WO2008047022A1 - Matériau composite conducteur à base de polymère thermoplastique et de nanotube de carbone - Google Patents

Matériau composite conducteur à base de polymère thermoplastique et de nanotube de carbone Download PDF

Info

Publication number
WO2008047022A1
WO2008047022A1 PCT/FR2007/052050 FR2007052050W WO2008047022A1 WO 2008047022 A1 WO2008047022 A1 WO 2008047022A1 FR 2007052050 W FR2007052050 W FR 2007052050W WO 2008047022 A1 WO2008047022 A1 WO 2008047022A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
less
polymer
thermoplastic polymer
carbon nanotubes
Prior art date
Application number
PCT/FR2007/052050
Other languages
English (en)
Inventor
Benoît BRULE
Nicolas Devaux
Patrick Piccione
Eric Gamache
Catherine Bluteau
Nour Eddine El Bounia
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to US12/444,912 priority Critical patent/US20100084616A1/en
Priority to JP2009532856A priority patent/JP2010506989A/ja
Priority to EP07858483A priority patent/EP2081989A1/fr
Publication of WO2008047022A1 publication Critical patent/WO2008047022A1/fr
Priority to US13/543,024 priority patent/US20130009110A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a conductive composite material based on thermoplastic polymer and carbon nanotubes (CNTs), and processes for preparing said conductive composite material, the processes comprising either injection molding or extrusion, or a post step heat treatment of said composite material.
  • CNTs thermoplastic polymer and carbon nanotubes
  • Carbon nanotubes are known and used for their excellent properties of electrical and thermal conductivity as well as their mechanical properties. They are thus increasingly used as additives to provide materials including those of macromolecular type these electrical, thermal and / or mechanical properties (WO 91/03057, US5744235, US5445327, US54663230).
  • carbon nanotubes in macromolecular compositions intended for the packaging of electronic components, the manufacture of fuel lines (fuel line), antistatic coatings or coatings, in thermistors, electrodes for super-capacitors, etc.
  • multilayer tubes obtained by coextrusion process whose inner layer consists of a thermoplastic polymer containing carbon nanotubes and electrically conductive whose measured surface resistivities are less than 10 6 Ohms / sq .
  • the amount of CNT is preferably between 2% and 7% by weight and the polymers are, for example, polyamides of Mn greater than 4000 g. mol "1 and preferably greater than 10000 g. mol " 1 .
  • the Electrical conductivity of the inner layer serves to prevent explosions by dissipating the static electricity generated during the transport of certain materials in the tube.
  • thermoplastic polymer material processing processes it is known that extrusion or injection processes cause a much more pronounced orientation of macromolecules than that observed in compression molding processes.
  • CNTs present in conjunction with the macromolecules of polymers are also oriented and therefore the conductive properties of the resulting composite material are modified or even altered.
  • the object of the present invention is to provide methods for controlling, improving the electrical properties of thermoplastic polymer materials containing CNTs or for rendering initially insulating objects conductive. Summary of the invention
  • the invention aims to provide process conditions for increasing or controlling, to achieve a given target, the conductivity of thermoplastic composite materials containing CNTs.
  • the invention aims to provide a method for rendering a thermoplastic composite object containing initially insulating NTCs obtained by injection or extrusion.
  • the invention aims to provide injection molded or extruded products which are conductive even at very low levels of CNT.
  • the subject of the present invention is a conductive composite material based on thermoplastic polymer and carbon nanotubes (CNTs) comprising a mass content of CNT of less than 6%, preferably less than 2% or even more preferably between 0.2 and 2%.
  • the material according to the invention has a surface resistivity of less than 1.E + 06 Ohm, preferably less than 1.E + 04 Ohm.
  • the material according to the invention is based on a thermoplastic polymer chosen from the group of polyamides, polyolefins, polyacetals, polyketones, polyesters or polyfluoropolymers or their mixtures and copolymers.
  • a thermoplastic polymer chosen from the group of polyamides, polyolefins, polyacetals, polyketones, polyesters or polyfluoropolymers or their mixtures and copolymers.
  • the material according to the invention is based on polyamide 12 or PVDF and contains a CNT content of less than 2%.
  • the invention also relates to a process for preparing a conductive composite material based on thermoplastic polymer and carbon nanotubes (CNTs) in which the transformation of a composition comprising the thermoplastic polymer and the carbon nanotubes (CNTs) is carried out by injection or extrusion at a transformation temperature higher than the melting temperature of the polymer Tf, preferably between Tf + 30 ° C. and Tf + 60 ° C., more preferably at a temperature of between Tf + 60 ° C. C and Tf + 150 ° C.
  • a transformation temperature higher than the melting temperature of the polymer Tf preferably between Tf + 30 ° C. and Tf + 60 ° C., more preferably at a temperature of between Tf + 60 ° C. C and Tf + 150 ° C.
  • the composition used contains a level of CNT of less than 6%, less than 2% or even more preferably between 0.2 and 2%.
  • the polymer used is polyamide.
  • the transformation temperature is between 240 ° C. and 400 ° C.
  • the invention also relates to a process for preparing a conductive composite material based on thermoplastic polymer and carbon nanotubes (CNTs) comprising the preparation of the composite material followed by a heat treatment in which the composite material is maintained at a temperature above the melting point of the polymer for 0.1 to 1800 seconds, preferably from 0.1 to 150 seconds and optionally subjected to a pressure of between 0 and 300 bar, preferably between 125 and 250 bar.
  • the composition used contains a level of CNT of less than 6%, less than 2% or even more preferably between 0.2 and 2%.
  • the heat treatment used is chosen from flame, injection / compression, overmolding, double bubble extrusion, lamination, film assembly methods such as laser welding, ultrasonic welding, high frequency welding, NML (In MoId
  • the invention also relates to the use of the composite material obtained according to one of the processes in the automotive, sports, electronic packaging applications.
  • Carbon nanotubes
  • the carbon nanotubes that can be used in the present invention are well known and are described for example in Plastic World Nov 1993 page 10 or in WO 86/03455. They include, but are not limited to, those having a relatively high aspect ratio, and preferably a size ratio of from 10 to about 1000. In addition, the carbon nanotubes usable in the present invention preferably have a purity of 90. % or higher.
  • thermoplastic polymers that can be used in the present invention are especially those prepared from polyamide, polyacetals, polyacrylic polyketones, polyolefins, polycarbonates, polystyrenes, polyesters, polyethers, polysulfones, polyfluoropolymers, polyurethanes, polyamideimides, polyarylates, polyarylsulfones, polyethersulfones. polyarylene sulphides, polyvinyl chlorides, polyetherimides, polytetrafluoroethylenes, polyetherketones and their copolymers or mixtures thereof.
  • thermoplastic polymers that can be used, among others covered by this description, mention will be made especially of polystyrene (PS); polyolefins and more particularly polyethylene (PE), polypropylene (PP); polyamides polyamides (for example PA-6, PA-6,6PA) (polyamide, polyamide 6,6, polyamide, PA-11, polyamide PA-12); polymethyl methacrylate (PMMA); polyether terephthalate (PET); polyethersulfones (PES); polyphenylene ether (PPE); polyvinylidene fluoride (PVDF); acrylonitrile polystyrene (SAN); polyethylether ketones (PEEK); polyvinyl chloride (PVC); polyurethanes, consisting of flexible polyether blocks which are residues of polyetherdiols and rigid blocks (polyurethanes) which result from the reaction of at least one diisocyanate with at least one short diol; the short chain extending diol which may
  • ABS acrylonitrile-butadiene-styrene
  • AES acrylonitrile-ethylene / propylene-styrene
  • MVS methylmethacrylate-butadiene-styrene
  • ABMS acrylonitrile-butadiene-methylmethacrylate-styrene
  • AS acrylonitrile-n- butylacrylate-styrene
  • modified polystyrene gums polyethylene resins, polypropylene, polystyrene, polymethylmethacrylate, polyvinyl chloride, cellulose acetate, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphenyleneoxide, polyketone, polysulphone, polyphenylenesulphide, fluororesin, silicone resins, polyimide resins, polybenzimidazole resins, polyolefin-type elastomers of the styrene type, such as s
  • thermoplastic polymer is also meant any random, gradual or block copolymers made from the homopolymers corresponding to the above description.
  • This covers, in particular, anionic block copolymers of the SBS, SIS, SEBS, SB type and SBM (polystyrene-co-polybutadiene-co-polymethylmethacrylate) type copolymers.
  • copolymers produced by controlled controlled radical polymerization such as for example copolymers of SABuS type (polystyrene-butyl-co-polyacrylate-co-polystyrene), MABuM (butyl polymethyl methacrylate-co-polyacrylate-co-polymethyl methacrylate) and all their functionalized derivatives.
  • SABuS type polystyrene-butyl-co-polyacrylate-co-polystyrene
  • MABuM butyl polymethyl methacrylate-co-polyacrylate-co-polymethyl methacrylate
  • the composite materials according to the invention are made either from bare NTC (crude or washed or treated), or from NTC mixed with a polymer powder or NTC coated / mixed with a polymer or other additives.
  • the level of CNTs in the composite materials is, according to the invention, less than 6%, less than 2% or even more preferably between 0.2 and 2%.
  • the transformation methods according to the invention :
  • the extrusion or injection processes used in the invention are well known to those skilled in the art. In conventional processes, the processing temperature is always higher than the melting temperature of the polymer.
  • thermoplastics has the effect of generating an orientation in the direction of flow. It therefore seems logical to assume that the CNTs will orient themselves during the transformation in the direction of flow.
  • a material is here considered as conductive when its surface and / or volume resistivity is less than 1.E +06 ohms and insulating when its surface and / or volume resistivity is greater than 1.E +06 ohms.
  • the invention therefore proposes a method that makes it possible to increase the conductivity of thermoplastic composite materials containing CNTs, especially when the composition contains CNT levels of less than 6%.
  • the injection or the extrusion is carried out at a polymer conversion temperature higher than the melting temperature of the polymer Tf, preferably between Tf + 30 ° C. and Tf + 60 ° C. more preferably at a temperature between Tf + 60 ° C and Tf + 150 ° C.
  • FIG. 1a shows the effect of the increase of the transformation temperature, in particular during the extrusion, on the reduction of the resistivity for polymer compositions comprising 5% of CNTs.
  • the invention also proposes a method that makes it possible to render a thermoplastic composite material containing CNTs and initially insulating.
  • This method therefore consists of a first step of transforming the thermoplastic composite composition containing less than 6% of CNT and obtaining an insulating object that is to say having a resistivity greater than 1.E + 06 Ohm.
  • Step 1 can be any type of thermoplastic material transformation known to those skilled in the art. Examples such as injection, extrusion, rotomoulding, overmoulding, thermoforming, lamination, extrusion blow molding or blow molding.
  • This step is followed by a heat treatment of the previously obtained object.
  • the heat treatment consists of keeping the composite material at a temperature above the melting point of the polymer for 0.1 to 1800 seconds, preferably from 0.1 to 150 seconds.
  • the material may also optionally be subjected to a pressure of between 0 and 300 bar, preferably between 125 and 250 bar.
  • the invention specifically targets a conductive composite material based on thermoplastic polymer and carbon nanotubes (CNTs) comprising a CNT content of less than 2%, preferably between
  • This material has a resistivity that is less than 1.E + 06 Ohm, or even less than 1.E + 04 Ohm.
  • This conductive composite material is obtained from the methods and components and compositions described above, namely processes based on injection, extrusion or compression.
  • the materials according to the invention are in particular solid objects whose thickness is at least 500 ⁇ m or objects in the form of films.
  • the invention also relates to the use of the conductive composite material obtained by the method according to the invention in the automotive, sports, electronics, packaging applications.
  • PA12 AMNO is a fluid PA12.
  • PA12 AESNO is a viscous PA12.
  • the table below provides the viscosities of AMNO TLD and AESNO TL at 500s -1 for 3 temperatures (240, 260 and 280 0 C).
  • Example 1 Process conditions to improve the conductivity or to achieve the desired conductivity target:
  • the NTC / PA12 composites are obtained by compounding in a twin-screw extruder 30 mm of a masterbatch containing 20% of NTC in a PA12 fluid with PA12 AMNO or AESNO so as to finally obtain mass ratios of CNTs of 1 and 5. %.
  • the granules obtained are extruded in a micro-twin-screw extruder, of the 15cc ⁇ DSM type, at 100 rpm at temperatures between 210 and 285 ° C.
  • the die used is rectangular 20 * 0.2 mm 2 .
  • the injected pellets are of diameter 24.50 mm and thickness 1. 56 mm.
  • the pellets injected into molds at 135 or 145 ° C both have volume resistivities> 10 6 ohm. cm. At 160 ° C. a resistivity of 170-180 ohm is obtained. cm.
  • AMNO / NTC mixtures with a NTC content between 0.35 and 5% are made by dry blending the compound with 5% NTC and virgin AMNO. Resistance measurements on extruded rods (diameter 1 mm, ⁇ DSM) show that only 2% of NTC is required to obtain electrical conductivity in the AMNO (see Figure 1 b).
  • Example 2 Examples of the method with post heat treatment
  • the heat treatment is associated or not with compression.
  • the injected pellets have a diameter of 24.50 mm and a thickness of 1. 56 mm.
  • the pellets all have volume resistivities> 10 6 ohm. cm.
  • Annealing tests were performed according to an experimental design coupling three parameters: the temperature, the pressure applied to the sample during compression and the compression time. Each test was performed on a single pellet.
  • the standard compression of a pellet of this type is done according to the following protocol: 5 minutes of creep at 230 ° C., 2 minutes of compression at 250 bars and cooling under pressure or out of press.
  • the compression mold used is a mold with a diameter of 25 mm and a thickness of 1 mm.
  • the annealing protocol always starts with 5 minutes of creep at the temperature indicated by the plan: the upper plate of the press is close but does not touch the upper plate of the mold. This time is necessary to heat the pellet. For pressures above 0 bar, there is contact between the upper plate of the press and the upper plate of the mold. At the end of compression, the mold is removed from the press and stored under a weight of 4 kg evenly distributed on the sample which corresponds to less than 1 bar. Cooling under weights allows the PVDF to have a flat surface, which is essential for conductivity measurements.
  • the results show the possibility of controlling the electrical properties of the material by the heat treatment.
  • the results also show that it is when the temperature is above the melting point of the polymer the conductivity appears and so is the key parameter of this process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

L´ invention se rapporte à des méthodes pour contrôler, améliorer la conductivité des matériaux polymères thermoplastiques contenant des NTC ou encore pour rendre conducteurs ces matériaux lorsqu ils sont initialement isolants. La présente invention concerne un matériau composite conducteur, à base de polymère thermoplastique et de nanotubes de carbone (NTC), et des procédés de préparation dudit matériau composite conducteur, les procédés comprenant soit le moulage par injection ou l extrusion à une température supérieure à la température de fusion du polymère, soit une étape de post traitement thermique dudit matériau composite obtenu par injection ou extrusion.

Description

MATERIAU COMPOSITE CONDUCTEUR A BASE DE POLYMERE THERMOPLASTIQUE ET DE NANOTUBE DE CARBONE.
La présente invention concerne un matériau composite conducteur à base de polymère thermoplastique et de nanotubes de carbone (NTC), et des procédés de préparation dudit matériau composite conducteur, les procédés comprenant soit le moulage par injection ou l'extrusion, soit une étape de post traitement thermique dudit matériau composite.
Les nanotubes de carbone sont connus et utilisés pour leurs excellentes propriétés de conductivité électrique et thermique ainsi que leurs propriétés mécaniques. Ils sont ainsi de plus en plus utilisés en tant qu'additifs pour apporter aux matériaux notamment ceux de type macromoléculaire ces propriétés électriques, thermiques et/ou mécaniques (WO 91/03057, US5744235, US5445327, US54663230). On trouve des applications des nanotubes de carbone dans de nombreux domaines, notamment en électronique (selon la température et leur structure, ils peuvent être conducteurs, semi-conducteurs ou isolants), en mécanique, par exemple pour le renfort des matériaux composites (les nanotubes de carbone sont cent fois plus résistants et six fois plus légers que l'acier) et électromécanique (ils peuvent s'allonger ou se contracter par injection de charge).
On peut par exemple citer l'utilisation de nanotubes de carbone dans des compositions macromoléculaires destinées à l'emballage de composants électroniques, à la fabrication de conduites d'essence (fuel line), de revêtements ou de revêtements antistatiques, dans des thermistors, des électrodes pour super-capacités, etc.
Dans le brevet US 6090459 les auteurs décrivent des tubes multicouches obtenus par procédé par co-extrusion dont la couche interne est constituée d'un polymère thermoplastique contenant des nanotubes de carbone et électriquement conducteur dont les résistivités surfaciques mesurées sont inférieures à 106 Ohms/sq. La quantité de NTC est de préférence comprise entre 2% et 7% en masse et les polymères sont par exemple des polyamides de Mn supérieure 4000g. mol"1 et de préférence supérieure à 10000g. mol"1. La conductivité électrique de la couche interne sert à éviter les explosions en dissipant l'électricité statique générée pendant le transport de certaines matières dans le tube.
Dans les procédés de transformation des matériaux polymères thermoplastiques, il est connu que les procédés par extrusion ou injection provoquent une orientation des macromolécules beaucoup plus prononcée que celle observée dans les procédés de moulage par compression. Dans ce cadre, on peut imaginer que les NTC présents conjointement avec les macromolécules de polymères s'orientent aussi et de ce fait les propriétés conductrices du matériau composite résultant sont modifiées voire altérées.
Le but de la présente invention est de fournir des méthodes pour contrôler, améliorer les propriétés électriques des matériaux polymères thermoplastiques contenant des NTC ou encore pour rendre conducteurs des objets initialement isolants. Résumé de l'invention :
Selon un mode de réalisation, l'invention vise à fournir des conditions de procédé permettant d'augmenter ou encore de contrôler, pour atteindre une cible donnée, la conductivité de matériaux composites thermoplastiques contenant des NTC. Selon un autre mode de réalisation, l'invention vise à fournir un procédé pour rendre conducteur un objet composite thermoplastique contenant des NTC initialement isolant obtenu par injection ou extrusion.
Enfin l'invention vise à fournir des produits moulés par injection ou extrudés qui sont conducteurs même à de très faibles taux de NTC. La présente invention a pour objet un matériau composite conducteur à base de polymère thermoplastique et de nanotubes de carbone (NTC) comprenant un taux massique de NTC inférieur à 6%, de préférence inférieur à 2 % ou encore de préférence compris entre 0,2 et 2%.
Le matériau selon l'invention présente une résistivité de surface inférieure à 1.E+06 Ohm, de préférence inférieure à 1.E+04 Ohm.
Le matériau selon l'invention est à base de polymère thermoplastique choisi parmi le groupe des polyamides, polyoléfines, polyacétals, polycétones, polyesters ou polyfluoropolymères ou leurs mélanges et leurs copolymères. De préférence, le matériau selon l'invention est à base de polyamide 12 ou PVDF et renferme un taux de NTC inférieur à 2 %.
L'invention a aussi pour objet un procédé de préparation d'un matériau composite conducteur à base de polymère thermoplastique et de nanotubes de carbone (NTC) dans lequel la transformation d'une composition comprenant le polymère thermoplastique et les nanotubes de carbone (NTC) s'effectue par injection ou extrusion à une température de transformation supérieure à la température de fusion du polymère Tf, de préférence comprise entre Tf + 300C et Tf + 600C, de préférence encore à une température comprise entre Tf + 600C et Tf + 150°C.
Selon un mode particulier de ce procédé, la composition utilisé renferme un taux de NTC inférieur à 6%, inférieur à 2% ou encore de préférence compris entre 0,2 et 2%.
Selon un mode particulier de ce procédé, le polymère utilisé est du polyamide.
Selon un mode particulier de ce procédé, la température de transformation est comprise entre 240°C et 400°C.
L'invention a aussi pour objet un procédé de préparation d'un matériau composite conducteur à base de polymère thermoplastique et de nanotubes de carbone (NTC) comprenant la préparation du matériau composite suivie d'un traitement thermique dans lequel le matériau composite est maintenu à une température supérieure au point de fusion du polymère pendant 0,1 à 1800 secondes, de préférence de 0,1 à 150 secondes et éventuellement soumis à une pression comprise entre 0 et 300 bars de préférence entre 125 et 250 bars. Selon un mode particulier de ce procédé, la composition utilisée renferme un taux de NTC inférieur à 6%, inférieur à 2% ou encore de préférence compris entre 0,2 et 2%.
Selon un mode particulier de l'invention, le traitement thermique utilisé est choisi parmi le flammage, l'injection/compression, le surmoulage, l'extrusion double bulle, la lamination, les procédés d'assemblage de film tels que la soudure laser, la soudure ultrason, la soudure haute fréquence, NML (In MoId
Labeling) , NMD (In MoId Décoration), le thermoformage, le Hot MeIt Glueing. L'invention vise également l'utilisation du matériau composite obtenu selon l'un des procédés dans les applications automobile, sport, électronique emballage.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit. Les nanotubes de carbone :
Les nanotubes de carbone utilisables dans la présente invention sont bien connus et sont décrits par exemple dans Plastic World Nov 1993 page 10 ou encore dans WO 86/03455. Ils comprennent, à titre non limitatif, ceux ayant un rapport de dimensions relativement élevé, et de préférence un rapport des dimensions de 10 à environ 1 000. En outre, les nanotubes de carbone utilisables dans la présente invention ont de préférence une pureté de 90 % ou supérieure. Les polymères thermoplastiques : Les polymères thermoplastiques utilisables dans la présente invention sont notamment tous ceux préparés à partir de polyamide, polyacétals, polycétones polyacryliques, polyoléfines, polycarbonates, polystyrènes, polyesters, polyéthers, polysulfones, polyfluoropolymères, polyuréthanes, polyamideimides, polyarylates, polyarylsulfones, polyéthersulfones, polyarylène sulfures, polyvinyle chlorures, polyétherimides, polytétrafluoroéthylènes, polyéthercétones, ainsi que leurs copolymères ou leurs mélanges.
Parmi les polymères thermoplastiques utilisables, entre autres couverts par cette description on citera tout particulièrement, le polystyrène (PS) ; les polyoléfines et plus particulièrement le polyéthylène (PE), le polypropylène (PP) ; les polyamides polyamides (par exemple PA-6, PA-6,6PA) (polyamideθ, polyamide 6,6, polyamide , PA-11 , polyamide PA-12) ; le polyméthylméthacrylate (PMMA) ; le polyéthertéréphtalate (PET) ; les polyéthersulfones (PES) ; le polyphénilène éther (PPE) ; le polyfluorure de vinylidène (PVDF) ; le polystyrène acrilonitrile (SAN) ; les polyéthyléther cétones (PEEK) ; le polychlorure de vinyle (PVC) ; les polyuréthanes, constitués de blocs polyéthers souples qui sont des restes de polyétherdiols et de blocs rigides (polyuréthanes) qui résultent de la réaction d'au moins un diisocyanate avec au moins un diol court ; le diol court allongeur de chaîne pouvant être choisi parmi les glycols cités plus haut dans la description ; les blocs polyuréthanes et les blocs polyéthers étant reliés par des liaisons résultant de la réaction des fonctions isocyanates avec les fonctions OH du polyétherdiol ; les polyesteruréthannes par exemple ceux comprenant des motifs diisocyanates, des motifs dérivés de polyesters diols amorphes et des motifs dérivés d'un diol court allongeur de chaîne, choisi par exemple parmi les glycols listés ci-dessus ; les copolymères à blocs polyamides et blocs polyéthers (PEBA) résultant de la copolycondensation de séquences polyamides à extrémités réactives avec des séquences polyéthers à extrémités réactives, telles que, entre autres 1 ) séquences polyamides à bouts de chaîne diamines avec des séquences polyoxyalkylènes à bouts de chaînes dicarboxyliques, 2) séquences polyamides à bouts de chaînes dicarboxyliques avec des séquences polyoxyalkylènes à bouts de chaînes diamines obtenues par cyanoéthylation et hydrogénation de séquences polyoxyalkylène alpha-oméga dihydroxylées aliphatiques appelées polyétherdiols,3) séquences polyamides à bouts de chaînes dicarboxyliques avec des polyétherdiols, les produits obtenus étant, dans ce cas particulier, des polyétheresteramides ; les polyétheresters.
On peut également citer les résines acrylonitrile-butadiène-styrène (ABS), acrylonitrile-éthylène/propylène-styrène (AES), méthylméthacrylate-butadiène- styrène (MBS), acrylonitril-butadiène-méthylméthacrylate-styrène (ABMS), acrylonitrile-n-butylacrylate-styrène (AAS), les gommes de polystyrène modifié, les résines de polyéthylène, polypropylène, polystyrène, polyméthyl- méthacrylate, chlorure de polyvinyle, acétate de cellulose, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphénylèneoxide, polycétone, polysulphone, polyphénylènesulfide, les résine fluorées, siliconées, les résines polyimide, polybenzimidazole, les élastomères de type polyoléfine, de type styrène comme les co-polymères bloc styrène-butadiène-styrène ou co-polymères bloc styrène- isoprène-styrène ou leur forme hydrogénée, les élastomères de type PVC, uréthane, polyester, polyamide, les élastomères thermoplastiques de type polybutadiène comme les résines 1 ,2-polybutadiène ou trans-1 ,4-polybutadiène; les élastomères de type polyéthylène comme les copolymères méthylcarboxylate-polyéthylène, éthylène-vinylacétate, and éthylène- éthylacrylate, les polyéthylène chlorés; les élastomères thermoplastiques de type fluorés. Par polymère thermoplastique utilisable, on entend aussi tous les copolymères statistiques, gradients ou à blocs réalisés à partir des homopolymères correspondant à la description ci-dessus. Cela couvre notamment les copolymères à blocs réalisés par voie anionique de type SBS, SIS, SEBS, SB et les copolymères de type SBM (polystyrène-co-polybutadiène- co-polyméthylméthacrylate) Cela couvre aussi les copolymères réalisés par polymérisation radicalaire contrôlée contrôlée tels que par exemple les copolymères de type SABuS (polystyrène-co-polyacrylate de butyle-co- polystyrène), MABuM (polyméthylméthacrylate-co-polyacrylate de butyle-co- polyméthylméthacrylate) et tous leurs dérivés fonctionnalisés.
Les matériaux composites selon l'invention sont réalisés soit à partir de NTC nus (bruts ou lavés ou traités), soit à partir de NTC mélangés à une poudre de polymères, soit de NTC enrobés/mélangés avec un polymère ou autres additifs. Le taux de NTC dans les matériaux composites est, selon l'invention, inférieur à 6%, inférieur à 2% ou encore de préférence compris entre 0,2 et 2%. Les procédés de transformation selon l'invention :
Les procédés d'extrusion ou injection utilisés dans l'invention sont bien connus de l'homme du métier. Dans les procédés conventionnels, la température de mise en œuvre est toujours supérieure à la température de fusion du polymère.
Il est connu que la mise en œuvre des thermoplastiques a pour effet de générer une orientation dans la direction de l'écoulement. Il semble donc logique de présupposer que les NTC vont s'orienter au cours de la transformation dans la direction de l'écoulement.
La demanderesse a observé que la conséquence directe de ce phénomène d'orientation est qu'il est nécessaire d'augmenter le taux de NTC pour rendre les polymères conducteurs après extrusion et injection. Particulièrement, alors que 2% de NTC suffisent à rendre conducteur une pièce obtenue par moulage par compression, il faut plus de 6% de NTC pour rendre conductrices les mêmes pièces obtenues par extrusion et injection. Ces observations sont illustrées dans la figure 1. Un matériau est ici considéré comme conducteur lorsque sa résistivité surfacique et/ou volumique est inférieure à 1.E +06 ohms et isolant lorsque sa résistivité surfacique et/ou volumique est supérieure à 1.E +06 ohms.
Selon un mode de réalisation, l'invention propose donc un procédé qui permet d'augmenter la conductivité de matériaux composites thermoplastiques contenant des NTC, notamment lorsque la composition contient des taux de NTC inférieurs à 6%.
Cet effet est obtenu de manière surprenante en modifiant la température de mise en oeuvre du polymère dans les procédés conventionnels d'extrusion ou injection. Ainsi, selon l'invention, l'injection ou l'extrusion s'effectue à une température de transformation du polymère supérieure à la température de fusion du polymère Tf, de préférence comprise entre Tf + 300C et Tf + 600C, de préférence encore à une température comprise entre Tf +60°C et Tf + 1500C.
La figure 1a montre l'effet de l'augmentation de la température de transformation en particulier lors de l'extrusion sur la diminution de la résistivité pour des compositions de polymère comprenant 5% de NTC. Pour une même composition, plus la température augmente, plus la résistivité diminue ou plus la conductivité augmente.
Par ailleurs, on montre aussi l'influence de la viscosité de la matrice sur l'augmentation de la conductivité. En effet, à une température d'extrusion donnée, les polymères les plus fluides conduisent à des matériaux composites plus conducteurs.
Il est donc possible grâce à ce procédé selon l'invention d'améliorer la conductivité de matériaux composites conducteurs et ceci jusqu'à atteindre une conductivité inférieure à 1.E +06 ohm avec des taux de NTC inférieurs à 6%, de l'ordre de 5% ou même 2% ou moins. Ce résultat est facilement atteint en moulage par compression. Par contre pour l'obtenir en extrusion ou par injection, il est nécessaire d'utiliser des températures de mise en œuvre élevées, des paramètres de transformation adaptés et des matrices fluides. Ces résultats montrent qu'il est possible d'augmenter les propriétés conductrices des objets obtenus par injection ou extrusion en augmentant la température de transformation du polymère ou en modifiant d'autres paramètres de transformation et en réduisant la viscosité de la matrice. Ces résultats impliquent un avantage économique certain notamment du fait que les procédés d'injection ou d'extrusion sont beaucoup plus largement utilisés que les procédés de simple moulage par compression, et aussi du fait que ces résultats sont possibles même en présence de très faibles taux de NTC. L'autre avantage technique est qu'on garde des propriétés mécaniques proches de celles de la matrice seule, par exemple pour des propriétés d'impact à basse température et de module mécanique. Les procédés de post traitement thermique :
Selon un mode de réalisation, l'invention propose aussi un procédé qui permet de rendre conducteur un matériau composite thermoplastique contenant des NTC et initialement isolant.
Ce procédé consiste donc en une première étape de transformation de la composition composite thermoplastique contenant moins de 6% de NTC et obtention d'un objet isolant c'est-à-dire qui présente une résistivité supérieure à 1.E+06 Ohm.
L'étape 1 peut être tout type de transformation de matière thermoplastique connue de l'homme du métier. On citera à titre exemple telle que l'injection, l'extrusion, le rotomoulage, le surmoulage, le thermoformage, la lamination, l'extrusion soufflage ou l'injection soufflage. Cette étape est suivie d'un traitement thermique de l'objet précédemment obtenu. Le traitement thermique consiste à maintenir le matériau composite à une température supérieure au point de fusion du polymère pendant 0.1 à 1800 secondes, de préférence de 0.1 à 150 secondes. Le matériau peut aussi éventuellement être soumis à une pression comprise entre 0 et 300 bars de préférence entre 125 et 250 bars.
Parmi les procédés industriels de mise en œuvre pouvant appliquer des traitements thermiques utilisés selon l'invention, on peut citer le flammage, l'injection/compression, le surmoulage, l'extrusion double bulle, la lamination, les procédés d'assemblage de film tels que la soudure laser, la soudure ultrason, la soudure haute fréquence, NML (In MoId Labeling) , NMD (In MoId Décoration), le thermoformage, le Hot MeIt Glueing.
Il est donc possible grâce à ce procédé selon l'invention de transformer des objets composites isolants en objets composites conducteurs et ceci jusqu'à atteindre une conductivité inférieure à 1.E +06 ohm avec des taux de NTC inférieurs à 6%, de l'ordre de 5% ou même 2% ou moins. Ces résultats n'étant pas possibles à atteindre par les procédés conventionnels d'extrusion /injection sans post traitement thermique. Ces résultats montrent qu'il est possible de rendre conducteurs des objets composites isolant en les soumettant à un simple traitement thermique à une température supérieure à la température de fusion du polymère. Le contrôle des paramètres (température, compression, durée) du post traitement thermique des matériaux composites moulés isolants permet de moduler les propriétés conductrices de ces matériaux et ceci à de très faibles taux de NTC.
Ces résultats impliquent un avantage économique certain notamment du fait que les procédés d'injection et ou extrusion sont beaucoup plus largement utilisés que les procédés de simple moulage par compression, du fait que ces résultats sont possibles même en présence de très faibles taux de NTC et aussi du fait que l'on applique ici un simple traitement thermique sur un objet déjà préparé par un procédé entièrement conventionnel.
Les matériaux composites conducteurs selon l'invention :
Selon un autre objet, l'invention vise spécifiquement un matériau composite conducteur, à base de polymère thermoplastique et de nanotubes de carbone (NTC) comprenant un taux de NTC inférieur à 2%, de préférence compris entre
0,2 et 2%. Ce matériau présente une résistivité qui est inférieure à 1.E+06 Ohm, voire inférieure à 1.E+04 Ohm.
Ce matériau composite conducteur est obtenu à partir des procédés et des composants et compositions décrits plus haut, à savoir des procédés basés sur l'injection, l'extrusion ou la compression. Les matériaux selon l'invention sont notamment des objets massifs dont l'épaisseur est d'au moins 500μm ou bien des objets sous formes de films.
L'invention vise aussi l'utilisation du matériau composite conducteur obtenu par le procédé selon l'invention dans les applications automobile, sport, électronique, emballage.
Bien entendu, la présente invention n'est pas limitée aux exemples et au mode de réalisation décrits et représentés, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art. EXEMPLES :
Dans les exemples ci-dessous, on utilise deux PA12 de fluidité différente. Le PA12 AMNO est un PA12 fluide. Le PA12 AESNO est un PA12 visqueux. Le tableau ci dessous fournit les viscosités de l'AMNO TLD et de l'AESNO TL à 500s"1 pour 3 températures (240, 260 et 2800C).
Figure imgf000011_0001
Exemple 1 : Conditions de procédé pour améliorer la conductivité ou pour atteindre la cible de conductivité désirée :
Les composites NTC/PA12 sont obtenus par compoundage en extrudeuse bi-vis 30mm d'un mélange maître contenant 20% de NTC dans un PA12 fluide avec le PA12 AMNO ou AESNO de manière à obtenir au final des taux massiques de NTC de 1 et 5%.
Les granulés obtenus sont extrudés dans une micro extrudeuse bi-vis, de type μDSM 15cc, à 100 tr/min à des températures comprises entre 210 et 285°C. La filière utilisée est rectangulaire 20*0.2 mm2. a- Effet de la température d'extrusion sur la conductivité
Les valeurs de résistivité surfacique mesurées sur les films extrudés sont reportées dans la figure 1a et le tableau suivant :
Figure imgf000012_0001
Les résultats montrent qu'une augmentation de la température de transformation permet de diminuer la résistivité pour une formulation donnée (cf. figure 1a où en matrice AMNO, l'augmentation de la température d'extrusion permet de gagner 6 décades en résistivité). Ainsi, pour une même formulation, plus la température de mise en œuvre est élevée, meilleure est la conductivité.
De plus, les résultats montrent que des formulations sur des bases fluides sont de nature à favoriser les propriétés conductrices. b- Effet de la température du moule d'injection sur la conductivité
Des pastilles de PVDF Kynar 721 à 2% NTC 5056 ont été injectées avec un microcompoundeur DSM dans les conditions suivantes : T°extr = 2300C, 100 rpm, 8 minutes de mélangeage, T°inj = 230°C et T°moule = 135-1600C. Les pastilles injectées sont de diamètre 24,50 mm et d'épaisseur 1 ,56 mm. Les pastilles injectées dans des moules à 135 ou 145°C ont toutes deux des résistivités volumiques > 106 ohm. cm. A 160 °C on obtient une résistivité de 170- 180 ohm. cm. c- Objets extrudés conducteurs à faible taux de NTC
En augmentant la température de mise en œuvre, la percolation électrique est décalée vers les bas taux de NTC. Des mélanges AMNO/NTC avec un taux de NTC compris entre 0.35 et 5% sont réalisés par mélange à sec du compound à 5% de NTC et de l'AMNO vierge. Des mesures de résistance sur joncs extrudés (diamètre 1 mm, μDSM) montrent qu'il suffit de 2% de NTC pour obtenir la conductivité électrique dans l'AMNO (cf figure 1 b). Exemple 2 : Exemples de procédé avec post traitement thermique
Dans les exemples qui suivent on utilise les compounds précédemment décrits en matrice AMNO et avec 5% ou 0,7% de CNT et trois types de plaques (épaisseur 2mm) sont obtenus suivant que les procédés utilisés sont : a) un moulage par compression simple, b) un moulage par injection, c) un moulage par injection suivi d'un traitement thermique. Conditions expérimentales : Moulage par compression : 2600C
Injection : latérale ou centrale, 2600C, 120 cm3/s Traitement thermique : 260°C, t=10 min
Les résultats sont illustrés dans les figures 2a et 2b. Les résultats montrent l'effet positif d'un traitement thermique pour rendre conducteur des plaques isolantes même avec de très faibles taux de CNT. On parvient ainsi à obtenir des plaques injectées conductrices (R<1. E+06 ohm) avec seulement 0.7% de CNT. Exemple 3 : Autre exemple de matériau obtenu par injection suivi du traitement thermique avec du PVDF + 2% de NTC.
Dans cet exemple le traitement thermique est associé ou non à une compression.
Des pastilles de PVDF Kynar 720 à 2% NTC 5056 ont été injectées avec un microcompoundeur DSM dans les conditions suivantes : T°extr = 2300C, 100 rpm, 8 minutes de mélangeage, T°inj = 2300C et T°moule = 90°C. Les pastilles injectées sont de diamètre 24,50 mm et d'épaisseur 1 ,56 mm. Les pastilles ont toutes des résistivités volumiques > 106 ohm. cm. Des tests de recuissons ont été réalisés selon un plan d'expérience couplant 3 paramètres : la température, la pression appliquée sur l'échantillon lors de la compression et le temps de compression. Chaque essai a été effectué sur une seule pastille.
La compression standard d'une pastille de ce type se fait selon le protocole suivant : 5 minutes de fluage à 2300C, 2 minutes de compression à 250 bars et refroidissement sous pression ou hors presse.
Le moule de compression utilisé est un moule de diamètre 25 mm et d'épaisseur 1 mm.
Dans ces tests, le protocole de recuisson débute toujours par 5 minutes de fluage à la température indiquée par le plan : le plateau supérieur de la presse est proche mais ne touche pas la plaque supérieure du moule. Ce temps est nécessaire pour mettre en température la pastille. Pour les pressions supérieures à 0 bar, il y a contact entre le plateau supérieur de la presse et la plaque supérieure du moule. Dès la fin de la compression, le moule est retiré de la presse et entreposé sous un poids de 4 kg répartis uniformément sur l'échantillon ce qui correspond à moins de 1 bar. Le refroidissement sous des poids permet au PVDF d'avoir une surface plane, caractéristique indispensable lors des mesures de conductivité.
Figure imgf000014_0001
NC : non conducteur.
Les résultats montrent la possibilité de contrôler les propriétés électriques du matériau par le traitement thermique. Les résultats montrent aussi que c'est lorsque la température est au-dessus de la T de fusion du polymère que la conductivité apparaît et c'est donc le paramètre clef de ce procédé.

Claims

REVENDICATIONS
1. Matériau composite conducteur à base de polymère thermoplastique et de nanotubes de carbone (NTC) comprenant un taux massique de NTC inférieur à 6%, de préférence inférieur à 2 % ou encore de préférence compris entre 0,2 et 2%.
2. Matériau selon la revendication 1 dont la résistivité de surface est inférieure à 1.E+06 Ohm, de préférence inférieure à 1.E+04 Ohm.
3. Matériau selon la revendication 1 ou 2 dans lequel le polymère thermoplastique est choisi parmi le groupe des polyamides, polyacétals, polycétones polyacryliques, polyoléfines, polycarbonates, polystyrènes, polyesters, polyéthers, polysulfones, polyfluoropolymères, polyuréthanes, polyamideimides, polyarylates, polyarylsulfones, polyéthersulfones, polyarylène sulfures, polyvinyle chlorures, polyétherimides, polytétrafluoroéthylènes, polyéthercétones, ou leurs mélanges. et leurs copolymères.
4. Matériau selon l'une des revendications 1 à 3 dans lequel le polymère est du polyamide 12 ou du PVDF et le taux de NTC est inférieur à 2%.
5. Procédé de préparation d'un matériau composite conducteur à base de polymère thermoplastique et de nanotubes de carbone (NTC) dans lequel la transformation d'une composition comprenant le polymère thermoplastique et les nanotubes de carbone (NTC) s'effectue par injection ou extrusion à une température de transformation supérieure à la température de fusion du polymère Tf, de préférence comprise entre Tf + 300C et Tf + 600C, de préférence encore à une température comprise entre Tf + 60°C et Tf + 150°C.
6. Procédé selon la revendication 5 dans lequel le taux de NTC dans la composition est inférieur à 6%, inférieur à 2% ou encore de préférence compris entre 0,2 et 2%.
7. Procédé selon l'une des revendications 5 à 6 dans lequel le polymère est du polyamide.
8. Procédé selon la revendication 7 dans lequel la température de transformation est comprise entre 2400C et 4000C.
9. Procédé de préparation d'un matériau composite conducteur à base de polymère thermoplastique et de nanotubes de carbone (NTC) comprenant la préparation du matériau composite suivie d'un traitement thermique dans lequel le matériau composite est maintenu à une température supérieure au point de fusion du polymère pendant 0,1 à 1800 secondes, de préférence de 0,1 à 150 secondes et éventuellement soumis à une pression comprise entre
0 et 300 bars de préférence entre 125 et 250 bars.
10. Procédé selon la revendication 9, dans lequel le taux de NTC dans la composition est inférieur à 6%, inférieur à 2% ou encore de préférence compris entre 0,2 et 2%.
11. Procédé selon la revendication 9 ou 10 dans lequel le traitement thermique est choisi parmi le flammage, l'injection/compression, le surmoulage, l'extrusion double bulle, la lamination, les procédés d'assemblage de film tels que la soudure laser, la soudure ultrason, la soudure haute fréquence, NML (In MoId Labeling) , NMD (In MoId Décoration), le thermoformage, le Hot MeIt Glueing.
12. Procédé de préparation selon l'une des revendications 5 à 11 d'un matériau composite conducteur ayant les caractéristiques telles que définies dans les
1 à 4.
13. Utilisation du matériau composite conducteur obtenu par le procédé selon l'une quelconque des revendications 5 à 12 dans les applications automobile, sport, électronique, emballage.
PCT/FR2007/052050 2006-10-19 2007-10-01 Matériau composite conducteur à base de polymère thermoplastique et de nanotube de carbone WO2008047022A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/444,912 US20100084616A1 (en) 2006-10-19 2007-10-01 Conducting composite material containing a thermoplastic polymer and carbon nanotubes
JP2009532856A JP2010506989A (ja) 2006-10-19 2007-10-01 熱可塑性ポリマーとカーボン・ナノチューブとをベースにした伝導性複合材料
EP07858483A EP2081989A1 (fr) 2006-10-19 2007-10-01 Matériau composite conducteur à base de polymère thermoplastique et de nanotube de carbone
US13/543,024 US20130009110A1 (en) 2006-10-19 2012-07-06 Conductive composite material containing a thermoplastic polymer and carbon nanotubes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0654384A FR2907442B1 (fr) 2006-10-19 2006-10-19 Materiau composite conducteur a base de polymere thermoplastique et de nanotube de carbone
FR0654384 2006-10-19
US87882107P 2007-01-05 2007-01-05
US60/878,821 2007-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/543,024 Division US20130009110A1 (en) 2006-10-19 2012-07-06 Conductive composite material containing a thermoplastic polymer and carbon nanotubes

Publications (1)

Publication Number Publication Date
WO2008047022A1 true WO2008047022A1 (fr) 2008-04-24

Family

ID=38477334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/052050 WO2008047022A1 (fr) 2006-10-19 2007-10-01 Matériau composite conducteur à base de polymère thermoplastique et de nanotube de carbone

Country Status (7)

Country Link
US (2) US20100084616A1 (fr)
EP (1) EP2081989A1 (fr)
JP (1) JP2010506989A (fr)
KR (1) KR20090071602A (fr)
CN (1) CN101583659A (fr)
FR (1) FR2907442B1 (fr)
WO (1) WO2008047022A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002546A3 (fr) * 2008-07-02 2010-03-11 Miller Waste Mills d/b/a RTP Company Matériaux composites thermoplastiques pouvant être moulés par injection
WO2011060839A1 (fr) 2009-11-18 2011-05-26 Bada Ag Procédé de production de matériaux composites à base de polymères et de nanotubes de carbone (cnt), et matériaux composites ainsi produits, ainsi que leur utilisation
US8003014B2 (en) 2008-07-02 2011-08-23 Eaton Corporation Dielectric isolators
EP2436719A1 (fr) 2010-10-04 2012-04-04 Rhein Chemie Rheinau GmbH Procédé de fabrication d'un mélange maître de couleurs contenant des nanoparticules
EP2607408A1 (fr) 2011-12-21 2013-06-26 Rhein Chemie Rheinau GmbH Procédé de fabrication sans poussière de mélanges maîtres contenant des nanoparticules (CNT) dans des caoutchoucs très visqueux à l'aide d'un appareil à trois cylindres
EP2607407A1 (fr) 2011-12-21 2013-06-26 Rhein Chemie Rheinau GmbH Procédé de fabrication de mélanges maîtres avec CNT dans du caoutchouc liquide à l'aide d'un appareil à trois cylindres
US20140209545A1 (en) * 2010-10-26 2014-07-31 Krones Ag Apparatus and Method for Purifying Thermoplastic Polymers
CN104192312A (zh) * 2008-07-02 2014-12-10 伊顿公司 介电隔离器
WO2015063413A1 (fr) 2013-11-04 2015-05-07 Arkema France Composition polymerique de couleur noire adaptee a la soudure laser
US9373427B2 (en) 2012-03-05 2016-06-21 Empire Technology Development Llc Flexible circuits

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10509773B2 (en) * 2004-06-10 2019-12-17 Oracle International Corporation DBFS with flashback archive
US9721695B2 (en) * 2010-12-21 2017-08-01 Basf Se Thermoplastic molding composition
WO2012089998A2 (fr) * 2010-12-29 2012-07-05 University Of Bradford Procédés pour améliorer la conductivité électrique de parties en plastique moulées
WO2012142613A1 (fr) * 2011-04-14 2012-10-18 Ada Technologies, Inc. Matières d'interface thermique et systèmes et dispositifs les contenant
JP5984247B2 (ja) * 2012-02-15 2016-09-06 住友化学株式会社 ポリスルホン組成物の製造方法及び成形体の製造方法
EP2883906B1 (fr) * 2012-08-08 2019-08-07 Daicel Corporation Composition de résine à base de cellulose conductrice
EP2892859A2 (fr) 2012-09-04 2015-07-15 OCV Intellectual Capital, LLC Dispersion de fibres de renforcement améliorées par du carbone dans des milieux aqueux ou non aqueux
KR101241750B1 (ko) 2012-09-05 2013-03-25 한밭대학교 산학협력단 탄소나노튜브에 의해 박리된 그래핀을 함유하는 열가소성 수지 마이크로캡슐 형태의 전도성 충전제의 제조방법 및 이를 포함하는 전도성 열가소성 수지 조성물 및 이의 제조 방법.
ES2580603T3 (es) 2013-08-01 2016-08-25 Total Research & Technology Feluy Mezclas madre para la preparación de un material compuesto con propiedades mejoradas de conductividad, procedimientos y materiales compuestos producidos
JP6503164B2 (ja) * 2014-07-23 2019-04-17 日信工業株式会社 熱可塑性樹脂組成物の製造方法
WO2016019143A1 (fr) 2014-07-30 2016-02-04 General Nano Llc Structure en feuille de nanotubes de carbone et son procede de fabrication
KR102077755B1 (ko) * 2015-12-16 2020-02-14 주식회사 엘지화학 인몰드 데코레이션 복합소재 및 이를 이용한 성형품
US11021369B2 (en) 2016-02-04 2021-06-01 General Nano Llc Carbon nanotube sheet structure and method for its making
US9583884B1 (en) 2016-02-26 2017-02-28 Northrop Grumman Systems Corporation Electrostatic discharge (ESD) safe connector insert
US20200385562A1 (en) * 2017-03-07 2020-12-10 Esprix Technologies, LP. Aliphatic polyketone modified with carbon nanostructures
FR3086291B1 (fr) * 2018-09-21 2021-06-04 Arkema France Compositions pour plaques bipolaires et methodes de fabrication de ces compositions
CN110344237B (zh) * 2019-06-25 2022-07-12 广东工业大学 一种导电复合材料及其制备方法与应用
CN111900273B (zh) * 2020-07-16 2022-09-23 惠州市吉昀精密部件有限公司 一种散热防水复合锂离子电池外壳材料及其制备方法
CN112504542B (zh) * 2020-11-18 2023-05-05 广东工业大学 一种敏感材料在柔性真空压强传感器中的应用
CN114605771B (zh) * 2022-03-21 2023-09-15 安庆会通新材料有限公司 一种可微波焊接的聚丙烯材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054036A1 (fr) * 1999-05-18 2000-11-22 Fina Research S.A. Polymères renforcées
WO2001012700A1 (fr) * 1999-08-16 2001-02-22 The Board Of Regents Of The University Of Oklahoma Procede permettant de former une matiere fibres/composite a structure anisotrope
WO2003040224A1 (fr) * 2001-11-07 2003-05-15 General Electric Company Composition polyphenylene ether-polyamide conductrice, procede de fabrication de celle-ci, et article derive de celle-ci
US20030158323A1 (en) * 2001-11-02 2003-08-21 Connell John W. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
US20040028859A1 (en) * 1998-09-11 2004-02-12 Legrande Wayne B. Electrically conductive and electromagnetic radiation absorptive coating compositions and the like
US7001556B1 (en) * 2001-08-16 2006-02-21 The Board Of Regents University Of Oklahoma Nanotube/matrix composites and methods of production and use

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111135A (ja) * 1995-10-23 1997-04-28 Mitsubishi Materials Corp 導電性ポリマー組成物
FR2812120B1 (fr) * 2000-07-24 2006-11-03 Commissariat Energie Atomique Materiau composite conducteur et electrode pour pile a combustible utilisant ce materiau
JP4397115B2 (ja) * 2000-10-23 2010-01-13 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物及びその成形体
US6599446B1 (en) * 2000-11-03 2003-07-29 General Electric Company Electrically conductive polymer composite compositions, method for making, and method for electrical conductivity enhancement
FR2817076A1 (fr) * 2000-11-20 2002-05-24 Atofina Poudre microcomposite a base d'un electroconducteur et d'un fluoropolymere et objets fabriques avec cette poudre
WO2003013199A2 (fr) * 2001-07-27 2003-02-13 Eikos, Inc. Revetements conformes contenant des nanotubes de carbone
JP2003100147A (ja) * 2001-09-25 2003-04-04 Nagase & Co Ltd カーボンナノチューブを含有する導電性材料およびその製造方法
ATE394446T1 (de) * 2002-12-26 2008-05-15 Asahi Kasei Chemicals Corp Verfahren zur herstellung eines leitenden konzentrats
US6908573B2 (en) * 2003-04-17 2005-06-21 General Electric Polymeric resin blends and methods of manufacture thereof
US20040266933A1 (en) * 2003-06-27 2004-12-30 Certainteed Corporation Compositions comprising mineralized ash fillers
US7481952B2 (en) * 2004-04-29 2009-01-27 Compagnie Plastic Omnium Electrically conductive PTFE tape
JP2006083297A (ja) * 2004-09-16 2006-03-30 Nichias Corp ふっ素樹脂成形体及びその製造方法
JP4731884B2 (ja) * 2004-11-10 2011-07-27 ニチアス株式会社 導電性エポキシ樹脂組成物、エポキシ樹脂成形体及び燃料電池用セパレータの製造方法
FR2880353B1 (fr) * 2005-01-05 2008-05-23 Arkema Sa Utilisation de nanotubes de carbone pour la fabrication d'une composition organique conductrice et applications d'une telle composition
US8652391B2 (en) * 2005-02-03 2014-02-18 Entegris, Inc. Method of forming substrate carriers and articles from compositions comprising carbon nanotubes
FR2883879B1 (fr) * 2005-04-04 2007-05-25 Arkema Sa Materiaux polymeres contenant des nanotubes de carbone a dispersion amelioree leur procede de preparation
FR2885131B1 (fr) * 2005-04-27 2008-03-07 Arkema Sa Structure cellulaire a base de polymere comprenant des nanotubes de carbone, son procede de preparation et ses applications
JP4570553B2 (ja) * 2005-11-18 2010-10-27 保土谷化学工業株式会社 複合材料
FR2893947A1 (fr) * 2005-11-30 2007-06-01 Arkema Sa Composition pulverulente de nanotubes de carbone, ses procedes d'obtention et ses utilisations, notamment dans des materiaux polymeres.
EP1845124A1 (fr) * 2006-04-14 2007-10-17 Arkema France Composite conducteur à base de polymère et de nanotubes de carbone
JP2007297501A (ja) * 2006-04-28 2007-11-15 Takiron Co Ltd 導電性成形体及びその製造方法
FR2916364B1 (fr) * 2007-05-22 2009-10-23 Arkema France Procede de preparation de pre-composites a base de nanotubes notamment de carbone
FR2933426B1 (fr) * 2008-07-03 2010-07-30 Arkema France Procede de fabrication de fibres conductrices composites, fibres obtenues par le procede et utilisation de telles fibres

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028859A1 (en) * 1998-09-11 2004-02-12 Legrande Wayne B. Electrically conductive and electromagnetic radiation absorptive coating compositions and the like
EP1054036A1 (fr) * 1999-05-18 2000-11-22 Fina Research S.A. Polymères renforcées
WO2001012700A1 (fr) * 1999-08-16 2001-02-22 The Board Of Regents Of The University Of Oklahoma Procede permettant de former une matiere fibres/composite a structure anisotrope
US7001556B1 (en) * 2001-08-16 2006-02-21 The Board Of Regents University Of Oklahoma Nanotube/matrix composites and methods of production and use
US20030158323A1 (en) * 2001-11-02 2003-08-21 Connell John W. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
WO2003040224A1 (fr) * 2001-11-07 2003-05-15 General Electric Company Composition polyphenylene ether-polyamide conductrice, procede de fabrication de celle-ci, et article derive de celle-ci

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104192312A (zh) * 2008-07-02 2014-12-10 伊顿公司 介电隔离器
US8003014B2 (en) 2008-07-02 2011-08-23 Eaton Corporation Dielectric isolators
US9618148B2 (en) 2008-07-02 2017-04-11 Eaton Corporation Dielectric isolators
US9234615B2 (en) 2008-07-02 2016-01-12 Eaton Corporation Dielectric isolators
US9136036B2 (en) 2008-07-02 2015-09-15 Miller Waster Mills Injection moldable, thermoplastic composite materials
WO2010002546A3 (fr) * 2008-07-02 2010-03-11 Miller Waste Mills d/b/a RTP Company Matériaux composites thermoplastiques pouvant être moulés par injection
US8956556B2 (en) 2008-07-02 2015-02-17 Eaton Corporation Dielectric isolators
WO2011060839A1 (fr) 2009-11-18 2011-05-26 Bada Ag Procédé de production de matériaux composites à base de polymères et de nanotubes de carbone (cnt), et matériaux composites ainsi produits, ainsi que leur utilisation
EP2436719A1 (fr) 2010-10-04 2012-04-04 Rhein Chemie Rheinau GmbH Procédé de fabrication d'un mélange maître de couleurs contenant des nanoparticules
EP2436720A1 (fr) 2010-10-04 2012-04-04 Rhein Chemie Rheinau GmbH Procédé de fabrication d'un mélange maître de couleurs contenant des nanoparticules
US20140209545A1 (en) * 2010-10-26 2014-07-31 Krones Ag Apparatus and Method for Purifying Thermoplastic Polymers
EP2789644A1 (fr) 2011-12-21 2014-10-15 Rhein Chemie Rheinau GmbH Procédé de fabrication de mélanges maîtres CNT dans du caoutchouc liquide à l'aide d'un produit à trois cylindres
EP2607407A1 (fr) 2011-12-21 2013-06-26 Rhein Chemie Rheinau GmbH Procédé de fabrication de mélanges maîtres avec CNT dans du caoutchouc liquide à l'aide d'un appareil à trois cylindres
EP2607409A1 (fr) 2011-12-21 2013-06-26 Rhein Chemie Rheinau GmbH Procédé de fabrication sans poussière de mélanges maîtres (CNT) contenant des nanoparticules dans des caoutchoucs très visqueux à l'aide d'un produit à trois cylindres
EP2607408A1 (fr) 2011-12-21 2013-06-26 Rhein Chemie Rheinau GmbH Procédé de fabrication sans poussière de mélanges maîtres contenant des nanoparticules (CNT) dans des caoutchoucs très visqueux à l'aide d'un appareil à trois cylindres
RU2619782C2 (ru) * 2011-12-21 2017-05-18 Райн Хеми Райнау ГмбХ Способ беспылевого получения содержащих наночастицы (cnt) маточных смесей в каучуках высокой вязкости с помощью триовальцов
US9373427B2 (en) 2012-03-05 2016-06-21 Empire Technology Development Llc Flexible circuits
WO2015063413A1 (fr) 2013-11-04 2015-05-07 Arkema France Composition polymerique de couleur noire adaptee a la soudure laser

Also Published As

Publication number Publication date
CN101583659A (zh) 2009-11-18
FR2907442B1 (fr) 2008-12-05
KR20090071602A (ko) 2009-07-01
FR2907442A1 (fr) 2008-04-25
JP2010506989A (ja) 2010-03-04
EP2081989A1 (fr) 2009-07-29
US20130009110A1 (en) 2013-01-10
US20100084616A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
WO2008047022A1 (fr) Matériau composite conducteur à base de polymère thermoplastique et de nanotube de carbone
EP2294253B1 (fr) Procede de fabrication de fibres conductrices composites, fibres obtenues par le procede et utilisation de telles fibres
EP1885790B1 (fr) Procede de dispersion de nanotubes de carbone dans une matrice polymerique
WO2006072741A1 (fr) Utilisation de nanotubes de carbone pour la fabrication d&#39;une composition organique conductrice et applications d&#39;une telle composition.
JP5466952B2 (ja) カーボンナノチューブのための加工および性能助剤
CA2535023C (fr) Composition electrostatique a base de matrice polyamide
FR2591144A1 (fr) Matieres plastiques solides electriquement conductrices
WO2010061129A1 (fr) Utilisation d&#39;un graphite expanse dans un materiau polymere.
FR2591146A1 (fr) Procede de fabrication de plaques dures de matiere plastique dotees de conductivite electrique et plaques ainsi obtenues
WO2007113302A1 (fr) Composition electriquement conductrice a base de matrice polyamide
EP3362505B1 (fr) Procédé de fabrication d&#39;un matériau composite conducteur et matériau composite ainsi obtenu
WO2013072644A2 (fr) Additif a base de poudre de charbon végétal pour matrice polymère ou similaire
FR2907443A1 (fr) Materiau composite conducteur a base de polymere thermoplastique et de nanotube de carbone
WO2008047063A1 (fr) Procede de fabrication et de mise en forme d&#39;une piece en polyamide aux proprietes mecaniques ameliorees, composition pour mise en œuvre du procede
FR2907366A1 (fr) Procede de fabrication et de mise en forme d&#39;une piece en polyamide aux proprietes mecaniques amaliorees, composition pour mise en oeuvre du procede.
FR3057873A1 (fr) Materiau composite electriquement et thermiquement conducteur
FR3057571A1 (fr) Materiau de repartition de champ electrique, son procede de fabrication et dispositif comprenant un tel materiau
CH680251B5 (fr)
EP4182381A1 (fr) Nanocomposite à matrice polymère et nanotubes de nitrure de bore
EP4374437A1 (fr) Procede de fabrication de plaques bipolaires
WO2020058627A1 (fr) Compositions pour plaques bipolaires et methodes de fabrication de ces compositions
WO2024188726A1 (fr) Composition à base de polyaryléthercétone(s)
FR2765723A1 (fr) Materiau composite conducteur, materiau obtenu par frittage de celui-ci, plaques bipolaires preparees avec ce dernier, et dispositif de pile a combustible comprenant ces plaques bipolaires
FR3097160A1 (fr) Procédé de fabrication d’un materiau composite thermoplastique électriquement conducteur

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039039.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007858483

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009532856

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097007970

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE