WO2015063413A1 - Composition polymerique de couleur noire adaptee a la soudure laser - Google Patents

Composition polymerique de couleur noire adaptee a la soudure laser Download PDF

Info

Publication number
WO2015063413A1
WO2015063413A1 PCT/FR2014/052747 FR2014052747W WO2015063413A1 WO 2015063413 A1 WO2015063413 A1 WO 2015063413A1 FR 2014052747 W FR2014052747 W FR 2014052747W WO 2015063413 A1 WO2015063413 A1 WO 2015063413A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
ppm
composition
laser radiation
nanofillers
Prior art date
Application number
PCT/FR2014/052747
Other languages
English (en)
Inventor
Sylvain Benet
Patrick Delprat
Patrice Perret
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2015063413A1 publication Critical patent/WO2015063413A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/565Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits involving interference fits, e.g. force-fits or press-fits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/23Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
    • B29C66/232Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being multiple and parallel, i.e. the joint being formed by several parallel joint lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • B29C66/612Making circumferential joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73361General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being opaque to visible light
    • B29C66/73362General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being opaque to visible light both parts to be joined being opaque to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0672Spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73771General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73773General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73775General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles
    • B29K2105/167Nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • B29K2995/0027Transparent for light outside the visible spectrum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters

Definitions

  • the present invention relates to a polymeric composition of black color suitable for laser welding, and more particularly having properties of transparency to laser radiation.
  • the invention also relates to parts made from this composition, such as fluid transport circuit parts (especially in the automotive field).
  • thermoplastic elements there are various methods for welding thermoplastic elements.
  • heated blades with or without contact, to apply ultrasound, to apply vibrations or to proceed by rotating one element to be welded against the other. All these methods give rise to practical problems, for example the appearance of burrs (in the case of rotational welding) or the generation of an abrasion powder.
  • the laser welding technique is a particularly advantageous alternative assembly method.
  • it provides good axial resistance and good sealing, is resistant to chemical attack and offers great flexibility in terms of welded part shapes.
  • Laser welding requires that the two elements to be welded have different properties vis-à-vis the laser radiation: one of the elements must be transparent to the laser radiation, and the other must absorb the laser radiation.
  • the laser radiation thus passes through the transparent element and then reaches the absorbent element, where it is converted into heat. This melts the contact area between the two elements and thus to achieve the weld.
  • Thermoplastic polymers are generally transparent for the purposes of laser welding. In order to make them absorbent, it is known to add various additives, including for example carbon black, which gives the polymer a black color.
  • the two parts to be welded be black, including the piece transparent to laser radiation.
  • the fluid transport circuits for example the fuel distribution circuit
  • the use of the technique of laser welding in this context therefore requires having plastic materials of black color and transparent to laser radiation.
  • US 2003/0125429 discloses dark-colored, laser-transparent thermoplastic compositions in which the dark color is provided by a combination of non-black dyes, for example yellow, red and green organic pigments.
  • non-black dyes for example yellow, red and green organic pigments.
  • the corresponding formulations are complex and do not easily make it possible to obtain a sufficiently pure black color.
  • the organic pigments can be degraded if the parts thus manufactured are put in contact with certain solvents (for example the alcohols present in certain fuels).
  • US 2004/0140668 discloses the realization of a laser welding connection between two absorbent parts to laser radiation, by means of a transparent adapter.
  • thermoplastic compositions of natural color or pigmented and absorbent for laser radiation discloses thermoplastic compositions of natural color or pigmented and absorbent for laser radiation.
  • EP 1552916 describes various connection methods between tubes by laser welding based on the use of various absorbent or transparent parts vis-à-vis the laser radiation.
  • WO 02/36329 discloses a composition comprising a polyamide and carbon black in an amount of 100 ppm.
  • WO 201 1/088869 discloses a part comprising individual components such as a filter as a component and other filter components, at least one of the components being made of a material at least partially transparent to the laser light and at least one of the other components consisting of a material at least partially opaque to laser light so as to connect the different filter elements by laser welding.
  • WO 2008/047022 discloses a conductive composite material based on thermoplastic polymer and carbon nanotubes in an amount of less than 6% and especially 0.2 to 2%.
  • the document IN 1037KO2008 describes a laser welding process in which the strength of the welded joint is improved by the presence of reliefs.
  • US 201 1/0288220 discloses polyester-based thermoplastic compositions having improved transparency to laser radiation through the use of salts and other additives. It is specified that the charge content having a high absorbance for the laser radiation is advantageously less than 1% and more particularly less than 0.05%.
  • compositions comprising a mixture of crystalline or semi-crystalline polymer and amorphous polymer to obtain improved transparency to laser radiation.
  • thermoplastic compositions for producing laser-transparent parts having a satisfactory black visual appearance and being resistant to degradation.
  • the invention relates in the first place to a part comprising a portion adapted to be welded to a portion of another part by application of laser radiation, said portion of the part being transparent to the laser radiation and said portion of the other part being absorbent for laser radiation, and said portion of the workpiece being black in color and having at least one layer of a composition comprising a thermoplastic polymer and carbon nanofillers.
  • the carbon nanofillers are non-agglomerated or non-aggregated.
  • non-agglomerated or non-aggregated it should be understood that the particles are in the form of an elementary particle and that they do not form agglomerates, aggregates or rosaries, thus allowing transparency in the infra red and the passage of the laser.
  • the thickness of said agglomerates, aggregates or rosaries is of the order of one micrometer.
  • the said particles then become opaque in the infrared and do not allow the passage of the laser beam.
  • the amount of carbon nanofillers in the composition is from 100 ppm to 500 ppm, and preferably from 100 ppm to 250 ppm.
  • the carbon nanofillers are chosen from carbon nanotubes, carbon nanofibers, graphene, nanometric carbon black and their mixtures.
  • the carbon nanofillers are devoid of nanometric carbon black.
  • the carbon nanofillers are chosen from carbon nanotubes, carbon nanofibers, graphene and their mixtures.
  • the laser radiation is infrared laser radiation, and preferably has a wavelength between 700 and 1200 nm, and preferably between 800 nm and 1100 nm.
  • the thermoplastic polymer is chosen from polyamides, polyacetals, polyketones, polyacrylics, polyolefins, polycarbonates, polystyrenes, polyesters, polyethers, polysulfones, fluoropolymers, polyurethanes, polyamideimides, polyarylates, polyarylsulfones, polyethersulfones, polyarylene sulfides, polyvinyl chlorides, polyetherimides, polyetherketones, copolymers thereof and miscible mixtures thereof; and preferably is a polyamide.
  • the layer has a thickness of 0.1 to 4 mm, preferably 0.5 to 3 mm and more particularly 1 to 2 mm.
  • the part is chosen from tubings, connectors for tubings and filtration elements.
  • the part is a part of a fluid transport circuit, and preferably is a fluid transport circuit part for vehicle and especially for automobile; and / or is a part of a transport circuit for fuel, oil, air, refrigerant or aqueous solution such as engine coolant or urea-water mixture.
  • the invention also relates to the use of carbon nanofillers to impart a black color to a layer of a composition comprising a thermoplastic polymer, while maintaining the transparency of the laser radiation of said layer.
  • the carbon nanofillers are non-agglomerated or non-aggregated.
  • the laser radiation is infrared laser radiation, and preferably has a wavelength between 700 nm and 1200 nm and preferably between 800 nm and 1100 nm.
  • the carbon nanofillers are incorporated in the composition in an amount of from 100 ppm to 500 ppm, and preferably from 100 ppm to 250 ppm.
  • the carbon nanofillers are chosen from carbon nanotubes, carbon nanofibers, graphene, nanometric carbon black and their mixtures.
  • the carbon nanofillers are devoid of nanometric carbon black.
  • the carbon nanofillers are chosen from carbon nanotubes, carbon nanofibers, graphene and their mixtures.
  • the thermoplastic polymer is chosen from polyamides, polyacetals, polyketones, polyacrylics, polyolefins, polycarbonates, polystyrenes, polyesters, polyethers, polysulfones, fluoropolymers, polyurethanes, polyamideimides, polyarylates, polyarylsulfones, polyethersulfones, polyarylene sulfides, polyvinyl chlorides, polyetherimides, polyetherketones, copolymers thereof and miscible mixtures thereof; and preferably is a polyamide.
  • the invention also relates to a method of manufacturing a part as described above, comprising providing the composition and forming the workpiece, preferably by extrusion or injection.
  • the method comprises a preliminary step of incorporating carbon nanofillers into the composition, preferably in the form of a masterbatch comprising said carbon nanofillers.
  • the invention also relates to a method of assembling a first piece with a second piece, comprising welding with laser radiation a portion of the first piece with a portion of the second piece, said portion of the first piece being transparent to the laser radiation and said portion of the second piece being absorbent for the laser radiation, and said portion of the first piece being black in color and comprising at least one layer of a composition comprising a thermoplastic polymer and carbon nanofillers.
  • the first piece is a piece as described above.
  • the first piece is a flexible hose and the second piece is a rigid connector; or the first piece is a rigid connector and the second piece is a flexible hose.
  • the invention also relates to a composition
  • a composition comprising a thermoplastic polymer and carbon nanofillers in an amount of 100 to 500 ppm.
  • the carbon nanofillers are non-agglomerated or non-aggregated.
  • the carbon nanofillers are present in an amount of 100 to 250 ppm, preferably 100 to 200 ppm.
  • the carbon nanofillers are chosen from carbon nanotubes, carbon nanofibers, graphene, nanometric carbon black and their mixtures.
  • the carbon nanofillers are devoid of nanometric carbon black.
  • the carbon nanofillers are chosen from carbon nanotubes, carbon nanofibers, graphene and their mixtures.
  • the thermoplastic polymer is chosen from polyamides, polyacetals, polyketones, polyacrylics, polyolefins, polycarbonates, polystyrenes, polyesters, polyethers, polysulfones, fluorinated polymers, polyurethanes, polyamideimides, polyarylates, polyarylsulfones, polyethersulfones, polyarylene sulfides, polyvinyl chlorides, polyetherimides, polyetherketones, copolymers thereof and miscible mixtures thereof; and preferably is a polyamide.
  • the present invention overcomes the disadvantages of the state of the art. It provides more particularly thermoplastic compositions allowing the production of parts transparent to laser radiation and having a satisfactory black visual appearance and resistant to degradation.
  • thermoplastic compositions This is accomplished through the use of carbon nanofillers in thermoplastic compositions. It has been discovered that when the carbon nanofillers are present in a suitable amount (sufficiently low), black thermoplastic compositions are obtained, but nevertheless transparent to the laser radiation.
  • Figure 1 schematically shows an embodiment of a seal formed between two parts of a fluid transport circuit.
  • Figure 2 schematically shows another embodiment of a seal formed between two parts of a fluid transport circuit.
  • the laser welding is based on the connection of a portion of a first piece with a portion of a second piece, said portion of the first part being transparent for the laser radiation and said portion of the second part being absorbent for the laser radiation.
  • the portion of the first piece is black in color.
  • transparent portion for laser radiation is meant throughout the present application that the portion in question transmits (through its thickness) at least 15% of a laser radiation, preferably at least 20%, or at least 25%, or at least 30%, or at least 35%, or at least 40%, or at least 45%, or at least 50%, or at least 55%, or at least 60%, or at least 65%, or at least 70%, or at least 75% of incident laser radiation.
  • the incident laser radiation is preferably infrared laser radiation. It preferably has a wavelength (that is to say wavelength at which the intensity emitted is maximum) is between 700 and 1200 nm, and especially between 800 and 1100 nm. By way of example, it may have a wavelength of 1064 nm (Nd: YAG laser wavelength) or 940 nm (laser diode).
  • the measurement of the transmission of the laser radiation through the portion under consideration is carried out by means of a transmission measuring device comprising a spectrophotometer and an integrated sphere photometer, in order to detect both the directly transmitted luminous flux and the luminous flux. broadcast.
  • absorbent portion for laser radiation is meant that the portion in question transmits (through its thickness) less than 1%, preferably less than 0.5%, and more particularly less than 0.1% of a laser radiation - the remarks and embodiments mentioned above for the laser radiation applying mutatis mutandis.
  • black portion it is meant that the portion has a black visual appearance for an informed observer. Alternatively, the color may be considered black if the portion in question transmits less than 10%, preferably less than 8%, or less than 6%, or less than 5%, or less than 4%, or less than 3%. %, or less than 2% or less than 1% of incident radiation for the entire visible spectrum, i.e. for wavelengths of 400 to 700 nm.
  • portion transparent to laser radiation and black color means a portion as defined in one of the lines of one of the following two tables: No. Transmittance at 1064 nm Transmission across the 400-700 nm spectrum
  • the portion transparent to laser radiation intended to be welded comprises at least one layer of a thermoplastic composition comprising carbon nanofillers. It is the carbon nanofillers that provide the black color while preserving the transparency to the laser radiation of the composition.
  • This composition can be qualified as a "transparent" thermoplastic composition for convenience.
  • thermoplastic composition is meant a composition containing predominantly one or more thermoplastic polymers, that is to say the glass transition temperature T g is greater than a temperature of 20 ° C, in the dry state (ie with a quantity of water in the material less than 0.05%).
  • the T g is conventionally measured by DSC (differential scanning calorimetry). It is determined here by the temperature of the point of inflection of the heat flux as a function of the temperature during a temperature ramp of 20 ° C / min according to the standard 1 1357-2 (2013).
  • thermoplastic polymers that can be used are preferably chosen from polyamides, polyacetals, polyketones, polyacrylics, polyolefins, polycarbonates, polystyrenes, polyesters, polyethers, polysulfones, fluorinated polymers, polyurethanes, polyamideimides, polyarylates, polyarylsulfones, polyethersulfones, polyarylene sulfides, polyvinyl chlorides, polyetherimides, polyetherketones and copolymers thereof.
  • Polyamides are preferred polymers, in particular PA 6.10 (polyhexamethylene sebacamide), PA 6.12 (polyhexamethylene dodecanediamide), PA 10.10 (polydecamethylene sebacamide), PA 10.12 (polydecamethylene dodecanediamide), PA 11 (polyundecanamide) and PA 12 (polylauroamide).
  • Other preferred polymers are polyarylethersketone (PAEK), and in particular polyether ether ketone (PEEK) and polyether ketoneketone (PEKK).
  • Other preferred polymers are vinylidene fluoride-based polymers, namely homopolymers (PVDF) and copolymers. These polymers have in fact an advantageous temperature resistance.
  • Polyolefins that may be used include polypropylene or polyethylene, or a functionalized polyolefin.
  • polyacrylamide it is possible to use homopolymers and copolymers based on methyl methacrylate, such as PMMA (poly methyl methacrylate) and P (MMA-ABU), a copolymer formed with butyl acrylate.
  • PMMA poly methyl methacrylate
  • P (MMA-ABU) a copolymer formed with butyl acrylate.
  • PEBA Polyether amide block
  • the composition contains a single polymer. Indeed, the presence of several polymers in the composition can lead to the formation of particles or aggregates which disturb the transmission of the laser radiation.
  • the composition also comprises carbon nanofillers.
  • carbon nanofillers is meant mainly carbon-containing fillers having at least one dimension (minimum dimension) less than or equal to 100 nm, preferably less than or equal to 50 nm, and more particularly preferably less than or equal to 20 nm. nm.
  • the carbon nanofillers are non-agglomerated or non-aggregated.
  • the minimum dimension of the carbon nanofillers is greater than or equal to 0.4 nm, preferably greater than or equal to 1 nm.
  • the carbon nanofillers may in particular be carbon nanotubes, carbon nanofibers, nanometric carbon black, graphene, or mixtures thereof. According to one embodiment, the carbon nanofillers are devoid of nanometric carbon black.
  • the carbon nanofillers are chosen from carbon nanotubes, carbon nanofibers, graphene and their mixtures.
  • it is carbon nanotubes.
  • Carbon nanotubes are hollow tubular structures having a graphitic plane disposed about a longitudinal axis or several graphitic planes (or sheets) arranged concentrically about a longitudinal axis.
  • the carbon nanotubes may be of the single-walled, double-walled or multi-walled type.
  • the double-walled nanotubes may in particular be prepared as described by Flahaut et al in Chem. Corn. (2003), p.1442.
  • the multi-walled nanotubes may be prepared as described in WO 03/02456.
  • Carbon nanotubes are non-agglomerated or non-aggregated particles that do not form agglomerates or aggregates.
  • the carbon nanotubes generally have a mean diameter (perpendicular to the longitudinal axis, the average value being a linear average along the longitudinal and statistical axis on a set of nanotubes) ranging from 0.4 to 100 nm, preferably from 1 to 50 nm and better still from 2 to 30 nm, preferably from 5 to 30 nm, more preferably from 5 to 15 nm, indeed from 10 to 15 nm, and advantageously from 0.1 to 10 ⁇ m.
  • the length / diameter ratio is preferably greater than 10 and most often greater than 100.
  • the multiwall nanotubes may for example comprise from 5 to 15 sheets (or walls) and more preferably from 7 to 10 sheets. These nanotubes can be treated or not.
  • the dimensions and in particular the average diameter of the carbon nanotubes can be determined by transmission electron microscopy.
  • raw carbon nanotubes is in particular marketed by Arkema under the trade name Graphistrength® ® C100. These carbon nanotubes may be purified and / or treated (for example oxidized) and / or milled and / or functionalized before being used in the context of the invention.
  • the grinding of the carbon nanotubes may in particular be carried out cold or hot and be carried out according to the known techniques used in devices such as ball mills, hammers, grinders, knives, jet gasses or any other grinding system capable of reducing the size of the entangled network of nanotubes. It is preferred that this grinding step is performed according to a gas jet grinding technique and in particular in an air jet mill.
  • the purification of the raw or milled carbon nanotubes can be carried out by washing with a sulfuric acid solution, so as to rid them of any residual mineral and metal impurities, such as iron, originating from their process of preparation.
  • the weight ratio of nanotubes to sulfuric acid may in particular be from 1: 2 to 1: 3.
  • the purification operation may also be carried out at a temperature ranging from 90 to 120 ° C, for example for a period of 5 to 10 hours. This operation can advantageously be followed by steps of rinsing with water and drying of the purified carbon nanotubes.
  • Carbon nanotubes may alternatively be purified by high temperature heat treatment, typically above 1000 ° C.
  • the oxidation of the carbon nanotubes is advantageously carried out by putting them in contact with a solution of sodium hypochlorite containing from 0.5 to 15% by weight of NaOCI and preferably from 1 to 10% by weight of NaOCI, for example in a weight ratio of carbon nanotubes to sodium hypochlorite ranging from 1: 0.1 to 1: 1.
  • the oxidation is advantageously carried out at a temperature below 60 ° C. and preferably at room temperature, for a duration ranging from a few minutes to 24 hours. This oxidation operation may advantageously be followed by filtration and / or centrifugation, washing and drying steps of the oxidized nanotubes.
  • Functionalization of carbon nanotubes can be carried out by grafting reactive units such as vinyl monomers on their surface.
  • the material constituting the carbon nanotubes is used as a radical polymerization initiator after having been subjected to a heat treatment at more than 900 ° C., in an anhydrous and oxygen-free medium, which is intended to eliminate the oxygenated groups from its surface. It is thus possible to polymerizing methyl methacrylate or hydroxyethyl methacrylate on the surface of carbon nanotubes in order to facilitate in particular their dispersion in the polyamides.
  • optionally milled raw carbon nanotubes ie carbon nanotubes which are neither oxidized nor purified nor functionalized and have undergone no other chemical and / or thermal treatment.
  • graphene is used to designate a sheet of graphite plane, isolated and individualized, but also, by extension, an assembly comprising between one and a few tens of sheets and having a flat structure or more or less wavy.
  • This definition includes FLGs (Few Layer Graphene or Graphene NanoRegons), Nanosized Graphene Plates (NGPs), CNS (Carbon NanoSheets or nano-graphene sheets), and Graphene NanoRibbons (Graphene NanoRibbons). nano-ribbons of graphene).
  • the graphene used according to the invention is not subjected to an additional step of chemical oxidation or functionalization.
  • the graphene used according to the invention is obtained by chemical vapor deposition or CVD. It is typically in the form of particles having a thickness of less than 50 nm, preferably less than 15 nm, and more preferably less than 5 nm, and less than one micron side dimensions, preferably from 10 nm to less than 1000 nm, preferably from 50 to 600 nm, and more preferably from 100 to 400 nm. Each of these particles generally contains from 1 to 50 sheets, preferably from 1 to 20 sheets, more preferably from 1 to 10 sheets, or even from 1 to 5 sheets, which are capable of being disconnected from each other in the form of independent leaflets, for example during an ultrasound treatment.
  • the process for the manufacture of graphene by CVD generally comprises the decomposition of a gaseous source of carbon, in particular a hydrocarbon, such as ethylene, methane or acetylene, under a flow of inert gas such as argon or nitrogen, the dilution ratio of the hydrocarbon in the inert gas being for example about 1: 5.
  • This decomposition is carried out at a temperature of 900 to 1000 ° C., preferably from 960 to 1000 ° C., generally at atmospheric pressure, over a catalyst in the form of a powder.
  • the catalyst may especially be a supported metal catalyst or not on an inert substrate.
  • the catalyst may be for example cobalt optionally mixed with iron and supported on magnesia, in a molar ratio of cobalt to magnesia generally less than 10%.
  • the catalyst is usually prepared by impregnating the support with alcoholic or glycol solutions of cobalt salts and optionally iron, followed by evaporation of the solvent and a calcination step.
  • Another CVD method for obtaining graphene according to this invention comprises the following steps:
  • an active catalyst for the synthesis of graphene comprising a mixed oxide of formula AFe2 ⁇ 4 wherein A is at least one metal element mixed valency having at least two valences, one of which is equal to +2, in particular chosen from cobalt, copper or nickel, the catalyst being of spinel structure,
  • step b) contacting a gaseous carbon source with the catalyst of step b), optionally in a fluidized bed, and catalytic decomposition at a temperature of 500 to 800 ° C, preferably 610 to 800 ° C, the gaseous source being chosen from C1-C12 alcohols and C1-C12 hydrocarbons, such as alkanes or alkenes, preferably ethylene, which can be mixed with a stream of a reducing agent such as hydrogen and optionally to an inert gas,
  • Carbon nanofibers are filament-shaped objects. Unlike carbon nanotubes, these are not hollow objects.
  • the carbon nanofibers may have a so-called “herringbone” structure (stack of graphene layers oriented symmetrically on either side of the longitudinal axis); or a platelet or lamellar structure (graphene sheets piled perpendicular to the axis); or a conical structure, still called “stacked cup” (continuous sheet of graphene wound on itself); or a so-called bamboo structure (fiber having periodic variations in diameter, formed of compartments separated by a graphitic sheet); or a ribbon structure (sheets of graphene oriented parallel to the longitudinal axis without being wound); or a tubular structure (similar to the structure of multiwall carbon nanotubes).
  • a so-called “herringbone” structure stack of graphene layers oriented symmetrically on either side of the longitudinal axis
  • a platelet or lamellar structure graphene sheets piled perpendicular to the axis
  • the carbon nanofibers may have a mean diameter (perpendicular to the longitudinal axis, the mean value being a linear average along the longitudinal and statistical axis over a set of nanofibers) ranging from 0.4 to 100 nm, preferably from 1 to 50 nm and better still from 2 to 30 nm, preferably from 5 to 30 nm, more preferably from 5 to 15 nm, indeed from 10 to 15 nm, and advantageously from 0.1 to 10 ⁇ m.
  • the length / diameter ratio is preferably greater than 10 and most often greater than 100.
  • the dimensions and in particular the average diameter of the carbon nanofibers can be determined by scanning electron microscopy.
  • Carbon nanofibers are non-agglomerated or non-aggregated particles that do not form agglomerates or aggregates.
  • the content of carbon nanofillers is from 100 ppm to 500 ppm, in particular to make layers of 500 ⁇ to 3 mm thick, and more particularly from 1 mm to 2 mm thick.
  • the content of carbon nanofillers in the composition ranges from 100 ppm to 120 ppm; or from 120 ppm to 140 ppm; or from 140 ppm to 160 ppm; or from 160 to 180 ppm; or from 180 to 200 ppm; or from 200 to 220 ppm; or from 220 to 240 ppm; or from 240 to 260 ppm; or from 260 to 280 ppm; or from 280 to 300 ppm; or from 300 ppm to 320 ppm; or from 320 ppm to 340 ppm; or from 340 ppm to 360 ppm; or from 360 to 380 ppm; or from 380 to 400 ppm; or from 400 to 420 ppm; or from 420 to 440 ppm; or from 440 to 460 ppm; or from 460 to 480 ppm; or from 480 to 500 ppm.
  • a range of 100 to 250 ppm is particularly preferred, in particular for the formation of layers of 500 ⁇ m to 3 mm thick, and more particularly of 1 mm to 2 mm thick.
  • a range of 120 to 200 ppm is also particularly preferred, in particular for the constitution of layers of 500 ⁇ to 3 mm thick, and more particularly from 1 mm to 2 mm thick.
  • the transparent thermoplastic composition may also include other additives.
  • reinforcements to improve some of the mechanical properties, including the tensile modulus of the material obtained from this composition.
  • reinforcements is meant in particular balls, fibers (such as glass fibers, natural or polymeric fibers), ground materials, flours.
  • the reinforcing additives are present in the composition in an amount of about 30%. It should be noted that the amount of reinforcements acceptable in the composition depends on the thickness of the layer formed with this composition. The thinner the layer, the higher the reinforcing content can be without degrading the transparency to the laser radiation excessively.
  • the transparent thermoplastic composition may also comprise one or more additives chosen from fillers (which are not carbon nanofillers or reinforcements), dyes, stabilizers, in particular UV stabilizers, plasticizers, impact modifiers, surfactants. , pigments, brighteners, antioxidants, lubricants, flame retardants, natural waxes and mixtures thereof.
  • Mg (OH) 2 As flame retardants, it is possible, for example, to use Mg (OH) 2 , melamine pyrophosphates, melamine cyanurates, ammonium polyphosphates, metal salts of phosphinic acid or diphosphinic acid, or else polymers containing at least one metal salt of phosphinic acid or diphosphinic acid.
  • the salt may for example be chosen from aluminum methylethylphosphinate and aluminum diethylphosphinate. Mixtures containing such metal salts are marketed by Clariant under the trade names Exolit OP131 1, OP1312, OP1230 and OP1314.
  • the total amount of additives in the composition is preferably less than or equal to 40%.
  • the total amount of fillers in the composition is preferably less than or equal to 10%, and more particularly less than or equal to 5%, or 4%, or 3% , or 2%, or 1%, or 0.5%, or 0.1%.
  • the composition is devoid of (or essentially devoid of) any filler (which are not carbon nanofillers or reinforcements), dye, pigment and brightener - apart from the carbon nanofillers.
  • the carbon nanofillers are incorporated in the composition either by direct mixing of the thermoplastic polymer in the molten state with the carbon nanofillers in powder form; either by mixing the thermoplastic polymer in the molten state with a masterbatch comprising carbon nanofillers dispersed in said thermoplastic polymer (at a concentration greater than the final concentration, for example at a concentration of 0.5 to 15%, especially of 1 to 10% and for example 2 to 4%).
  • the possible other additives may be added during mixing between the thermoplastic base polymer and the masterbatch, or may be preincorporated into one or other of these two components.
  • the invention provides parts made from the above transparent thermoplastic composition, which can be conveniently referred to as transparent parts. These parts each comprise a portion adapted to the laser weld (so-called solder portion), the above transparent thermoplastic composition being present in the form of at least one layer in this portion.
  • the solder portion comprises a single layer consisting of the transparent thermoplastic composition.
  • the solder portion comprises two or more layers, at least one of which consists of the transparent thermoplastic composition.
  • the other layers have laser radiation transparency properties such that the entire solder portion is well regarded as transparent to the laser radiation.
  • the transparent thermoplastic composition layer described above is the outer layer, in order to benefit from the black visual aspect offered by this layer.
  • the entire transparent piece is made from the single layer of transparent thermoplastic composition or, if appropriate, from the plurality of layers (of which minus one layer of transparent thermoplastic composition) present in the solder portion. This offers a greater simplicity of manufacture.
  • the remainder of the transparent piece is made from one or more other layers.
  • the transparent parts may be shaped for example by extrusion or co-extrusion (possibly directly after the incorporation of the carbon nanofillers in the transparent thermoplastic composition with a masterbatch) or by injection molding.
  • the parts according to the invention are intended to be assembled by laser welding with other parts, which have a portion (called solder portion) which is absorbent for the laser radiation. These parts can be qualified as absorbent parts, for convenience.
  • Absorbent parts may be manufactured in part (in particular the solder portion thereof), or preferably in full, from at least one thermoplastic polymer-based composition.
  • Absorbent parts can be monolayers or multilayers. In this case, preferably at least one layer, or all the layers, are made from a composition based on thermoplastic polymer.
  • the thermoplastic polymer may be chosen from polyamides, polyacetals, polyketones, polyacrylics, polyolefins, polycarbonates, polystyrenes, polyesters, polyethers, polysulfones, fluoropolymers, polyurethanes, polyamide-imides, polyarylates, polyarylsulfones, polyethersulfones, polyarylene sulfides, polyvinyl chlorides, polyetherimides, polyetherketones, polyester thermoplastic elastomers (TPEs), copolymers thereof, and mixtures thereof.
  • TPEs polyester thermoplastic elastomers
  • thermoplastic polymer may especially be chosen from: homo- and copolymers of olefins such as polyethylene, polypropylene, polybutadiene, polybutylene and acrylonitrile-butadiene-styrene copolymers; acrylic homo- and copolymers and alkyl poly (meth) acrylates such as poly (methyl methacrylate); homo- and copolyamides; polycarbonates; polyesters including poly (ethylene terephthalate) and poly (butylene terephthalate); polyethers such as poly (phenylene ether), poly (oxymethylene) and poly (oxyethylene) or poly (ethylene glycol); polystyrene; copolymers of styrene and maleic anhydride; polyvinyl chloride; fluorinated polymers such as polyvinylidene fluoride, polytetrafluoroethylene and polychlorotrifluoroethylene; natural or synthetic rubbers; thermoplastic polyurethanes; polyaryl ether keto
  • the polymer is chosen from olefin homo- and copolymers, in particular ethylene or propylene homo- and copolymers, and amide homopolymers and copolymers such as polyamides 6, 6.6. , 6.10, 6.12, 11, 12, 10.10, 10.12, 12.12, 4.6, or copolymers with olefins or esters, ethers or phenolic compounds.
  • olefin homo- and copolymers in particular ethylene or propylene homo- and copolymers
  • amide homopolymers and copolymers such as polyamides 6, 6.6. , 6.10, 6.12, 11, 12, 10.10, 10.12, 12.12, 4.6, or copolymers with olefins or esters, ethers or phenolic compounds.
  • thermoplastic polymer may especially be chosen from: homo- and copolymers of olefins such as polyethylene, polypropylene, polybutadiene, polybutylene and acrylonitrile-butadiene-styrene copolymers; acrylic homo- and copolymers and alkyl poly (meth) acrylates such as poly (methyl methacrylate); homo- and copolyamides; polycarbonates; polyesters including poly (ethylene terephthalate) and poly (butylene terephthalate); polyethers such as poly (phenylene ether), poly (oxymethylene) and poly (oxyethylene) or poly (ethylene glycol); polystyrene; copolymers of styrene and maleic anhydride; polyvinyl chloride; fluorinated polymers such as polyvinylidene fluoride, polytetrafluoroethylene and polychlorotrifluoroethylene; natural or synthetic rubbers; thermoplastic polyurethanes; polyaryl ether keto
  • the polymer is chosen from olefin homo- and copolymers, in particular ethylene or propylene homo- and copolymers, and amide homopolymers and copolymers such as polyamides 6, 6.6. , 6.10, 6.12, 11, 12, 10.10, 10.12, 12.12, 4.6, or copolymers with olefins or esters, ethers or phenolic compounds.
  • the weld portion of the absorbent parts is black, or preferably the absorbent parts are completely black.
  • the absorbent parts may be non-black in whole or in part, for example white or of another color, for example using appropriate mineral fillers.
  • the black color of the absorbent parts is advantageously obtained from a traditional black pigment, such as conventional (micrometric) carbon black.
  • the invention is particularly applicable in the field of fluid transport, and more particularly in vehicles, including automobiles, trucks or others.
  • Absorbent parts and transparent parts mentioned above are then elements of a fluid transport circuit, for example a fuel transport circuit, cooling liquid, urea-water mixture, refrigerant (for the air conditioning), oil, air or vacuum.
  • a fluid transport circuit for example a fuel transport circuit, cooling liquid, urea-water mixture, refrigerant (for the air conditioning), oil, air or vacuum.
  • These parts may in particular be pipes or tubings (preferably flexible), but also connectors (preferably rigid) or functional parts such as filters.
  • the transparent part may be a tubing, and the absorbent part a connector.
  • the transparent part can be a connector, and the absorbent part a tubing.
  • the solder portion of the transparent part is mounted externally with respect to the solder portion of the absorbent part.
  • a pipe 3 (or tubing) has an end which constitutes its solder portion 4. This is introduced into the end of the light of a connector 1 which constitutes the solder portion 2 thereof.
  • the connector 1 is a transparent piece as described above, and the pipe 3 is an absorbent piece as described above.
  • Laser radiation 5 is applied to the seal formed by the two solder portions 2, 4 in order to weld the parts.
  • a pipe 6 (or pipe) has an end which constitutes its weld portion 8.
  • the end of a connector 7, which constitutes the weld portion 10 of the latter, is introduced into the lumen of the pipe 6.
  • the solder portion 10 of the connector comprises reliefs (for example at the tail of fir) creating pressurized contact zones with the weld portion 8 of the pipe 6.
  • the connector 7 is an absorbent piece as described above, and the pipe 6 is a transparent piece as described above.
  • Laser radiation 9 is applied to the seal formed by the two solder portions 8, 10 in order to proceed to the welding of the parts.
  • the parts can be assembled using laser welding alone or by other means (for example a self-locking connection or a press fitting as can be seen in FIG. 2), the complementary laser welding, reinforcing or security.
  • Two or a plurality of parallel welds may also be provided to reinforce the assembly if necessary.
  • the parts according to the invention can be for example parts of medical equipment, glasses, or other.
  • Laser radiation for soldering can be produced by any type of conventional laser, including a crystalline laser, a gas laser or a semiconductor laser.
  • the laser radiation is preferably infrared laser radiation, especially near infrared. Its wavelength may especially be from 700 to 1200 nm, and especially from 800 to 1100 nm. By way of example, the wavelength can be 1064 nm or 940 nm.
  • the power of the laser radiation and the scanning speed of the radiation on the gasket are adapted to provide an effective weld.
  • a laser beam with a power of 10 to 1000 W, in particular from 20 to 300 W, for example from 50 to 200 W, with a scanning speed of 1 to 2000 mm / s, in particular from 10 to 1000 mm / s, and more particularly from 50 to 300 mm / s.
  • the laser weld can be continuous, over the entire circumference of the seal, or can be a spot weld, especially in the case where the laser welding is not the only means of assembling parts.
  • solder portion of the transparent piece has a relatively low transparency (while still being sufficient to allow the transmission of a substantial fraction of the radiation to the solder portion of the absorbent part), the solder portion of the transparent part tends to partially melt during irradiation so that the points or weld lines are visible by observing the seal from the outside. This makes it possible to visually verify that the weld has been correctly performed.
  • Solvent sensitivity tests are carried out on masterbatches which can be used to produce thermoplastic compositions which are black in appearance and transparent to laser radiation, namely:
  • the extraction is carried out in ethanol at 60 ° C. under 40 bars for 50 minutes, so as to obtain an extract of about 20 ml.
  • the sample extract of PA 1 1 + carbon nanotubes is not colored.
  • the extract from the Treffert France sample has a gray coloring and the extract of the Colloids sample has a pink coloration.
  • Laser welding tests are carried out on assemblies of parts according to the invention, with a laser diode at 940 nm.
  • the two parts to be welded are kept under pressure under a glass tile so that their surfaces, where the welding will be done, are in perfect contact.
  • the laser beam passes through the glass plate and then through the transparent piece.
  • the laser with a power of 160 W, is used between 50 and 100% of its power.
  • the scanning speed of the beam on the parts to be assembled is 50 to 300 mm / s.
  • the absorbent part used is a polyamide made black with carbon black.
  • the force required to break the weld by pulling it by shear is measured with a tensile tester.
  • the constraint of rupture (in MPa) which is equal to the breaking force (in N) divided by the area of the weld bead (mm 2 ), which is itself the width of the bead (1, 6 mm) x its length (which is usually the width of the wafer).
  • the transparent part is a black-colored plate 1 mm thick made from a PA 11 composition containing 120 ppm of carbon nanotubes.
  • the wafer is obtained by injecting the polymer in the molten state in a mold whose cavity to a thickness of 1 mm and a section of 100 x 100 mm.
  • the laser beam is driven by optical fiber to the place of welding, and controlled by computer. It is found that the weld is properly performed.
  • the transparent part has a double thickness (it consists of two black plates each 1 mm thick, made from a composition of PA 1 1 containing 120 ppm of carbon nanotubes, and arranged one on the other).
  • the test conditions are similar to those of the first test, except that.
  • the transparent part is a black-colored plate 1 mm thick made from a composition of PA 1 1 containing 180 ppm of carbon nanotubes.
  • the wafer is obtained by injecting the polymer in the molten state in a mold whose cavity to a thickness of 1 mm and a section of 100 x 100 mm.
  • the test conditions are similar to those of the first test, except that.
  • the transparent piece is a black 2 mm thick plate manufactured, made from a composition of PA 1 1 containing 180 ppm of carbon nanotubes.
  • the wafer is obtained by injecting the polymer in the molten state in a mold whose cavity to a thickness of 2 mm and a section of 100 x 100 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne une pièce comportant une portion adaptée à être soudée à une portion d'une autre pièce par application d'un rayonnement laser, ladite portion de la pièce étant transparente au rayonnement laser et ladite portion de l'autre pièce étant absorbante pour le rayonnement laser, et ladite portion de la pièce étant de couleur noire et comportant au moins une couche d'une composition comprenant un polymère thermoplastique et des nanocharges carbonées.

Description

COMPOSITION POLYMERIQUE DE COULEUR NOIRE ADAPTEE A LA
SOUDURE LASER
DOMAINE DE L'INVENTION
La présente invention concerne une composition polymérique de couleur noire adaptée à la soudure laser, et plus particulièrement présentant des propriétés de transparence au rayonnement laser. L'invention concerne également des pièces fabriquées à partir de cette composition, telles que des pièces de circuit de transport de fluide (notamment dans le domaine automobile).
ARRIERE-PLAN TECHNIQUE
Il existe diverses méthodes permettant de souder des éléments en matière thermoplastique. Ainsi, il est connu d'utiliser des lames chauffantes avec ou sans contact, d'appliquer des ultrasons, d'appliquer des vibrations ou encore de procéder par rotation d'un élément à souder contre l'autre. Toutes ces méthodes engendrent des problèmes pratiques, par exemple l'apparition de bavures (dans le cas de la soudure par rotation) ou encore la génération d'une poudre d'abrasion.
La technique de soudure laser constitue une méthode d'assemblage alternative particulièrement avantageuse. Elle permet notamment une bonne tenue axiale et une bonne étanchéité, elle est résistante aux attaques chimiques et elle offre une grande flexibilité en termes de formes de pièces soudées.
La soudure laser nécessite que les deux éléments à souder présentent des propriétés différentes vis-à-vis du rayonnement laser : l'un des éléments doit être transparent au rayonnement laser, et l'autre doit absorber le rayonnement laser. Le rayonnement laser traverse ainsi l'élément transparent puis atteint l'élément absorbant, où il est converti en chaleur. Cela permet de faire fondre la zone de contact entre les deux éléments et donc de réaliser la soudure. Les polymères thermoplastiques sont généralement transparents pour les besoins de la soudure laser. Afin de les rendre absorbants, il est connu de leur ajouter divers additifs, dont par exemple le noir de carbone, qui confère au polymère une couleur noire.
Dans certaines applications, il est souhaitable que les deux pièces à souder soient de couleur noire, y compris donc la pièce transparente au rayonnement laser. C'est notamment le cas dans le domaine des véhicules et plus particulièrement des automobiles : pour des raisons commerciales, les constructeurs souhaitent que les circuits de transport de fluide (par exemple le circuit de distribution de carburant) soient entièrement de couleur noire - notamment parce que les autres couleurs subissent un vieillissement à l'usage. L'utilisation de la technique de la soudure laser dans ce contexte suppose donc de disposer de matériaux plastiques de couleur noire et transparents au rayonnement laser.
Le document US 2003/0125429 décrit des compositions thermoplastiques de couleur sombre et transparentes au rayonnement laser, dans lesquelles la couleur sombre est fournie par une combinaison de colorants non-noirs, par exemple des pigments organiques jaunes, rouges et verts. Les formulations correspondantes sont complexes et ne permettent pas aisément d'obtenir une couleur noire suffisamment pure. En outre les pigments organiques peuvent être dégradés si les pièces ainsi fabriquées sont mises au contact de certains solvants (par exemple les alcools présents dans certains carburants).
Le document US 2004/0140668 décrit la réalisation d'une connexion par soudure laser entre deux pièces absorbantes au rayonnement laser, au moyen d'un adaptateur transparent.
Les documents US 2005/0137325 et EP 1533105 décrivent l'utilisation de colorants noirs du type anthraquinone pour conférer une apparence noire à des compositions thermoplastiques transparentes au rayonnement laser. Les mêmes remarques que pour le document US 2003/0125429 s'appliquent, s'agissant de ces deux documents.
Le document US 2005/0217790 décrit des compositions thermoplastiques de coloration naturelle ou pigmentées et absorbantes pour le rayonnement laser.
Le document EP 1552916 décrit différentes modalités de connexion entre tubes par soudure laser reposant sur l'utilisation de diverses pièces absorbantes ou transparentes vis-à-vis du rayonnement laser. Le document WO 02/36329 décrit une composition comprenant un polyamide et du noir de carbone en une quantité de 100 ppm.
Ce document ne décrit pas des nanotubes de carbones.
Le document WO 201 1/088869 décrit une pièce comprenant des composants individuels tels qu'un filtre en tant que composant et d'autres composants de filtre, l'un au moins des composants étant constitué d'un matériau au moins partiellement transparent à la lumière laser et au moins un des autres composants étant constitué d'un matériau au moins partiellement opaque à la lumière laser de manière à connecter les différents éléments de filtre par soudure laser.
Le document Larry Dosser et al. (Proc. of SPIE, Vol. 5339, p465-474) décrit la soudure laser de nanocomposites de carbone.
Le document WO 2008/047022 décrit un matériau composite conducteur à base de polymère thermoplastique et de nanotubes de carbone dans une quantité de moins de 6 % et notamment de 0,2 à 2 %.
Le document IN 1037KO2008 décrit un procédé de soudure laser dans lequel la solidité du joint soudé est améliorée par la présence de reliefs.
Le document US 201 1/0288220 décrit des compositions thermoplastiques à base de polyesters présentant une transparence améliorée au rayonnement laser grâce à l'emploi de sels et d'autres additifs. Il est précisé que la teneur en charges ayant une absorbance élevée pour le rayonnement laser est avantageusement inférieure à 1 % et plus particulièrement inférieure à 0,05 %.
Le document US 2012/0183778 décrit des compositions comprenant un mélange de polymère cristallin ou semi-cristallin et de polymère amorphe afin d'obtenir une transparence améliorée au rayonnement laser.
Le document US 2013/0062271 décrit un élément de filtration comportant une portion transparente au rayonnement laser et une portion absorbante pour le rayonnement laser afin de permettre une soudure laser de ces portions. Des additifs peuvent être employés pour obtenir une propriété de conductivité électrique, parmi lesquels les nanotubes de carbone.
Au vu de ce qui précède, il existe un besoin de mettre au point des compositions thermoplastiques permettant la réalisation de pièces transparentes au rayonnement laser et présentant un aspect visuel noir satisfaisant et résistant à la dégradation. RESUME DE L'INVENTION
L'invention concerne en premier lieu une pièce comportant une portion adaptée à être soudée à une portion d'une autre pièce par application d'un rayonnement laser, ladite portion de la pièce étant transparente au rayonnement laser et ladite portion de l'autre pièce étant absorbante pour le rayonnement laser, et ladite portion de la pièce étant de couleur noire et comportant au moins une couche d'une composition comprenant un polymère thermoplastique et des nanocharges carbonées.
Avantageusement, les nanocharges carbonées sont non agglomérées ou non agrégées.
Par l'expression « non agglomérées ou non agrégées », il faut comprendre que les particules sont sous forme de particule élémentaire et qu'elles ne forment pas d'agglomérats, d'agrégats ni de chapelets, permettant ainsi la transparence dans l'infra rouge et le passage du laser.
En effet, lorsque les particules sont sous forme d'agglomérat, d'agrégat ou de chapelet, l'épaisseur desdits agglomérats, d'agrégats ou chapelets est de l'ordre du micromètre. Les dites particules deviennent alors opaque dans l'infra rouge et ne permettent le passage du rayon laser.
Selon un mode de réalisation, la quantité de nanocharges carbonées dans la composition vaut de 100 ppm à 500 ppm, et de préférence de 100 ppm à 250 ppm.
Selon un mode de réalisation, les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène, le noir de carbone nanométrique et leurs mélanges.
Selon un mode de réalisation, les nanocharges carbonées sont dépourvues de noir de carbone nanométrique.
Avantageusement, les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène et leurs mélanges.
Selon un mode de réalisation, le rayonnement laser est un rayonnement laser infrarouge, et de préférence présente une longueur d'onde comprise entre 700 et 1200 nm, et de préférence entre 800 nm et 1 100 nm.
Selon un mode de réalisation, le polymère thermoplastique est choisi parmi les polyamides, les polyacétals, les polycétones, les polyacryliques, les polyoléfines, les polycarbonates, les polystyrènes, les polyesters, les polyéthers, les polysulfones, les polymères fluorés, les polyuréthanes, les polyamideimides, les polyarylates, les polyarylsulfones, les polyéthersulfones, les sulfures de polyarylène, les chlorures de polyvinyle, les polyétherimides, les polyéthercétones, les copolymères de ceux-ci et les mélanges miscibles de ceux-ci ; et de préférence est un polyamide.
Selon un mode de réalisation, la couche présente une épaisseur de 0,1 à 4 mm, de préférence de 0,5 à 3 mm et plus particulièrement de 1 à 2 mm.
Selon un mode de réalisation, la pièce est choisie parmi les tubulures, les connecteurs pour tubulures et les éléments de filtration.
Selon un mode de réalisation, la pièce est une pièce d'un circuit de transport de fluide, et de préférence est une pièce de circuit de transport de fluide pour véhicule et notamment pour automobile ; et / ou est une pièce d'un circuit de transport de carburant, d'huile, d'air, de fluide frigorigène ou de solution aqueuse tel qu'un liquide de refroidissement moteur ou un mélange urée-eau.
L'invention concerne également l'utilisation de nanocharges carbonées pour conférer une couleur noire à une couche d'une composition comprenant un polymère thermoplastique, tout en conservant la transparence au rayonnement laser de ladite couche.
Avantageusement, les nanocharges carbonées sont non agglomérées ou non agrégées.
Selon un mode de réalisation, le rayonnement laser est un rayonnement laser infrarouge, et de préférence présente une longueur d'onde comprise entre 700 nm et 1200 nm et de préférence entre 800 nm et 1 100 nm.
Selon un mode de réalisation, les nanocharges carbonées sont incorporées dans la composition en une quantité de 100 ppm à 500 ppm, et de préférence de 100 ppm à 250 ppm.
Selon un mode de réalisation, les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène, le noir de carbone nanométrique et leurs mélanges.
Selon un mode de réalisation, les nanocharges carbonées sont dépourvues de noir de carbone nanométrique.
Avantageusement, les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène et leurs mélanges.
Selon un mode de réalisation, le polymère thermoplastique est choisi parmi les polyamides, les polyacétals, les polycétones, les polyacryliques, les polyoléfines, les polycarbonates, les polystyrènes, les polyesters, les polyéthers, les polysulfones, les polymères fluorés, les polyuréthanes, les polyamideimides, les polyarylates, les polyarylsulfones, les polyéthersulfones, les sulfures de polyarylène, les chlorures de polyvinyle, les polyétherimides, les polyéthercétones, les copolymères de ceux-ci et les mélanges miscibles de ceux-ci ; et de préférence est un polyamide.
L'invention concerne également un procédé de fabrication d'une pièce telle que décrite ci-dessus, comprenant la fourniture de la composition et la mise en forme de la pièce, de préférence par extrusion ou injection.
Selon un mode de réalisation, le procédé comprend une étape préliminaire d'incorporation des nanocharges carbonées dans la composition, de préférence sous la forme d'un mélange-maître comprenant lesdites nanocharges carbonées.
L'invention concerne également un procédé d'assemblage d'une première pièce avec une deuxième pièce, comprenant la soudure avec un rayonnement laser d'une portion de la première pièce avec une portion de la deuxième pièce, ladite portion de la première pièce étant transparente au rayonnement laser et ladite portion de la deuxième pièce étant absorbante pour le rayonnement laser, et ladite portion de la première pièce étant de couleur noire et comportant au moins une couche d'une composition comprenant un polymère thermoplastique et des nanocharges carbonées.
Selon un mode de réalisation, la première pièce est une pièce telle que décrite ci-dessus.
Selon un mode de réalisation, la première pièce est un tuyau flexible et la deuxième pièce est un connecteur rigide ; ou la première pièce est un connecteur rigide et la deuxième pièce est un tuyau flexible.
L'invention concerne également une composition comprenant un polymère thermoplastique et des nanocharges carbonées en une quantité de 100 à 500 ppm.
Avantageusement, les nanocharges carbonées sont non agglomérées ou non agrégées.
Selon un mode de réalisation, les nanocharges carbonées sont présentes en une quantité de 100 à 250 ppm, de préférence de 100 à 200 ppm.
Selon un mode de réalisation, les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène, le noir de carbone nanométrique et leurs mélanges.
Selon un mode de réalisation, les nanocharges carbonées sont dépourvues de noir de carbone nanométrique. Avantageusement, les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène et leurs mélanges.
Selon un mode de réalisation, le polymère thermoplastique est choisi parmi les polyamides, les polyacétals, les polycétones, les polyacryliques, les polyoléfines, les polycarbonates, les polystyrènes, les polyesters, les polyéthers, les polysulfones, les polymères fluorés, les polyuréthanes, les polyamideimides, les polyarylates, les polyarylsulfones, les polyéthersulfones, les sulfures de polyarylène, les chlorures de polyvinyle, les polyétherimides, les polyéthercétones, les copolymères de ceux-ci et les mélanges miscibles de ceux-ci ; et de préférence est un polyamide.
La présente invention permet de surmonter les inconvénients de l'état de la technique. Elle fournit plus particulièrement des compositions thermoplastiques permettant la réalisation de pièces transparentes au rayonnement laser et présentant un aspect visuel noir satisfaisant et résistant à la dégradation.
Cela est accompli grâce à l'utilisation de nanocharges carbonées dans les compositions thermoplastiques. Il a été découvert que lorsque les nanocharges carbonées sont présentes en une quantité adaptée (suffisamment faible), on obtient des compositions thermoplastiques noires mais néanmoins transparentes au rayonnement laser.
BREVE DESCRIPTION DES FIGURES
La figure 1 représente de manière schématique un mode de réalisation d'un joint formé entre deux pièces d'un circuit de transport de fluide.
La figure 2 représente de manière schématique un autre mode de réalisation d'un joint formé entre deux pièces d'un circuit de transport de fluide.
DESCRIPTION DE MODES DE REALISATION DE L'INVENTION
L'invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.
Toutes les proportions sont des proportions massiques sauf mention contraire.
Définitions générales
Comme exposé en introduction, la soudure laser repose sur la connexion d'une portion d'une première pièce avec une portion d'une deuxième pièce, ladite portion de la première pièce étant transparente pour le rayonnement laser et ladite portion de la deuxième pièce étant absorbante pour le rayonnement laser. En outre, selon la présente invention, la portion de la première pièce est de couleur noire.
Par portion « transparente pour le rayonnement laser », on entend dans l'ensemble de la présente demande que la portion en question transmet (à travers son épaisseur) au moins 15 % d'un rayonnement laser, de préférence au moins 20 %, ou au moins 25 %, ou au moins 30 %, ou au moins 35 %, ou au moins 40 %, ou au moins 45 %, ou au moins 50 %, ou au moins 55 %, ou au moins 60 %, ou au moins 65 %, ou au moins 70 %, ou au moins 75 % d'un rayonnement laser incident.
Le rayonnement laser incident est de préférence un rayonnement laser infrarouge. Il a de préférence une longueur d'onde (c'est-à-dire longueur d'onde à laquelle l'intensité émise est maximale) est comprise entre 700 et 1200 nm, et notamment entre 800 et 1 100 nm. A titre d'exemple, il peut avoir une longueur d'onde de 1064 nm (longueur d'onde du laser Nd:YAG) ou de 940 nm (diode laser).
La mesure de la transmission du rayonnement laser à travers la portion considérée est effectuée au moyen d'un dispositif de mesure de transmission comprenant un spectrophotomètre et un photomètre à sphère intégrante, afin de détecter à la fois le flux lumineux transmis directement et le flux lumineux diffusé.
Par portion « absorbante pour le rayonnement laser », on entend que la portion en question transmet (à travers son épaisseur) moins de 1 %, de préférence moins de 0,5 %, et plus particulièrement moins de 0,1 % d'un rayonnement laser - les remarques et modes de réalisation mentionnés ci- dessus pour le rayonnement laser s'appliquant mutatis mutandis.
Par portion « de couleur noire », on entend que la portion présente un aspect visuel noir pour un observateur averti. Alternativement, on peut considérer que la couleur est noire si la portion en question transmet moins de 10 %, de préférence moins de 8 %, ou moins de 6 %, ou moins de 5 %, ou moins de 4 %, ou moins de 3 %, ou moins de 2 % ou moins de 1 % d'un rayonnement incident pour l'ensemble du spectre visible, c'est-à-dire pour les longueurs d'onde de 400 à 700 nm.
Ainsi, selon des modes de réalisation particuliers, par « portion transparente au rayonnement laser et de couleur noire » on entend une portion telle que définie dans l'une des lignes de l'un des deux tableaux suivants : N° Transmission à 1064 nm Transmission dans l'ensemble du spectre 400-700 nm
1 > 20 % < 10 %
2 > 20 % < 5 %
3 > 20 % < 2 %
4 > 20 % < 1 %
5 > 30 % < 10 %
6 > 30 % < 5 %
7 > 30 % < 2 %
8 > 30 % < 1 %
9 > 40 % < 10 %
10 > 40 % < 5 %
1 1 > 40 % < 2 %
12 > 50 % < 1 %
13 > 60 % < 10 %
14 > 60 % < 5 %
15 > 60 % < 2 %
16 > 60 % < 1 %
17 > 70 % < 10 %
18 > 70 % < 5 %
19 > 70 % < 2 %
20 > 70 % < 1 %
N° Transmission à 940 nm Transmission dans l'ensemble du spectre 400-700 nm
21 > 20 % < 10 %
22 > 20 % < 5 %
23 > 20 % < 2 %
24 > 20 % < 1 %
25 > 30 % < 10 %
26 > 30 % < 5 %
27 > 30 % < 2 %
28 > 30 % < 1 %
29 > 40 % < 10 %
30 > 40 % < 5 % N° Transmission à 940 nm Transmission dans l'ensemble du
spectre 400-700 nm
31 > 40 % < 2 %
32 > 50 % < 1 %
33 > 60 % < 10 %
34 > 60 % < 5 %
35 > 60 % < 2 %
36 > 60 % < 1 %
37 > 70 % < 10 %
38 > 70 % < 5 %
39 > 70 % < 2 %
40 > 70 % < 1 %
Composition thermoplastique transparente
Selon l'invention, la portion transparente au rayonnement laser destinée à être soudée comporte au moins une couche d'une composition thermoplastique comprenant des nanocharges carbonées. Ce sont les nanocharges carbonées qui fournissent la coloration noire tout en préservant la transparence au rayonnement laser de la composition. On peut qualifier cette composition de composition thermoplastique « transparente » par commodité.
Par « composition thermoplastique », on entend une composition contenant de façon majoritaire un ou des polymères thermoplastiques, c'est-à- dire dont la température de transition vitreuse Tg est supérieure à une température de 20°C, à l'état sec (c'est-à-dire avec une quantité d'eau dans le matériau inférieure à 0,05 %).
La Tg est classiquement mesurée par DSC (calorimétrie différentielle à balayage). Elle est déterminée ici par la température du point d'inflexion du flux de chaleur en fonction de la température lors d'une rampe de température de 20°C/min selon la norme 1 1357-2 (2013).
Les polymères thermoplastiques utilisables sont choisis de préférence parmi les polyamides, les polyacétals, les polycétones, les polyacryliques, les polyoléfines, les polycarbonates, les polystyrènes, les polyesters, les polyéthers, les polysulfones, les polymères fluorés, les polyuréthanes, les polyamideimides, les polyarylates, les polyarylsulfones, les polyéthersulfones, les sulfures de polyarylène, les chlorures de polyvinyle, les polyétherimides, les polyéthercétones et les copolymères de ceux-ci. Les polyamides sont des polymères préférés, notamment le PA 6.10 (polyhexaméthylène sébaçamide), le PA 6.12 (polyhexaméthylène dodécanediamide), le PA 10.10 (polydécaméthylène sébaçamide), le PA 10.12 (polydécaméthylène dodécanediamide), le PA 1 1 (polyundécanamide) et le PA 12 (polylauroamide). D'autres polymères préférés sont les polyaryléthers cétone (PAEK), et notamment les polyéthers éther cétone (PEEK) et les polyéthers cétone cétone (PEKK). D'autres polymères préférés sont les polymères à base de fluorure de vinylidène, à savoir les homopolymères (PVDF) et les copolymères. Ces polymères présentent en effet une tenue en température avantageuse.
A titre de polyoléfines, on peut notamment utiliser du polypropylène ou du polyéthylène, ou une polyoléfine fonctionnalisée.
A titre de polyacrylamide, on peut utiliser les homopolymères et copolymères à base de méthacrylate de méthyle, tels que le PMMA (poly méthacrylate de méthyle) et le P(MMA-ABU), copolymère formé avec l'acrylate de butyle.
On peut également utiliser les polyéthers bloc amide (PEBA).
Selon un mode de réalisation préféré, la composition contient un seul polymère. En effet, la présence de plusieurs polymères dans la composition peut conduire à la formation de particules ou agrégats qui perturbent la transmission du rayonnement laser.
Alternativement, il est possible de prévoir plusieurs polymères dans la composition, si ceux-ci sont miscibles, c'est-à-dire forment un mélange homogène. A titre d'exemple, on peut utiliser un mélange de PVDF et de PMMA avec une majorité de PVDF.
La composition comprend également des nanocharges carbonées.
Par « nanocharges carbonées » on entend des charges majoritairement composées de carbone et présentant au moins une dimension (dimension minimale) inférieure ou égale à 100 nm, de préférence inférieure ou égale à 50 nm, et de manière plus particulièrement préférée inférieure ou égale à 20 nm.
Avantageusement, les nanocharges carbonées sont non agglomérées ou non agrégées.
De préférence, la dimension minimale des nanocharges carbonées est supérieure ou égale à 0,4 nm, de préférence supérieure ou égale à 1 nm.
Les nanocharges carbonées peuvent notamment être des nanotubes de carbone, des nanofibres de carbone, du noir de carbone nanométrique, du graphène, ou des mélanges de ceux-ci. Selon un mode de réalisation, les nanocharges carbonées sont dépourvues de noir de carbone nanométrique.
Avantageusement, les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène et leurs mélanges.
De préférence, il s'agit de nanotubes de carbone.
Les nanotubes de carbone sont des structures tubulaires creuses comportant un plan graphitique disposé autour d'un axe longitudinal ou plusieurs plans graphitiques (ou feuillets) disposés de façon concentrique autour d'un axe longitudinal.
Les nanotubes de carbone peuvent être du type à paroi unique, à double paroi ou à parois multiples. Les nanotubes à double paroi peuvent notamment être préparés comme décrit par Flahaut et al dans Chem. Corn. (2003), p.1442. Les nanotubes à parois multiples peuvent être préparés comme décrit dans le document WO 03/02456.
Les nanotubes de carbone sont des particules non agglomérées ou non agrégées entre elles qui ne forment pas d'agglomérats ou d'agrégats.
Les nanotubes de carbone ont généralement un diamètre moyen (perpendiculaire à l'axe longitudinal, la valeur moyenne étant une moyenne linéique le long de l'axe longitudinal et statistique sur un ensemble de nanotubes) allant de 0,4 à 100 nm, de préférence de 1 à 50 nm et, mieux, de 2 à 30 nm, préférentiel lement de 5 à 30 nm, plus préférentiellement de 5 à 15 nm, voire de 10 à 15 nm, et avantageusement une longueur de 0,1 à 10 μιτι. Le rapport longueur/diamètre est de préférence supérieur à 10 et le plus souvent supérieur à 100. Leur surface spécifique vaut par exemple de 100 à 300 m2/g, avantageusement de 200 à 300 m2/g, et leur densité apparente peut notamment valoir de 0,05 à 0,5 g/cm3 et plus préférentiellement de 0,1 à 0,2 g/cm3. Les nanotubes multiparois peuvent par exemple comprendre de 5 à 15 feuillets (ou parois) et plus préférentiellement de 7 à 10 feuillets. Ces nanotubes peuvent être traités ou non.
Les dimensions et notamment le diamètre moyen des nanotubes de carbone peuvent être déterminées par microscopie électronique à transmission.
Un exemple de nanotubes de carbone bruts est notamment commercialisé par Arkema sous la dénomination commerciale Graphistrength® C100. Ces nanotubes de carbone peuvent être purifiés et/ou traités (par exemple oxydés) et/ou broyés et/ou fonctionnalisés, avant leur mise en œuvre dans le cadre de l'invention.
Le broyage des nanotubes de carbone peut être notamment effectué à froid ou à chaud et être réalisé selon les techniques connues mises en œuvre dans des appareils tels que broyeurs à boulets, à marteaux, à meules, à couteaux, à jet de gaz ou tout autre système de broyage susceptible de réduire la taille du réseau enchevêtré de nanotubes. On préfère que cette étape de broyage soit pratiquée selon une technique de broyage par jet de gaz et en particulier dans un broyeur à jet d'air.
La purification des nanotubes de carbone bruts ou broyés peut être réalisée par lavage à l'aide d'une solution d'acide sulfurique, de manière à les débarrasser d'éventuelles impuretés minérales et métalliques résiduelles, comme par exemple le fer, provenant de leur procédé de préparation. Le rapport pondéral des nanotubes à l'acide sulfurique peut notamment valoir de 1 :2 à 1 :3. L'opération de purification peut par ailleurs être effectuée à une température allant de 90 à 120°C, par exemple pendant une durée de 5 à 10 heures. Cette opération peut avantageusement être suivie d'étapes de rinçage à l'eau et de séchage des nanotubes de carbone purifiés. Les nanotubes de carbone peuvent en variante être purifiés par traitement thermique à haute température, typiquement supérieur à 1000°C.
L'oxydation des nanotubes de carbone est avantageusement réalisée en mettant ceux-ci en contact avec une solution d'hypochlorite de sodium renfermant de 0,5 à 15 % en poids de NaOCI et de préférence de 1 à 10 % en poids de NaOCI, par exemple dans un rapport pondéral des nanotubes de carbone à l'hypochlorite de sodium allant de 1 :0,1 à 1 :1 . L'oxydation est avantageusement réalisée à une température inférieure à 60°C et de préférence à température ambiante, pendant une durée allant de quelques minutes à 24 heures. Cette opération d'oxydation peut avantageusement être suivie d'étapes de filtration et/ou centrifugation, lavage et séchage des nanotubes oxydés.
La fonctionnalisation des nanotubes de carbone peut être réalisée par greffage de motifs réactifs tels que des monomères vinyliques à leur surface. Le matériau constitutif des nanotubes de carbone est utilisé comme initiateur de polymérisation radicalaire après avoir été soumis à un traitement thermique à plus de 900°C, en milieu anhydre et dépourvu d'oxygène, qui est destiné à éliminer les groupes oxygénés de sa surface. Il est ainsi possible de polymériser du méthacrylate de méthyle ou du méthacrylate d'hydroxyéthyle à la surface de nanotubes de carbone en vue de faciliter notamment leur dispersion dans les polyamides.
On utilise de préférence dans la présente invention des nanotubes de carbone bruts éventuellement broyés, c'est-à-dire des nanotubes de carbone qui ne sont ni oxydés ni purifiés ni fonctionnalisés et n'ont subi aucun autre traitement chimique et/ou thermique.
Le terme « graphène » est utilisé pour désigner un feuillet de graphite plan, isolé et individualisé, mais aussi, par extension, un assemblage comprenant entre un et quelques dizaines de feuillets et présentant une structure plane ou plus ou moins ondulée. Cette définition englobe ainsi les FLG (Few Layer Graphene ou graphène faiblement empilé), les NGP (Nanosized Graphene Plates ou plaques de graphène de dimension nanométrique), les CNS (Carbon NanoSheets ou nano-feuilles de graphène), les GNR (Graphene NanoRibbons ou nano-rubans de graphène).
On préfère par ailleurs que le graphène utilisé selon l'invention ne soit pas soumis à une étape supplémentaire d'oxydation chimique ou de fonctionnalisation.
Comme indiqué précédemment, le graphène utilisé selon l'invention est obtenu par dépôt chimique en phase vapeur ou CVD. Il se présente, de façon caractéristique, sous forme de particules d'une épaisseur de moins de 50 nm, de préférence de moins de 15 nm et, plus préférentiellement, de moins de 5 nm, et de dimensions latérales inférieures au micron, de préférence de 10 nm à moins de 1000 nm, préférentiellement de 50 à 600 nm, et plus préférentiellement de 100 à 400 nm. Chacune de ces particules renferme en général de 1 à 50 feuillets, de préférence de 1 à 20 feuillets, plus préférentiellement de 1 à 10 feuillets, voire de 1 à 5 feuillets, qui sont susceptibles d'être désolidarisés les uns des autres sous la forme de feuillets indépendants, par exemple lors d'un traitement par ultrasons.
Le procédé de fabrication du graphène par CVD comprend en général la décomposition d'une source gazeuse de carbone, en particulier un hydrocarbure, tel que de l'éthylène, du méthane ou de l'acétylène, sous flux de gaz inerte tel que de l'argon ou de l'azote, le taux de dilution de l'hydrocarbure dans le gaz inerte étant par exemple d'environ 1 :5. Cette décomposition est effectuée à une température de 900 à 1000°C, de préférence de 960 à 1000°C, généralement à pression atmosphérique, sur un catalyseur sous forme de poudre. Le catalyseur peut notamment être un catalyseur métallique supporté ou non sur un substrat inerte. Il peut s'agir par exemple de cobalt éventuellement mélangé à du fer et supporté sur de la magnésie, dans un rapport molaire du cobalt à la magnésie généralement inférieur à 10 %. Le catalyseur est habituellement préparé par imprégnation du support à l'aide de solutions alcooliques ou glycoliques de sels de cobalt et éventuellement de fer, suivie d'une évaporation du solvant et d'une étape de calcination.
Un autre procédé de CVD pour l'obtention de graphène selon cette invention comprend les étapes suivantes :
a) l'introduction dans un réacteur de synthèse, et éventuellement la mise en lit fluidisé dans ledit réacteur, d'un catalyseur actif pour la synthèse de graphène, comprenant un oxyde mixte de formule AFe2Û4 où A est au moins un élément métallique à valence mixte présentant au moins deux valences dont l'une est égale à +2, en particulier choisi parmi le cobalt, le cuivre ou le nickel, le catalyseur étant de structure spinelle,
b) le chauffage dudit catalyseur dans le réacteur, à une température comprise entre 500 et 1500°C, de préférence entre 500 et 800°C, voire entre 610 et 800°C,
c) la mise en contact d'une source gazeuse de carbone, avec le catalyseur de l'étape b), éventuellement en lit fluidisé, et sa décomposition catalytique à une température de 500 à 800°C, de préférence de 610 à 800°C, la source gazeuse étant choisie parmi les alcools en C1-C12 et les hydrocarbures en C1-C12, tels que les alcanes ou les alcènes, de préférence l'éthylène, qui peut être mélangé à un flux d'un agent réducteur comme l'hydrogène et éventuellement à un gaz inerte,
d) la récupération du graphène produit en c) en sortie du réacteur.
Les nanofibres de carbone sont des objets de forme filamentaire. A la différence des nanotubes de carbone, il ne s'agit pas d'objets creux. A titre d'exemple, les nanofibres de carbone peuvent avoir une structure dite « herringbone » (empilement de couches de graphène orientées symétriquement de part et d'autre de l'axe longitudinal) ; ou une structure en plaquettes ou lamellaire (feuillets de graphène empilés perpendiculairement à l'axe) ; ou une structure conique, encore dite « stacked cup » (feuillet continu de graphène enroulé sur lui-même) ; ou une structure dite en bambou (fibre présentant des variations périodiques de diamètre, formée de compartiments séparés par un feuillet graphitique) ; ou une structure en ruban (feuillets de graphène orientés parallèlement à l'axe longitudinal sans être enroulés) ; ou une structure tubulaire (similaire à la structure des nanotubes de carbone multi- parois).
Les nanofibres de carbone peuvent avoir un diamètre moyen (perpendiculaire à l'axe longitudinal, la valeur moyenne étant une moyenne linéique le long de l'axe longitudinal et statistique sur un ensemble de nanofibres) allant de 0,4 à 100 nm, de préférence de 1 à 50 nm et, mieux, de 2 à 30 nm, préférentiellement de 5 à 30 nm, plus préférentiel lement de 5 à 15 nm, voire de 10 à 15 nm, et avantageusement une longueur de 0,1 à 10 μιτι. Le rapport longueur/diamètre est de préférence supérieur à 10 et le plus souvent supérieur à 100.
Les dimensions et notamment le diamètre moyen des nanofibres de carbone peuvent être déterminées par microscopie électronique à balayage.
Les nanofibres de carbone sont des particules non agglomérées ou non agrégées entre elles qui ne forment pas d'agglomérats ou d'agrégats.
Il convient d'ajuster à la fois la teneur massique en nanocharges carbonées dans la composition et l'épaisseur de la couche formée avec la composition, afin d'obtenir à la fois une couleur noire et une transparence au rayonnement laser.
Généralement, la teneur en nanocharges carbonées vaut de 100 ppm à 500 ppm, notamment afin de réaliser des couches de 500 μιτι à 3 mm d'épaisseur, et plus particulièrement de 1 mm à 2 mm d'épaisseur.
Des teneurs inférieures à cette gamme sont envisageables dans certains modes de réalisation pour la réalisation de couches plus épaisses, et des teneurs supérieures à cette gamme sont envisageables dans certains modes de réalisation pour la réalisation de couches plus fines.
Selon certains modes de réalisation, la teneur en nanocharges carbonées dans la composition vaut de 100 ppm à 120 ppm ; ou de 120 ppm à 140 ppm ; ou de 140 ppm à 160 ppm ; ou de 160 à 180 ppm ; ou de 180 à 200 ppm ; ou de 200 à 220 ppm ; ou de 220 à 240 ppm ; ou de 240 à 260 ppm ; ou de 260 à 280 ppm ; ou de 280 à 300 ppm ; ou de 300 ppm à 320 ppm ; ou de 320 ppm à 340 ppm ; ou de 340 ppm à 360 ppm ; ou de 360 à 380 ppm ; ou de 380 à 400 ppm ; ou de 400 à 420 ppm ; ou de 420 à 440 ppm ; ou de 440 à 460 ppm ; ou de 460 à 480 ppm ; ou de 480 à 500 ppm.
Une gamme de 100 à 250 ppm est particulièrement préférée, notamment pour la constitution de couches de 500 pm à 3 mm d'épaisseur, et plus particulièrement de 1 mm à 2 mm d'épaisseur. Une gamme de 120 à 200 ppm est aussi particulièrement préférée, notamment pour la constitution de couches de 500 μιτι à 3 mm d'épaisseur, et plus particulièrement de 1 mm à 2 mm d'épaisseur.
La composition thermoplastique transparente peut également comprendre d'autres additifs.
A titre d'additifs on peut prévoir des renforts, afin d'améliorer certaines des propriétés mécaniques, notamment le module de traction du matériau obtenu à partir de cette composition. Par renforts, on entend notamment des billes, des fibres (telles que fibres de verre, fibres naturelles ou polymériques), des broyats, des farines.
Selon un mode de réalisation, les additifs de renfort (tels que les fibres de verre) soient présents dans la composition en une quantité d'environ 30%. Il convient de noter que la quantité de renforts acceptable dans la composition dépend de l'épaisseur de la couche formée avec cette composition. Plus la couche est fine, plus la teneur en renforts peut être élevée sans dégrader la transparence au rayonnement laser de manière excessive.
La composition thermoplastique transparente peut par ailleurs comprendre un ou plusieurs additifs choisis parmi les charges (qui ne sont pas des nanocharges carbonées ni des renforts), les colorants, les stabilisants, notamment les stabilisants UV, les plastifiants, les modifiants chocs, les agents tensioactifs, les pigments, les azurants, les anti-oxydants, les lubrifiants, les ignifugeants, les cires naturelles et leurs mélanges.
A titre d'agents ignifugeants on peut par exemple utiliser Mg(OH)2, des pyrophosphates de mélamine, des cyanurates de mélamine, des polyphosphates d'ammonium, des sels métalliques de l'acide phosphinique ou de l'acide diphosphinique, ou encore des polymères contenant au moins un sel métallique de l'acide phosphinique ou de l'acide diphosphinique.
Le sel peut par exemple être choisi parmi le méthyléthylphosphinate d'aluminium et le diéthylphosphinate d'aluminium. Des mélanges contenant de tels sels métalliques sont commercialisés par la société Clariant sous les dénominations commerciales Exolit OP131 1 , OP1312, OP1230 et OP1314.
La quantité totale d'additifs dans la composition est de préférence inférieure ou égale à 40 %.
La quantité totale de charges dans la composition (qui ne sont pas des nanocharges carbonées ni des renforts), est de préférence inférieure ou égale à 10 %, et plus particulièrement inférieure ou égale à 5 %, ou à 4 %, ou à 3 %, ou à 2 %, ou à 1 %, ou à 0,5 %, ou à 0,1 %. Selon un mode de réalisation particulier, la composition est dépourvue (ou essentiellement dépourvue) de toute charge (qui ne sont pas des nanocharges carbonées ni des renforts), colorant, pigment et agent azurant - en dehors des nanocharges carbonées.
Les nanocharges carbonées sont incorporées à la composition soit par mélange direct du polymère thermoplastique à l'état fondu avec les nanocharges carbonées sous forme de poudre ; soit par mélange du polymère thermoplastique à l'état fondu avec un mélange-maître comprenant des nanocharges carbonées dispersées dans ledit polymère thermoplastique (à une concentration supérieure à la concentration finale, par exemple à une concentration de 0,5 à 15 %, notamment de 1 à 10 % et par exemple de 2 à 4 %). Les éventuels autres additifs peuvent être ajoutés lors du mélange entre le polymère thermoplastique de base et le mélange-maître, ou bien être préincorporés dans l'un ou l'autre de ces deux composants.
Pièces selon l'invention
L'invention fournit des pièces fabriquées à partir de la composition thermoplastique transparente ci-dessus, que l'on peut qualifier par commodité de pièces transparentes. Ces pièces comportent chacune une portion adaptée à la soudure laser (dite portion de soudure), la composition thermoplastique transparente ci-dessus étant présente sous forme d'au moins une couche dans cette portion.
Selon un mode de réalisation, la portion de soudure comporte une couche unique, constituée de la composition thermoplastique transparente. Selon un mode de réalisation alternatif, la portion de soudure comporte deux ou plus de deux couches, dont l'une au moins est constituée de la composition thermoplastique transparente. Dans ce cas, les autres couches présentent des propriétés de transparence au rayonnement laser telles que l'ensemble de la portion de soudure est bien considérée comme transparente pour le rayonnement laser.
De préférence, dans ces structures multicouches, la couche de composition thermoplastique transparente décrite ci-dessus est la couche externe, afin de bénéficier de l'aspect visuel noir offert par cette couche.
Selon un mode de réalisation, l'ensemble de la pièce transparente est fabriquée à partir de la couche unique de composition thermoplastique transparente ou le cas échéant à partir de la pluralité de couches (dont au moins une couche de composition thermoplastique transparente) présente dans la portion de soudure. Cela offre une plus grande simplicité de fabrication.
Alternativement, il est possible de prévoir que le reste de la pièce transparente soit fabriqué à partir d'une ou plusieurs autres couches. Par exemple, on peut dans certains cas conférer la couleur noire au reste de la pièce (c'est-à-dire à l'exception de la portion de soudure) au moyen d'un autre matériau que les nanocharges carbonées, par exemple avec du noir de carbone traditionnel (micrométrique).
Les pièces transparentes peuvent être façonnées par exemple par extrusion ou co-extrusion (éventuellement directement à l'issue de l'incorporation des nanocharges carbonées dans la composition thermoplastique transparente avec un mélange-maître) ou encore par moulage par injection.
Les pièces selon l'invention sont destinées à être assemblées par soudure laser avec d'autres pièces, qui présentent une portion (dite portion de soudure) qui est absorbante pour le rayonnement laser. Ces pièces peuvent être qualifiées de pièces absorbantes, par commodité.
Les pièces absorbantes peuvent être fabriquées en partie (notamment la portion de soudure de celles-ci), ou de préférence, en totalité, à partir d'au moins une composition à base de polymère thermoplastique. Les pièces absorbantes peuvent être monocouches ou multicouches. Dans ce cas, de préférence au moins une couche, voire toutes les couches, sont fabriquées à partir d'une composition à base de polymère thermoplastique.
Le polymère thermoplastique peut être choisi parmi les polyamides, les polyacétals, les polycétones, les polyacryliques, les polyoléfines, les polycarbonates, les polystyrènes, les polyesters, les polyéthers, les polysulfones, les polymères fluorés, les polyuréthanes, les polyamide-imides, les polyarylates, les polyarylsulfones, les polyéthersulfones, les sulfures de polyarylène, les chlorures de polyvinyle, les polyétherimides, les polyéthercétones, les élastomère thermoplastiques polyester (TPE), les copolymères de ceux-ci et les mélanges de ceux-ci. De préférence il s'agit d'un polyamide.
Ce polymère thermoplastique peut notamment être choisi parmi : les homo- et copolymères d'oléfines tels que le polyéthylène, le polypropylène, le polybutadiène, le polybutylène et les copolymères acrylonitrile-butadiène- styrène ; les homo- et copolymères acryliques et les poly(méth)acrylates d'alkyles tels que le poly(méthacrylate de méthyle) ; les homo- et copolyamides ; les polycarbonates ; les polyesters dont le poly(téréphtalate d'éthylène) et le poly(téréphtalate de butylène) ; les polyéthers tels que le poly(phénylène éther), le poly(oxyméthylène) et le poly(oxyéthylène) ou poly(éthylène glycol); le polystyrène ; les copolymères de styrène et d'anhydride maléique ; le poly(chlorure de vinyle) ; les polymères fluorés tels que le poly(fluorure de vinylidène), le polytétrafluoréthylène et le polychlorotrifluoroéthylène ; les caoutchoucs naturels ou synthétiques ; les polyuréthanes thermoplastiques ; les polyaryl éther cétones (PAEK) telles que la polyétheréthercétone (PEEK) et la polyéther cétone cétone (PEKK) ; le polyétherimide ; la polysulfone ; le poly(sulfure de phénylène) ; l'acétate de cellulose ; le poly(acétate de vinyle) ; et leurs mélanges.
Selon une forme d'exécution, le polymère est choisi parmi les homo- et copolymères d'oléfines, en particulier les homo- et copolymères d'éthylène ou de propylène, et les homo- et copolymères d'amides comme les polyamides 6, 6.6, 6.10, 6.12, 1 1 , 12, 10.10, 10.12, 12.12, 4.6, ou copolymères avec des oléfines ou des esters, éthers ou composés phénoliques.
Ce polymère thermoplastique peut notamment être choisi parmi : les homo- et copolymères d'oléfines tels que le polyéthylène, le polypropylène, le polybutadiène, le polybutylène et les copolymères acrylonitrile-butadiène- styrène ; les homo- et copolymères acryliques et les poly(méth)acrylates d'alkyles tels que le poly(méthacrylate de méthyle) ; les homo- et copolyamides ; les polycarbonates ; les polyesters dont le poly(téréphtalate d'éthylène) et le poly(téréphtalate de butylène) ; les polyéthers tels que le poly(phénylène éther), le poly(oxyméthylène) et le poly(oxyéthylène) ou poly(éthylène glycol); le polystyrène ; les copolymères de styrène et d'anhydride maléique ; le poly(chlorure de vinyle) ; les polymères fluorés tels que le poly(fluorure de vinylidène), le polytétrafluoroéthylène et le polychlorotrifluoroéthylène ; les caoutchoucs naturels ou synthétiques ; les polyuréthanes thermoplastiques ; les polyaryl éther cétones (PAEK) telles que la polyétheréthercétone (PEEK) et la polyéther cétone cétone (PEKK) ; le polyétherimide ; la polysulfone ; le poly(sulfure de phénylène) ; l'acétate de cellulose ; le poly(acétate de vinyle) ; et leurs mélanges.
Selon une forme d'exécution, le polymère est choisi parmi les homo- et copolymères d'oléfines, en particulier les homo- et copolymères d'éthylène ou de propylène, et les homo- et copolymères d'amides comme les polyamides 6, 6.6, 6.10, 6.12, 1 1 , 12, 10.10, 10.12, 12.12, 4.6, ou copolymères avec des oléfines ou des esters, éthers ou composés phénoliques. Selon un mode de réalisation, la portion de soudure des pièces absorbantes est de couleur noire, ou de préférence les pièces absorbantes sont totalement noires.
Selon un autre mode de réalisation, les pièces absorbantes peuvent être non noires en tout ou en partie, par exemple blanches ou d'une autre couleur, en utilisant par exemple des charges minérales appropriées.
La couleur noire des pièces absorbantes est avantageusement obtenue à partir d'un pigment noir traditionnel, tel que du noir de carbone classique (micrométrique).
L'invention trouve particulièrement à s'appliquer dans le domaine du transport de fluide, et plus particulièrement dans des véhicules, notamment des automobiles, camions ou autres.
Les pièces absorbantes et les pièces transparentes mentionnées ci- dessus sont alors des éléments d'un circuit de transport de fluide, par exemple un circuit de transport de carburant, de liquide de refroidissement, de mélange urée-eau, de fluide frigorigène (pour la climatisation), d'huile, d'air ou de vide.
Ces pièces peuvent notamment être des tuyaux ou tubulures (de préférence flexibles), mais aussi des connecteurs (de préférence rigides) ou des pièces fonctionnelles telles que des filtres.
Par exemple, la pièce transparente peut être une tubulure, et la pièce absorbante un connecteur. Inversement, la pièce transparente peut être un connecteur, et la pièce absorbante une tubulure.
Afin de permettre la soudure laser, la portion de soudure de la pièce transparente est montée de façon externe par rapport à la portion de soudure de la pièce absorbante.
A titre d'exemple, et en faisant référence à la figure 1 , un tuyau 3 (ou tubulure) comporte une extrémité qui constitue sa portion de soudure 4. Celle-ci est introduite dans l'extrémité de la lumière d'un connecteur 1 , qui constitue la portion de soudure 2 de celui-ci. Le connecteur 1 est une pièce transparente telle que décrite ci-dessus, et le tuyau 3 est une pièce absorbante telle que décrite ci-dessus. Un rayonnement laser 5 est appliqué sur le joint formé par les deux portions de soudure 2, 4 afin de procéder à la soudure des pièces.
Toujours à titre d'exemple, et en faisant référence à la figure 2, un tuyau 6 (ou tubulure) comporte une extrémité qui constitue sa portion de soudure 8. L'extrémité d'un connecteur 7, qui constitue la portion de soudure 10 de celui-ci, est introduite dans la lumière du tuyau 6. Dans l'exemple illustré, la portion de soudure 10 du connecteur comporte des reliefs (par exemple en queue de sapin) créant des zones de contact sous pression avec la portion de soudure 8 du tuyau 6. Le connecteur 7 est une pièce absorbante telle que décrite ci- dessus, et le tuyau 6 est une pièce transparente telle que décrite ci-dessus. Un rayonnement laser 9 est appliqué sur le joint formé par les deux portions de soudure 8, 10 afin de procéder à la soudure des pièces.
L'assemblage des pièces peut être effectué au seul moyen de la soudure laser ou être effectué par un autre moyen (par exemple une connexion autobloquante ou un emmanchement à force tel que visible sur la figure 2), la soudure laser venant en complément, renfort ou sécurité.
On peut également prévoir deux ou une pluralité de soudures parallèles pour renforcer l'assemblage si besoin.
Alternativement les pièces selon l'invention peuvent être par exemple des pièces d'équipements médicaux, de lunettes, ou autres.
Le rayonnement laser pour la soudure peut être produit par tout type de laser conventionnel, notamment un laser cristallin, un laser à gaz ou un laser à semi-conducteur. Le rayonnement laser est de préférence un rayonnement laser infrarouge, notamment proche infrarouge. Sa longueur d'onde peut notamment être de 700 à 1200 nm, et notamment de 800 à 1 100 nm. A titre d'exemple, la longueur d'onde peut être de 1064 nm ou de 940 nm.
La puissance du rayonnement laser et la vitesse de balayage du rayonnement sur le joint sont adaptés afin de fournir une soudure efficace.
A titre d'exemple, on peut utiliser un faisceau laser d'une puissance de 10 à 1000 W, notamment de 20 à 300 W, par exemple de 50 à 200 W, avec une vitesse de balayage de 1 à 2000 mm/s, notamment de 10 à 1000 mm/s, et plus particulièrement de 50 à 300 mm/s.
La soudure laser peut être continue, sur l'ensemble de la circonférence du joint, ou peut être une soudure par points, notamment dans le cas où la soudure laser n'est pas le seul moyen d'assemblage des pièces.
Dans certains, cas, notamment lorsque la portion de soudure de la pièce transparente présente une transparence relativement faible (tout en étant toutefois suffisante pour permettre la transmission d'une fraction substantielle du rayonnement jusqu'à la portion de soudure de la pièce absorbante), la portion de soudure de la pièce transparente a tendance à fondre partiellement lors de l'irradiation de telle sorte que les points ou lignes de soudure sont visibles en observant le joint de l'extérieur. Cela permet de vérifier visuellement que la soudure a été correctement effectuée. EXEMPLES
Les exemples suivants illustrent l'invention sans la limiter.
Exemple 1 - tests de sensibilité aux solvants
On effectue des tests de sensibilité aux solvants sur des mélanges- maîtres utilisables pour fabriquer des compositions thermoplastiques d'apparence noire et transparentes au rayonnement laser, à savoir :
- un mélange-maître de PA 1 1 contenant 0,2 % de nanotubes de carbone, fourni par la société Arkema ; on extrait cette composition à 5 % dans de l'éthanol ;
- un mélange-maître de PA 1 1 fourni par la société Treffert France comprenant un pigment organique ; on extrait cette composition à 4 % dans de l'éthanol ;
- un mélange-maître de PA 6 fourni par la société Colloïds comprenant un pigment organique ; on extrait cette composition à 1 ,5 % dans de l'éthanol.
Dans tous les cas, l'extraction est effectuée dans l'éthanol à 60°C sous 40 bars pendant 50 minutes, de sorte à obtenir un extrait d'environ 20 mL.
On constate que l'extrait de l'échantillon de PA 1 1 + nanotubes de carbone n'est pas coloré. En revanche l'extrait de l'échantillon Treffert France présente une coloration grise et l'extrait de l'échantillon Colloïds présente une coloration rose.
Exemple 2 - tests de soudure
On effectue des tests de soudure laser sur des assemblages de pièces selon l'invention, avec une diode laser à 940 nm.
Les deux pièces à souder sont maintenues sous pression sous un carreau de verre afin que leurs surfaces, là où se fera la soudure, soient parfaitement en contact.
Le rayon laser passe à travers la plaque de verre puis à travers la pièce transparente. Le laser, d'une puissance de 160 W, est utilisé entre 50 et 100 % de sa puissance. La vitesse de balayage du faisceau sur les pièces à assembler est de 50 à 300 mm/s.
On utilise comme pièce absorbante un polyamide rendu noir par du noir de carbone.
On mesure, à l'aide d'un appareil de traction, la force nécessaire pour rompre la soudure en tirant celle-ci par cisaillement. On calcule la contrainte de rupture (en MPa) qui est égale à la force de rupture (en N) divisée par la surface du cordon de soudure (mm2), qui est elle-même la largeur du cordon (1 ,6 mm) x sa longueur (qui est en général la largeur de la plaquette).
Dans un premier test, la pièce transparente est une plaquette de couleur noire de 1 mm d'épaisseur fabriquée à partir d'une composition de PA 1 1 contenant 120 ppm de nanotubes de carbone.
La plaquette est obtenue en injectant le polymère à l'état fondu dans un moule dont la cavité à une épaisseur de 1 mm et une section de 100 x 100 mm.
Le faisceau laser est conduit par fibre optique jusqu'au de lieu de la soudure, et piloté informatiquement. On constate que la soudure est correctement effectuée.
Dans un deuxième test, la pièce transparente a une épaisseur double (elle est constituée par deux plaquettes de couleur noire de 1 mm d'épaisseur chacune, fabriquées à partir d'une composition de PA 1 1 contenant 120 ppm de nanotubes de carbone, et disposées l'une sur l'autre). Les conditions du test sont similaires à celles du premier test, à part cela.
On constate que la soudure est correctement effectuée (avec la plaquette transparente en contact avec la pièce absorbante).
Dans un troisième test, la pièce transparente est une plaquette de couleur noire de 1 mm d'épaisseur fabriquée à partir d'une composition de PA 1 1 contenant 180 ppm de nanotubes de carbone.
La plaquette est obtenue en injectant le polymère à l'état fondu dans un moule dont la cavité à une épaisseur de 1 mm et une section de 100 x 100 mm . Les conditions du test sont similaires à celles du premier test, à part cela.
On constate que la soudure est correctement effectuée.
Dans un quatrième test, la pièce transparente est une plaquette de couleur noire de 2 mm d'épaisseur fabriquée, fabriquée à partir d'une composition de PA 1 1 contenant 180 ppm de nanotubes de carbone. La plaquette est obtenue en injectant le polymère à l'état fondu dans un moule dont la cavité à une épaisseur de 2 mm et une section de 100 x 100 mm.
On constate que la soudure est correctement effectuée.

Claims

REVENDICATIONS
1. Pièce comportant une portion adaptée à être soudée à une portion d'une autre pièce par application d'un rayonnement laser, ladite portion de la pièce étant transparente au rayonnement laser et ladite portion de l'autre pièce étant absorbante pour le rayonnement laser, et ladite portion de la pièce étant de couleur noire et comportant au moins une couche d'une composition comprenant un polymère thermoplastique et des nanocharges carbonées non agglomérées ou non agrégées.
2. Pièce selon la revendication 1 , dans laquelle la quantité de nanocharges carbonées dans la composition vaut de 100 ppm à 500 ppm, et de préférence de 100 ppm à 250 ppm.
3. Pièce selon la revendication 1 ou 2, dans laquelle les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène, le noir de carbone nanométrique et leurs mélanges.
4. Pièce selon l'une des revendications 1 à 3, dans laquelle le rayonnement laser est un rayonnement laser infrarouge, et de préférence présente une longueur d'onde comprise entre 700 et 1200 nm, et de préférence entre 800 nm et 1 100 nm.
5. Pièce selon l'une des revendications 1 à 4, dans laquelle le polymère thermoplastique est choisi parmi les polyamides, les polyacétals, les polycétones, les polyacryliques, les polyoléfines, les polycarbonates, les polystyrènes, les polyesters, les polyéthers, les polysulfones, les polymères fluorés, les polyuréthanes, les polyamideimides, les polyarylates, les polyarylsulfones, les polyéthersulfones, les sulfures de polyarylène, les chlorures de polyvinyle, les polyétherimides, les polyéthercétones, les copolymères de ceux-ci et les mélanges miscibles de ceux-ci ; et de préférence est un polyamide.
6. Pièce selon l'une des revendications 1 à 5, dans laquelle la couche présente une épaisseur de 0,1 à 4 mm, de préférence de 0,5 à 3 mm et plus particulièrement de 1 à 2 mm.
7. Pièce selon l'une des revendications 1 à 6, qui est choisie parmi les tubulures, les connecteurs pour tubulures et les éléments de filtration.
8. Pièce selon l'une des revendications 1 à 7, qui est une pièce d'un circuit de transport de fluide, et qui de préférence est une pièce de circuit de transport de fluide pour véhicule et notamment pour automobile ; et / ou qui est une pièce d'un circuit de transport de carburant, d'huile, d'air, de fluide frigorigène ou de solution aqueuse tel qu'un liquide de refroidissement moteur ou un mélange urée-eau.
9. Utilisation de nanocharges carbonées non agglomérées ou non agrégées pour conférer une couleur noire à une couche d'une composition comprenant un polymère thermoplastique, tout en conservant la transparence au rayonnement laser de ladite couche.
10. Utilisation selon la revendication 9, dans laquelle le rayonnement laser est un rayonnement laser infrarouge, et de préférence présente une longueur d'onde comprise entre 700 nm et 1200 nm et de préférence entre 800 nm et 1 100 nm.
11. Utilisation selon la revendication 9 ou 10, dans laquelle les nanocharges carbonées sont incorporées dans la composition en une quantité de 100 ppm à 500 ppm, et de préférence de 100 ppm à 250 ppm.
12. Utilisation selon l'une des revendications 9 à 1 1 , dans laquelle les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène, le noir de carbone nanométrique et leurs mélanges.
13. Utilisation selon l'une des revendications 9 à 12, dans laquelle le polymère thermoplastique est choisi parmi les polyamides, les polyacétals, les polycétones, les polyacryliques, les polyoléfines, les polycarbonates, les polystyrènes, les polyesters, les polyéthers, les polysulfones, les polymères fluorés, les polyuréthanes, les polyamideimides, les polyarylates, les polyarylsulfones, les polyéthersulfones, les sulfures de polyarylène, les chlorures de polyvinyle, les polyétherimides, les polyéthercétones, les copolymères de ceux-ci et les mélanges miscibles de ceux-ci ; et de préférence est un polyamide.
14. Procédé de fabrication d'une pièce selon l'une des revendications 1 à 8, comprenant la fourniture de la composition et la mise en forme de la pièce, de préférence par extrusion ou injection.
15. Procédé selon la revendication 14, comprenant une étape préliminaire d'incorporation des nanocharges carbonées dans la composition, de préférence sous la forme d'un mélange-maître comprenant lesdites nanocharges carbonées.
16. Procédé d'assemblage d'une première pièce avec une deuxième pièce, comprenant la soudure avec un rayonnement laser d'une portion de la première pièce avec une portion de la deuxième pièce, ladite portion de la première pièce étant transparente au rayonnement laser et ladite portion de la deuxième pièce étant absorbante pour le rayonnement laser, et ladite portion de la première pièce étant de couleur noire et comportant au moins une couche d'une composition comprenant un polymère thermoplastique et des nanocharges carbonées non agglomérées ou non agrégées .
17. Procédé selon la revendication 16, dans lequel la première pièce est une pièce selon l'une des revendications 1 à 8.
18. Procédé selon la revendication 16 ou 17, dans lequel la première pièce est un tuyau flexible et la deuxième pièce est un connecteur rigide ; ou dans lequel la première pièce est un connecteur rigide et la deuxième pièce est un tuyau flexible.
19. Composition comprenant un polymère thermoplastique et des nanocharges carbonées non agglomérées ou non agrégées en une quantité de 100 à 500 ppm.
20. Composition selon la revendication 19, dans laquelle les nanocharges carbonées sont présentes en une quantité de 100 à 250 ppm, de préférence de 100 à 200 ppm.
21. Composition selon la revendication 19 ou 20, dans laquelle les nanocharges carbonées sont choisies parmi les nanotubes de carbone, les nanofibres de carbone, le graphène, le noir de carbone nanométrique et leurs mélanges.
22. Composition selon l'une des revendications 19 à 21 , dans laquelle le polymère thermoplastique est choisi parmi les polyamides, les polyacétals, les polycétones, les polyacryliques, les polyoléfines, les polycarbonates, les polystyrènes, les polyesters, les polyéthers, les polysulfones, les polymères fluorés, les polyuréthanes, les polyamideimides, les polyarylates, les polyarylsulfones, les polyéthersulfones, les sulfures de polyarylène, les chlorures de polyvinyle, les polyétherimides, les polyéthercétones, les copolymères de ceux-ci et les mélanges miscibles de ceux-ci ; et de préférence est un polyamide.
PCT/FR2014/052747 2013-11-04 2014-10-29 Composition polymerique de couleur noire adaptee a la soudure laser WO2015063413A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1360766 2013-11-04
FR1360766A FR3012813A1 (fr) 2013-11-04 2013-11-04 Composition polymerique de couleur noire adaptee a la soudure laser

Publications (1)

Publication Number Publication Date
WO2015063413A1 true WO2015063413A1 (fr) 2015-05-07

Family

ID=49817070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/052747 WO2015063413A1 (fr) 2013-11-04 2014-10-29 Composition polymerique de couleur noire adaptee a la soudure laser

Country Status (2)

Country Link
FR (1) FR3012813A1 (fr)
WO (1) WO2015063413A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150174883A1 (en) * 2013-12-21 2015-06-25 Xiamen Runner Industrial Corporation Laser welding structure for connecting water passage element
CN106996492A (zh) * 2016-01-26 2017-08-01 华尔达(厦门)塑胶有限公司 一种管件连接结构及其制作方法
FR3051528A1 (fr) * 2016-05-23 2017-11-24 Saipem Sa Procede de raccordement de deux elements unitaires de conduite de transport de fluides au moyen de coques rigides
CN109231162A (zh) * 2018-09-07 2019-01-18 厦门大学 一种无缝焊接碳纳米管的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373026A (en) * 1992-12-15 1994-12-13 The Dow Chemical Company Methods of insulating with plastic structures containing thermal grade carbon black
WO2002036329A1 (fr) 2000-11-06 2002-05-10 Basf Aktiengesellschaft Procede d'assemblage de pieces moulees
WO2003002456A2 (fr) 2001-06-28 2003-01-09 Institut National Polytechnique De Toulouse Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise
US20030125429A1 (en) 1999-12-14 2003-07-03 Detlev Joachimi Laser beam weldable thermoplastic molding materials
US20040140668A1 (en) 2002-09-27 2004-07-22 Degussa Ag Pipe connection
EP1533105A1 (fr) 2003-10-15 2005-05-25 Orient Chemical Industries, Ltd. Composition résineuse colorée et transparente au rayonnement laser et procédé de soudure à laser
US20050137325A1 (en) 2000-11-13 2005-06-23 Reiko Koshida Fabricated resin products for laser welding and including transmitting and absorbing black colorants, and colored resin compositions therefor
EP1552916A1 (fr) 2002-07-09 2005-07-13 Ube Industries, Ltd. Procede de jonction d'articles tubulaires
US20050217790A1 (en) 2001-10-24 2005-10-06 Detlev Joachimi Laser-absorbing molding compositions with low carbon black contents
WO2008047022A1 (fr) 2006-10-19 2008-04-24 Arkema France Matériau composite conducteur à base de polymère thermoplastique et de nanotube de carbone
WO2011088869A1 (fr) 2010-01-23 2011-07-28 Hydac Filtertechnik Gmbh Élément filtrant conducteur et dispositif de filtration comprenant un élément filtrant
US20110288220A1 (en) 2010-05-18 2011-11-24 Basf Se Laser-transparent polyesters
US20120183778A1 (en) 2011-01-13 2012-07-19 Sabic Innovative Plastics Ip B.V. Thermoplastic compositions, method of manufacture, and uses thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373026A (en) * 1992-12-15 1994-12-13 The Dow Chemical Company Methods of insulating with plastic structures containing thermal grade carbon black
US20030125429A1 (en) 1999-12-14 2003-07-03 Detlev Joachimi Laser beam weldable thermoplastic molding materials
WO2002036329A1 (fr) 2000-11-06 2002-05-10 Basf Aktiengesellschaft Procede d'assemblage de pieces moulees
US20050137325A1 (en) 2000-11-13 2005-06-23 Reiko Koshida Fabricated resin products for laser welding and including transmitting and absorbing black colorants, and colored resin compositions therefor
WO2003002456A2 (fr) 2001-06-28 2003-01-09 Institut National Polytechnique De Toulouse Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise
US20050217790A1 (en) 2001-10-24 2005-10-06 Detlev Joachimi Laser-absorbing molding compositions with low carbon black contents
EP1552916A1 (fr) 2002-07-09 2005-07-13 Ube Industries, Ltd. Procede de jonction d'articles tubulaires
US20040140668A1 (en) 2002-09-27 2004-07-22 Degussa Ag Pipe connection
EP1533105A1 (fr) 2003-10-15 2005-05-25 Orient Chemical Industries, Ltd. Composition résineuse colorée et transparente au rayonnement laser et procédé de soudure à laser
WO2008047022A1 (fr) 2006-10-19 2008-04-24 Arkema France Matériau composite conducteur à base de polymère thermoplastique et de nanotube de carbone
WO2011088869A1 (fr) 2010-01-23 2011-07-28 Hydac Filtertechnik Gmbh Élément filtrant conducteur et dispositif de filtration comprenant un élément filtrant
US20130062271A1 (en) 2010-01-23 2013-03-14 Giuseppe Galifi Conductive filter element and filter device having a filter element
US20110288220A1 (en) 2010-05-18 2011-11-24 Basf Se Laser-transparent polyesters
US20120183778A1 (en) 2011-01-13 2012-07-19 Sabic Innovative Plastics Ip B.V. Thermoplastic compositions, method of manufacture, and uses thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FLAHAUT ET AL., CHEM. COM., 2003, pages 1442
LARRY DOSSER ET AL., PROC. OF SPIE, vol. 5339, pages 465 - 474
LARRY DOSSER ET AL: "<title>Transmission welding of carbon nanocomposites with direct-diode and Nd:YAG solid state lasers</title>", PROCEEDINGS OF SPIE, vol. 5339, 15 July 2004 (2004-07-15), pages 465 - 474, XP055127099, ISSN: 0277-786X, DOI: 10.1117/12.528380 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150174883A1 (en) * 2013-12-21 2015-06-25 Xiamen Runner Industrial Corporation Laser welding structure for connecting water passage element
CN106996492A (zh) * 2016-01-26 2017-08-01 华尔达(厦门)塑胶有限公司 一种管件连接结构及其制作方法
FR3051528A1 (fr) * 2016-05-23 2017-11-24 Saipem Sa Procede de raccordement de deux elements unitaires de conduite de transport de fluides au moyen de coques rigides
WO2017203128A3 (fr) * 2016-05-23 2018-01-18 Saipem S.A. Procédé de raccordement de deux éléments unitaires de conduite de transport de fluides au moyen de coques rigides
CN109231162A (zh) * 2018-09-07 2019-01-18 厦门大学 一种无缝焊接碳纳米管的方法
CN109231162B (zh) * 2018-09-07 2019-11-01 厦门大学 一种无缝焊接碳纳米管的方法

Also Published As

Publication number Publication date
FR3012813A1 (fr) 2015-05-08

Similar Documents

Publication Publication Date Title
EP2855569B1 (fr) Utilisation de nanocharges carbonees a tres faible taux pour la stabilisation uv de materiaux composites
EP2855564B1 (fr) Matériau composite a très faible taux de nanocharges carbonées, son procédé de préparation et ses utilisations
WO2015063413A1 (fr) Composition polymerique de couleur noire adaptee a la soudure laser
Guo et al. Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor–acceptor nanohybrid
EP2296871B2 (fr) Conduite avec gaine a permeabilite reduite aux composes acides
EP1634341B1 (fr) Cellule photovoltaique comprenant de nanotubes de carbone ayant a ses surfaces un pigment
EP1995274A1 (fr) Procédé de préparation de pré-composites à base de nanotubes, notamment de carbone
FR2991333A1 (fr) Utilisation de nanocharges carbonees a tres faible taux pour le renfort mecanique de materiaux composites eventuellement charges
FR2940659A1 (fr) Fibre composite a base de pekk, son procede de fabrication et ses utilisations
EP2191045A2 (fr) Procede continu d&#39;obtention de fibres composites a base de particules colloidales et fibre obtenue par ce procede
WO2010136720A1 (fr) Procede de fabrication d&#39;une fibre conductrice multicouche par enduction-coagulation
FR2540130A1 (fr) Composition de caoutchouc
CA3039721A1 (fr) Nouveau procede de fabrication de materiaux hautement carbones et materiau hautement carbone obtenu
EP2160444A1 (fr) Matériau composite comprenant des nanotubes dispersés dans une matrice polymérique fluorée
FR2978170A1 (fr) Fibres composites conductrices a base de graphene
WO2016092208A1 (fr) Composition polymérique de couleur noire adaptée a la soudure laser
FR3079521A1 (fr) Composition thermoplastique a base de polyolefines pour la realisation d&#39;objets de proprietes antistatiques permanentes.
WO2015028761A1 (fr) Composition de polymeres fluores thermoplastiques pour les tubes off-shore
WO2008145911A2 (fr) Procédé de préparation d&#39;une suspension aqueuse de nanotubes de carbone et suspension ainsi obtenue
FR3065963A1 (fr) Noir de carbone et composes de caoutchouc le contenant
FR2950333A1 (fr) Procede de fonctionnalisation de nanotubes
WO2012160288A1 (fr) Fibres composites conductrices comprenant des charges conductrices carbonees et un polymere conducteur
TW202124269A (zh) 用於電磁干擾屏蔽的組成物
EP2598811A2 (fr) Absorbeur de capteur solaire thermique, capteur le comprenant, et procédé pour sa préparation
EP0434115A1 (fr) Masse plastique à base de polyoléfine et d&#39;une charge minérale particulaire et structures multicouches constituées à partir de cette masse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825385

Country of ref document: EP

Kind code of ref document: A1