  • the amount of the catalyst used is preferably 0.01 mol% to 20 mol% with respect to 1 mol of the starting substrate, more preferably 0.05% to 10 mol%. By setting the amount of catalyst used within the above range, the coupling reaction can be carried out efficiently and economically.
  • the production method of the present invention uses dichloropropane as an oxidizing agent.
  • the oxidant oxidizes and regenerates the catalyst reduced by the coupling reaction. As a result, the catalyst cycle is rotated and the reaction yield is improved.
  • the oxidizing agent include 1,1-dichloropropane, 1,2-dichloropropane, and 1,3-dichloropropane.
  • 1,2-dichloropropane is considered to be Group 3 (a substance and substance that cannot be classified for carcinogenicity to humans) in the carcinogenicity evaluation by the International Agency for Research on Cancer (IARC), and has been proposed in the past. This is preferably used because it is less toxic than the oxidizing agent.
  • the amount of dichloropropane used is preferably 0.1 to 5 mole times the mole of the starting substrate, more preferably 0.2 to 3 mole times. 0. When the amount is less than 1 mole, the catalyst regeneration effect by the oxidant is small. When the amount is more than 5 moles, the unreacted oxidant remains and the product is not isolated and purified. Efficient.
  • the solvent used in the production method of the present invention may be any solvent as long as the reaction can proceed efficiently, but is preferably an ether solvent that easily produces a Grignard reagent. Is preferred. Specific examples of the solvent include jetyl ether, diisopropyl ether, tetrahydrofuran, N, N dimethylformamide, N, N dimethylacetamide, N methylpyrrolidone, 1,3-dioxane, 1,4 dioxane, and cyclopropynol.
  • the amount of the solvent used may be any amount depending on the solubility of the benzene derivative represented by the formula (2), the Grignard reagent and the product, the slurry concentration, or the properties of the reaction solution. However, it is preferably 0.5 to 100 mole times the amount of the benzene derivative represented by the formula (2). If the amount is less than 0.5 mole times, the yield of the Grignard reagent will be low.
  • the reaction temperature of the coupling reaction is preferably 30 to 100 ° C, more preferably 45 to 70 ° C. If the reaction temperature is lower than 30 ° C, the reaction hardly progresses, and even if the reaction proceeds, it may stop halfway, and if it exceeds 100 ° C, it decomposes before the Grignard reagent reacts. This is not preferable.
  • A is selected from an alkyl group, an alkoxy group, an alkoxymethyl group, a bur group, a phenyl group, and chlorine, and n is an integer from! To 4).
  • the composition containing the biphenyl derivative obtained by the production method of the present invention preferably has a content of the halogenated biphenyl derivative represented by the formula (3) of 20% by weight or less. % To 20% by weight is more preferable. This is because if the halogenated biphenyl derivative exceeds 20% by weight, the quality of the final product will be deteriorated if used as a raw material for fine chemicals, raw materials for pharmaceuticals and agricultural chemicals, resin / plastic raw materials, electronic information materials, optical materials and the like. That is, quality problems such as purity reduction, coloring, strength reduction, and optical property deterioration of the final product occur.
  • the separation method include a distillation method, a crystallization method, an extraction method, a column separation using silica and the like, and a simulated moving bed adsorption separation method. Any method may be used, or a plurality of methods may be combined. Since active magnesium or the like may remain in the reaction solution, it was obtained after adding water or acidic water to the reaction solution and removing the magnesium salt produced by the reaction in the aqueous phase. A method of isolation from the oil phase is preferred.
  • the distillation method may be simple distillation, rectification, vacuum distillation, or atmospheric distillation, but preferably vacuum distillation is used. Since the halogenated biphenyl derivative has a higher boiling point than the target biphenyl derivative, the target biphenyl derivative is distilled, and the halogenated biphenyl derivative is not distilled as much as possible, leaving it in the can residue, etc. A distillation operation is required.
  • the content of the halogenated biphenyl derivative in the obtained biphenyl derivative is 0.01% to 20% by weight in any of the isolation methods. Preferably, 0.01 weight 0 /. Or equal to to 5 wt 0/0.
  • the biphenyl derivative obtained by the production method of the present invention can be converted into various compounds in a wide variety of fields, uses inexpensive raw materials and low-toxic oxidants, and efficiently industrializes. The significance of being obtained is significant.
  • the reaction mixture is cooled, the reaction solution is developed into water, the oil layer is extracted with jetyl ether (special grade made by nacalai tesque), and the internal standard substance acetophenone (special grade made by nacalai tesque) is added thereto.
  • the analysis was performed by gas chromatography (column: manufactured by GL Sciences: Inert Cap 1 length 60 m X diameter 0 ⁇ 25 mm, film thickness 0 ⁇ 40 m). o
  • the yield of 2,2 'dimethylbiphenyl with respect to the black toluene was 84.4%.
  • the by-product black mouth 2,2 ′ dimethylbiphenyl was 0.54% by weight relative to 2,2 ′ dimethylbiphenyl.
  • Example 3 [0038] The reaction was carried out in the same manner as in Example 1, except that o black toluene was changed to p-black toluene.
  • the yield of 4,4′-dimethylbiphenyl with respect to p-type toluene was 82.0%.
  • by-product black mouth 4,4'-dimethylbiphenyl was 0.80% by weight with respect to 4,4'-dimethylbiphenyl.
  • Tetrahydrofuran 123 ⁇ lg (l. 71 mol; manufactured by nacalai tesque), magnesium powder 10 ⁇ 4 g (0.43 mol; manufactured by Chuo), 4 Chloro-xylene 5 g (0.036 mol; manufactured by Wako Pure Chemical Industries, Ltd.) ) was put into a reactor equipped with a thermometer, and the system was stirred while purging with nitrogen.
  • Tertiary monobutyl magnesium chloride lg (0.008 mol; manufactured by Tokyo Chemical Industry Co., Ltd.) was added to remove water in the system. Subsequently, 3.9 g (0.04 mol; Wako Pure Chemical Industries, Ltd.) bromide chill was added.
  • Example 1 the reaction was carried out in the same manner as in Example 1 except that the oxidizing agent was changed from 1,2 dichroic propane 53.6 g (0.74 mol; Wako Pure Chemical Industries, Ltd.) to 1,2-dichloroethane. . o
  • the yield of 2,2 'dimethylbiphenyl was 65.9% with respect to toluene.
  • the by-product black mouth 2,2 'dimethylbiphenyl was 4.5% by weight with respect to 2,2' dimethylbiphenyl.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
ビフエニル誘導体の製造方法
技術分野
[0001] 本発明は、ビフエニル誘導体の製造方法に関し、さらに詳しくは、工業的に優れた ビフエニル誘導体の製造方法に関する。
背景技術
[0002] ビフエニル誘導体は、有機化学 ·高分子化学分野で広く用いられる化合物であり、 ファインケミカル、医農薬原料、樹脂'プラスチック原料、電子情報材料、光学材料な ど、工業用途として多岐にわたる分野で有用な化合物である。
[0003] ビフエニル誘導体の製造方法としては、芳香族ハロゲン化物を出発基質とすること が知られている。特許文献 1はニッケル触媒存在下で、芳香族塩素化物のグリニヤー ノレ試薬と芳香族臭素化物とを反応させることを提案している。一方、非特許文献 1お よび 2は、芳香族ヨウ素化物または芳香族臭素化物をマグネシウムと反応させ、グリニ ヤール試薬に転化した後、塩化鉄 (III)触媒を用い、酸化剤の共存下、グリニヤーノレ 試薬同士をカップリングさせる製造方法を提案している。
[0004] しかし、特許文献 1に記載された方法では、グリニャール試薬と反応させる基質が 芳香族塩素化物になった場合、ビフエニル誘導体の収率は低ぐ工業的に適用でき るものではなかった。また、非特許文献 1および 2に記載された製造方法は、出発基 質として、反応性が高いものの、高価な芳香族ヨウ素化物または芳香族臭素化物を 使用するため、製造されたビフエニル誘導体も高価なものとなってしまっていた。さら に、非特許文献 1および 2に記載された酸化剤は、 1 , 2—ジブロモェタン、 1 , 2—ジ クロロェタンであり、これらは、国際がん研究機関(IARC)による発がん性評価で、そ れぞれグループ 2A (人に対して恐らく発がん性が有る物質)、グループ 2B (人に対し て発がん性が有る力、もしれない物質)とされている。特に 1 , 2—ジクロロェタンは、欧 州では使用禁止物質に指定されている。
[0005] これらの工業的使用には問題があり、毒性の低レ、代替物質が望まれて!/、た。
特許文献 1 :日本国特開昭 63— 295520号公報(実施例 1 , 2, 3, 4) 非特許文献 1 :オーガニック 'レターズ(ORGANIC LETTERS) Vol.7, No.3 (2005), 49 1 -493
非特許文献 2 :オーガニック 'レターズ(ORGANIC LETTERS) Vol.7, No.10 (2005), 1 943- 1946
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、安価で毒性が低い原料を使用することにより、工業的に高い収 率で生産性に優れたビフヱニル誘導体の製造方法を提供することである。
課題を解決するための手段
[0007] 本発明のビフエニル誘導体の製造方法は、下記一般式(1)で示されるビフエ二ル 誘導体の製造方法において、下記一般式(2)で示されるベンゼン誘導体の塩素原 子をマグネシウム金属と反応させ、グリニャール試薬に転化し、該グリニャール試薬 同士を触媒およびジクロロプロパンの存在下でカップリング反応させることを特徴とす
[0008] [化 1]
Figure imgf000004_0001
(ただし、 Aは、アルキル基、アルコキシ基、アルコキシメチル基、ビュル基、フエニル 基、塩素から選ばれる少なくとも 1つを表し、 nは、;!〜 4の整数とする。 )
[0009] [化 2]
Figure imgf000004_0002
(ただし、 Aは、アルキル基、アルコキシ基、アルコキシメチル基、ビュル基、フエニル 基、塩素から選ばれる少なくとも 1つを表し、 nは、;!〜 4の整数とする。 ) 発明の効果
[0010] 本発明のビフエニル誘導体の製造方法は、出発基質として安価な芳香族塩素化物 を使用することにより、低コストでグリニャール試薬を中間体として生成することができ 、このグリニャール試薬同士を、毒性が低いジクロロプロパンを酸化剤として用いて、 カップリング反応させることにより、効果的に高収率でビフエニル誘導体を製造するこ と力 Sできる。
発明を実施するための最良の形態
[0011] 以下に本発明の詳細を記載する。
[0012] 本発明のビフエニル誘導体の製造方法は、下記一般式(2)で示されるベンゼン誘 導体を出発基質とする。
[0013] [化 3]
Figure imgf000005_0001
(ただし、 Aは、アルキル基、アルコキシ基、アルコキシメチル基、ビュル基、フエニル 基、塩素から選ばれる少なくとも 1つを表し、 nは、;!〜 4の整数とする。 )
[0014] 前記式(2)において、 nは、 1〜4の整数であり、好ましくは 1または 2である。 nが 1ま たは 2のときに、より安価な出発基質が使用でき、さらに本反応において置換基によ る立体的な反応阻害効果が少ないためより効率的に反応が進行するからである。
[0015] 置換基 Aは、ァノレキノレ基、アルコキシ基、アルコキシメチル基、ビニノレ基、フエニル 基、塩素から選ばれる少なくとも 1つである。アルキル基の具体的例としては、メチル 基、ェチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリ 一ブチル基が挙げられる。アルコキシ基の具体例は、メトキシ基、エトキシ基、ノルマ ルプロポキシ基、イソプロポキシ基、ノルマルブトキシ基、ターシャリーブトキシ基が挙 げられる。アルコキシメチル基の具体例は、メトキシメチル基、メトキシェチル基、メトキ シカレマルプロピル基、メトキシイソプロピル基が挙げられる。フエニル基は、無置換 のフエニル基でも置換フエニル基でも構わなレ、。
[0016] 出発基質の具体例としては、 o クロ口トルエン、 m クロ口トルエン、 p クロロトノレ ェン、 o クロロェチノレベンゼン、 m—クロロェチノレベンゼン、 p クロロェチノレべンゼ 口ロノノレマノレプロピノレベンゼン、 o クロ口イソプロピノレベンゼン、 m—クロ口イソプロピ ノレベンゼン、 p クロ口イソプロピノレベンゼン、 3—クロ口一 o キシレン、 4—クロ口一 o ーキシレン、 2 クロロー m—キシレン、 4 クロロー m—キシレン、 2 クロロー p キ シレン、 2—クロロメシチレン、 o クロロアニソーノレ、 m—クロロアニソーノレ、 p—クロ口 ァニソ一ノレ、 o クロローメトキシメチルベンゼン、 m クロローメトキシメチルベンゼン 、 p クロローメトキシメチノレベンゼン、 o クロローメトキシェチノレベンゼン、 m クロ口 ーメトキシェチノレベンゼン、 p—クロローメトキシェチノレベンゼン、 2—クロロビフエニノレ 、 3—クロロビフエニノレ、 4—クロロビフエニノレ、 o ジクロロベンゼン、 m ジクロロベン ゼン、 p ジクロ口ベンゼン、 1 , 3, 5 トリクロ口ベンゼン、 1 , 2, 4 トリクロ口べンゼ ンなどが挙げられ、中でも好ましいのは、 o クロ口トルエン、 m—クロ口トルエン、 p— クロロトノレェン、 4 クロロー o キシレン、 p—クロロアニソーノレ、 p ジクロ口ベンゼン 、 p—クロローメトキシメチルベンゼンである。
[0017] 本発明にお!/、て、前記(2)のベンゼン誘導体の塩素原子をマグネシウム金属と反 応させて、グリニャール試薬に転化する。グリニャール試薬への転化反応は、特に制 限されることなぐ公知の転化反応を利用することができる。
[0018] マグネシウム金属は、特に限定されないが、粉末状のものを用いることが好ましい。
グリニャール試薬に転化する反応は、脱水された系で行われる。脱水した溶媒を用 V、ることあるいは安価なグリニャール試薬を添加し、水を除去することが好まし!/、。
[0019] また、マグネシウム金属の表面酸化皮膜をとり、反応性を高めるため、ヨウ素、臭素 あるいは、これらを含む安価な化合物を添加するとよい。このような化合物の例として は、ヨウ化メチル、臭化メチル、ヨウ化工チル、臭化工チル等が好ましく挙げられる。
[0020] 本発明の製造方法において、グリニャール試薬同士のカップリング反応に用いられ る触媒は、 Fe, Ag, Cu, Co, Zn, Ni, Pd金属またはその化合物が好ましく挙げられ 、化合物としては、これら金属の塩化物、臭化物、ヨウ化物、フッ化物、酢酸塩、ァセ チルァセトナート塩、炭酸塩、水酸化物、硝酸塩が好ましく用いられる。中でも塩化第 一鉄 (11)、塩化第二鉄 (111)、臭化第一鉄、臭化第二鉄が好ましい。
[0021] また、触媒の使用量は、出発基質 1モルに対し、 0. 01モル%〜20モル%を用いる のが好ましぐ 0. 05%〜; 10モル%がさらに好ましい。触媒使用量を上記の範囲とす ることにより、カップリング反応を効率良くかつ経済的に行うことができる。
[0022] 本発明の製造方法は、酸化剤として、ジクロロプロパンを用いる。酸化剤はカツプリ ング反応で還元された触媒を酸化し、再生する。これにより、触媒サイクルが回り、反 応収率が向上する。
[0023] 酸化剤の具体例としては、 1 , 1ージクロ口プロパン、 1 , 2—ジクロ口プロパン、 1 , 3 ージクロ口プロパンが挙げられる。中でも 1 , 2—ジクロ口プロパンは、国際がん研究機 関(IARC)による発がん性評価で、グループ 3 (ヒトに対する発がん性については分 類できなレ、物質)とされており、従来提案されてレ、る酸化剤よりも毒性が低!/、ことから 、これが好ましく用いられる。また、ジクロロプロパンの使用量は、出発基質 1モルに 対し、 0. 1モル倍量〜 5モル倍量用いるのが好ましぐ 0. 2モル倍量〜 3モル倍量が より好ましい。 0. 1モル倍量より少ないと酸化剤による触媒再生の効果が少なぐ 5モ ノレ倍量よりも多いと、未反応の酸化剤が残存し、 目的物の単離精製で付加がかかり、 非効率的である。
[0024] 本発明の製造方法に用いる溶媒は、反応を効率よく進行させることができるもので あれば、いずれの溶媒でも任意に選択できるが、好ましくは、グリニャール試薬が生 成しやすいエーテル系溶媒が好ましい。溶媒の具体例としては、ジェチルエーテル、 ジイソプロピルエーテル、テトラヒドロフラン、 N, N ジメチルホルムアミド、 N, N ジ メチルァセトアミド、 N メチルピロリドン、 1 , 3—ジォキサン、 1 , 4 ジォキサン、シク 口プロピノレメチノレエーテノレ、メチノレーターシャリーブチノレエーテノレ、エチレングリコー ノレジメチノレエーテノレ、ジエチレングリコーノレジメチノレエーテノレ、トリエチレングリコーノレ ジメチノレエーテノレ、テトラエチレングリコーノレジメチノレエーテノレ、ベンゼン、トノレェン、 キシレンなどが挙げられる。中でも好ましいのは、ジェチルエーテル、ジイソプロピノレ エーテル、テトラヒドロフラン、 1 , 3—ジォキサン、 1 , 4ージォキサン、シクロプロピルメ チノレエーテノレ、メチノレ ターシャリーブチノレエーテノレである。
[0025] また、溶媒の使用量については、前記式(2)で示されるベンゼン誘導体、グリニャ ール試薬および生成物の溶解性やスラリー濃度または反応液の性状に応じ、任意の 量で構わないが、好ましくは、前記式(2)で示されるベンゼン誘導体に対し、 0. 5〜1 00モル倍量である。 0. 5モル倍量未満だと、グリニャール試薬の収率が低くなり、 10 0モル倍量を超えると生産性が悪ぐ非経済的なプロセスとなる。
[0026] 本発明の製造方法において、カップリング反応の反応温度は、 30〜100°Cが好ま しぐ 45〜70°Cがさらに好ましい。反応温度が 30°Cより低いと、反応がほとんど進行 せず、例え反応が進行したとしても、途中で停止することがあり、また 100°Cを超える と、グリニャール試薬が反応する前に分解することがあり好ましくない。
[0027] 本発明の製造方法において、カップリング反応の際に、 目的とする下記一般式(1) で示されるビフエ二ル誘導体と共に、下記一般式(3)で示されるハロゲン化ビフエ二 ノレ誘導体が副生することから、ビフエニル誘導体を含む組成物が得られる。
[0028] [化 4]
Figure imgf000008_0001
(ただし、 Aは、アルキル基、アルコキシ基、アルコキシメチル基、ビュル基、フエニル 基、塩素から選 表し、 nは、;!〜 4の整数とする。 )
[0029] [化 5]
Figure imgf000008_0002
(ただし、 Aは、アルキル基、アルコキシ基、アルコキシメチル基、ビュル基、フエニル 基、塩素から選ばれる少なくとも 1つを表し、 nは、;!〜 4の整数とする。 ) [0030] 本発明の製造方法によって得られたビフエニル誘導体を含む組成物は、前記式(3 )で示されるハロゲン化ビフエニル誘導体の含量が 20重量%以下であることが好まし ぐ 0. 01重量%〜20重量%がより好ましい。ハロゲン化ビフヱニル誘導体が 20重量 %を超えると、ファインケミカル、医農薬原料、樹脂 ·プラスチック原料、電子情報材料 、光学材料などの原料として用いると、最終製品の品質低下を引き起こすからである 。すなわち、最終製品の純度低下、着色、強度低下、光学特性低下などの品質上の 問題が発生する。
[0031] 従って、本発明のカップリング反応液から目的のビフエニル誘導体を単離する際は 、副生したハロゲン化ビフエニル誘導体をできる限り少なくすることが必要である。単 離方法は、蒸留法、晶析法、抽出法、シリカ等によるカラム分離、擬似移動床吸着分 離法などが挙げられ、いずれの方法でも構わないし、複数の方法を組み合わせても 構わない。反応液中に、活性なマグネシウム等が残存している可能性があることから 、反応液に水あるいは、酸性水を加え、反応で生成したマグネシウム塩を水相に除 去した後、得られた油相から単離する方法が好ましい。例えば蒸留法では、単蒸留、 精留、減圧蒸留、常圧蒸留のいずれでも構わないが、好ましくは、減圧蒸留が用いら れる。 目的のビフエ二ル誘導体よりハロゲン化ビフエニル誘導体の方が高沸点である ため、 目的のビフエニル誘導体を留出させ、ハロゲン化ビフエニル誘導体をできる限 り留出させずに、缶残等に残すなどの蒸留操作が必要である。
[0032] 本発明の製造方法は、いずれかの単離方法で、得られたビフエニル誘導体中のハ ロゲン化ビフヱニル誘導体含量を 0. 01重量%〜20重量%にすることが好ましぐさ らに好ましくは、 0. 01重量0/。〜 5重量0 /0とするとよい。ハロゲン化ビフエニル誘導体 含量を上記の範囲内とすることにより、ビフエニル誘導体を原料とする最終製品の純 度、着色、強度、光学特性などの品質を維持できる。
[0033] 本発明の製造方法により得られたビフエニル誘導体は、多岐にわたる分野で種々 の化合物へ変化することが可能であり、安価な原料 ·毒性の低い酸化剤を使用し、か つ効率よく工業的に得られることの意義は大きい。
[0034] 実施例
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定される ものではない。なお、ここで用いている試薬類のメーカーグレードは、いずれも 1級レ ベル以上に相当するものである。
実施例 1
[0035] テトラヒドロフラン 136 · 8g (l . 90mol ; nacalai tesque社製)、マグネシウム粉末 11.
5g (0. 47mol ;中央ェ産社製)、 o クロ口トルエン 5g (0. 008mol ;和光純薬社製) を温度計付き反応器に投入し、系内を窒素置換しながら、撹拌した。ターシャリーブ チルマグネシウムクロライド lg (0. 008mol ;東京化成製)を添加し、系内の水分を除 去した。続いて、臭化工チル 4. 3g (0. 04mol ;和光純薬社製)を加えた。暫く撹拌し 、発熱が起こることを確認した。次に反応液温度 35〜50°Cに保ちながら、 o クロロト ルェン 45g (0. 35mol)を滴下した。滴下終了後、 60°Cで 3時間撹拌しながら、熟成 した(ダリュヤール試薬収率 83%)。
[0036] 次に、塩化鉄 (111) 1 · 9g (0. 012mol ;和光純薬社製)にテトラヒドロフラン 7· lg (0 • lOmol)をカロえた ί夜に、 1 , 2 ジクロロフ。ロノ ン 53· 6g (0. 74mol ;和光純薬社製 )を加え、触媒含有溶液を調製した。これを上記グリニャール試薬溶液に、反応液温 度 30〜50°Cに保ちながら滴下し、カップリング反応を行った。滴下終了後、 50°Cで 3時間反応を行った。反応終了後、冷却し、反応液を水に展開し、ジェチルエーテル (nacalai tesque社製特級)で油層を抽出し、これに内部標準物質であるァセトフエノ ン(nacalai tesque社製特級)を加えて、ガスクロマトグラフィー法(カラム: GLサイェン ス社製:イナ一トキヤップ 1 長さ 60m X径 0· 25mm,膜厚 0· 40 m)で分析した。 o クロ口トルエンに対する 2, 2' ジメチルビフエニルの収率は 84. 4%であった。ま た、副生したクロ口 2, 2' ジメチルビフエニルは、 2, 2' ジメチルビフエ二ルに対 して、 0. 54重量%であった。
実施例 2
[0037] 実施例 1において、 o クロ口トルエン力、ら m—クロ口トルエンに変更した以外は、実 施例 1と同様に反応を行った。 m クロ口トルエンに対する 3, 3' —ジメチルビフエ二 ルの収率は 79. 4%であった。また、副生したクロ口 3, 3' —ジメチルビフエニルは、 3, 3' —ジメチルビフエニルに対して、 1. 4重量%であった。
実施例 3 [0038] 実施例 1において、 o クロ口トルエンから p—クロ口トルエンに変更した以外は、実 施例 1と同様に反応を行った。 p クロ口トルエンに対する 4, 4' ジメチルビフエ二 ルの収率は 82· 0%であった。また、副生したクロ口 4, Α' ジメチルビフエニルは、 4, 4' ジメチルビフエニルに対して、 0. 80重量%であった。
実施例 4
[0039] テトラヒドロフラン 123 · lg ( l . 71mol ; nacalai tesque社製)、マグネシウム粉末 10· 4g (0. 43mol ;中央ェ産社製)、 4 クロロー o キシレン 5g (0. 036mol ;和光純薬 社製)を温度計付き反応器に投入し、系内を窒素置換しながら、撹拌した。ターシャリ 一ブチルマグネシウムクロライド lg (0. 008mol ;東京化成製)を添加し、系内の水分 を除去した。続いて、臭化工チル 3. 9g (0. 04mol ;和光純薬社製)を加えた。暫く撹 拌し、発熱が起こることを確認した。次に反応液温度 35〜50°Cに保ちながら、 4 ク ロロ o キシレン 45g (0. 32mol)を滴下した。滴下終了後、 60°Cで 3時間撹拌し ながら、熟成した(グリニャール試薬収率 90%)。
[0040] 次に、塩化鉄(111) 1 · 7g (0. 01 lmol ;和光純薬社製)にテトラヒドロフラン 6 · 4g (0 . 09mol)をカロえた液に、 1 , 2 ジクロロプロパン 48 · 2g (0. 67mol ;和光純薬社製 )を加え、触媒含有溶液を調製した。これを上記グリニャール試薬溶液に、反応液温 度 30〜50°Cに保ちながら滴下し、カップリング反応を行った。滴下終了後、 50°Cで 3時間反応を行った。反応終了後、冷却し、反応液を水に展開し、ジェチルエーテル (nacalai tesque社製特級)で油層を抽出し、これに内部標準物質であるァセトフエノ ン(nacalai tesque社製特級)を加えて、ガスクロマトグラフィー法(カラム: GLサイェン ス社製:イナ一トキヤップ 1 長さ 60m X径 0· 25mm,膜厚 0· 40 m)で分析した。 4 —クロ口 o キシレンに対する 3, 4, 3' , 4' —テトラメチルビフエニルの収率は 7 2. 5%であった。また、副生したクロ口 3, 4, 3' , A' ーテトラメチルビフエニルは、 3 , 4, 3' , 一テトラメチルビフエニルに対して、 1. 8重量0 /。であった。
実施例 5
[0041] 実施例 4において、 4 クロロー o キシレンから 3—クロロー o キシレンに変更し た以外は、実施例 4と同様に反応を行った。 3 クロロー o キシレンに対する 2, 3, 2' , 3' —テトラメチルビフエニルの収率は 74· 3%であった。また、副生したクロ口 2 , 3, 2, , 3, —テトラメチノレビフエ二ノレ (ま、 2, 3, 2, , 3, —テトラメチノレビフエ二ノレ に対して、 1. 6重量%であった。
比較例 1
実施例 1において、酸化剤を 1 , 2 ジクロ口プロパン 53. 6g (0. 74mol ;和光純薬 社製)から 1 , 2—ジクロロェタンに変更した以外は、実施例 1と同様に反応を行った。 o クロ口トルエンに対する 2, 2' ジメチルビフエニルの収率は 65· 9%であった。 また、副生したクロ口 2, 2' ジメチルビフエニルは、 2, 2' ジメチルビフエニルに 対して、 4. 5重量%であった。

Claims

請求の範囲
[1] 下記一般式(1)で示されるビフエ二ル誘導体の製造方法において、下記一般式(2 )で示されるベンゼン誘導体の塩素原子をマグネシウム金属と反応させ、グリニヤー ル試薬に転化し、該グリニャール試薬同士を触媒およびジクロロプロパンの存在下 でカップリング反応させるビフエニル誘導体の製造方法。
Figure imgf000013_0001
(ただし、 Aは、アルキル基、アルコキシ基、アルコキシメチル基、ビュル基、フエニル 基、塩素から選ばれる少なくとも 1つを表し、 nは、;!〜 4の整数とする。 )
Figure imgf000013_0002
( 2 )
(ただし、 Aは、アルキル基、アルコキシ基、アルコキシメチル基、ビュル基、フエニル 基、塩素から選ばれる少なくとも 1つを表し、 nは、;!〜 4の整数とする。 )
[2] 前記式(2)において、前記置換基 Aの数 nが 1または 2である請求項 1に記載のビフ ェニル誘導体の製造方法。
[3] 前記触媒が Fe、 Ag、 Cu、 Co、 Zn、 Ni、 Pdから選ばれる少なくとも 1つの金属また はその化合物である請求項 1又は 2に記載のビフエニル誘導体の製造方法。
[4] 前記ジクロロプロパンが、 1 , 2—ジクロ口プロパンである請求項 1〜3のいずれかに 記載のビフエニル誘導体の製造方法。
[5] 前記ビフエニル誘導体を精製し、下記一般式(3)で示されるハロゲン化ビフエニル 誘導体の含有量を 0. 01重量%〜20重量%とする請求項;!〜 4のいずれかに記載 のビフヱニル誘導体の製造方法。
Figure imgf000014_0001
(ただし、 Aは、アルキル基、アルコキシ基、アルコキシメチル基、ビュル基、フエニル 基、塩素から選ばれる少なくとも 1つを表し、 Xは、ハロゲン原子を表し、 nは、 1〜4の 整数、 aおよび bは、整数であり aと bの合計が 1〜8とする。 )
請求項 1〜 5のいずれかに記載の製造方法で得られたビフユニル誘導体を含む組 成物であって、下記一般式(3)で示されるハロゲン化ビフエニル誘導体の含有量が 0 . 01重量。/。〜 20重量%であるビフヱニル誘導体組成物。
Figure imgf000014_0002
(ただし、 Aは、アルキル基、アルコキシ基、アルコキシメチル基、ビュル基、フエニル 基、塩素から選ばれる少なくとも 1つを表し、 Xは、ハロゲン原子を表し、 nは、 1〜4の 整数、 aおよび bは、整数であり aと bの合計が 1〜8とする。 )
PCT/JP2007/069957 2006-10-16 2007-10-12 Procédé de fabrication d'un dérivé biphényle WO2008047707A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800356156A CN101516809B (zh) 2006-10-16 2007-10-12 联苯衍生物的制备方法
US12/377,892 US8722942B2 (en) 2006-10-16 2007-10-12 Method for producing biphenyl derivative
JP2007555416A JP5210639B2 (ja) 2006-10-16 2007-10-12 ビフェニル誘導体の製造方法
KR20097003605A KR101482594B1 (ko) 2006-10-16 2007-10-12 비페닐 유도체의 제조 방법
EP07829693.6A EP2075241B1 (en) 2006-10-16 2007-10-12 Method for producing a biphenyl derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006281677 2006-10-16
JP2006-281677 2006-10-16

Publications (1)

Publication Number Publication Date
WO2008047707A1 true WO2008047707A1 (fr) 2008-04-24

Family

ID=39313938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069957 WO2008047707A1 (fr) 2006-10-16 2007-10-12 Procédé de fabrication d'un dérivé biphényle

Country Status (6)

Country Link
US (1) US8722942B2 (ja)
EP (1) EP2075241B1 (ja)
JP (1) JP5210639B2 (ja)
KR (1) KR101482594B1 (ja)
CN (1) CN101516809B (ja)
WO (1) WO2008047707A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079009A (ja) * 2007-09-26 2009-04-16 Tamio Hayashi ビフェニル−2,3,2′,3′−テトラカルボン酸の製造方法
CN115286479A (zh) * 2022-08-26 2022-11-04 北京格林凯默科技有限公司 4,4′-二甲基联苯的制备方法
US11827610B2 (en) 2021-09-15 2023-11-28 Enko Chem, Inc. Protoporphyrinogen oxidase inhibitors

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103086838B (zh) * 2013-02-08 2016-02-03 中国科学院长春应用化学研究所 一种四甲基联苯的制备方法
CN103319296B (zh) * 2013-07-18 2015-10-07 中国科学院长春应用化学研究所 一种四甲基联苯的制备方法
CN104370685A (zh) * 2014-10-20 2015-02-25 哈尔滨工业大学(威海) 一种绿色合成四甲基联苯异构体化合物的方法
CN106316745A (zh) * 2016-08-24 2017-01-11 苏州氟拓化工科技有限公司 一种联苯化合物的制备方法
CN109053355B (zh) * 2018-09-29 2020-12-25 上海化工研究院有限公司 一种连续精馏提纯联苯的方法
CN113087592B (zh) * 2020-01-08 2022-07-26 浙江中欣氟材股份有限公司 一种4,4′-二溴八氟联苯的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295520A (ja) 1987-05-26 1988-12-01 Yuki Gosei Yakuhin Kogyo Kk 非対称なビフェニル誘導体の製造法
JP2004256500A (ja) * 2003-02-27 2004-09-16 Japan Science & Technology Agency ジハロゲン化ビフェニル誘導体およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959596A (en) * 1957-11-22 1960-11-08 Metal & Thermit Corp Aryl chloride-cyclic ether grignard reagents
US4939309A (en) * 1989-05-03 1990-07-03 Eastman Kodak Company Preparation of biaryl compounds
JP2005126330A (ja) * 2003-10-21 2005-05-19 Toray Ind Inc ビフェニル誘導体の製造法
US7893306B2 (en) * 2005-11-04 2011-02-22 Toray Fine Chemicals Co., Ltd. Process for production of biphenyl derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295520A (ja) 1987-05-26 1988-12-01 Yuki Gosei Yakuhin Kogyo Kk 非対称なビフェニル誘導体の製造法
JP2004256500A (ja) * 2003-02-27 2004-09-16 Japan Science & Technology Agency ジハロゲン化ビフェニル誘導体およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAHIEZ G. ET AL.: "Iron-Catalyzed Homo-Coupling of Simple and Functionalized Arylmagnesium Reagents", ORGANIC LETTERS, vol. 7, no. 10, 12 May 2005 (2005-05-12), pages 1943 - 1946, XP003012553 *
NAGANO T. ET AL.: "Iron-catalyzed oxidative homo-coupling of aryl Grignard reagents", ORGANIC LETTERS, vol. 7, no. 3, 3 February 2005 (2005-02-03), pages 491 - 493, XP003012552 *
ORGANIC LETTERS, vol. 7, no. 10, 2005, pages 1943 - 1946
ORGANIC LETTERS, vol. 7, no. 3, 2005, pages 491 - 493

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079009A (ja) * 2007-09-26 2009-04-16 Tamio Hayashi ビフェニル−2,3,2′,3′−テトラカルボン酸の製造方法
US11827610B2 (en) 2021-09-15 2023-11-28 Enko Chem, Inc. Protoporphyrinogen oxidase inhibitors
CN115286479A (zh) * 2022-08-26 2022-11-04 北京格林凯默科技有限公司 4,4′-二甲基联苯的制备方法

Also Published As

Publication number Publication date
EP2075241A4 (en) 2011-01-05
EP2075241B1 (en) 2013-09-25
US20100230634A1 (en) 2010-09-16
US8722942B2 (en) 2014-05-13
EP2075241A1 (en) 2009-07-01
JP5210639B2 (ja) 2013-06-12
JPWO2008047707A1 (ja) 2010-02-25
CN101516809A (zh) 2009-08-26
KR101482594B1 (ko) 2015-01-14
CN101516809B (zh) 2013-05-08
KR20090066267A (ko) 2009-06-23

Similar Documents

Publication Publication Date Title
WO2008047707A1 (fr) Procédé de fabrication d'un dérivé biphényle
WO2007052516A1 (ja) ビフェニル誘導体の製造方法
JP2009079008A (ja) ビフェニル−3,4,3′,4′−テトラカルボン酸の製造方法
JP5060098B2 (ja) ビフェニル誘導体の製造方法
JP5013365B2 (ja) スペーサー導入型ビス(ターピリジン)化合物の合成方法
WO2013081034A1 (ja) ハロゲン化触媒及びその製造方法
JP5196341B2 (ja) ビフェニル誘導体の製造方法
JP5212692B6 (ja) 2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルの製造方法
CN106029620B (zh) 2’‑三氟甲基取代芳香族酮的制造方法
JP5023683B2 (ja) ベンゾフルオレン誘導体の製造方法およびその中間体
JPWO2008059724A6 (ja) 2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルの製造方法
JP6861060B2 (ja) 4,4′−ジヨード−3,3′−ジメチルビフェニルの製造方法
JP5208471B2 (ja) ビフェニル−2,3,2′,3′−テトラカルボン酸の製造方法
JP5896356B2 (ja) ケイ素化合物の製造方法
JP2008174519A (ja) テトラヒドロピランを溶媒とする対称ビフェニル化合物の製造方法
JP5649288B2 (ja) フタル酸ジクロリド化合物の製造方法及びこの製造方法に用いられる触媒
WO2023190846A1 (ja) フッ素含有芳香族化合物の製造方法
JP2016069299A (ja) 2−トリフルオロメチル安息香酸エステルの製造方法
JP2004277306A (ja) モノアリルイソシアヌレート化合物の製造方法
JP2009120589A (ja) オリゴヘテロアレーン又はポリヘテロアレーンの製造方法
JP2006151904A (ja) エチニルフタル酸無水物誘導体及びエチニルフタル酸誘導体の製造方法
US20170036978A1 (en) Process for the manufacture of terphenyl compounds
JPH0529232B2 (ja)
JP2007332140A (ja) 2−ブロモ−4,4’−ジアルキルビフェニルの製造方法
WO2011111464A1 (ja) 3,5-ジ-tert-ブチルハロゲノベンゼンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780035615.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007555416

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007829693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12377892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097003605

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE