WO2008145911A2 - Procédé de préparation d'une suspension aqueuse de nanotubes de carbone et suspension ainsi obtenue - Google Patents

Procédé de préparation d'une suspension aqueuse de nanotubes de carbone et suspension ainsi obtenue Download PDF

Info

Publication number
WO2008145911A2
WO2008145911A2 PCT/FR2008/050697 FR2008050697W WO2008145911A2 WO 2008145911 A2 WO2008145911 A2 WO 2008145911A2 FR 2008050697 W FR2008050697 W FR 2008050697W WO 2008145911 A2 WO2008145911 A2 WO 2008145911A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
dispersant
suspension
rotor
monomer
Prior art date
Application number
PCT/FR2008/050697
Other languages
English (en)
Other versions
WO2008145911A8 (fr
WO2008145911A3 (fr
Inventor
Dominique Plee
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to US12/596,533 priority Critical patent/US20100108950A1/en
Priority to EP08805669A priority patent/EP2137108A2/fr
Priority to JP2010503566A priority patent/JP2010524818A/ja
Priority to CN200880021224A priority patent/CN101687644A/zh
Publication of WO2008145911A2 publication Critical patent/WO2008145911A2/fr
Publication of WO2008145911A3 publication Critical patent/WO2008145911A3/fr
Publication of WO2008145911A8 publication Critical patent/WO2008145911A8/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/17Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an aqueous suspension of carbon nanotubes, its method of preparation and its uses.
  • Carbon nanotubes are known and possess particular crystalline structures, tubular, hollow and closed, composed of atoms arranged regularly in pentagons, hexagons and / or heptagons, obtained from carbon.
  • CNTs generally consist of one or more coiled graphite sheets.
  • SWNTs single wall nanotubes
  • Multi Wall Nanotubes or MWNTs Multi Wall Nanotubes
  • CNTs are commercially available or can be prepared by known methods. There are several methods of synthesis of CNTs, including electrical discharge, laser ablation and chemical vapor deposition or CVD (Chemical Vapor Deposition) which ensures the production of large quantities of carbon nanotubes and therefore obtaining them at a cost price compatible with their massive use.
  • This process consists precisely in injecting a source of carbon at relatively high temperature over a catalyst which may itself consist of a metal such as iron, cobalt, nickel or molybdenum, supported on an inorganic solid such as alumina, silica or magnesia.
  • Carbon sources can include methane, ethane, ethylene, acetylene, ethanol, methanol or even a mixture of carbon monoxide and hydrogen (HIPCO process).
  • the application WO 86 / 03455A1 of Hyperion Catalysis International Inc. describes in particular the synthesis of CNTs. More particularly, the process comprises contacting a metal-based particle, such as in particular iron, cobalt or nickel, with a gaseous compound based on carbon, at a temperature of between approximately 850 ° C. and 1200 ° C. 0 C, the proportion by dry weight of the carbon-based compound with respect to the metal-based particle being at least about 100: 1.
  • a metal-based particle such as in particular iron, cobalt or nickel
  • the CNTs have both excellent stiffness (measured by the Young's modulus), comparable to that of steel, while being extremely light.
  • they have excellent electrical and thermal conductivity properties that make it possible to consider using them as additives to impart these properties to various materials, in particular macromolecular materials, such as polyamides, polycarbonate, polyesters, polystyrene, polyethylether ketones and polyethylene imine.
  • CNTs are difficult to handle and disperse, because of their small size, their powderiness and possibly, when they are obtained by the CVD technique, their entangled structure, all the more important that the we are trying to increase their mass productivity in order to improve production and reduce the residual ash content.
  • the existence of strong Van der Waals interactions between the single-walled nanotubes also impairs their dispersibility and the stability of the suspensions obtained.
  • the application FR-2,870,251 discloses a composite material obtained by introducing into a polymer matrix a pre-composite comprising itself carbon nanotubes (CNTs) treated with a compatibilizer which is a copolymer containing at least one block B1 comprising an acid and / or anhydride monomer, such as an acrylic monomer, and a styrene, (meth) acrylate or (meth) acrylamide monomer, and optionally a block B2 compatible with the polymer matrix, such as a vinylic, vinyldiene, diene or olefinic block and in particular a block based on styrene.
  • a compatibilizer which is a copolymer containing at least one block B1 comprising an acid and / or anhydride monomer, such as an acrylic monomer, and a styrene, (meth) acrylate or (meth) acrylamide monomer, and optionally a block B2 compatible with the polymer matrix
  • Block B1 is preferably polymerized in the presence of NTCs dispersed in a solvent which may be water or a solvent organic, with mechanical stirring or by sonication.
  • the product obtained can in particular be used as an additive in latices.
  • Example 40 of this document further describes the formation of an acrylic / styrene copolymer in the presence of NTC in dioxane. The pre-composite obtained disperses well in toluene and can then be incorporated in polystyrene.
  • the applications WO 03/050332 and WO 03/106600 describe, for their part, dispersions of carbon nanotubes, in particular in water, in the presence of copolymers which may contain alkyl methacrylate units. These dispersions may for example be carried out using ultrasound or a colloid mill. This solution generally leads to a rather poor dispersion, probably due to the poor affinity of the polymer with the nanotubes.
  • the subject of the present invention is thus a process for preparing an aqueous suspension of carbon nanotubes, comprising:
  • the aqueous contacting of said nanotubes with at least one dispersant consisting of a copolymer containing at least one anionic hydrophilic monomer and at least one monomer containing at least one aromatic group substituted with at least one chain containing one or more atoms; oxygen, said chain connecting the aromatic group to the unsaturated or cyclic chain of the monomer capable of opening during the formation of the copolymer, the weight ratio of dispersant to carbon nanotubes used ranging from 0.6: 1 to 1 , 9: 1 and -
  • the mechanical treatment of the mixture thus obtained with ultrasound or with a rotor-stator system or by passage in a ball mill or ball.
  • the process according to the invention makes it possible to obtain suspensions which are stable for several days at room temperature and which, in particular, do not have a grain of more than 30 ⁇ m or more than 20 ⁇ m and / or contain a concentration of carbon nanotubes. in the supernatant of the suspension at least equal to 80% of the concentration used, and this for carbon nanotube concentrations ranging from 1 to 50 g / l, in particular from 5 to 20 g / l and more particularly from 10 to 20 g / l.
  • aqueous medium is intended to mean any medium containing at least water as a continuous phase, optionally mixed with at least one water-miscible solvent, such as alcohols including ethanol and / or or ketones including acetone and methyl ethyl ketone and / or in which at least one oil can be dispersed.
  • aqueous medium therefore covers both latexes and oil-in-water emulsions, for example. It is preferred that this medium consists only of the aforementioned constituents and advantageously that it contains only water.
  • the carbon nanotubes (hereinafter, CNTs) that can be used according to the invention can be of the single-wall, double-walled or multi-walled type. Double-wall CNTs may especially be prepared as described by FLAHAUT et al in Chem. Com. (2003), 1442. The NTCs at Multiple walls may themselves be prepared as described in WO 03/02456.
  • the CNTs used according to the invention usually have a diameter ranging from 0.1 to 100 nm, preferably from 0.4 to 50 nm and better still from 1 to 30 nm and advantageously a length of 0.1 to 10 nm. .mu.m. Their length / diameter ratio is advantageously greater than 10 and most often greater than 100.
  • Their specific surface area is, for example, between 100 and 300 m 2 / g and their apparent density may especially be between 0.05 and 0.5 g. / cm 3 and more preferably between 0.1 and 0.2 g / cm 3 .
  • the multiwall carbon nanotubes may for example comprise from 5 to 15 sheets and more preferably from 7 to 10 sheets.
  • crude carbon nanotubes is especially commercially available from Arkema under the trade name Graphistrength® ® C100.
  • nanotubes may be purified and / or oxidized and / or milled before being used in the process according to the invention.
  • the grinding of the CNTs can in particular be carried out cold or hot and be carried out according to known techniques used in devices such as ball mills, ball mills, hammers, grinders, knives, jet gas or any other crushing system capable of reducing the size of the entangled network of CNTs. It is preferred that this grinding step be practiced according to a technique of grinding by gas jet and in particular in an air jet mill.
  • the purification of the CNTs can be carried out by washing with a sulfuric acid solution, so as to rid them of any residual mineral and metal impurities originating from their preparation process.
  • the weight ratio of CNTs to sulfuric acid may especially be between 1: 2 and 1: 3 inclusive.
  • the purification operation may also be carried out at a temperature ranging from 90 to 120 ° C., for example for a period of 5 to 10 hours. This operation can advantageously be followed by steps of rinsing with water and drying the purified CNTs.
  • the oxidation of the CNTs is advantageously carried out by putting them in contact with a solution of sodium hypochlorite containing from 0.5 to 15% by weight of NaOCl and preferably from 1 to 10% by weight of NaOCl, for example in a weight ratio of CNTs to sodium hypochlorite ranging from 1: 0.1 to 1: 1.
  • the oxidation is advantageously carried out at a temperature below 60 ° C. and preferably at room temperature, for a duration ranging from a few minutes to 24 hours. This oxidation operation may advantageously be followed by filtration and / or centrifugation, washing and drying steps of the oxidized CNTs.
  • the CNTs (crude or crushed and / or purified and / or oxidized) are brought into contact with a dispersant consisting of a copolymer containing at least one hydrophilic monomer anionic and at least one monomer containing at least one aromatic group substituted with at least one chain containing one or more oxygen atoms, said chain connecting the aromatic group to the unsaturated or cyclic chain of the monomer capable of opening during formation of the copolymer.
  • this copolymer contains no other monomer than the two aforementioned.
  • the anionic hydrophilic monomer be chosen from ethylenically unsaturated monomers bearing at least one carboxylic acid function, such as acrylic, diacrylic, methacrylic, crotonic, isocrotonic, cinnamic, maleic, fumaric, dimethylfumaric and itaconic acids, citraconic, vinylbenzoic, acrylamidoglycolic, carboxylic anhydrides bearing a vinyl bond such as maleic anhydride, and their salts and mixtures thereof.
  • carboxylic acid function such as acrylic, diacrylic, methacrylic, crotonic, isocrotonic, cinnamic, maleic, fumaric, dimethylfumaric and itaconic acids, citraconic, vinylbenzoic, acrylamidoglycolic, carboxylic anhydrides bearing a vinyl bond such as maleic anhydride, and their salts and mixtures thereof.
  • the anionic hydrophilic monomer may be chosen from ethylenically unsaturated monomers bearing at least one sulphonic acid function, such as acrylamidopropanesulphonic acid, 2-acrylamido-2-methylpropanesulphonic acid, styrene sulphonic acid, and the like. vinylsulfonic acid, vinylbenzene sulfonic acid, their salts and mixtures thereof.
  • the salts of the above monomers can in particular be alkali metal salts, such as sodium or potassium salts; alkaline earth metal salts, in particular magnesium and calcium; ammonium salts; primary amine salts, secondary or tertiary, for example stearylamine, ethanolamine, mono- and diethylamine; or aluminum salts.
  • alkali metal salts such as sodium or potassium salts
  • alkaline earth metal salts in particular magnesium and calcium
  • ammonium salts such as sodium or potassium salts
  • primary amine salts secondary or tertiary, for example stearylamine, ethanolamine, mono- and diethylamine
  • aluminum salts such as aluminum salts.
  • the copolymer preferably comprises from 10 to 99% by weight and more preferably from 50 to 97% by weight of anionic hydrophilic monomer and from 1 to 90% by weight, preferably from 3 to 50% by weight, of monomer containing a group. aromatic.
  • the chain containing one or more oxygen atoms may in particular constitute a poly (alkylene glycol) group which may itself be a poly (propylene glycol) or poly (ethylene glycol) group. , or a mixture of these two groups.
  • a preferred example of such a monomer is a poly (alkylene glycol) aryl ether (meth) acrylate. It is furthermore preferred that the aryl group of the aryl ether is a phenyl group. This aryl group may be further substituted by at least one alkyl and / or arylalkyl radical such as a tristyryl radical.
  • the poly (alkylene glycol) is preferably a poly (ethylene glycol) group.
  • the number of oxyalkylene units may range from 5 to 100 and preferably from 10 to 50.
  • a preferred dispersant for use in the present invention is ethoxylated tristyryl phenol methacrylate containing 25 moles of ethylene oxide, which is especially available from COATEX in the form of 25 weight percent aqueous solution of polymer.
  • COATEX ethoxylated tristyryl phenol methacrylate
  • Such a polymer is in particular described in US Pat. No. 6,093,764.
  • Another dispersant suitable for use in the present invention is marketed by the company ROHM & HAAS under the trade name OROTAN * 731 K.
  • the weight ratio of dispersant to carbon nanotubes employed ranges from 0.6: 1 to 1: 1. It is furthermore preferred that the total mass of dispersant and carbon nanotubes represents from 0.1 to 5% and more preferably from 0.5 to 2% by weight of the aqueous medium.
  • the mixture of the CNTs and the dispersant is subjected to a mechanical treatment chosen from ultrasound, a treatment using a rotor-stator system or the passage in a ball mill. or ball.
  • ultrasound treatment it is preferred that it be carried out for more than 10 minutes at a frequency of at least 20 kHz, for example for 20 to 40 minutes at this frequency.
  • the Applicant has demonstrated that the passage of the suspension of carbon nanotubes to ultrasound is the preferred treatment alternative in the case where it is subsequently desired to form a film from this suspension.
  • an example of a rotor-stator system suitable for use in the present invention generally comprises a rotor driven by a motor and provided with fluid guiding systems perpendicular to the axis of the rotor, such as blades or blades disposed substantially radially or a flat disk provided with peripheral teeth, said rotor possibly being provided with a ring gear, and a stator arranged concentrically with respect to the rotor, and at a short distance outside thereof, said stator being equipped on at least a portion of its circumference of openings, formed for example in a grid or defining between them one or more rows of teeth, which are adapted to the passage of the fluid sucked into the rotor and ejected by the guide systems to said openings.
  • One or more of the aforementioned teeth may be provided with sharp edges. The fluid is thus subjected to high shear, both in the gap between the rotor and the stator and through the openings in the stator.
  • Such a rotor-stator system is sold especially by the company Silverson under the trade name Silverson ® L4RT.
  • rotor-stator systems still consist of colloid mills, defiant turbines and high-shear mixers of the rotor-stator type, such as the apparatus marketed by the company IKA-WERKE or the company ADMIX.
  • the rotor speed is set to at least 1,000 rpm and preferably at least 3000 rpm or even at least 5,000 rpm.
  • the width of the air gap between the rotor and the stator be less than 1 mm and preferably less than 200 microns, more preferably less than 100 microns and more preferably less than 50 microns or even less than 40 microns.
  • the rotor-stator system used according to the invention advantageously confers a shear of 1,000 to 10 9 s -1 .
  • the method according to the invention is implemented in such a way that the concentration of carbon nanotubes before passing through the rotor-stator is at least 15 g / l, or even at least 20 g / l. g / 1 and then the nanotubes are diluted with water after passing through the rotor-stator. It has indeed been observed that by working on more viscous suspensions, the power dissipated in the apparatus was higher and the suspension of nanotubes obtained after shearing was more stable.
  • the present invention also relates to the suspension that can be obtained according to the method as described above.
  • the suspension according to the invention can in particular be used for the reinforcement of polymeric matrices; for the manufacture of electronic component packaging materials (for example for electromagnetic shielding and / or antistatic dissipation), such as housings for mobile telephones, computers, on-board electronic devices for motor vehicles, rail vehicles or air vehicles ; for the manufacture of inks for the electrical connection between two electronic components; or for the manufacture of medical instruments, fuel lines (gasoline or diesel), adhesive materials, antistatic coatings, thermistors, or electroluminescent diode electrodes, photovoltaic cells or supercapacitors.
  • electronic component packaging materials for example for electromagnetic shielding and / or antistatic dissipation
  • inks for the electrical connection between two electronic components
  • medical instruments fuel lines (gasoline or diesel), adhesive materials, antistatic coatings, thermistors, or electroluminescent diode electrodes, photovoltaic cells or supercapacitors.
  • the present invention therefore also relates to the use of the suspension as defined above for the aforementioned purposes.
  • NTC NTC is prepared by Chemical Vapor Deposition (CVD) from ethylene at 650 ° C., which is passed over a catalyst consisting of iron supported on alumina.
  • the product resulting from the reaction contains a ash content, measured by loss on ignition at 650 ° C. in air, of 7%.
  • This sample which will be designated subsequently by NTCl, contains 3% of Fe 2 O 3 and 4% of Al 2 O 3 , determined by chemical analysis.
  • NTCl 18.5 g of NTCl, obtained as described in Example 1, are subjected to a purification operation in 300 ml of sulfuric acid at 14% by weight for 8 hours at 103 ° C. Once washed with water and dried, a product, identified by NTC2, containing an ash content of 2.6% (2.5% Fe 2 O 3 and 0.1% ⁇ 1 2 O 3 determined by chemical analysis) is obtained. .
  • Example 3 Preparation of a Sample of Oxidized CNTs
  • NTC3 and NTC4 Two solutions of 100 ml of sodium hypochlorite at 2% and 5% by weight, respectively, were prepared in which 5 g of NTCl prepared as described in Example 1 were added. After 4 hours with magnetic stirring at room temperature, the samples are filtered, washed and dried. They will be designated respectively by NTC3 and NTC4. The measurement of surface functions by ESCA reveals that, if the aluminum content is not decreased, the rate of oxygen functions is much greater than in the NTCl sample.
  • CNTs Different suspensions of CNTs were prepared according to the following method: 4 g of a solution of 25% oxyethylenated tristyrylphenol methacrylate (25 EO) of active ingredient, supplied by COATEX, were added to a 125 ml beaker. it was made up to 100 ml with deionized water. 1 g of CNT was added thereto, and then the mixture was sonicated at a frequency of 20 KHz, using a Vibracell apparatus from BIOBLOCK, having a displayed electric power of 300 W.
  • a solution of 25% oxyethylenated tristyrylphenol methacrylate (25 EO) of active ingredient supplied by COATEX
  • the suspensions according to the invention having a weight ratio of the CNTs to the dispersant of 1: 1, lead to suspensions having little or no grain and a good concentration of CNT in the supernatant, especially better than the duration of ultrasonication and / or the density of oxygen functions (created by sodium hypochlorite) are higher, which reflects the good dispersion of CNTs in the water.
  • a ratio of the dispersant to the NTC of less than or equal to 0.5: 1 or greater than or equal to 2: 1 does not make it possible to obtain a satisfactory dispersion. It is thought, without wishing to be bound by this theory, that the increase of this ratio destabilizes the suspension, probably by the formation of bridges between the particles, while its decrease has the same effect for lack of species capable of stabilizing the particles. .
  • This apparatus consists of a vertical hollow rotor 31 mm in diameter and a concentric grid acting as a stator 32 mm in diameter, the dispersion flowing radially from the inside to the outside of the apparatus.
  • the rotation speed is 7,000 revolutions / mm, ie a peripheral speed of about 12 m / s.
  • the operation begins with a grid pierced with small square holes of 5 mm side to allow rapid pumping of the suspension, and continues, after thickening of the suspension, with a grid pierced with small square holes of 2 mm side for 10 minutes. A dilution with water is then carried out in order to obtain 10 g / l of carbon nanotubes. After standing for 5 days at room temperature, no grains are observed and the concentration of nanotubes in the supernatant is 9.8 g / l, very close to the expected value.
  • Example 7 Preparation to the rotor-stator mixer of an aqueous suspension of oxidized CNTs in the presence of dispersant
  • NTC2 sodium hypochlorite
  • An aqueous suspension of CNTs is then prepared as described in Example 6, except that starting from 50 g / l of CNTs of the NTC5 type and of 50 g / l of dispersant, the suspension being diluted after passage through Silverson for obtain an NTC concentration of 10 g / l.
  • the film obtained by simply drying this suspension is then observed and its conductivity is measured using the 4-wire method.
  • This method consists in measuring the conductivity using a system consisting of four parallel and horizontal copper wires, namely two external wires connected to one of the poles and two internal wires to the other pole, the product to test being maintained by pressure on the wires.
  • the suspension obtained according to the invention makes it possible to obtain a fairly dense and conductive film despite the presence of the dispersant which might have been thought to impede the passage of the current.
  • the intensity-potential curve drawn elsewhere also appears linear.
  • OROTAN 731 K which is a dispersant within the meaning of the present invention, makes it possible to form very smooth and self-supporting films on PET, which is not the case with the comparative polymer, while at the same time presenting good electrical conductivity properties, as shown in the table above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

La présente invention a pour objet un procédé de préparation d'une suspension aqueuse de nanotubes de carbone, comprenant : la mise en contact en milieu aqueux desdits nanotubes avec au moins un dispersant constitué d'un copolymère renfermant au moins un monomère hydrophile anionique et au moins un monomère renfermant au moins un groupe aromatique substitué par au moins une chaîne renfermant un ou plusieurs atomes d'oxygène, ladite chaîne reliant le groupe aromatique à la chaîne insaturée ou cyclique du monomère susceptible de s'ouvrir lors de la formation du copolymère, le rapport pondéral du dispersant aux nanotubes de carbone mis en oeuvre allant de 0,6:1 à 1,9:1; et le traitement mécanique du mélange ainsi obtenu aux ultrasons ou à l'aide d'un système rotor- stator ou par passage dans un broyeur a boules ou à billes. Elle se rapporte également à la suspension ainsi obtenue ainsi qu'à ses utilisations.

Description

Procédé de préparation d'une suspension aqueuse de nanotubes de carbone et suspension ainsi obtenue
La présente invention concerne une suspension aqueuse de nanotubes de carbone, son procédé de préparation et ses utilisations.
Les nanotubes de carbone (ou NTC) sont connus et possèdent des structures cristallines particulières, de forme tubulaire, creuses et closes, composées d'atomes disposés régulièrement en pentagones, hexagones et/ou heptagones, obtenues a partir de carbone. Les NTC sont en général constitués d'un ou plusieurs feuillets de graphite enroulés. On distingue ainsi les nanotubes monoparois (Single Wall Nanotubes ou SWNT) et les nanotubes multiparois (Multi Wall Nanotubes ou MWNT) .
Les NTC sont disponibles dans le commerce ou peuvent être préparés par des méthodes connues. Il existe plusieurs procédés de synthèse de NTC, notamment la décharge électrique, l'ablation laser et le dépôt chimique en phase vapeur ou CVD (Chemical Vapour Déposition) qui permet d'assurer la fabrication en grande quantité de nanotubes de carbone et donc leur obtention à un prix de revient compatible avec leur utilisation massive. Ce procédé consiste précisément à injecter une source de carbone à relativement haute température sur un catalyseur qui peut lui-même être constitué d'un métal tel que le fer, le cobalt, le nickel ou le molybdène, supporté sur un solide inorganique tel que l'alumine, la silice ou la magnésie. Les sources de carbone peuvent comprendre le méthane, l'éthane, l'éthylène, l'acétylène, l'éthanol, le méthanol , voire un mélange de monoxyde de carbone et d'hydrogène (procédé HIPCO) .
Ainsi, la demande WO 86/03455A1 d'Hyperion Catalysis International Inc. décrit notamment la synthèse des NTC. Plus particulièrement, le procédé comprend la mise en contact d'une particule à base de métal tel que notamment le fer, le cobalt ou le nickel, avec un composé gazeux à base de carbone, à une température comprise entre environ 8500C et 12000C, la proportion en poids sec du composé à base de carbone par rapport à la particule à base de métal étant d'au moins environ 100 :1.
D'un point de vue mécanique, les NTC présentent à la fois une excellente rigidité (mesurée par le module d'Young) , comparable à celle de l'acier, tout en étant extrêmement légers. En outre, ils présentent d'excellentes propriétés de conductivité électrique et thermique qui permettent d'envisager de les utiliser comme additifs pour conférer ces propriétés à divers matériaux, notamment macromoléculaires, tels que les polyamides, le polycarbonate, les polyesters, le polystyrène, les polyéthyléther cétones et la polyéthylène imine .
Toutefois, les NTC s'avèrent difficiles à manipuler et à disperser, en raison de leur faible taille, de leur pulvérulence et éventuellement, lorsqu'ils sont obtenus par la technique de CVD, de leur structure enchevêtrée, d'autant plus importante que l'on cherche à augmenter leur productivité massique aux fins d'améliorer la production et de réduire le taux de cendres résiduelles. L'existence de fortes interactions de Van der Waals entre les nanotubes monoparois nuit également a leur dispersibilité et à la stabilité des suspensions obtenues .
Pour remédier à la mauvaise dispersibilité des NTC, qui affecte de manière importante les caractéristiques des composites qu'ils forment avec les matrices polymères dans lesquelles ils sont introduits, il a déjà été proposé différentes solutions dans l'état de la technique. Parmi celles-ci, on peut citer la sonication, qui n'a toutefois qu'un effet temporaire, ou l ' ultrasonication qui a pour effet de couper en partie les nanotubes et de créer des fonctions oxygénées qui peuvent altérer certaines de leurs propriétés.
Il a en outre été suggéré de procéder à des mélanges dans un solvant de NTC avec des agents dispersants tels que des tensioactifs dont le dodécylsulfate de sodium (EP-I 495 171 ; VIGOLO B. et al, Science, 290 (2000), 1331 ; WANG J. et al, J. of Chem. Society, 125, (2003) , 2408 ; MOORE, V. C. et al, Nanoletters, 3, (2003), 2408). Ces derniers ne permettent cependant pas de disperser de grandes quantités de NTC, des dispersions satisfaisantes ne pouvant être obtenues que pour des concentrations en NTC de moins de 2 ou 3 g/1. En outre, les tensioactifs sont susceptibles de désorber entièrement de la surface des NTC lors de l'étape de dialyse généralement mise en oeuvre pour éliminer l'excès de tensioactif dans la solution, ce qui a pour effet de déstabiliser la suspension obtenue.
De manière analogue, il a été suggéré d'utiliser des polymères hydrosolubles tels que la gomme arabique ou un copolymère de styrène et d'acrylate de t-butyle pour disperser des nanotubes de carbone monoparois dans l'eau ou l'éthanol, respectivement (WO 02/76888 et WO 2005/073305) . Le premier de ces procédés nécessite cependant l'emploi de grandes quantités de polymère et ne permet pas de stabiliser plus de 0,5 g/1 de NTC.
Dans d'autres documents encore (WO 02/016257 et WO 2004/097853) , il est suggéré de disperser les NTC à l'aide de copolymères d'acide maléique et d'acide styrène sulfonique. Là encore, l'obtention d'une dispersion concentré en NTC nécessite l'emploi de grandes quantités de dispersant.
Une autre solution, proposée notamment dans les demandes EP-I 359 121 et EP-I 359 169, a consisté à réaliser une dispersion de NTC dans un solvant et un monomère et de procéder à une polymérisation in situ conduisant à l'obtention de NTC fonctionnalisés.
Dans le même ordre d'idées, la demande FR-2 870 251 divulgue un matériau composite obtenu par introduction dans une matrice polymère d'un pré-composite comprenant lui-même des nanotubes de carbone (NTC) traités par un compatibilisant qui est un copolymère renfermant au moins un bloc Bl comportant un monomère acide et/ou anhydride, tel qu'un monomère acrylique, et un monomère styrène, (meth) acrylate ou (meth) acrylamide, et éventuellement un bloc B2 compatible avec la matrice polymère, tel qu'un bloc vinylique, vinyldiénique, diénique ou oléfinique et notamment un bloc à base de styrène. Le bloc Bl est de préférence polymérisé en présence des NTC dispersés dans un solvant qui peut être de 1 ' eau ou un solvant organique, sous agitation mécanique ou par sonication. Le produit obtenu peut notamment être utilisé comme additif dans des latex. L'Exemple 4 0 de ce document décrit par ailleurs la formation d'un copolymère acrylique/styrène en présence de NTC dans le dioxane . Le pré-composite obtenu se disperse bien dans le toluène et peut ensuite être incorporé dans du polystyrène.
Ces solutions sont toutefois complexes et peuvent s'avérer coûteuses en fonction des produits utilisés. Par ailleurs, les opérations de greffage risquent d'abîmer la structure des nanotubes et, par conséquent, leurs propriétés électriques et/ou mécaniques (GARG A. et al, Chem. Phys. Lett. 295, (1998), 273).
Les demandes WO 03/050332 et WO 03/106600 décrivent de leur côté des dispersions de nanotubes de carbone, notamment dans l'eau, en présence de copolymères pouvant renfermer des motifs méthacrylate d'alkyle. Ces dispersions peuvent par exemple être réalisées à l'aide d'ultrasons ou d'un moulin colloïdal. Cette solution conduit en général a une dispersion assez médiocre, en raison probablement de la mauvaise affinité du polymère avec les nanotubes.
En outre, la demande WO 2005/073305 Ben Gourion suggère d'utiliser un copolymère bloc pour disperser des nanotubes de carbone dans un solvant sélectif de l'un des blocs, tel que l'éthanol ou l ' isopropanol dans le cas d'un copolymère de styrène et d'acrylate de t-butyle, avantageusement à l'aide d'ultrasons. La Demanderesse a maintenant découvert que le choix d'un copolymère particulier mélangé à des nanotubes de carbone en présence d'ultrasons ou à l'aide d'un système rotor-stator offrait un moyen simple et peu coûteux, utilisant peu de solvant, pour disperser de façon homogène ces nanotubes de carbone dans l'eau jusqu'à des concentrations en nanotubes de 10 g/1, sans affecter sensiblement leurs propriétés mécaniques et électriques.
Un tel copolymère a notamment été décrit dans le brevet US-6,093,764 comme agent dispersant d'une charge minérale, telle que le carbonate de calcium, en milieu aqueux. A la connaissance de la Demanderesse, il n'a toutefois encore jamais été suggéré d'utiliser ce copolymère pour disperser des nanotubes de carbone dans l'eau en présence d'ultrasons ou a l'aide d'un système de cisaillement .
La présente invention a ainsi pour objet un procédé de préparation d'une suspension aqueuse de nanotubes de carbone, comprenant :
— la mise en contact en milieu aqueux desdits nanotubes avec au moins un dispersant constitué d'un copolymère renfermant au moins un monomère hydrophile anionique et au moins un monomère renfermant au moins un groupe aromatique substitué par au moins une chaîne renfermant un ou plusieurs atomes d'oxygène, ladite chaîne reliant le groupe aromatique à la chaîne insaturée ou cyclique du monomère susceptible de s'ouvrir lors de la formation du copolymère, le rapport pondéral du dispersant aux nanotubes de carbone mis en oeuvre allant de 0,6:1 à 1,9:1 et - le traitement mécanique du mélange ainsi obtenu aux ultrasons ou à l'aide d'un système rotor- stator ou par passage dans un broyeur à boules ou à billes.
Le procédé selon l'invention permet d'obtenir des suspensions stables pendant plusieurs jours à température ambiante qui, en particulier, ne présentent pas de grain de plus de 30 μm voire de plus de 20 μm et/ou renferment une concentration de nanotubes de carbone dans le surnageant de la suspension au moins égale à 80% de la concentration mise en œuvre, et ce pour des concentrations en nanotubes de carbone allant de 1 à 50 g/1, en particulier de 5 à 20 g/1 et plus particulièrement de 10 à 20 g/1.
Par « milieu aqueux » on entend, au sens de la présente invention, tout milieu renfermant au moins de l'eau comme phase continue, éventuellement mélangée à au moins un solvant miscible à l'eau tel que les alcools dont l ' éthanol et/ou les cétones dont l'acétone et la méthyléthylcétone et/ou dans laquelle peut être dispersée au moins une huile. L'expression « milieu aqueux » couvre donc aussi bien les latex que les émulsions huile-dans- eau, par exemple. On préfère que ce milieu ne soit constitué que des constituants précités et avantageusement qu'il ne contienne que de l'eau.
Les nanotubes de carbone (ci-après, NTC) utilisables selon l'invention peuvent être du type monoparoi, à double paroi ou a parois multiples. Les NTC à double paroi peuvent notamment être préparés comme décrit par FLAHAUT et al dans Chem. Com. (2003), 1442. Les NTC à parois multiples peuvent de leur côté être préparés comme décrit dans le document WO 03/02456.
Les NTC mis en œuvre selon l'invention ont habituellement un diamètre allant de 0,1 à 100 nm, de préférence de 0,4 à 50 nm et, mieux, de 1 à 30 nm et avantageusement une longueur de 0,1 à 10 μm. Leur rapport longueur/diamètre est avantageusement supérieur à 10 et le plus souvent supérieur à 100. Leur surface spécifique est par exemple comprise entre 100 et 300 m2 /g et leur densité apparente peut notamment être comprise entre 0,05 et 0,5 g/cm3 et plus préférentiellement entre 0,1 et 0,2 g/cm3. Les nanotubes de carbone multiparois peuvent par exemple comprendre de 5 à 15 feuillets et plus préférentiellement de 7 à 10 feuillets.
Un exemple de nanotubes de carbone bruts est notamment disponible dans le commerce auprès de la société ARKEMA sous la dénomination commerciale Graphistrength® C100.
Ces nanotubes peuvent être purifiés et/ou oxydés et/ou broyés, avant leur mise en oeuvre dans le procédé selon l'invention.
Le broyage des NTC peut être notamment effectué à froid ou à chaud et être réalisé selon les techniques connues mises en oeuvre dans des appareils tels que broyeurs a billes, à boulets, à marteaux, à meules, à couteaux, jet de gaz ou tout autre système de broyage susceptible de réduire la taille du réseau enchevêtré de NTC. On préfère que cette étape de broyage soit pratiquée selon une technique de broyage par jet de gaz et en particulier dans un broyeur à jet d'air.
La purification des NTC peut être réalisée par lavage à l'aide d'une solution d'acide sulfurique, de manière à les débarrasser d'éventuelles impuretés minérales et métalliques résiduelles, provenant de leur procédé de préparation. Le rapport pondéral des NTC à l'acide sulfurique peut notamment être compris entre 1:2 et 1:3, bornes incluses. L'opération de purification peut par ailleurs être effectuée à une température allant de 90 à 12O0C, par exemple pendant une durée de 5 à 10 heures. Cette opération peut avantageusement être suivie d'étapes de rinçage à l'eau et de séchage des NTC purifiés .
L'oxydation des NTC est avantageusement réalisée en mettant ceux-ci en contact avec une solution d' hypochlorite de sodium renfermant de 0,5 à 15% en poids de NaOCl et de préférence de 1 à 10% en poids de NaOCl, par exemple dans un rapport pondéral des NTC à l' hypochlorite de sodium allant de 1:0,1 à 1:1. L'oxydation est avantageusement réalisée à une température inférieure à 600C et de préférence à température ambiante, pendant une durée allant de quelques minutes à 24 heures. Cette opération d'oxydation peut avantageusement être suivie d'étapes de filtration et/ou centrifugation, lavage et séchage des NTC oxydés.
Dans la première étape du procédé selon l'invention, les NTC (bruts ou broyés et/ou purifiés et/ou oxydés) sont mis en contact avec un dispersant constitué d'un copolymère renfermant au moins un monomère hydrophile anionique et au moins un monomère renfermant au moins un groupe aromatique substitué par au moins une chaîne renfermant un ou plusieurs atomes d'oxygène, ladite chaîne reliant le groupe aromatique à la chaîne insaturée ou cyclique du monomère susceptible de s'ouvrir lors de la formation du copolymère . De préférence, ce copolymêre ne contient pas d'autre monomère que les deux précités.
On préfère selon l'invention que le monomère hydrophile anionique soit choisi parmi les monomères éthyléniquement insaturés portant au moins une fonction acide carboxylique, tels que les acides acrylique, diacrylique, méthacrylique, crotonique, isocrotonique, cinnamique, maléique, fumarique, diméthylfumarique, itaconique, citraconique, vinylbenzoïque, acrylamidoglycolique, les anhydrides carboxyliques porteurs d'une liaison vinylique tels que l'anhydride maléique, ainsi que leurs sels et leurs mélanges.
Dans une variante moins préférée, le monomère hydrophile anionique peut être choisi parmi les monomères éthyléniquement insaturés portant au moins une fonction acide sulfonique, tels que l'acide acrylamidopropanesulfonique, l'acide 2-acrylamido 2- méthylpropanesulfonique , l'acide styrène sulfonique, l'acide vinylsulfonique, l'acide vinylbenzène sulfonique, leurs sels et leurs mélanges.
Les sels des monomères ci-dessus peuvent notamment être des sels de métal alcalin, tels que des sels de sodium ou de potassium ; des sels de métal alcalino- terreux, en particulier de magnésium et de calcium ; des sels d'ammonium ; des sels d'aminé primaire, secondaire ou tertiaire, par exemple de stéarylamine, d' éthanolaminé, de mono- et diéthylamine ; ou des sels d' aluminium.
Le copolymère comprend de préférence de 10 à 99% en poids et plus préférentiellement de 50 à 97% en poids de monomère hydrophile anionique et de 1 à 90% en poids, de préférence de 3 à 50% en poids, de monomère renfermant un groupe aromatique.
Au sein du monomère renfermant au moins un groupe aromatique, la chaîne renfermant un ou plusieurs atomes d'oxygène peut notamment constituer un groupe poly (alkylène glycol) qui peut lui-même être un groupe poly (propylène glycol) ou poly (êthylène glycol) , ou un mélange de ces deux groupes. Un exemple préféré de tel monomère est un (meth) acrylate d'aryléther de poly (alkylène glycol) . On préfère par ailleurs que le groupement aryle de l'aryléther soit un groupe phényle. Ce groupement aryle peut en outre être substitué par au moins un radical alkyle et/ou arylalkyle tel qu'un radical tristyryle. Le poly (alkylène glycol) est dans ce cas de préférence un groupe poly (êthylène glycol) . Le nombre de motifs oxyalkylène peut aller de 5 à 100 et de préférence de 10 à 50.
Un dispersant préféré pour une utilisation dans la présente invention est le méthacrylate de tristyryl phénol éthoxylé renfermant 25 moles d'oxyde d' êthylène, qui esc notamment disponible auprès de la société COATEX sous forme de solution aqueuse à 25% en poids de polymère. Un tel polymère est notamment décrit dans le brevet US-6, 093 , 764. Un autre dispersant convenant à une utilisation dans la présente invention est commercialisé par la société ROHM & HAAS sous la dénomination commerciale OROTAN* 731 K.
Selon une forme d'exécution préférée de l'invention, le rapport pondéral du dispersant aux nanotubes de carbone mis en oeuvre va de 0,6:1 à 1:1. On préfère par ailleurs que la masse totale de dispersant et de nanotubes de carbone représente de 0,1 à 5% et plus préfèrentiellement de 0,5 à 2% du poids du milieu aqueux.
Dans la seconde étape du procédé selon l'invention, le mélange des NTC et du dispersant est soumis à un traitement mécanique choisi parmi les ultrasons, un traitement à l'aide d'un système rotor-stator ou le passage dans un broyeur à boules ou à billes.
Dans le cas où l'on a recours à un traitement aux ultrasons, on préfère que celui-ci soit effectué pendant plus de 10 minutes à une fréquence d'au moins 20 kHz, par exemple pendant 20 à 40 minutes à cette fréquence. La Demanderesse a mis en évidence que le passage de la suspension de nanotubes de carbone aux ultrasons constitue l'alternative de traitement préférée dans le cas où l'on souhaite ultérieurement former un film à partir de cette suspension.
Par ailleurs, un exemple de système rotor-stator convenant à une utilisation dans la présente invention comprend généralement un rotor commandé par un moteur et pourvu de systèmes de guidage de fluide perpendiculaires à l'axe du rotor, tels que des lames ou pales disposées sensiblement radialement ou un disque plat pourvu de dents périphériques, ledit rotor étant éventuellement pourvu d'une couronne dentée, et un stator disposé de façon concentrique par rapport au rotor, et à une faible distance à l'extérieur de celui-ci, ledit stator étant équipé sur au moins une portion de sa circonférence d'ouvertures, ménagées par exemple dans une grille ou définissant entre elles une ou plusieurs rangées de dents, qui sont adaptées au passage du fluide aspiré dans le rotor et éjecté par les systèmes de guidage vers lesdites ouvertures. Une ou plusieurs des dents précitées peuvent être pourvues d'arêtes vives. Le fluide est ainsi soumis à un cisaillement important, à la fois dans l'entrefer entre le rotor et le stator et au travers des ouvertures ménagées dans le stator.
Un tel système de rotor-stator est notamment commercialisé par la société SILVERSON sous la dénomination commerciale Silverson® L4RT.
Un autre type de système rotor-stator est commercialisé par la société IKlA-WERKE sous la dénomination commerciale Ultra-Turrax® .
D'autres systèmes rotor-stator encore sont constitués des moulins colloïdaux, des turbines défioculeuses et des mélangeurs à fort cisaillement de type rotor-stator, tels que les appareils commercialisés par la société IKA-WERKE ou par la société ADMIX.
On préfère selon l'invention que la vitesse du rotor soit réglée à au moins 1.000 tours/min et de préférence à au moins 3000 tours/min voire à au moins 5.000 tours/min. En outre, on préfère que la largeur de l'entrefer entre le rotor et le stator soit de moins de 1 mm et de préférence de moins de 200 μm, plus préférentiellement de moins de 100 μm et, mieux, de moins de 50 μm voire de moins de 40 μm. Par ailleurs, le système rotor-stator utilisé selon l'invention confère avantageusement un cisaillement de 1.000 à 109 s"1.
Selon une forme d'exécution préférée, le procédé selon l'invention est mis en œuvre de telle manière que la concentration en nanotubes de carbone avant passage au rotor-stator est d'au moins 15 g/1, voire d'au moins 20 g/1 et qu'on opère ensuite une dilution des nanotubes à l'eau après passage au rotor- stator . Il a en effet été observé qu'en travaillant sur des suspensions plus visqueuses, la puissance dissipée dans l'appareil était plus élevée et la suspension de nanotubes obtenue après cisaillement était plus stable.
La présente invention a également pour objet la suspension susceptible d'être obtenue selon le procédé tel que décrit précédemment.
La suspension selon l'invention peut notamment être utilisée pour le renforcement de matrices polymériques ; pour la fabrication de matériaux d'emballage de composants électronique (destinés par exemple au blindage électromagnétique et/ou à la dissipation antistatique) , tels que des boîtiers de téléphones portables, des ordinateurs, des appareils électroniques embarqués sur les véhicules automobiles, ferroviaires ou aériens ; pour la fabrication d'encres destinées à la connexion électrique entre deux composants électroniques ; ou pour la fabrication d' instruments médicaux, de conduites de carburant (essence ou diesel) , de matériaux adhésifs, de revêtements antistatiques, de thermistors, ou d'électrodes de diodes électroluminescentes, de cellules photovoltaïques ou de supercapacités.
La présente invention a donc également pour objet l'utilisation de la suspension telle que définie précédemment aux fins précitées.
L'invention sera maintenant illustrée par les exemples non limitatifs suivants.
EXEMPLES
Exemple 1 : Préparation d'un échantillon de NTC bruts
On prépare un échantillon de NTC par Dépôt Chimique en phase Vapeur (CVD) à partir d'éthylène à 6500C, que l'on fait passer sur un catalyseur constitué de fer supporté sur de l'alumine. Le produit résultant de la réaction contient un taux de cendres, mesuré par perte au feu à 6500C sous air, de 7%. Cet échantillon, qui sera désigné par la suite par NTCl, contient 3% de Fe2O3 et 4% d'Al2O3, déterminés par analyse chimique .
Exemple 2 : Préparation d'un échantillon de NTC purifiés
On soumet 18,5 g de NTCl, obtenu comme décrit à l'Exemple 1, à une opération de purification dans 300 ml d'acide sulfurique à 14% en poids pendant 8 heures à 1030C. Une fois lavé à l'eau et séché, on obtient un produit, identifié par NTC2, contenant un taux de cendres de 2,6% (dont 2,5% de Fe2O3 et 0,1% d'Αl2O3, déterminés par analyse chimique) . Exemple 3 : Préparation d'un échantillon de NTC oxydés
On prépare deux solutions de 100 ml d'hypochlorite de sodium à 2% et 5% en poids, respectivement, dans lesquelles on ajoute 5 g de NTCl préparés comme décrit à l'Exemple 1. Après 4 h sous agitation magnétique à température ambiante, les échantillons sont filtrés, lavés et séchés . Ils seront respectivement désignés par la suite par NTC3 et NTC4. La mesure des fonctions de surface par ESCA révèle que, si la teneur en aluminium n'est pas diminuée, le taux de fonctions oxygénées est beaucoup plus important que dans l'échantillon NTCl.
Exemple 4 : Préparation de suspensions aqueuses de NTC bruts en présence de dispersant
On a préparé différentes suspensions de NTC selon la méthode suivante : on a ajouté dans un bêcher de 125 ml 4 g d'une solution de méthacrylate de tristyrylphénol oxyéthyléné (25 OE) à 25% de matière active, fournie par la société COATEX, que l'on a complétée à 100 ml avec de l'eau permutée. On y a ajouté 1 g de NTC, puis le mélange a été soumis aux ultrasons à une fréquence de 20 KHz, à l'aide d'un appareil Vibracell de la société BIOBLOCK, ayant une puissance électrique affichée de 300 W.
Après 5 jours de repos à température ambiante, on a mesuré la concentration en nanotubes dans le surnageant et observé l'état de la dispersion, en particulier la présence éventuelle de grains .
Les différentes suspensions testées, ainsi que les résultats obtenus, sont rassemblés dans le Tableau 1 ci-dessous. Tableau 1 Evaluation de suspensions aqueuses de NTCl/dispersant
Figure imgf000018_0001
Comme il ressort de ce tableau, les suspensions selon l'invention, ayant un rapport pondéral des NTC au dispersant de 1 :1, conduisent à des suspensions présentant peu ou pas de grains et une bonne concentration en NTC dans le surnageant, d'autant meilleure que la durée d'ultrasonication et/ou que la densité de fonctions oxygénées (créées par l'hypochlorite de sodium) sont plus élevées, ce qui traduit la bonne dispersion des NTC dans l'eau.
Exemple 5 (comparatif) Suspensions à différents ratios NTC/dispersant
On a préparé, de manière analogue à l'Exemple 4, diverses suspensions de NTC (1 g) dans l'eau, en présence du même dispersant, qui ont été soumises à 30 minutes d'agitation aux ultrasons .
Les suspensions réalisées, ainsi que les résultats obtenus, sont rassemblés dans le Tableau 2 ci-dessous. Tableau 2 Evaluation de suspensions aqueuses de NTC/dispersant
Figure imgf000019_0001
On constate ainsi qu'un rapport du dispersant aux NTC inférieur ou égal à 0,5 : 1 ou supérieur ou égal à 2 : 1 ne permet pas d'obtenir une dispersion satisfaisante. On pense, sans vouloir être lié par cette théorie, que l'augmentation de ce ratio déstabilise la suspension, probablement par la formation de ponts entre les particules, tandis que sa diminution a le même effet par manque d'espèces susceptibles de stabiliser les particules.
Exemple 6 : Préparation au mélangeur rotor-stator d'une suspension aqueuse de NTC purifiés en présence de dispersant
On a préparé une suspension aqueuse de NTC (4 g) de type NTC2 , obtenus comme décrit à l'Exemple 2, en présence du même dispersant (4 g de matière active) . Cette dispersion a été fît1 mélangée dans un système rotor-stator Silverson L4RT.
Cet appareil se compose d'un rotor creux vertical de 31 mm de diamètre et d'une grille concentrique faisant office de stator de 32 mm de diamètre, la dispersion s' écoulant radialement de l'intérieur vers l'extérieur de l'appareil. La vitesse de rotation est de 7.000 tours/mm, soit une vitesse périphérique d'environ 12 m/s.
L'opération commence avec une grille percée de petits trous carrés de 5 mm de côté afin de permettre un pompage rapide de la suspension, et se poursuit, après épaississement de la suspension, avec une grille percée de petits trous carrés de 2 mm de côté pendant 10 minutes. On opère ensuite une dilution a l'eau pour obtenir 10 g/1 de nanotubes de carbone. Après 5 jours de repos à température ambiante, on n'observe pas de grains et la concentration en nanotubes dans le surnageant est de 9,8 g/1, soit très proche de la valeur attendue .
On obtient ainsi sensiblement le même résultat qu'avec l'échantillon 4D de l'Exemple 4, sans qu'il ne soit nécessaire de soumettre les NTC à une oxydation à l ' hypochloπte de sodium.
Exemple 7 : Préparation au mélangeur rotor-stator d'une suspension aqueuse de NTC oxydés en présence de dispersant
On prépare une solution de 100 ml d'hypochlorite de sodium à 2,4% en poids, dans laquelle on ajoute 5 g de NTC2 préparés comme décrit à l'Exemple 2. Après 4 h sous agitation magnétique à température ambiante, l'échantillon est filtré, lavé et séché. Il sera désigné par la suite par NTC5.
On prépare ensuite une suspension aqueuse de NTC comme décrit dans l'Exemple 6, excepté que l'on part de 50 g/1 de NTC de type NTC5 et de 50 g/1 de dispersant, la suspension étant diluée après passage au Silverson pour obtenir une concentration en NTC de 10 g/1. On observe alors le film obtenu par simple séchage de cette suspension et on mesure sa conductivité à l'aide la méthode 4 fils. Cette méthode consiste à mesurer la conductivité à l'aide d'un système constitué de quatre fils de cuivre parallèles et horizontaux, a savoir deux fils externes reliés à l'un des pôles et deux fils internes à l'autre pôle, le produit à tester étant maintenu par pression sur les fils.
Les résultats obtenus sont présentés dans le Tableau 3 x- dessous .
Tableau 3 Caractéristiques du film NTC5/dispersant
Figure imgf000021_0001
On observe ainsi que la suspension obtenue selon l'invention permet l'obtention d'un film assez dense et conducteur malgré la présence du dispersant dont on aurait pu penser qu' il pouvait gêner le passage du courant. La courbe intensité-potentiel tracée par ailleurs apparaît en outre bien linéaire.
Exemple 8 : Comparaison des suspensions et films obtenus à partir de différents polymères
On a préparé différentes suspensions en mélangeant 1 g de NTC2 ultérieurement oxydés à 1 ' hypochlorite de sodium dans les conditions de l'Exemple 7 avec différentes concentrations d'un copolymère d'acide acrylique. On a respectivement utilisé comme copolymères un dispersant polymérique selon l'invention (OROTAN18 731 K de ROHM & HAAS) et un copolymère d'acide acrylique et d'acrylate d'éthyle, ayant une masse moléculaire de 5.000 (ACUMER" 2200 neutralisé à pH7 , de ROHM & HAAS) en-dehors de l'invention. Ces suspensions ont ensuite été soumises aux ultrasons sur le même appareil que dans l'Exemple 4, à raison de 10 fois 4 minutes avec 15 minutes entre chaque traitement, pour permettre a la suspension de se refroidir.
On prélève ensuite quelques gouttes de chaque suspension, que l'on dépose en couche sur une feuille de PET que l'on laisse ensuite sécher. On mesure la densité et l'épaisseur du film obtenu, ainsi que la conductivité selon la méthode 4 fils.
Les suspensions réalisées, ainsi que les résultats obtenus, sont rassemblés dans le Tableau 4 ci -dessous.
Tableau 4 Evaluation de films de NTC/polymêre sur PET
Figure imgf000022_0001
On constate visuellement que l 'OROTAN 731 K, qui est un dispersant au sens de la présent invention, permet de former des films bien lisses et autoporteurs sur le PET, ce qui n'est pas le cas du polymère comparatif, tout en présentant de bonnes propriétés de conductivité électrique, comme indiqué dans le tableau ci -dessus.
On évalue par ailleurs visuellement l'aspect des suspensions (viscosité, présence ou non de grains à la jauge de North - Grindometer de GARDNER) et la concentration en NTC dans le surnageant après 5 jours de repos à température ambiante, ainsi que la capacité de ces suspensions à former un film sur verre.
Les résultats obtenus sont rassemblés dans le Tableau 5 ci-dessous .
Tableau 5 Evaluation de suspensions et films sur verre de NTC/polymère
Ex. Concentration Aspect Aspect du NTC dans de la film sur surnageant suspension verre
(g/D
8A 10 Visqueuse, Pas de nombreux grains film
8B 8,9 Fluide, très peu Beau film de grains
8C 9,2 Fluide, très peu Beau film de grains I
8D 10 Fluide, très peu Pas de de grains film
8E (ratio 9, 7 Fluide, très peu Pas de ι OROTAN VNTC = D de grains film js
8F (ratio 10 Visqueuse, Pas de ACUMER VNTC = 2} nombreux grains film
8G (ratio 10 Fluide, très peu Pas de I OROTAN VNTC = 2) de grains film II ressort de ce tableau que le dispersant polymérique selon l'invention permet d'obtenir une concentration de NTC dans le surnageant proche de la valeur attendue (10 g/1) et des suspensions fluides présentant peu de grains, ce qui traduit la bonne dispersion des NTC dans l'eau. En outre, pour des ratios polymère/NTC de 0,25 à moins de 1 , il conduit à la formation de beaux films sur verre. Au contraire, le polymère comparatif, qui ne renferme pas de monomère aromatique, n'améliore pas la dispersion des NTC dans l'eau et ne permet pas la formation d'un film sur verre.

Claims

REVENDICATIONS
1. Procédé de préparation d'une suspension aqueuse de nanotubes de carbone, comprenant :
- la mise en contact en milieu aqueux desdits nanotubes avec au moins un dispersant constitué d'un copolymère renfermant au moins un monomère hydrophile anionique et au moins un monomère renfermant au moins un groupe aromatique substitué par au moins une chaîne renfermant un ou plusieurs atomes d'oxygène, ladite chaîne reliant le groupe aromatique à la chaîne insaturée ou cyclique du monomère susceptible de s'ouvrir lors de la formation du copolymère, le rapport pondéral du dispersant aux nanotubes de carbone mis en oeuvre allant de 0,6:1 à 1,9:1 et
— le traitement mécanique du mélange ainsi obtenu aux ultrasons ou à l'aide d'un système rotor- stator ou par passage dans un broyeur à boules ou à billes.
2. Procédé selon la revendication 1, caractérisé en ce que les nanotubes de carbone sont susceptibles d'être obtenus par un procédé de dépôt chimique en phase vapeur .
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les nanotubes de carbone ont un diamètre allant de 0,1 à 100 nm, de préférence de 0,4 à 50 nm et, mieux, de 1 à 30 nm.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les nanotubes de carbone ont une longueur de 0,1 à 10 μm.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les nanotubes de carbone sont des nanotubes bruts, purifiés à l'aide d'une solution d'acide sulfurique, oxydés à l'aide d'une solution d' hypochlorite de sodium et/ou broyés à l'aide d'un broyeur à jet d'air.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le monomère hydrophile anionique est choisi parmi les monomères éthyléniquement insaturés portant au moins une fonction acide carboxylique, tels que les acides acrylique, diacrylique, méthacrylique, crotonique, isocrotonique, cinnamique, maléique, fumarique, diméthylfumarique, itaconique, citraconique, vinylbenzoïque, acrylamidoglycolique, les anhydrides carboxyliques porteurs d'une liaison vinylique tels que l'anhydride maléique, ainsi que leurs sels et leurs mélanges.
7. Procédé selon l'une quelconque des revendications 1 a 6, caractérisé en ce que la chaîne renfermant un ou plusieurs atomes d'oxygène est une chaîne poly (alkylène glycol) .
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le monomère renfermant au moins un groupe aromatique est constitué d'un (meth) acrylate d'aryléther de (poly) alkylène glycol.
9. Procédé selon la revendication 8, caractérisé en ce que le groupement aryle est un groupe phényle.
10. Procédé selon la revendication 8 ou 9, caractérisé en ce que le groupement aryle est substitué par au moins un radical alkyle et/ou arylalkyle tel qu'un radical tπstyryle.
11. Procédé selon l'une quelconque des revendications 7 à 10, caractérisé en ce que le poly (alkylène glycol) est un polyéthylène glycol .
12. Procédé selon l'une quelconque des revendications 8 à 11, caractérisé en ce que le (meth) acrylate d'aryléther de (poly) alkylène glycol est le méthacrylate de tristyryl phénol éthoxylé renfermant 25 moles d'oxyde d'êthylène.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le rapport pondéral du dispersant aux nanotubes de carbone mis en oeuvre va de 0,6:1 à 1:1.
14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la masse totale de dispersant et de nanotubes de carbone représente de 0,1 à 5% et plus préférentiellement de 0,5 à 2% du poids du milieu aqueux.
15. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que la vitesse du rotor est réglée à au moins 1.000 tours/min et de préférence à au moins 3000 tours/mm voire à au moins 5.000 tours/mm
16. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce que la largeur de l'entrefer entre le rotor et le stator est de moins de 1 mm et de préférence de moins de 200 μm, plus préférentiellement de moins de 100 μm et, mieux, de moins de 50 μm voire de moins de 40 μm.
17. Procédé selon l'une quelconque des revendications 1 à 16, caractérisé en ce que le système rotor-stator confère un cisaillement de 1.000 à 109 s 1.
18. Suspension susceptible d'être obtenue suivant le procédé selon l'une quelconque des revendications 1 à 17.
19. Utilisation de la suspension selon la revendication 18 pour le renforcement de matrices polyméπques ; pour la fabrication de matériaux d'emballage de composants électroniques (destinés par exemple au blindage électromagnétique et/ou à la dissipation antistatique) , tels que des boîtiers de téléphones portables, des ordinateurs, des appareils électroniques embarqués sur les véhicules automobiles, ferroviaires ou aériens ; pour la fabrication d'encres destinées à la connexion électrique entre deux composants électroniques ; ou pour la fabrication d'instruments médicaux, de conduites de carburant (essence ou diesel) , de matériaux adhésifs, de revêtements antistatiques, de thermistors, ou d'électrodes de diodes électroluminescentes, de cellules photovoltaïques ou de supercapacitês .
PCT/FR2008/050697 2007-04-20 2008-04-18 Procédé de préparation d'une suspension aqueuse de nanotubes de carbone et suspension ainsi obtenue WO2008145911A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/596,533 US20100108950A1 (en) 2007-04-20 2008-04-18 Method for preparing an aqueous suspension of carbon nanotubes and suspension thus obtained
EP08805669A EP2137108A2 (fr) 2007-04-20 2008-04-18 Procédé de préparation d'une suspension aqueuse de nanotubes de carbone et suspension ainsi obtenue
JP2010503566A JP2010524818A (ja) 2007-04-20 2008-04-18 カーボンナノチューブの水性懸濁液の製造方法と、得られた懸濁液
CN200880021224A CN101687644A (zh) 2007-04-20 2008-04-18 碳纳米管的含水悬浮液的制备方法及由此获得的悬浮液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0702874A FR2915110B1 (fr) 2007-04-20 2007-04-20 Procede de preparation d'une suspension aqueuse de nanotubes de carbone et suspension ainsi obtenue
FR0702874 2007-04-20

Publications (3)

Publication Number Publication Date
WO2008145911A2 true WO2008145911A2 (fr) 2008-12-04
WO2008145911A3 WO2008145911A3 (fr) 2009-09-24
WO2008145911A8 WO2008145911A8 (fr) 2009-12-03

Family

ID=38787745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050697 WO2008145911A2 (fr) 2007-04-20 2008-04-18 Procédé de préparation d'une suspension aqueuse de nanotubes de carbone et suspension ainsi obtenue

Country Status (7)

Country Link
US (1) US20100108950A1 (fr)
EP (1) EP2137108A2 (fr)
JP (1) JP2010524818A (fr)
KR (1) KR20100015742A (fr)
CN (1) CN101687644A (fr)
FR (1) FR2915110B1 (fr)
WO (1) WO2008145911A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222191A (ja) * 2009-03-24 2010-10-07 Ngk Insulators Ltd 分散性の向上したセラミックス粉末の製造方法、及びセラミックス粉末の分散液の製造方法
WO2010138085A1 (fr) * 2009-05-29 2010-12-02 Nanyang Technological University Polyméthacrylates avec groupes fonctionnels aromatiques pendants pour enrichir différentes espèces de nanotubes de carbone

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820483B1 (ko) 2012-02-24 2018-01-19 에스프린팅솔루션 주식회사 저항발열 조성물, 및 이를 이용한 발열 복합체 및 그 제조방법, 가열장치 및 정착장치
CN102627727B (zh) * 2012-03-29 2017-05-31 江南大学 一种光敏性聚合物基碳纳米管分散助剂的制备方法和用途
CN102634249B (zh) * 2012-04-10 2014-02-05 中国科学院苏州纳米技术与纳米仿生研究所 一种碳纳米管墨水的制备方法及晶体管器件的制作方法
EP3204223A4 (fr) * 2014-10-05 2018-12-19 EOS GmbH Electro Optical Systems Imprimantes 3d et produits de départ pour imprimantes 3d
JP7077706B2 (ja) * 2018-03-27 2022-05-31 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892020A1 (fr) * 1997-07-18 1999-01-20 Coatex S.A. Utilisation d'un copolymère à structure tensio-active comme agent dispersant et/ou d'aide au broyage
WO2002016257A2 (fr) * 2000-08-24 2002-02-28 William Marsh Rice University Nanotubes de carbone a paroi simple, enrobes de polymere
WO2004097853A1 (fr) * 2003-04-24 2004-11-11 Carbon Nanotechnologies, Inc. Composite conducteur comprenant des nanotubes de carbone et un polymere
WO2005073305A1 (fr) * 2004-01-29 2005-08-11 Ben-Gurion University Of The Negev Research And Development Authority Procede de preparation de dispersions de nanotubes de carbone
US20060115640A1 (en) * 2002-09-10 2006-06-01 Yodh Arjun G Process and applications of carbon nanotube dispersions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892020A1 (fr) * 1997-07-18 1999-01-20 Coatex S.A. Utilisation d'un copolymère à structure tensio-active comme agent dispersant et/ou d'aide au broyage
WO2002016257A2 (fr) * 2000-08-24 2002-02-28 William Marsh Rice University Nanotubes de carbone a paroi simple, enrobes de polymere
US20060115640A1 (en) * 2002-09-10 2006-06-01 Yodh Arjun G Process and applications of carbon nanotube dispersions
WO2004097853A1 (fr) * 2003-04-24 2004-11-11 Carbon Nanotechnologies, Inc. Composite conducteur comprenant des nanotubes de carbone et un polymere
WO2005073305A1 (fr) * 2004-01-29 2005-08-11 Ben-Gurion University Of The Negev Research And Development Authority Procede de preparation de dispersions de nanotubes de carbone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222191A (ja) * 2009-03-24 2010-10-07 Ngk Insulators Ltd 分散性の向上したセラミックス粉末の製造方法、及びセラミックス粉末の分散液の製造方法
WO2010138085A1 (fr) * 2009-05-29 2010-12-02 Nanyang Technological University Polyméthacrylates avec groupes fonctionnels aromatiques pendants pour enrichir différentes espèces de nanotubes de carbone

Also Published As

Publication number Publication date
KR20100015742A (ko) 2010-02-12
EP2137108A2 (fr) 2009-12-30
CN101687644A (zh) 2010-03-31
WO2008145911A8 (fr) 2009-12-03
FR2915110B1 (fr) 2009-07-10
WO2008145911A3 (fr) 2009-09-24
FR2915110A1 (fr) 2008-10-24
US20100108950A1 (en) 2010-05-06
JP2010524818A (ja) 2010-07-22

Similar Documents

Publication Publication Date Title
EP2855564B1 (fr) Matériau composite a très faible taux de nanocharges carbonées, son procédé de préparation et ses utilisations
WO2008145911A2 (fr) Procédé de préparation d'une suspension aqueuse de nanotubes de carbone et suspension ainsi obtenue
FR2916364A1 (fr) Procede de preparation de pre-composites a base de nanotubes notamment de carbone
EP2561011B1 (fr) Materiau composite thermoplastique et/ou elastomerique a base de nanotubes de carbone et de graphenes
EP2855569A1 (fr) Utilisation de nanocharges carbonees a tres faible taux pour la stabilisation uv de materiaux composites
FR2921391A1 (fr) Procede de preparation de materiaux composites
FR2991333A1 (fr) Utilisation de nanocharges carbonees a tres faible taux pour le renfort mecanique de materiaux composites eventuellement charges
WO2010046606A1 (fr) Procédé de préparation d'un matériau composite thermoplastique à base de nanotubes, notamment de carbone
EP2096125A2 (fr) Composites à base de polymère comprenant comme charge des nanotubes de carbone
WO2009047456A2 (fr) Procede continu d ' obtention de fibres composites a base de particules colloïdales et fibre obtenue par ce procede
WO2015182058A1 (fr) Procédé de production d'une dispersion de nanotubes de carbone et dispersion de nanotubes de carbone, procédé de production d'une composition pour matériau composite et procédé de production d'un matériau composite, et matériau composite et article moulé en matériau composite
WO2006087450A1 (fr) Procede de traitement des nanotubes de carbone
FR2909989A1 (fr) Procede de preparation de nanotubes de carbone a partir d'une source de carbone integree au catalyseur
Akram et al. Review on polymer/carbon nanotube composite focusing polystyrene microsphere and polystyrene microsphere/modified CNT composite: preparation, properties, and significance
WO2014060685A1 (fr) Procédé de préparation d'un matériau composite thermodurcissable a base de graphène
WO2014060684A1 (fr) Procédé de préparation d'un matériau composite thermoplastique a base de graphène
WO2008145910A2 (fr) Procédé de préparation d'une suspension alcoolique de nanotubes de carbone et suspension ainsi obtenue
EP3737640A1 (fr) Matiere solide agglomeree de nanotubes de carbone desagreges
Pötschke et al. Dispersion of carbon nanotubes into thermoplastic polymers using melt mixing
FR2935989A1 (fr) Melange-maitre metallique renfermant des nanotubes.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880021224.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805669

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008805669

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010503566

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12596533

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20097021917

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE