EP4374437A1 - Procede de fabrication de plaques bipolaires - Google Patents

Procede de fabrication de plaques bipolaires

Info

Publication number
EP4374437A1
EP4374437A1 EP22754902.9A EP22754902A EP4374437A1 EP 4374437 A1 EP4374437 A1 EP 4374437A1 EP 22754902 A EP22754902 A EP 22754902A EP 4374437 A1 EP4374437 A1 EP 4374437A1
Authority
EP
European Patent Office
Prior art keywords
component
graphite
composition
polymer
bipolar plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22754902.9A
Other languages
German (de)
English (en)
Inventor
Marie HUZAR-EA
Stéphane Bizet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4374437A1 publication Critical patent/EP4374437A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • TITLE METHOD FOR MANUFACTURING BIPOLAR PLATES
  • the present invention relates to a method of making a bipolar plate composition.
  • the invention also relates to processes for manufacturing bipolar plates by injection, extrusion or compression, from said composition, as well as the bipolar plates obtained by these processes.
  • Bipolar plates are used in fuel cells, electrolyzers and in redox flow batteries. They can be made from different materials: metallic bipolar plates, graphite plates and carbon-polymer composite plates.
  • bipolar plates based on organic composite materials is based on the use of conductive fillers (carbon, graphite, etc.) dispersed in a thermoplastic or thermosetting polymer.
  • the fillers will give the bipolar plates the electrical conductivity necessary for collecting the current and the polymer matrix their good mechanical strength necessary for assembling the various elements.
  • Carbon-polymer composite bipolar plates have interesting properties: high electrical conductivity, good corrosion resistance, good performance at high temperature, and good mechanical properties, with a relatively low manufacturing cost.
  • a thermosetting or thermoplastic polymer is used as a matrix for a carbonaceous filler chosen from among graphite, carbon fibers, carbon black or carbon nanotubes.
  • the electrical performance of composite bipolar plates is mainly determined by the carbon charge, the material of the polymer matrix also influences the electrical behavior of the composite.
  • Thermosetting polymer-graphite composites are preferred materials for the fabrication of bipolar plates.
  • composite materials based on thermoplastic polymers in particular thermoplastics stable at high temperatures, have already been used in the manufacture of bipolar plates, in due to their ability to be injection molded or extruded, making them more suitable for automated manufacturing.
  • Such composites have been prepared using polyphenylene sulfide (PPS) or polyether sulfone (PES) containing graphite powder, as reported by Radhakrishnan, S. et al. in the publication: “High-temperature, Polymer-graphite Hybrid Composites for Bipolar Plates: Effect of Processing Conditions on Electrical Properties”, Journal of Power Sources, 2006, Vol. 163, p. 702-707.
  • bipolar plates for fuel cells are: high electronic and thermal conductivities, good mechanical properties such as bending properties, and high gas barrier properties.
  • the invention relates to a method for manufacturing a composition for a bipolar plate, said method comprising the following steps:
  • said composite mixture comes from the recycling of lithium-ion batteries.
  • the recycling of lithium-ion batteries is carried out by a process chosen from among physical separation, pyrometallurgy, hydrometallurgy, or a combination thereof.
  • the different components of the cell are dismantled before they are ground.
  • said at least one carbonaceous conductive filler is graphite used as active filler at the lithium-ion battery anode.
  • said carbonaceous conductive filler is a mixture of graphite and another carbonaceous conductive filler, such as carbon black or carbon nanotubes present in the formulation of the Li-battery anode or cathode. ion.
  • said polymer entering into the composition of said composite mixture is a fluorinated polymer, a water-soluble thickening polymer (such as, for example, carboxymethylcellulose), a polyolefin elastomer (such as, for example, a styrene-butadiene rubber), an acrylic resin (such as carboxylated acrylic polymers) or a mixture of several of these components, including a mixture of different fluoropolymers.
  • a fluorinated polymer such as, for example, carboxymethylcellulose
  • a polyolefin elastomer such as, for example, a styrene-butadiene rubber
  • an acrylic resin such as carboxylated acrylic polymers
  • the invention relates, according to another aspect, to a method of manufacturing a bipolar plate, comprising the following steps:
  • the invention relates, according to another aspect, to a method of manufacturing a bipolar plate, comprising the following steps:
  • the invention relates, according to another aspect, to a method of manufacturing a bipolar plate, comprising the following steps:
  • composition - subjecting said composition to a continuous extrusion process.
  • the invention further relates to the bipolar plates obtained by the methods described above or comprising the composition described above.
  • the present invention makes it possible to overcome the disadvantages of the state of the art. It more particularly provides a process for the manufacture of compositions which can be implemented easily to manufacture bipolar plates.
  • the advantages of this approach using a composite mixture resulting from the recycling of lithium-ion batteries, are to benefit from the good dispersion of the polymer binder in the recycled conductive carbon filler/polymer mixture, which makes it possible to improve the dispersion of the carbon charge in the bipolar plate. This makes it possible to improve the mechanical resistance, the gas barrier properties and the conductivity.
  • SEI solid electrolyte interface
  • This layer of SEI is composed of inorganic elements (LiL, L12O2, L12CO3) and also of polymer fractions resulting from the decomposition of electrolyte solvents. Consequently, this layer of SEI contributes to better flexibility and resistance to cracks, giving the recycled graphite the ability to improve the mechanical properties of the bipolar plate.
  • the percentages indicated in the text are mass percentages.
  • the subject of the invention is the use of a mixture of conductive fillers/polymers resulting from the recycling of lithium-ion batteries for the manufacture of bipolar plates.
  • the invention relates to a method for manufacturing a composition for a bipolar plate, said method comprising the following steps: - providing a composite mixture based on at least one carbonaceous conductive filler and polymer(s) (component A),
  • said method comprises the following characters, possibly combined.
  • said composite mixture is prepared by a lithium-ion battery recycling process chosen from among pyrometallurgy, hydrometallurgy, physical separation based on characteristics of the materials such as particle size, density, magnetic or electrical properties , such as flotation, or a combination thereof.
  • the battery to be recycled is dismantled in order to recover the polymers, carbonaceous fillers and noble metals from the electrodes.
  • the batteries which are recycled are those having an NMC (nickel-manganese-cobalt) or NCA (nickel-cobalt-aluminum) cathode and a graphite anode.
  • the components of a lithium-ion battery are physically separated: cathode/separator/anode, the cathode and the anode are ground, then the hydrometallurgy steps are carried out to selectively recover materials, including cobalt and nickel.
  • Hydrometallurgy residues consist of conductive carbonaceous fillers and polymers such as PVDF that are resistant to leaching and reprecipitation stages, and can therefore be reused according to the present invention.
  • the components of a lithium-ion battery are physically separated: cathode/separator/anode, the cathode and the anode are ground and then flotation or jet sieving is carried out. air allowing to recover the conductive carbonaceous fillers and the sparse and hydrophobic polymer binders, thus separated from the metallic active fillers and the denser metallic current collector residues.
  • the recycling process leads to the recovery of the carbonaceous fillers which are associated with thermoplastic polymers, that is to say the binders of the electrodes.
  • the method according to the invention may comprise a preliminary step which consists in grinding, redispersing and sieving said mixture in order to obtain a powder having a particle size of 500 ⁇ m maximum, preferably less than 200 ⁇ m.
  • a recombination of the conductive carbonaceous filler powders/polymers from the cathode and the anode is carried out by a method of mixing dry powders with equipment such as a ribbon or paddle mixer. It is possible to carry out this recombination in the molten state by an extrusion process making it possible to obtain flakes or friable granules which must then be reground.
  • the cell or the module is ground without carrying out any prior dismantling. It is then possible to recover a mixture of carbonaceous and polymeric conductive fillers either after one or more physical separation step(s) as described above, or as a residue from the hydrometallurgy process.
  • a pyrometallurgy step is carried out to eliminate the polymers present. Only the conductive carbonaceous fillers are then recovered to be used according to the invention.
  • said at least one carbonaceous conductive filler is graphite used as active filler at the lithium-ion battery anode.
  • said carbonaceous conductive filler is a mixture of graphite and another carbonaceous conductive filler, such as carbon black, carbon nanotubes or carbon fibers (for example carbon fibers grown in the vapor phase or VGCF, which is the English acronym for “vapor grown carbon fiber”), present in the formulation of the Li-ion battery anode or cathode.
  • another carbonaceous conductive filler such as carbon black, carbon nanotubes or carbon fibers (for example carbon fibers grown in the vapor phase or VGCF, which is the English acronym for “vapor grown carbon fiber”)
  • said polymer entering into the composition of said composite mixture is a fluorinated polymer, such as for example polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), a water-soluble thickening polymer, such as for example carboxymethylcellulose, an elastomer polyolefin, such as for example a styrene-butadiene rubber, an acrylic resin or a mixture of several of these components, including a mixture of different fluorinated polymers.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • a water-soluble thickening polymer such as for example carboxymethylcellulose
  • an elastomer polyolefin such as for example a styrene-butadiene rubber
  • acrylic resin or a mixture of several of these components, including a mixture of different fluorinated polymers.
  • said fluorinated polymer present in component A contains in its chain at least one monomer chosen from compounds containing a vinyl group capable of opening to polymerize and which contains, directly attached to this vinyl group, at the least one fluorine atom, a fluoroalkyl group or a fluoroalkoxy group.
  • the fluorinated polymer can be a homopolymer or a copolymer.
  • the copolymer can also include non-fluorinated monomers such as ethylene.
  • the fluoropolymer is a polymer comprising units derived from vinylidene fluoride, and is preferably chosen from polyvinylidene fluoride homopolymer and copolymers comprising units of vinylidene fluoride and units derived from at least another comonomer copolymerizable with vinylidene fluoride.
  • the fluorinated polymer present in component A is a homopolymer of vinylidene fluoride.
  • the fluoropolymer is a copolymer comprising vinylidene fluoride (VDF) units and units derived from one or more monomers.
  • VDF vinylidene fluoride
  • VDF copolymers can also include non-fluorinated monomers such as ethylene.
  • the mass content of the VDF units is at least 50%, preferably at least 60%, more preferably greater than 70% and advantageously greater than 80%.
  • the fluoropolymer is functionalized in whole or in part, which allows it to improve the adhesion to metal.
  • the fluoropolymer comprises monomer units bearing at least one carboxylic acid or hydroxyl function.
  • the functional group bears a carboxylic acid function.
  • the monomer unit bearing at least one carboxylic acid function is chosen from acrylic acid, methacrylic acid, and acryloyloxy propylsuccinate.
  • the units carrying the carboxylic acid function also comprise a heteroatom chosen from oxygen, sulphur, nitrogen and phosphorus.
  • the functional group bears a hydroxyl function.
  • the monomer unit bearing at least one carboxylic acid function is chosen from hydroxyethyl(meth)acrylate,
  • the functional group content of the fluorinated polymer is at least 0.01% molar, preferably at least 0.1% molar, and at most 15% molar, preferably at most 10 % molar.
  • the fluorinated polymer present in component A can be a mixture of one or more polymers described above, for example a mixture of a PVDF homopolymer and at least one VDF copolymer, a mixture of at least two VDF, a mixture of a functionalized PVDF and a homopolymer PVDF or a mixture of a functionalized PVDF and a VDF copolymer.
  • component A can also comprise silicon.
  • the silicon comes from the recycling of the anode.
  • the recycled conductive carbon filler/polymer mixture has the following mass composition:
  • polyolefin such as polyethylene and/or polypropylene
  • the recycled conductive carbon filler/polymer mixture has the following mass composition:
  • polyolefin such as polyethylene and/or polypropylene
  • the mass ratio between the water-soluble thickener and the polyolefin elastomer varies from 1:9 to 9:1, and is preferably 1:4.
  • the graphite present in component A has a particle size, expressed as volume average diameter (Dv50), ranging from 1 to 40 mhi, preferably from 5 to 30 ⁇ m.
  • Dv50 volume average diameter
  • This parameter can be measured by laser granulometry.
  • component A comprising graphite having a particle size, expressed as volume average diameter (Dv50), smaller than the volume average diameter (Dv50) of the graphite constituting component B described below.
  • the second component of the bipolar plate composition according to the invention is graphite. It is the major component by weight of the composition, present at 50% or more.
  • the graphite constituting component B has a volume-average diameter (Dv50) ranging from 50 to 500 mhi, preferably from 75 to 150 mhi.
  • the third component of the bipolar plate composition according to the invention is a polymer acting as a binder.
  • Said polymer can be a polyolefin (for example: polyethylene or polypropylene), a fluorinated polymer (PVDF), polyphenylsulfone, polyethersulfone, a phenolic resin, a vinylester resin, an epoxy resin, or a liquid-crystal polymer.
  • said fluorinated polymer present in component C contains in its chain at least one monomer chosen from compounds containing a vinyl group capable of opening to polymerize and which contains, directly attached to this vinyl group, at the least one fluorine atom, a fluoroalkyl group or a fluoroalkoxy group.
  • this monomer can be vinylidene fluoride.
  • the fluorinated polymer can be a homopolymer or a copolymer.
  • the copolymer can also include non-fluorinated monomers such as ethylene.
  • the fluoropolymer is a polymer comprising units derived from vinylidene fluoride, and is preferably chosen from polyvinylidene fluoride homopolymer and copolymers comprising units of vinylidene fluoride and units derived from at least another comonomer copolymerizable with vinylidene fluoride.
  • the fluorinated polymer present in component C is a homopolymer of vinylidene fluoride.
  • the fluoropolymer is a copolymer comprising vinylidene fluoride (VDF) units and units derived from one or more monomers.
  • VDF copolymers can also include non-fluorinated monomers such as ethylene.
  • the mass content of the VDF units is at least 50%, preferably at least 60%, more preferably greater than 70% and advantageously greater than 80%.
  • the fluoropolymer is functionalized, in whole or in part, which allows it to improve the adhesion to metal.
  • the fluoropolymer comprises monomer units bearing at least one carboxylic acid or carboxylic acid anhydride function.
  • the function is introduced onto the fluorinated polymer by a chemical reaction which may be grafting or copolymerization of the fluorinated monomer with a monomer bearing at least one -COOH or carboxylic acid anhydride group and a vinyl function capable of copolymerizing with the fluorinated monomer , according to techniques well known to those skilled in the art.
  • unsaturated mono- and dicarboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms, such as acrylic acids, methacrylic , maleic, fumaric, itaconic, citraconic, allyl
  • the units carrying the carboxylic acid function also comprise a heteroatom chosen from oxygen, sulphur, nitrogen and phosphorus.
  • the functional group content of the fluorinated polymer is at least 0.01% molar, preferably at least 0.1% molar, and at most 15% molar, preferably at most 10 % molar.
  • the fluorinated polymer present in component C can be a mixture of one or more polymers described above, for example a mixture of a PVDF homopolymer and at least one VDF copolymer, or a mixture of at least two VDF copolymers.
  • the mass composition of the bipolar plate implemented in the method according to the invention consists of:
  • the invention relates to a process for manufacturing the composition described above, said process comprising the following steps:
  • component A a composite mixture based on at least one carbonaceous conductive filler and polymer(s) (component A),
  • the process according to the invention comprises a step of mixing in the molten state component A with component C and component B. This step makes it possible to formulate an intimate mixture.
  • the powders are mixed in the dry state.
  • the mixing step is carried out in the molten state by extrusion, using for example a mixer or a twin-screw extruder.
  • the invention also relates to a bipolar plate composition manufactured using the method described above.
  • the invention also relates to a bipolar plate comprising the composition described above, in an agglomerated form.
  • a bipolar plate is a plate that separates elementary cells in fuel cells, electrolyzers and redox flow batteries. In general, it has the shape of a parallelepiped having a thickness of a few millimeters (typically between 0.2 and 6 mm) and comprises on each face a network of channels for the circulation of gases and fluids. Its functions are to supply the fuel cell with gaseous fuel, to evacuate the reaction products and to collect the electric current produced by the cell.
  • the invention relates, according to another aspect, to a method of manufacturing a bipolar plate, comprising the following steps:
  • the bipolar plate composition is subjected to injection molding in powder form.
  • the method according to the invention may also comprise an additional step of grinding this powder, for example by means of a disc mill.
  • compositions of the invention are particularly well suited to the manufacture of composite bipolar plates by the injection molding process.
  • the injection molding process consists of several steps. First, granules or powders are introduced into an extruder via a feed hopper. Once introduced, the material is routed into the barrel where it is simultaneously heated, sheared and conveyed to the mold by the extrusion screw. The material is temporarily held in the sheath and put under pressure before the injection phase. When the appropriate pressure is reached, the material is injected into a mold having the shape and dimensions of the desired final object, the temperature of the mold being regulated. The cycle time depends on the size of the parts and the solidification time of the polymer. the keeping the material under pressure once injected into the mold limits deformation and shrinkage after demoulding. To eject the parts, the mold parts separate, the core retracts, and the ejectors are pushed to lift the parts off the mold surface.
  • the parameters of the injection process are multiple: temperature of the material during the plasticizing step, injection speed, injection pressure of the material, time and pressure held in the mould, mold temperature.
  • the temperature profile applied along the extrusion screw can vary from 100° C. to 280° C. from the feed zone to the head. injection.
  • the mold temperature can vary from room temperature up to 280°C. Several mold cooling methods can be used.
  • the material can be injected into a mold maintained at a temperature between the melting and glass transition temperatures for a semi-crystalline polymer.
  • the temperature of the mold varies during the injection cycle.
  • the material is first injected into a mold whose temperature is higher than the melting temperature for a semi-crystalline thermoplastic polymer. This phase favors the filling of the mould.
  • the mold is cooled to a temperature between the melting and glass transition temperatures for a semi-crystalline polymer to promote crystallization.
  • Commercial versions of these variable mold temperature processes exist. Examples include Roctool, Variotherm and Variomelt technologies.
  • injection parameters such as injection speed, injection pressure of the material, time and holding pressure in the mold depend on the geometry of the mold, its dimensions, the size and position of the injection gates .
  • the invention relates, according to another aspect, to a method of manufacturing a bipolar plate, comprising the following steps:
  • the bipolar plate composition is subjected to compression molding in powder form.
  • the method according to the invention may also comprise a step of grinding this powder, for example by means of a disk mill.
  • the compression molding of compositions intended to produce bipolar plates can be carried out by introducing said composition into a mould, for example a stainless steel mould, which is then closed and heated to a temperature ranging from 200°C to 350°C, preferably from 250°C to 300°C. Then, a compression force of 300 t to 800 t, preferably 400 t to 600 t, is applied to the mold, for a mold with dimensions of 100,000 to 150,000 mm 2 . Typically, a compression force of 500 t is applied when the mold size is 130000 mm 2 and a compression force of 300 t is applied when the mold size is 44000 mm 2 . The mold is then cooled to a temperature of 50° C. to 120° C., preferably 60° C. to 100° C., and the plate is unmolded.
  • the invention relates, according to another aspect, to a method of manufacturing a bipolar plate, comprising the following steps:
  • composition - subjecting said composition to a continuous extrusion process.
  • the composition is introduced into a single-screw or twin-screw type extruder with a flat die, so as to obtain a continuous plate which is subsequently etched.
  • the invention further relates to the bipolar plates obtained by the methods described above.
  • the bipolar plate has at least one of the following characteristics, and preferably all of these characteristics:
  • thermal conductivity equal to or greater than 10 W/m/K
  • a flexural strength equal to or greater than 25 N/mm 2 ;
  • Bending strength is measured according to DIN EN ISO 178. Compressive strength is measured according to ISO 604. Thermal conductivity is measured using the Laser Llash technique according to DIN EN ISO 821. Surface resistivity is measured by means of probe samples at four points on crushed samples having a thickness of 4 mm. Volume resistivity is measured with a two-electrode installation and a contact pressure of 1 N/mm 2 on surfaced samples having a diameter of 13 mm and a thickness of 2 mm.
  • the bipolar plate has a surface resistivity equal to or less than 0.008 Ohm.cm, or equal to or less than 0.005 Ohm.cm, or equal to or less than 0.003 Ohm.cm, or equal to or less than 0.001 Ohm. cm.
  • the bipolar plate has a through resistivity equal to or less than 0.025 Ohm.cm, or equal to or less than 0.02 Ohm.cm, or equal to or less than 0.015 Ohm.cm.
  • the bipolar plate has a thermal conductivity equal to or greater than 15 W/m/K, or equal to or greater than 20 W/m/K.
  • the bipolar plate has a resistance to bending equal to or greater than 30 N/mm 2 , or equal to or greater than 35 N/mm 2 .
  • the bipolar plate consists of:
  • component B as defined in the present invention having an average volume diameter (Dv50) ranging from 50 to 500 mhi,
  • component A as defined in the present invention and comprising graphite having a particle size, expressed as volume average diameter (Dv50) ranging from 1 to 40 mhi, from 5 to 40% of component C as defined in the present invention; the sum of these percentages being 100%.
  • Dv50 volume average diameter
  • a synthetic graphite (Graphite Timrex KS150) having a particle size characterized by a Dv50 of 55mhi and a homopolymer of vinylidene difluoride which has a melt viscosity measured at 232°C and 100 s - 1 of 900 Pa.s were used.
  • Composition 1 from the recycling of a lithium-ion battery graphite anode
  • Composition 1 from a graphite anode was obtained by a recycling process based on the physical separation of the elements. First, the battery components (anode/separator/cathode) were physically separated. The anode was then crushed. Finally, it was subjected to an air jet sieving to separate the copper fragments, graphite and polymeric binders. At the end of this step, a powder consisting of 96.3% by weight of graphite, 3.4% by weight of carboxymethyl cellulose (CMC) and 2.6% by weight of a styrene and butadiene elastomer (SBR) was recovered. . The graphite in this composition was a synthetic graphite which has a particle size characterized by a Dv50 of 17 mhi.
  • CMC carboxymethyl cellulose
  • SBR styrene and butadiene elastomer
  • Composition 2 from the black mass of a Lithium-ion battery with graphite anode and NMC cathode: Composition 2 is from the black mass of a Lithium-ion battery. It contains the non-metallic and non-inorganic residues, i.e. the graphite, the conductive carbonaceous filler of the cathode, the polymer binders of the electrodes (PVDL, CMC, SBR) and the polyolefin of the separator. The constituent elements of the battery (anode/separator/cathode) were first shredded and then ground.
  • the ground material was subjected to the different stages of a hydrometallurgy process in order to dissolve the metallic current collectors and the inorganic fillers such as NMC and bohemite from the separator coating.
  • the residues from the hydrometallurgy process are composed of:
  • CMC carboxymethyl cellulose
  • SBR styrene and butadiene elastomer
  • PVDL polyvinylidene fluoride
  • composition of the bipolar plates with iso rate of binder iso rate of binder
  • Example 1 The constituents of Example 1, the Timrex KS150 graphite, the Kynar® 721 PVDF and the composition resulting from the recycling of a lithium-ion battery anode, were pre-mixed using a twin-screw extruder . At the end of this mixing step, very friable granules were obtained. These granules were then ground using a disc mill to obtain a powder with an average size Dv50 of less than 500 mhi.
  • composition of the comparative example was prepared according to the same protocol.
  • the fabrication of the bipolar plates was carried out by thermocompression. To do this, a mold with a dimension of 30 ⁇ 30 cm 2 was manually filled with the composition in powder form. The powder was leveled manually with a metal blade. The mold was closed and brought to 240° C. under a pressure of 150 bars. The amount of powder was adjusted to obtain a thickness of approximately 3mm. The mold was cooled under pressure to a temperature of 80°C. Once this temperature was reached, the pressure was released and the plate was removed from the mould.
  • the bipolar plates according to the present invention have a better resistance to bending compared to the comparative example in which there is no graphite resulting from the recycling of a battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'une composition de plaque bipolaire. L'invention concerne également des procédés de fabrication de plaques bipolaires par injection, extrusion ou compression, à partir de ladite composition, ainsi que les plaques bipolaires obtenues par ces procédés.

Description

DESCRIPTION
TITRE : PROCEDE DE FABRICATION DE PLAOUES BIPOLAIRES
DOMAINE TECHNIQUE
La présente invention concerne un procédé de fabrication d’une composition de plaque bipolaire. L’invention concerne également des procédés de fabrication de plaques bipolaires par injection, extrusion ou compression, à partir de ladite composition, ainsi que les plaques bipolaires obtenues par ces procédés.
CONTEXTE TECHNIQUE
Les plaques bipolaires sont utilisées dans les piles à combustible, les électrolyseurs et dans les batteries à flux redox. Elles peuvent être réalisées à partir de différents matériaux : plaques bipolaires métalliques, plaques en graphite et plaques en composites carbone - polymère.
Le principe des plaques bipolaires à base de matériaux composites organiques repose sur l’utilisation de charges conductrices (carbone, graphite...) dispersées dans un polymère thermoplastique ou thermodurcissable. Les charges vont conférer aux plaques bipolaires la conductivité électrique nécessaire à la collecte du courant et la matrice polymère leur bonne tenue mécanique nécessaire à l’assemblage des différents éléments.
Les plaques bipolaires composites carbone -polymère présentent des propriétés intéressantes : une haute conductivité électrique, une bonne résistance à la corrosion, de bonnes performances à haute température, et de bonnes propriétés mécaniques, avec un coût de fabrication relativement faible. Dans ces plaques bipolaires composites, un polymère thermodurcissable ou thermoplastique est utilisé comme matrice pour une charge carbonée choisie parmi le graphite, les fibres de carbone, le noir de carbone ou les nanotubes de carbone. Bien que la performance électrique des plaques bipolaires composites soit principalement déterminée par la charge carbonée, le matériau de la matrice polymère influence également le comportement électrique du composite.
Les composites polymères thermodurcissables - graphite sont des matériaux préférés pour la fabrication de plaques bipolaires. Cependant, des matériaux composites à base de polymères thermoplastiques, notamment des thermoplastiques stables aux températures élevées, ont déjà été utilisés dans la fabrication de plaques bipolaires, en raison de leur aptitude d’être moulés par injection ou extrudés, ce qui les rend plus aptes à la fabrication automatisée. De tels composites ont été préparés en utilisant du sulfure de polyphénylène (PPS) ou du polyéther sulfone (PES) contenant de la poudre de graphite, comme rapporté par Radhakrishnan, S. et al. dans la publication : « High-temperature, Polymer-graphite Hybrid Composites for Bipolar Plates: Effect of Processing Conditions on Electrical Properties », Journal of Power Sources, 2006, Vol. 163, pp. 702-707.
La publication de Mighri F. et al. “Electrically conductive thermoplastic blends for injection and compression molding of bipolar plates in the fuel cell application”, Polymer Engineering and Science, 2004, vol 44, n°9 décrit des plaques bipolaires faites par les procédés de compression et d’injection à partir de graphite, de noir de carbone et de polypropylène ou polysulfure de phénylène.
Les principales propriétés recherchées de plaques bipolaires pour piles à combustibles sont : des conductivités électronique et thermique élevées, de bonnes propriétés mécaniques comme les propriétés en flexion, et des propriétés barrières aux gaz élevées.
Il existe un besoin de fournir un procédé de fabrication d’une composition pour plaque bipolaire, ladite composition présentant un bon compromis entre ces propriétés, et ledit procédé étant compatible avec les procédés de fabrication comme l’injection, la thermo-compression, ou l’extrusion.
RÉSUMÉ DE L’INVENTION
Selon un premier aspect, l’invention concerne un procédé de fabrication d’une composition pour plaque bipolaire, ledit procédé comprenant les étapes suivantes:
- fournir un mélange composite à base d’au moins une charge conductrice carbonée et de polymère(s),
- incorporer audit mélange composite du graphite et un liant polymère.
De manière caractéristique, ledit mélange composite est issu du recyclage de batteries lithium-ion.
Selon un mode de réalisation, le recyclage de batteries lithium-ion est effectué par un procédé choisi parmi la séparation physique, la pyrométallurgie, G hydrométallurgie, ou une combinaison de ceux-ci. Préférentiellement, il est effectué un démantèlement des différents composants de la cellule (cathode / anode / séparateur) avant leur broyage.
Selon un mode de réalisation, ladite au moins une charge conductrice carbonée est du graphite utilisé comme charge active à l’anode de batterie lithium-ion.
Selon un mode de réalisation, ladite charge conductrice carbonée est un mélange de graphite et d'une autre charge conductrice carbonée, comme le noir de carbone ou les nanotubes de carbone présents dans la formulation de l’anode ou de la cathode de batterie Li-ion.
Selon un mode de réalisation, ledit polymère entrant dans la composition dudit mélange composite est un polymère fluoré, un polymère épaississant hydrosoluble (comme par exemple la carboxyméthylcellulose), un élastomère polyoléfïne (comme par exemple un caoutchouc styrène -butadiène), une résine acrylique (comme par exemple des polymères acryliques carboxylées) ou un mélange de plusieurs de ces composants, y compris un mélange de polymères fluorés différents.
L’invention concerne, selon un autre aspect, un procédé de fabrication d’une plaque bipolaire, comprenant les étapes suivantes:
- préparer une composition selon le procédé décrit ci-dessus, et
- soumettre ladite composition à un moulage par injection.
L’invention concerne, selon un autre aspect, un procédé de fabrication d’une plaque bipolaire, comprenant les étapes suivantes:
- préparer une composition selon le procédé décrit ci-dessus, et
- soumettre ladite composition à un moulage par compression.
L’invention concerne, selon un autre aspect, un procédé de fabrication d’une plaque bipolaire, comprenant les étapes suivantes:
- préparer une composition selon le procédé décrit ci-dessus, et
- soumettre ladite composition à un procédé d’extrusion en continu.
L’invention concerne en outre les plaques bipolaires obtenues par les procédés décrits ci-dessus ou comprenant la composition décrite ci-dessus.
La présente invention permet de surmonter les inconvénients de l’état de l’art. Elle fournit plus particulièrement un procédé de fabrication de compositions pouvant être mises en œuvre facilement pour fabriquer des plaques bipolaires. Les avantages de cette approche mettant en œuvre un mélange composite issu du recyclage de batteries lithium-ion, sont de bénéficier de la bonne dispersion du liant polymère dans le mélange recyclé charge carbonée conductrice/polymère, ce qui permet d'améliorer la dispersion de la charge carbonée dans la plaque bipolaire. Ceci permet d'améliorer la résistance mécanique, les propriétés barrières aux gaz et la conductivité.
Dans le cas de la fabrication d’une plaque bipolaire par un procédé nécessitant une faible viscosité (injection) du mélange polymère - graphite, un autre avantage provient de la différence de taille de particules entre le graphite utilisé pour la plaque bipolaire et le graphite utilisé dans une anode de batterie Li-ion. Le premier est plus gros (ayant typiquement un diamètre moyen en volume (Dv50) allant de 50 à 150 mhi) que le second (ayant typiquement un Dv50 autour de 20 mhi et inférieur à 40 mhi). Cette différence permet d’améliorer la conductivité électrique transverse grâce aux plus petites particules de graphite qui viennent s'insérer dans les interstices laissés par les plus grosses particules de graphite, tout en limitant la viscosification du mélange, conférant une bonne mise en œuvre de la plaque bipolaire à celui-ci.
Par ailleurs, le fait que le graphite recyclé ait connu une première vie dans une batterie lui a permis d’être recouvert par une interface d’électrolyte solide (« SEI » pour « solid electrolyte interface »). Cette couche de SEI est composée d’éléments inorganiques (LiL, L12O2, L12CO3) et également de fractions de polymères issues de la décomposition des solvants d’électrolytes. Par conséquent, cette couche de SEI participe d’une meilleure flexibilité et résistance aux fissures, conférant au graphite recyclé la capacité d’améliorer les propriétés mécaniques de la plaque bipolaire.
DESCRIPTION DE MODES DE RÉALISATION DE L’INVENTION
L’invention est décrite de manière détaillée ci-après.
Les pourcentages indiqués dans le texte sont des pourcentages massiques.
L’invention a pour objet l’utilisation d’un mélange charges conductrices/polymères issu du recyclage des batteries lithium-ion pour la fabrication de plaques bipolaires.
Selon un premier aspect, l’invention concerne un procédé de fabrication d’une composition pour plaque bipolaire, ledit procédé comprenant les étapes suivantes: - fournir un mélange composite à base d’au moins une charge conductrice carbonée et de polymère(s) (composant A),
- incorporer audit mélange composite du graphite (composant B) et un liant polymère (composant C), caractérisé en ce que ledit mélange composite est issu du recyclage de batteries lithium- ion.
Selon diverses réalisations, ledit procédé comprend les caractères suivants, le cas échéant combinés.
Composant A
Selon un mode de réalisation, ledit mélange composite est préparé par un procédé recyclage de batteries lithium-ion choisi parmi la pyrométallurgie, G hydrométallurgie, la séparation physique basée sur des caractéristiques des matériaux telles que la granulométrie, la densité, les propriétés magnétiques ou électriques, telle que la flottation, ou leur combinaison.
La batterie à recycler est démantelée afin de récupérer les polymères, les charges carbonées et les métaux nobles des électrodes. Avantageusement, les batteries qui sont recyclées sont celles ayant une cathode NMC (nickel-manganèse-cobalt) ou NCA (nickel- cobalt-aluminium) et une anode en graphite.
Selon un mode de réalisation, on sépare physiquement les composants d’une batterie lithium-ion : cathode/séparateur/anode, on effectue un broyage de la cathode et de l’anode, puis on effectue les étapes d’hydrométallurgie pour récupérer sélectivement des matériaux, notamment le cobalt et nickel. Les résidus d’hydrométallurgie sont constitués des charges carbonées conductrices et des polymères comme le PVDF résistant aux étapes de lixiviation et reprécipitation, et pouvant donc être réutilisés selon la présente invention.
Selon un autre mode de réalisation, on sépare physiquement les composants d’une batterie lithium-ion : cathode/séparateur/anode, on effectue un broyage de la cathode et de l’anode puis on effectue une flottation ou un tamisage à jet d’air permettant de récupérer les charges carbonées conductrices et les liants polymères peu denses et hydrophobes, ainsi séparés des charges actives métalliques et des résidus de collecteurs de courants métalliques plus denses. Le procédé de recyclage amène à récupérer les charges carbonées qui sont associées à des polymères thermoplastiques, c’est-à-dire les liants des électrodes. En fonction de l’aspect du mélange recyclé composite charges carbonées conductrices/polymère (écailles, poudre grossière), le procédé selon l’invention peut comprendre une étape préalable qui consiste à broyer, redisperser et tamiser ledit mélange afin d’obtenir une poudre ayant une taille de particules de 500 qrn maximum, préférentiellement inférieure à 200 um.
Selon un mode de réalisation, dans le cas où l’on a préalablement effectué un démantèlement physique avec une séparation cathode / séparateur / anode, on procède à une recombinaison des poudres charges carbonées conductrices/polymères issues de la cathode et de l’anode par un procédé de mélange de poudres à l’état sec avec un équipement tel qu’un mélangeur à rubans ou à pâles. Il est possible de réaliser cete recombinaison à l’état fondu par un procédé d’extrusion permettant d’obtenir des écailles ou granulés friables qui doivent être ensuite rebroyés.
Selon un mode de réalisation, on broie la cellule ou le module sans procéder à un démantèlement préalable. On peut alors récupérer un mélange de charges conductrices carbonées et polymères soit après une ou des étape(s) de séparation physique comme décrit précédemment, soit comme résidu de procédé d’hydrométallurgie
Selon un mode de réalisation, une étape de pyrométallurgie est effectuée pour éliminer les polymères présents. Seules les charges carbonées conductrices sont alors récupérées pour être utilisées selon l’invention.
Selon un mode de réalisation, ladite au moins une charge conductrice carbonée est du graphite utilisé comme charge active à l’anode de batterie lithium-ion.
Selon un mode de réalisation, ladite charge conductrice carbonée est un mélange de graphite et d'une autre charge conductrice carbonée, comme le noir de carbone, les nanotubes de carbone ou les fibres de carbone (par exemple les fibres de carbone développées en phase vapeur ou VGCF, qui est l’acronyme anglais pour « vapor grown carbon fïber »), présents dans la formulation de l’anode ou de la cathode de batterie Li- ion.
Selon un mode de réalisation, ledit polymère entrant dans la composition dudit mélange composite est un polymère fluoré, comme par exemple le polyfluorure de vinylidène (PVDF) ou le polytétrafluoroéthylène (PTFE), un polymère épaississant hydrosoluble, comme par exemple la carboxyméthylcellulose, un élastomère polyoléfïne, comme par exemple un caoutchouc styrène-butadiène, une résine acrylique ou un mélange de plusieurs de ces composants, y compris un mélange de polymères fluorés différents. Selon un mode de réalisation, ledit polymère fluoré présent dans le composant A contient dans sa chaîne au moins un monomère choisi parmi les composés contenant un groupe vinyle capable de s'ouvrir pour se polymériser et qui contient, directement attaché à ce groupe vinyle, au moins un atome de fluor, un groupe fluoroalkyle ou un groupe fluoroalkoxy.
Selon un mode de réalisation, ce monomère peut être le fluorure de vinyle, le fluorure de vinylidène, le trifluoroéthylène, le chlorotrifluoroéthylène, le 1,2- difluoroéthylène, le tétrafluoroéthylène, l’hexafluoropropylène ; des perfluoro(alkyl vinyl) éthers tels que perfluoro(méthyl vinyl)éther, perfluoro(éthyl vinyl) éther or perfluoro(propyl vinyl) éther; perfluoro(l,3-dioxole); perfluoro(2,2-diméthyl-l,3- dioxole) ; le produit de formule CF2=CFOCF2CF(CF3)OCF2CF2X dans lequelle X est SO2F, CO2H, CH2OH, CH2OCN ou CH2OPO3H; le produit de formule CF2=CF0CF2CF2S02F; le produit de formule F(CF2)nCH20CF=CF2 dans laquelle n est 1, 2, 3, 4 ou 5; le produit de formule RICH20CF=CF2 dans laquelle Ri est hydrogène ou F(CF2)m et m est 1, 2, 3 ou 4; le produit de formule R20CF=CH2 dans laquelle R2 est F(CF2)P et p est 1, 2, 3 ou 4; perfluorobutyl éthylène; 3,3,3-trifluoropropène ou 2- trifluorométhyl-3 ,3 ,3-trifluoro- 1 -propène.
Le polymère fluoré peut être un homopolymère ou un copolymère. Le copolymère peut également comprendre des monomères non-fluorés tel que l’éthylène.
Selon un mode de réalisation, le polymère fluoré est un polymère comprenant des motifs issus du fluorure de vinylidène, et de préférence est choisi parmi le polyfluorure de vinylidène homopolymère et les copolymères comprenant des motifs de fluorure de vinylidène et des motifs issus d’au moins un autre comonomère copolymérisable avec le fluorure de vinylidène.
Selon un mode de réalisation, le polymère fluoré présent dans le composant A est un homopolymère de fluorure de vinylidène.
Selon un mode de réalisation, le polymère fluoré est un copolymère comprenant des unités de fluorure de vinylidène (VDF) et des unités issues d’un ou plusieurs monomères. Ces autres monomères sont choisis dans la liste : fluorure de vinyle; trifluoroéthylène; chlorotrifluoroéthylène; 1 ,2-difluoroéthylène, tétrafluoroéthylène; hexafluoropropylène; perfluoro(alkyl vinyl)éthers tels que le perfluoro(méthyl vinyl)éther, perfluoro(éthyl vinyl)éther ou perfluoro(propyl vinyl)éther; perfluoro(l,3- dioxole); perfluoro(2,2-diméthyl-l,3-dioxole); le produit de formule CF2=CFOCF2CF(CF3)OCF2CF2X dans laquelle X est S02F, CO2H, CH2OH, CH2OCN ou CH2OPO3H; le produit de formule CF2=CF0CF2CF2S02F; le produit de formule F(CF2)nCH2OCF=CF2 dans laquelle n est 1, 2, 3, 4 ou 5; le produit de formule R’CH20CF=CF2 dans laquelle R’ est hydrogène ou F(CF2)z et z est 1, 2, 3 ou 4; le produit de formule R”OCF=CH2 dans laquelle R” est F(CF2)z et z est 1, 2, 3 ou 4; perfluorobutyléthylène; 3,3,3-trifluoropropène ou 2-trifhrorométhyl-3,3,3-trifluoro-l- propène.
Parmi ces comonomères du VDF, l’hexafluoropropylène est préféré. Les copolymères de VDF peuvent également comprendre des monomères non-fluorés tel que l’éthylène.
Dans les copolymères de VDF, le taux massique des unités VDF est d’au moins 50%, de préférence au moins 60%, plus préférablement supérieur à 70% et avantageusement supérieur à 80%.
Selon un mode de réalisation, le polymère fluoré est fonctionnalisé en tout ou partie, ce qui lui permet d’améliorer l’adhésion sur du métal. Dans ce cas, le polymère fluoré comprend des unités monomères portant au moins une fonction acide carboxylique ou hydroxyle.
Selon un mode de réalisation, le groupement fonctionnel est porteur d’une fonction acide carboxylique. Dans ce cas, l’unité monomère portant au moins une fonction acide carboxylique est choisie parmi l’acide acrylique, l’acide méthacrylique, et l’acryloyloxy propylsuccinate.
Selon un mode de réalisation, les unités portant la fonction acide carboxylique comprennent en outre un hétéroatome choisi parmi l’oxygène, le soufre, l’azote et le phosphore.
Selon un mode de réalisation, le groupement fonctionnel est porteur d’une fonction hydroxyle. Dans ce cas, l’unité monomère portant au moins une fonction acide carboxylique est choisie parmi l’hydroxyéthyl(méth)acrylate,
1 ’ hydroxypropyl(méth)acrylate et 1 ’ hydroxyéthylhexyl(méth)acrylate.
Selon un mode de réalisation, la teneur en groupes fonctionnels du polymère fluoré est d’au moins 0,01% molaire, de préférence d’au moins 0,1 % molaire, et au plus de 15% molaire, de préférence au plus 10% molaire. Le polymère fluoré présent dans le composant A peut être un mélange d’un ou plusieurs polymères décrits ci-dessus, par exemple un mélange d’un PVDF homopolymère et d’au moins un copolymère de VDF, un mélange d’au moins deux copolymères de VDF, un mélange d’un PVDF fonctionnalisé et d’un PVDF homopolymère ou un mélange d’un PVDF fonctionnalisé et d’un copolymère de VDF.
Selon un mode de réalisation préféré, le composant A peut également comprendre du silicium. De préférence, le silicium est issu du recyclage de l’anode.
Selon un mode de réalisation, le mélange recyclé charge carbonée conductrice /polymère présente la composition massique suivante :
- 60 à 100% de graphite,
- 0 à 20% de silicium
- 0 à 10% d’ épaississant hydrosoluble,
- 0 à 10% d’élastomère polyoléfïne,
- 0 à 10% de résine acrylique,
- 0 à 10% de polymère(s) fluoré(s),
- 0 à 40% de polyoléfïne (telle que polyéthylène et/ou polypropylène)
- 0 à 10% d'une seconde charge conductrice carbonée, la somme de tous ces pourcentages étant de 100%.
Selon un mode de réalisation, le mélange recyclé charge carbonée conductrice /polymère présente la composition massique suivante :
- 70 à 100% de graphite,
- 0 à 10% d’ épaississant hydrosoluble,
- 0 à 10% d’élastomère polyoléfïne,
- 0 à 10% de résine acrylique,
- 0 à 10% de polymère(s) fluoré(s),
- 0 à 40% de polyoléfïne (telle que polyéthylène et/ou polypropylène)
- 0 à 10% d'une seconde charge conductrice carbonée, la somme de tous ces pourcentages étant de 100%.
Selon un mode de réalisation, le ratio massique entre l’épaississant hydrosoluble et l’élastomère polyoléfïne varie de 1:9 à 9:1, et est de préférence de 1 :4.
Avantageusement, le graphite présent dans le composant A présente une taille de particules, exprimée en diamètre moyen en volume (Dv50) allant de 1 à 40 mhi, préférentiellement de 5 à 30um. Le Dv50 est le diamètre des particules au cinquantième percentile de la distribution des tailles cumulative des particules. Ce paramètre peut être mesuré par granulométrie laser.
De préférence, le composant A comprenant du graphite ayant une taille de particules, exprimée en diamètre moyen en volume (Dv50), inférieure au diamètre moyen en volume (Dv50) du graphite constituant le composant B décrit ci-dessous.
Composant B
Le deuxième composant de la composition de plaque bipolaire selon l’invention est le graphite. C’est le composant majoritaire en poids de la composition, présent à 50% ou plus. Avantageusement, le graphite constituant le composant B a un diamètre moyen en volume (Dv50) allant de 50 à 500 mhi, préférentiellement de 75 à 150 mhi.
Composant C
Le troisième composant de la composition de plaque bipolaire selon l’invention est un polymère jouant le rôle de liant. Ledit polymère peut être une polyoléfine (par exemple : polyéthylène ou polypropylène), un polymère fluoré (PVDF), le polyphénylsulfone, le polyéthersulfone, une résine phénolique, une résine vinylester, une résine époxyde, ou un polymère cristal-liquide.
Selon un mode de réalisation, ledit polymère fluoré présent dans le composant C contient dans sa chaîne au moins un monomère choisi parmi les composés contenant un groupe vinyle capable de s'ouvrir pour se polymériser et qui contient, directement attaché à ce groupe vinyle, au moins un atome de fluor, un groupe fluoroalkyle ou un groupe fluoroalkoxy.
Selon un mode de réalisation, ce monomère peut être le fluorure de vinylidène.
Le polymère fluoré peut être un homopolymère ou un copolymère. Le copolymère peut également comprendre des monomères non-fluorés tel que l’éthylène.
Selon un mode de réalisation, le polymère fluoré est un polymère comprenant des motifs issus du fluorure de vinylidène, et de préférence est choisi parmi le polyfluorure de vinylidène homopolymère et les copolymères comprenant des motifs de fluorure de vinylidène et des motifs issus d’au moins un autre comonomère copolymérisable avec le fluorure de vinylidène.
Selon un mode de réalisation, le polymère fluoré présent dans le composant C est un homopolymère de fluorure de vinylidène. Selon un mode de réalisation, le polymère fluoré est un copolymère comprenant des unités de fluorure de vinylidène (VDF) et des unités issues d’un ou plusieurs monomères. Ces autres monomères sont choisis dans la liste : fluorure de vinyle; trifluoroéthylène; chlorotrifluoroéthylène; 1 ,2-difluoroéthylène, tétrafluoroéthylène; hexafluoropropylène; perfluoro(alkyl vinyl)éthers tels que le perfluoro(méthyl vinyl)éther, perfluoro(éthyl vinyl)éther ou perfluoro(propyl vinyl)éther; perfluoro(l,3- dioxole); perfluoro(2,2-diméthyl-l,3-dioxole); le produit de formule CF2=CFOCF2CF(CF3)OCF2CF2X dans laquelle X est SO2F, CO2H, CH2OH, CH2OCN ou CH2OPO3H; le produit de formule CF2=CF0CF2CF2S02F; le produit de formule F(CF2)nCH2OCF=CF2 dans laquelle n est 1, 2, 3, 4 ou 5; le produit de formule R’CH2OCF=CF2 dans laquelle R’ est hydrogène ou F(CF2)z et z est 1, 2, 3 ou 4; le produit de formule R”OCF=CH2 dans laquelle R” est F(CF2)z et z est 1, 2, 3 ou 4; perfluorobutyléthylène; 3,3,3-trifluoropropène ou 2-trifluorométhyl-3,3,3-trifluoro-l- propène.
Parmi ces comonomères du VDF, F hexafluoropropylène est préféré. Les copolymères de VDF peuvent également comprendre des monomères non-fluorés tel que l’éthylène.
Dans les copolymères de VDF, le taux massique des unités VDF est d’au moins 50%, de préférence au moins 60%, plus préférablement supérieur à 70% et avantageusement supérieur à 80%.
Selon un mode de réalisation, le polymère fluoré est fonctionnalisé, en tout ou partie, ce qui lui permet d’améliorer l’adhésion sur du métal. Dans ce cas, le polymère fluoré comprend des unités monomères portant au moins une fonction acide carboxylique ou anhydride d’acide carboxylique.
La fonction est introduite sur le polymère fluoré par une réaction chimique qui peut être du greffage ou une copolymérisation du monomère fluoré avec un monomère portant au moins un groupe -COOH ou anhydride d’acide carboxylique et une fonction vinylique capable de copolymériser avec le monomère fluoré, selon des techniques bien connues par l’homme du métier.
Selon un mode de réalisation, on choisit comme monomères polaires portant une fonction carboxylique, les mono- et diacides carboxyliques insaturés ayant de 2 à 20 atomes de carbone, et en particulier de 4 à 10 atomes de carbone, tels que les acides acrylique, méthacrylique, maléique, fumarique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène-l,2-dicarboxylique, 4-méthyl-cyclohex-4-ène-l,2-dicarboxylique, bicyclo(2,2,l)hept-5-ène-2,3-dicarboxylique, x-méthyl bicyclo(2,2,l)hept-5-ène-2,3- dicarboxylique et undécylénique, ainsi que leurs anhydrides.
Selon un mode de réalisation, les unités portant la fonction acide carboxylique comprennent en outre un hétéroatome choisi parmi l’oxygène, le soufre, l’azote et le phosphore.
Selon un mode de réalisation, la teneur en groupes fonctionnels du polymère fluoré est d’au moins 0,01% molaire, de préférence d’au moins 0,1 % molaire, et au plus de 15% molaire, de préférence au plus 10% molaire.
Le polymère fluoré présent dans le composant C peut être un mélange d’un ou plusieurs polymères décrits ci-dessus, par exemple un mélange d’un PVDF homopolymère et d’au moins un copolymère de VDF, ou un mélange d’au moins deux copolymères de VDF.
Selon un mode de réalisation, la composition massique de plaque bipolaire mise en œuvre dans le procédé selon l’invention consiste en :
Graphite (composant B) : 50 à 85%,
- Mélange charge conductrice carbonée + polymère, issu du recyclage de batterie lithium-ion (composant A) : 1 à 50%, préférentiellement 10-25%,
Liant polymère (composant C) : 5 à 40%, préférentiellement 10-20%, la somme de ces pourcentages étant de 100%.
Procédés
Selon un premier aspect, l’invention concerne un procédé de fabrication de la composition décrite ci-dessus, ledit procédé comprenant les étapes suivantes:
- fournir un mélange composite à base d’au moins une charge conductrice carbonée et de polymère(s) (composant A),
- incorporer audit mélange composite du graphite (composant B) et un liant polymère (composant C), caractérisé en ce que ledit mélange composite est issu du recyclage de batteries lithium- ion.
Le procédé selon l’invention comprend une étape de mélange à l'état fondu du composant A avec le composant C et le composant B. Cette étape permet de formuler un mélange intime. Selon un mode de réalisation, les poudres sont mélangées à l’état sec.
Selon un mode de réalisation, l’étape de mélange est réalisée à l'état fondu par extrusion, en utilisant par exemple un malaxeur ou une extrudeuse à deux vis.
L’invention concerne également une composition de plaque bipolaire fabriquée au moyen du procédé décrit ci-dessus.
Plaque bipolaire
L’invention concerne également une plaque bipolaire comprenant la composition décrite ci-dessus, sous une forme agglomérée. Une plaque bipolaire est une plaque sui sépare les cellules élémentaires dans les piles à combustible, les électrolyseurs et les batteries à flux redox. En général, elle a une forme de parallélépipède ayant une épaisseur de quelques millimètres (typiquement comprise entre 0,2 et 6 mm) et comprend sur chaque face un réseau de canaux pour la circulation des gaz et des fluides. Ses fonctions consistent à alimenter la pile à combustible avec du carburant gazeux, à évacuer les produits de réaction et à collecter le courent électrique produit par la cellule.
L’invention concerne, selon un autre aspect, un procédé de fabrication d’une plaque bipolaire, comprenant les étapes suivantes:
- préparer une composition selon le procédé décrit ci-dessus, et
- soumettre ladite composition à un moulage par injection.
De préférence, la composition pour plaque bipolaire est soumise à un moulage par injection sous forme de poudre.
Le procédé selon l’invention peut comprendre en outre une étape supplémentaire de broyage de cette poudre, par exemple au moyen d’un broyeur à disques.
Les compositions de l’invention sont particulièrement bien adaptées à la fabrication de plaques bipolaires composites par le procédé de moulage par injection. Le procédé de moulage par injection consiste en plusieurs étapes. Tout d’abord, des granulés ou poudres sont introduits dans une extrudeuse via une trémie d’alimentation. Une fois introduite, la matière est acheminée dans le fourreau où elle est simultanément chauffée, cisaillée et convoyée vers le moule par la vis d’extrusion. La matière est maintenue momentanément dans le fourreau et mise sous pression avant la phase d’injection. Lorsque la pression adéquate est atteinte, la matière est injectée dans un moule ayant la forme et les dimensions de l’objet final souhaité, la température du moule étant régulée. La durée du cycle dépend de la taille des pièces et du temps de solidification du polymère. Le maintien sous pression de la matière une fois injectée dans le moule limite la déformation et le retrait après démoulage. Pour éjecter les pièces, les parties du moule se séparent, le noyau se rétracte et les éjecteurs sont poussés pour décoller les pièces de la surface du moule.
Les paramètres du procédé d’injection sont multiples : température de la matière lors de l’étape de plastification, vitesse d’injection, pression d’injection de la matière, temps et pression de maintien dans le moule, température du moule.
Dans le cas de l’injection de plaques bipolaires composites de l’invention, le profil de température appliqué le long de la vis d’extrusion peut varier de 100°C à 280°C depuis la zone d’alimentation jusqu’à la tête d’injection. La température du moule peut varier de la température ambiante jusqu’à 280°C. Plusieurs procédés de refroidissement du moule peuvent être utilisés. La matière peut être injectée dans un moule maintenu à une température comprise entre les températures de fusion et de transition vitreuse pour un polymère semi-cristallin.
Par ailleurs, il existe des procédés d’injection pour lesquels la température du moule varie au cours du cycle d’injection. Dans ce type de procédé, la matière est tout d’abord injectée dans un moule dont la température est supérieure à la température de fusion pour un polymère thermoplastique semi-cristallin. Cette phase favorise le remplissage du moule. Ensuite, le moule est refroidi jusqu’à une température comprise entre les températures de fusion et de transition vitreuse pour un polymère semi-cristallin afin de favoriser la cristallisation Des versions commerciales de ces procédés à température de moule variable existent. On peut citer par exemple les technologies Roctool, Variotherm et Variomelt.
Les autres paramètres d’injection tels que vitesse d’injection, pression d’injection de la matière, temps et pression de maintien dans le moule dépendent de la géométrie du moule, de ses dimensions, de la taille et position des seuils d’injection.
L’invention concerne, selon un autre aspect, un procédé de fabrication d’une plaque bipolaire, comprenant les étapes suivantes:
- préparer une composition selon le procédé décrit ci-dessus, et
- soumettre ladite composition à un moulage par compression.
De préférence, la composition pour plaque bipolaire est soumise à un moulage par compression sous forme de poudre. Le procédé selon l’invention peut comprendre en outre une étape de broyage de cette poudre, par exemple au moyen d’un broyeur à disques.
Le moulage par compression de compositions destinées à produire des plaques bipolaires peut être réalisé en introduisant ladite composition dans un moule, par exemple un moule en acier inoxydable, qui est ensuite fermé et chauffé à une température allant de 200°C à 350°C, de préférence de 250°C à 300°C. Ensuite, une force de compression de 300 t à 800 t, de préférence de 400 t à 600 t, est appliquée au moule, pour un moule de dimensions de 100000 à 150000 mm2. Typiquement, une force de compression de 500 t est appliquée lorsque la taille du moule est de 130000 mm2 et une force de compression de 300 t est appliquée lorsque la taille du moule est de 44000 mm2. Le moule est ensuite refroidi à une température de 50°C à 120°C, de préférence de 60°C à 100°C, et la plaque est démoulée.
L’invention concerne, selon un autre aspect, un procédé de fabrication d’une plaque bipolaire, comprenant les étapes suivantes:
- préparer une composition selon le procédé décrit ci-dessus, et
- soumettre ladite composition à un procédé d’extrusion en continu.
La composition est introduite dans une extrudeuse de type monovis ou bivis avec une filière plate, de façon à obtenir une plaque en continu qui est par la suite gravée.
L’invention concerne en outre les plaques bipolaires obtenues par les procédés décrits ci-dessus.
Avantageusement, la plaque bipolaire présente au moins une des caractéristiques suivantes, et de préférence toutes ces caractéristiques :
- une résistivité surfacique égale ou inférieure à 0,01 Ohm.cm ;
- une résistivité volumique égale ou inférieure à 0,03 Ohm.cm;
- une conductivité thermique égale ou supérieure à 10 W/m/K; une résistance à la flexion égale ou supérieure à 25 N/mm2;
- une résistance à la compression égale ou supérieure à 25 N/mm2.
La résistance à la flexion est mesurée selon la norme DIN EN ISO 178. La résistance à la compression est mesurée selon la norme ISO 604. La conductivité thermique est mesurée selon la technique Laser Llash selon la norme DIN EN ISO 821. La résistivité surfacique est mesurée au moyen d’échantillons de sonde à quatre points sur des échantillons broyés ayant une épaisseur de 4 mm. La résistivité volumique est mesurée avec une installation à deux électrodes et une pression de contact de 1 N/mm2 sur des échantillons surfacés ayant un diamètre de 13 mm et une épaisseur de 2 mm.
Selon certains modes de réalisation, la plaque bipolaire présente une résistivité surfacique égale ou inférieure à 0,008 Ohm.cm, ou égale ou inférieure à 0,005 Ohm.cm, ou égale ou inférieure à 0,003 Ohm.cm, ou égale ou inférieure à 0.001 Ohm.cm.
Selon certains modes de réalisation, la plaque bipolaire présente une résistivité traversante égale ou inférieure à 0,025 Ohm.cm, ou égale ou inférieure à 0,02 Ohm.cm, ou égale ou inférieure à 0,015 Ohm.cm.
Selon certains modes de réalisation, la plaque bipolaire possède une conductivité thermique égale ou supérieure à 15 W/m/K, ou égale ou supérieure à 20 W/m/K.
Selon certains modes de réalisation, la plaque bipolaire présente une résistance à la flexion égale ou supérieure à 30 N/mm2, ou égale ou supérieure à 35 N/mm2.
Selon un mode de réalisation préféré, la plaque bipolaire consiste en :
- de 50 à 85% de composant B tel que défini dans la présente invention ayant un diamètre moyen en volume (Dv50) allant de 50 à 500 mhi,
- de 1 à 50% de composant A tel que défini dans la présente invention et comprenant du graphite ayant une taille de particules, exprimée en diamètre moyen en volume (Dv50) allant de 1 à 40 mhi, de 5 à 40 % de composant C tel que défini dans la présente invention ; la somme de ces pourcentages étant de 100%.
Exemples
Pour la préparation des plaques bipolaires, un graphite synthétique (Graphite Timrex KS150) ayant une taille de particule caractérisée par un Dv50 de 55mhi et un homopolymère de difluorure de vinylidène qui possède une viscosité à l’état fondu mesurée à 232°C et 100 s- 1 de 900 Pa.s ont été utilisés.
Composition 1 issue du recyclage d’une anode graphite de batterie Lithium-ion:
La composition 1 issue d’une anode en graphite a été obtenue par un procédé de recyclage basé sur la séparation physique des éléments. Tout d’abord, les éléments constitutifs de la batterie (anode/séparateur/cathode) ont été séparés physiquement. L’anode a été ensuite broyée. Enfin, elle a été soumise à un tamisage à jet d’air pour séparer les fragments de cuivre, du graphite et des liants polymères. A l’issue de cette étape, on a récupéré une poudre constituée de 96.3% en poids de graphite, 3.4% en poids de carboxymethyl cellulose (CMC) et de 2.6% en poids d’un élastomère de styrène et de butadiène (SBR). Le graphite dans cette composition était un graphite synthétique qui possède une taille de particule caractérisée par un Dv50 de 17 mhi.
Composition 2 issue de la black mass d’une batterie Lithium-ion avec anode graphite et cathode NMC: La composition 2 est issue de la black mass d’une batterie Lithium-ion. Elle contient les résidus non métalliques et non-inorganiques, c’est-à-dire le graphite, la charge carbonée conductrice de la cathode, les liants polymères des électrodes (PVDL, CMC, SBR) et la polyoléfine du séparateur. Les éléments constitutifs de la batterie (anode/séparateur/cathode) ont été tout d’abord déchiquetés puis broyés. Ensuite, le broyât a été soumis aux différentes étapes d’un procédé d’hydrométallurgie afin de dissoudre les collecteurs de courant métalliques et les charges inorganiques telles que la NMC et la bohémite du revêtement du séparateur. Les résidus du procédé d’hydrométallurgie sont composés de :
- 82.7% en poids de graphite issu de l’anode. Il possède une taille de particule caractérisée par un Dv50 de 17 mhi.
- 1.8% en poids de carboxymethyl cellulose (CMC)
- 1.4% en poids d’un élastomère de styrène et de butadiène (SBR)
- 4.1% en poids de polyfluorure de vinylidène (PVDL) issu de la cathode
- 4.1% en poids de noir de carbone issu de la cathode - 5.9% en poids de polyoléfine issu du séparateur
Composition des plaques bipolaires à iso taux de liant:
Tableau 1 : Composition des plaques bipolaires produites
Préparation des plaques bipolaires :
• Pré-mélange de la composition servant à la fabrication de la plaque bipolaire :
Les constituants de l’exemple 1, le graphite Timrex KS150, le PVDF Kynar® 721 et la composition issue du recyclage d’une anode de batterie lithium-ion, ont été pré-mélangés à l’aide d’une extrudeuse bi-vis. A l’issue de cette étape de mélange des granulés très friables ont été obtenus. Ces granulés ont été ensuite broyés à l’aide d’un broyeur à disques de façon à obtenir une poudre d’une taille moyenne Dv50 inférieure à 500 mhi.
La composition de l’exemple comparatif a été préparée selon le même protocole.
• Fabrication de la plaque bipolaire par thermocompression :
La fabrication des plaques bipolaires a été effectuée par thermocompression. Pour ce faire, un moule d’une dimension de 30x30 cm2 a été rempli manuellement avec la composition sous forme de poudre. Le poudre a été nivelée manuellement avec une lame métallique. Le moule a été fermé et porté à 240° C sous une pression de 150 bars. La quantité de poudre a été ajustée pour obtenir une épaisseur d’environ 3mm. Le moule a été refroidi sous pression jusqu’à une température de 80°C. Une fois atteinte cette température, la pression a été supprimée et la plaque a été retirée du moule.
Méthode de caractérisation :
• Résistance à la flexion
La résistance à la flexion a été mesurée selon la norme DIN EN ISO 178. Résultats :
Comme le démontre les résultats, les plaques bipolaires selon la présente invention présentent une meilleure résistance à la flexion par rapport à l’exemple comparatif dans lequel il n’y a pas de graphite issu du recyclage d’une batterie.

Claims

REVENDICATIONS
1. Procédé de fabrication d’une composition pour plaque bipolaire, ledit procédé comprenant les étapes suivantes:
- fournir un mélange composite à base d’au moins une charge conductrice carbonée et de polymère(s) (composant A),
- incorporer audit mélange composite du graphite (composant B) et un liant polymère (composant C), caractérisé en ce que ledit mélange composite est issu du recyclage de batteries lithium-ion.
2. Procédé selon la revendication 1, dans lequel le recyclage de batteries lithium-ion est effectué par un procédé choisi parmi la séparation physique, G hydrométallurgie, ou une combinaison de ceux-ci.
3. Procédé selon l’une des revendications 1 et 2, dans lequel ladite au moins une charge conductrice carbonée est du graphite utilisé comme charge active à l’anode de batterie lithium-ion.
4. Procédé selon l’une des revendications 1 à 3, dans lequel ladite charge conductrice carbonée est un mélange de graphite et d'une autre charge conductrice carbonée, comme le noir de carbone, les nanotubes de carbone ou les fibres de carbone, présents dans la formulation de l'anode ou de la cathode de batterie Li-ion.
5. Procédé selon l’une des revendications 1 à 4, dans lequel ledit polymère entrant dans la composition du composant A est un polymère fluoré, un polymère épaississant hydrosoluble, un élastomère polyoléfine, une résine acrylique ou un mélange de plusieurs de ces composants, y compris un mélange de polymères fluorés différents.
6. Procédé selon la revendication 5, dans lequel ledit polymère fluoré est choisi parmi : les homopolymères de fluorure de vinylidène ; les copolymères comprenant des unités de fluorure de vinylidène et des unités issues d’un ou plusieurs monomères choisis dans la liste : fluorure de vinyle; trifluoroéthylène; chlorotrifluoroéthylène; 1 ,2-difluoroéthylène, tétrafluoroéthylène; hexafluoropropylène; perfluoro(alkyl vinyl)éthers tels que le perfluoro(méthyl vinyl)éther, perfluoro(éthyl vinyl)éther ou perfluoro(propyl vinyl)éther; perfluoro(l,3-dioxole); perfluoro(2,2- diméthyl-l,3-dioxole); le produit de formule
CF2=CFOCF2CF(CF3)OCF2CF2X dans laquelle X est SO2F, CO2H, CH2OH, CH2OCN ou CH2OPO3H; le produit de formule CF2=CF0CF2CF2S02F; le produit de formule F(CF2)nCH2OCF=CF2 dans laquelle n est 1, 2, 3, 4 ou 5; le produit de formule R’CH2OCF=CF2 dans laquelle R’ est hydrogène ou F(CF2)z et z est 1, 2, 3 ou 4; le produit de formule R”OCF=CH2 dans laquelle R” est F(CF2)z et z est 1, 2, 3 ou 4; perfluorobutyléthylène; 3,3,3-trifluoropropène ou 2-trifluorométhyl-3,3,3- trifluoro-l-propène ; l’acide acrylique, l’acide méthacrylique, l’hydroxyéthyl(méth)acrylate, l’hydroxypropyl(méth)acrylate, l’hydroxyéthylhexyl(méth)acrylate, l’acryloyloxy propyl succinate ; et leurs mélanges.
7. Procédé selon l’une des revendications 1 à 6, dans lequel composant A présente la composition massique suivante :
- 60 à 100% de graphite,
- 0 à 20% de silicium,
- 0 à 10% d’épaississant hydrosoluble,
- 0 à 10% d’élastomère polyoléfine,
- 0 à 10% de résine acrylique,
- 0 à 10% de polymère(s) fluoré(s),
- 0 à 40% de polyoléfine,
- 0 à 10% d'une seconde charge conductrice carbonée, la somme de tous ces pourcentages étant de 100%.
8. Procédé selon l’une des revendications précédentes caractérisé en ce que le composant A comprenant du graphite ayant une taille de particules, exprimée en diamètre moyen en volume (Dv50), inférieure au diamètre moyen en volume (Dv50) du graphite constituant le composant B.
9. Procédé selon l’une des revendications 1 à 8, dans lequel le graphite présent dans le composant A présente une taille de particules, exprimée en diamètre moyen en volume (Dv50) allant de 1 à 40 mhi, préférentiellement de 5 à 30qm.
10. Procédé selon l’une des revendications 1 à 9, dans lequel le graphite constituant le composant B a un diamètre moyen en volume (Dv50) allant de 50 à 500 pm, préférentiellement 75 à 150 mhi.
11. Procédé selon l’une des revendications 1 à 10, dans lequel ledit liant polymère constituant le composant C est une polyoléfïne, un polymère fluoré, le polyphénylsulfone, le polyéthersulfone, une résine phénolique, une résine vinylester, une résine époxyde, ou un polymère cristal-liquide.
12. Procédé selon l’une des revendications 1 à 11, dans lequel la composition massique de plaque bipolaire mise en œuvre dans le procédé consiste en : composant B : 50 à 85%, composant A : 1 à 50%, préférentiellement 10-25% composant C : 5 à 40%, préférentiellement 10-20% la somme de ces pourcentages étant de 100%.
13. Procédé de fabrication d’une plaque bipolaire, comprenant les étapes suivantes:
- préparer une composition selon le procédé selon l’une des revendications 1 à 12, et
- soumettre ladite composition à un moulage par injection.
14. Procédé de fabrication d’une plaque bipolaire, comprenant les étapes suivantes:
- préparer une composition selon le procédé selon l’une des revendications 1 à 12, et
- soumettre la composition à un moulage par compression.
15. Procédé de fabrication d’une plaque bipolaire, comprenant les étapes suivantes:
- préparer une composition selon le procédé selon l’une des revendications 1 à 12, et
- soumettre la composition à un procédé d’extrusion en continu.
16. Plaque bipolaire obtenue par le procédé selon la revendication 13.
17. Plaque bipolaire obtenue par le procédé selon la revendication 14.
18. Plaque bipolaire obtenue par le procédé selon la revendication 15.
19. Plaque bipolaire consistant en
- de 50 à 85% de composant B tel que défini selon l’une quelconque des revendications 1 à 12 ayant un diamètre moyen en volume (Dv50) allant de 50 à 500 pm, de 1 à 50% de composant A tel que défini selon l’une quelconque des revendications 1 à 12 et comprenant du graphite ayant une taille de particules, exprimée en diamètre moyen en volume (Dv50) allant de 1 à 40 pm, de 5 à 40 % de composant C tel que défini selon l’une quelconque des revendications 1 à 12 ; la somme de ces pourcentages étant de 100%.
EP22754902.9A 2021-07-21 2022-07-13 Procede de fabrication de plaques bipolaires Pending EP4374437A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2107855A FR3125645A1 (fr) 2021-07-21 2021-07-21 Procede de fabrication de plaques bipolaires
PCT/FR2022/051408 WO2023002109A1 (fr) 2021-07-21 2022-07-13 Procede de fabrication de plaques bipolaires

Publications (1)

Publication Number Publication Date
EP4374437A1 true EP4374437A1 (fr) 2024-05-29

Family

ID=77711112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22754902.9A Pending EP4374437A1 (fr) 2021-07-21 2022-07-13 Procede de fabrication de plaques bipolaires

Country Status (5)

Country Link
EP (1) EP4374437A1 (fr)
KR (1) KR20240034239A (fr)
CN (1) CN117693838A (fr)
FR (1) FR3125645A1 (fr)
WO (1) WO2023002109A1 (fr)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101815134B1 (ko) * 2015-01-02 2018-01-05 한국타이어 주식회사 연료전지 분리판 및 그 제조방법
WO2018169830A1 (fr) * 2017-03-13 2018-09-20 The Regents Of The Universtiy Of California Procédé de production de graphite pré-lithié à partir de batteries li-ion recyclées

Also Published As

Publication number Publication date
WO2023002109A1 (fr) 2023-01-26
FR3125645A1 (fr) 2023-01-27
CN117693838A (zh) 2024-03-12
KR20240034239A (ko) 2024-03-13

Similar Documents

Publication Publication Date Title
CA2937663C (fr) Procede de preparation d'une composition d'electrode ou a proprietes magnetiques, melange et composition obtenus par ce procede et cette electrode.
FR3030890B1 (fr) Matiere active d'electrode pour batterie li/s
CA2419391C (fr) Materiau composite conducteur et electrode pour pile a combustible utilisant ce materiau
EP1466372B1 (fr) POUDRE MICROCOMPOSITE BASE DE PLAQUETTES DE GRAPHITE ET D UN FLUOROPOLYM RE ET OBJETS FABRIQUÉS AVEC C ETTE POUDRE
EP3740984A1 (fr) Formulation sous la forme d'une dispersion solide-liquide pour la fabrication d'une cathode pour batterie li/s et procede de preparation de ladite formulation
FR3106702A1 (fr) Formulation d’electrode pour batterie li-ion et procede de fabrication d’electrode sans solvant
CA2416892C (fr) Materiau composite conducteur et electrode pour pile a combustible utilisant ce materiau mis en forme par thermo-compression
EP3381075A1 (fr) Procédé de dépôt d'un revêtement adhésif au métal, hydrophobe et électriquement conducteur
EP4374437A1 (fr) Procede de fabrication de plaques bipolaires
EP3149795B1 (fr) Procédé de fabrication d'une plaque bipolaire composite, plaque bipolaire composite, ses utilisations et pile à combustible comprenant une telle plaque bipolaire composite
WO2021152268A1 (fr) Formulation d'electrode pour batterie li-ion et procede de fabrication d'electrode sans solvant
EP3487942B1 (fr) Procédé de dépôt d'un revêtement adhésif au métal, hydrophobe et électriquement conducteur
KR20210058849A (ko) 이극성 플레이트용 조성물 및 이의 제조 방법
WO2020058626A1 (fr) Compositions pour plaques bipolaires et methodes de fabrication de ces compositions
EP3853936A1 (fr) Compositions pour plaques bipolaires et methodes de fabrication de ces compositions
FR3106703A1 (fr) Formulation d’electrode pour batterie li-ion et procede de fabrication d’electrode sans solvant

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR