WO2008038338A1 - Dispositif de commande de vecteur pour moteur de synchronisation à aimant permanent - Google Patents

Dispositif de commande de vecteur pour moteur de synchronisation à aimant permanent Download PDF

Info

Publication number
WO2008038338A1
WO2008038338A1 PCT/JP2006/319034 JP2006319034W WO2008038338A1 WO 2008038338 A1 WO2008038338 A1 WO 2008038338A1 JP 2006319034 W JP2006319034 W JP 2006319034W WO 2008038338 A1 WO2008038338 A1 WO 2008038338A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
axis current
current command
command
permanent magnet
Prior art date
Application number
PCT/JP2006/319034
Other languages
English (en)
French (fr)
Inventor
Hidetoshi Kitanaka
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to KR1020087030500A priority Critical patent/KR101053315B1/ko
Priority to CN2006800557288A priority patent/CN101507101B/zh
Priority to US12/377,495 priority patent/US8148926B2/en
Priority to CA 2660380 priority patent/CA2660380C/en
Priority to EP20060810559 priority patent/EP2068438B1/en
Priority to ES06810559T priority patent/ES2424967T3/es
Priority to JP2007504199A priority patent/JP4045307B1/ja
Priority to PCT/JP2006/319034 priority patent/WO2008038338A1/ja
Publication of WO2008038338A1 publication Critical patent/WO2008038338A1/ja
Priority to IN1380CHN2009 priority patent/IN2009CN01380A/en
Priority to HK09111796A priority patent/HK1135521A1/xx

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a vector control device for a permanent magnet synchronous motor, and in particular, obtains a d-axis current command id * and a q-axis current command iq * that can realize maximum torque control using simple mathematical expressions.
  • the present invention relates to a vector control device for a permanent magnet synchronous motor equipped with a current command generator capable of generating a current.
  • the vector control of a permanent magnet synchronous motor using an inverter is a technology widely used in the industry. By individually operating the magnitude and phase of the inverter output voltage, The current vector is optimally controlled and the motor torque is instantaneously controlled at high speed.
  • permanent magnet synchronous motors do not require excitation current because permanent magnets have a magnetic flux established, and do not cause secondary copper loss because no current flows through the rotor. It is known as a high-efficiency motor from the above, and in recent years, application to an electric vehicle control device has been studied.
  • IPMsM interior permanent magnet synchronous machine
  • IPMsM interior permanent magnet synchronous machine
  • IPMSM is known to have an infinite number of combinations of d-axis current and q-axis current that generate a certain torque. Furthermore, depending on how much the d-axis current and q-axis current are made to change, that is, how the current vector is selected, the magnitude of the current flowing through the motor, the power factor, iron loss, copper loss, etc. It is known that the characteristics change greatly. Therefore, in order to operate the IPMSM efficiently, it is necessary to select and operate an appropriate current vector according to the application.
  • a method of selecting a current command a method of maximizing the efficiency of the motor, a method of setting the power factor of the motor to 1, a method of maximizing the torque obtained for a certain linkage flux, a certain motor current
  • a method for maximizing the torque that can be obtained for a certain current but when applied to a control device for an electric vehicle, a method for maximizing the torque that can be obtained for a certain current (hereinafter referred to as maximum torque control). This is optimal because it allows the motor to operate at high efficiency while minimizing the current rating of the inverter, thereby minimizing inverter loss.
  • Patent Document 1 discloses a method of referencing this map as needed to obtain a d-axis current command id * and a q-axis current command iq * according to the torque command and controlling the current so that the motor current matches this. Has been.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-121855
  • the current is measured while operating the motor with various torques in order to create the map, and the optimum d-axis current id and q-axis current iq are combined.
  • the work step for determining the alignment is essential, and it takes a lot of time and effort to create the map.
  • the map is also large and complex, and it requires a large amount of memory to store the map. Mounting on the control device is not easy and not preferable.
  • the present invention has been made to solve the conventional problems as described above, and can realize maximum torque control with a simple arithmetic expression without using a map d-axis current command id *, q
  • the objective is to provide a permanent magnet synchronous motor outer control device with a current command generator that can obtain the shaft current command iq * and can be easily mounted on an actual vector control device. To do. Means for solving the problem
  • a vector control device for a permanent magnet synchronous motor converts the current of a permanent magnet synchronous motor driven by an inverter that converts a DC voltage into an AC voltage of an arbitrary frequency and outputs the AC voltage.
  • This is a permanent magnet synchronous motor vector controller that is configured to control the d-axis current id and q-axis current iq, which are the quantities on the dq-axis coordinates that rotate in synchronization with the angle, and control them separately.
  • the d-axis basic current command generation unit that generates the first d-axis basic current command idl * using the torque command and the first d-axis basic current command idl * are input to be less than zero.
  • Limit the value to the second The limiter output as d-axis basic current command id2 * and the second d-axis basic current command id2 * are input, and this current command id2 * is output as the d-axis current command correction value output from the current control unit.
  • a d-axis current command correction unit that outputs a value corrected according to dV as a d-axis current command id *
  • a q-axis current command generation unit that generates a q-axis current command iq * from the d-axis current command id *
  • the d-axis current command id * and the q-axis current command iq * are generated so that torque corresponding to the torque command can be generated with a minimum current.
  • maximum torque control can be realized with a simple arithmetic expression without using a map, and flux-weakening control can be performed in a high speed range.
  • a vector controller for a permanent magnet synchronous motor with a current command generator that can obtain d-axis current command id * and q-axis current command iq * and can be easily mounted on an actual vector controller. Obtainable.
  • FIG. 1 is a schematic diagram showing a configuration of a vector control apparatus for a permanent magnet synchronous motor in Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a relationship between a torque curve and a curve showing a minimum current condition in Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a current command generator in Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a current command generator in Embodiment 2 of the present invention.
  • FIG. 1 is a diagram showing the configuration of the vector control device of the permanent magnet synchronous motor according to Embodiment 1 of the present invention.
  • the main circuit of the vector control device of the permanent magnet synchronous motor includes a capacitor 1 serving as a DC power source, and an inverter that converts the DC voltage of the capacitor 1 into an AC voltage of an arbitrary frequency.
  • a capacitor 1 serving as a DC power source
  • an inverter that converts the DC voltage of the capacitor 1 into an AC voltage of an arbitrary frequency.
  • Permanent magnet synchronous motor hereinafter simply referred to as “motor”.
  • a voltage detector 8 that detects the voltage of the capacitor 1 and current detectors 3, 4, and 5 that detect the currents iv, iw of the output line of the inverter 2 are arranged.
  • a resolver 7 for detecting the position information ⁇ m is arranged, and each detection signal is input to the vector control device 100.
  • an encoder may be used instead of the resolver 7, or a position sensorless method obtained by calculating a position signal from voltage and current may be used instead of the position signal obtained from the resolver 7.
  • the resolver 7 is not necessary.
  • the acquisition of position signals is not limited to using resolver 7!
  • the remaining one-phase current can be calculated and obtained. It is also possible to reproduce the output current of inverter 2 from the DC side current of 2.
  • the inverter 2 includes gate signals U, V, W, X, and Y and Z are input, and the switching element built in inverter 2 is PWM controlled.
  • the inverter 2 is preferably a voltage type PWM inverter, and its configuration is well known, so a detailed description is omitted.
  • the vector control device 100 is configured to receive a torque command T * from an upper control device (not shown), and the vector control device 100 matches the torque T generated by the motor 6 with the torque command T *.
  • the configuration is such that the inverter 2 is controlled.
  • the vector control device 100 includes a current command generation unit 10 and a current control unit 20.
  • the current command generation unit 10 is a central part of the present invention, and receives the torque command T * and the d-axis current command correction amount dV as inputs, and the d-axis current command id * and the q-axis current command iq * It has a function to generate.
  • d-axis current command correction amount dV corrects the d-axis current command in order to perform weak magnetic flux operation so that the induced voltage of motor 6 does not exceed the maximum voltage that can be output from inverter 2 in the high-speed rotation range. For the amount.
  • the d-axis current command correction amount dV when the voltage command to the motor 6 exceeds a certain set value, the d-axis current command correction amount dV (takes a value of zero or less depending on the excess amount).
  • the specific configuration is not questioned here, and the description thereof is omitted.
  • the current control unit 20 receives the DC current EFC of the inverter 2 and the position information ⁇ m of the motor 6 and inputs the motor currents iu, iv, iw on the three-phase stationary shaft detected on the output side of the inverter 2, It is converted into d-axis current id and q-axis current iq, which are currents converted into dq-coordinate quantities that rotate in synchronization with the rotating electrical angle of the motor.
  • the d-axis current id, q-axis current iq force, and the current-signal generation unit 10 match the d-axis current command id * and q-axis current command iq *, respectively.
  • W, X, Y, ⁇ It has a function to decide on / off. Since many known techniques can be applied to the configuration of the current control unit 20, a detailed description thereof is omitted here.
  • the conditions of the d-axis current id and q-axis current iq (hereinafter referred to as the minimum current condition) for realizing the maximum torque control for obtaining the maximum torque with a certain current are as shown in the following formula (1). is there.
  • Equation 1 Ld is d-axis inductance (H), Lq is q-axis inductance ( ⁇ ), ⁇ a is permanent magnet flux (Wb), id is d-axis current (A), iq is q-axis current (A) is there.
  • the magnitude of the electric current of the electric motor 6 can be minimized.
  • a formula representing the torque T generated by the electric motor 6 is the following formula (2) that is already known.
  • T P n ⁇ i q + (L d — L q ) i d i q ⁇ ) where Pn is the number of pole pairs of the motor 6.
  • equation (3) When equation (2) is transformed into q-axis current iq, equation (3) below is obtained.
  • Equation 3 Solving the simultaneous equations of Equation (1) and Equation (3) to obtain id and iq, the combination of d-axis current id and q-axis current iq that can generate a certain torque T with the minimum current can be obtained. .
  • torque T is the torque command T *
  • d-axis current id is the d-axis current Command id *
  • q-axis current iq is replaced with q-axis current command iq *
  • the simultaneous equations in equations (1) and (3) are solved for id * and iq *, so that the torque input from the upper control unit It is theoretically possible to obtain d-axis current command id * and q-axis current command iq * that can generate torque T that matches torque command T * at the minimum current for command T *. Become.
  • FIG. 2 is a diagram showing a relationship between the torque curve and the curve showing the minimum current condition in the first embodiment of the present invention.
  • the relationship between the torque curve shown in Fig. 2 and the curve indicating the minimum current condition is shown as the relationship between Equation (1) and Equation (3) with the horizontal axis representing the d-axis current id and the vertical axis representing the q-axis current iq.
  • the upper left force is also a curve to the lower right. Imi force
  • This curve shows the minimum current condition expressed by equation (1).
  • the combination of d-axis current id and q-axis current iq can generate a certain torque T with the minimum current. It is shown.
  • the d-axis current id and q-axis current iq which can generate a certain torque T with the minimum current, are obtained by calculating the intersection of the curve Imi showing the equation (1) and the curve Tor showing the equation (3) in Fig. 2. Obtainable.
  • the torque curve at the time of regeneration and the curve indicating the minimum current condition are provided separately from that at the time of driving, and the d-axis current id and q-axis current iq satisfying the minimum current condition during regenerative operation can be obtained. I do not care.
  • the simultaneous equations of Equation (1) and Equation (3) are set to id and iq. Although it is necessary to solve it, this simultaneous equation becomes a quartic equation and it is difficult to obtain a solution, and it is difficult to implement it on an actual vector controller. For this reason, as described above, the conventional technology often uses a map to obtain a d-axis current id and a q-axis current iq that can generate a torque T with a minimum current.
  • the invention of this application calculates the d-axis current id and the q-axis current iq that can generate the torque T with the minimum current with a simple arithmetic expression without using a map. This will be described in detail below.
  • the curve Imi which shows the minimum current condition in Fig. 2, is represented by a quadratic curve, but is almost linear except for the areas where the d-axis current id and q-axis current iq are small (id> —50A, iq and 75A). You can see that. Therefore, an approximate straight line lap is obtained by approximating the curve indicating the minimum current condition to a range excluding the region where the d-axis current id and q-axis current iq are small (id> -50A, iq + 75A). This is shown in broken lines in Fig. 2.
  • the case where the motor 6 is operated in a region where the d-axis current id and the q-axis current iq are small is for the purpose of maintaining the speed of the electric vehicle constant. It is limited to constant speed operation that operates with a minute torque! The frequency is a fraction of the total operation time. For this reason, even if the curve indicating the minimum current condition is approximated by a straight line, in most cases the operation is performed under the minimum current condition, so there is no practical problem.
  • the q-axis current iq can be obtained by substituting id into equation (3).
  • Equation (6) should be obtained in advance from the approximate straight line of the curve indicating the minimum current condition in Equation (1) as shown in FIG.
  • FIG. 3 is a diagram showing the configuration of the current command generation unit 10 according to Embodiment 1 of the present invention.
  • the torque command absolute obtained by the torque command T * via the absolute value circuit 13 is shown.
  • the d-axis basic current command generator 11 From the value Ta bs * and the slope a and intercept b of the approximate straight line indicating the minimum current condition expressed by equation (4), the d-axis basic current command generator 11 performs the first equation based on the following equation (7): d-axis basic current command idl * is calculated.
  • Equation (7) is obtained by replacing the d-axis current id in equation (6) with the first d-axis basic current command idl * and the torque T with the torque command absolute value Tabs *.
  • the first d-axis basic current command idl * calculated by the equation (7) is input to the limiter unit 12, and when idl * is positive, the second d-axis basic current that is the output of the limiter unit 12 If the current command id2 * is the outlet and idl * is negative, the output of the limiter unit id2 * is equal to idl *. In other words, it has a function to limit id2 * so that it does not become larger than zero.
  • the d-axis current command correction amount dV takes a value of zero or less depending on the operating state of the electric motor 6. In this way, when the rotation of the motor 6 is medium / low speed and is below the maximum voltage that can be output from the voltage force inverter 2 of the motor 6, the d-axis current command correction amount dV becomes zero and the minimum current condition is satisfied.
  • the d-axis current command id * is obtained and the voltage of the motor 6 exceeds the maximum voltage that can be output by the inverter 2 in the high-speed rotation range, the d-axis current command is set according to the d-axis current command correction amount dV. It is possible to decrease id *, and flux-weakening operation is possible.
  • the q-axis current command generator 15 obtains the q-axis current command iq * by substituting the d-axis current command id * and the torque command T * into the following equation (8).
  • Equation (8) replaces d-axis current id in equation (3) with d-axis current command id *, q-axis current iq with q-axis current command iq *, and torque T with torque command T *. This is the equation obtained.
  • maximum torque control can be realized with a simple arithmetic expression without using a map.
  • the motor constants Ld, Lq, ⁇ a used in each arithmetic expression in the current command generation unit 10 shown above, the slope a of the approximate line, and the intercept b can be changed at any timing. May be. For example, it can be changed according to the motor 6 speed, torque magnitude, current magnitude, operating state such as power Z regeneration, torque command T *, d-axis current command id *, q-axis current command iq * Or, it can be changed or adjusted according to the detected values of d-axis current id and q-axis current iq. By doing this, the d-axis current id, q-axis current iq force, and the area shown in Fig. 2 Even when (id> -50A, iq and around 75A), a more accurate minimum current condition can be calculated and a more ideal operating point can be obtained.
  • FIG. 4 is a diagram illustrating a configuration example of the current command generation unit 10 in the vector control device for the permanent magnet synchronous motor according to the second embodiment of the present invention.
  • the q-axis current command generator 15 in FIG. 3 is changed to the q-axis current command generator 15A in FIG.
  • the q-axis current command iq * is obtained by substituting the d-axis current command id *, the slope a of the approximate straight line, and the intercept b into the following equation (9).
  • Equation (9) is obtained by replacing the d-axis current id in equation (4) with the d-axis current command id * and the q-axis current iq with the q-axis current command iq *.
  • the formula configuration is compared with the first embodiment in which the iq * is calculated from the formula (8). Since it is simple, the amount of calculation can be suppressed, and an inexpensive microcomputer can be used.
  • the configuration described in the above embodiment is an example of the content of the present invention, and can be combined with another known technique, and a part thereof is not deviated from the gist of the present invention. Needless to say, it is possible to change the configuration, such as omitting it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

明 細 書
永久磁石同期電動機のベクトル制御装置
技術分野
[0001] この発明は、永久磁石同期電動機のベクトル制御装置に関し、特に、最大トルク制 御を実現できる d軸電流指令 id *、 q軸電流指令 iq *を、簡易な数式を使用して得る ことのできる電流指令生成部を備えた永久磁石同期電動機のベクトル制御装置に関 するものである。
背景技術
[0002] インバータを使用して永久磁石同期電動機をベクトル制御する技術については、 産業界で広く利用されている技術であり、インバータ出力電圧の大きさと位相を個別 に操作することで、電動機内の電流ベクトルを最適に操作し、電動機のトルクを高速 に瞬時制御するものである。
永久磁石同期電動機は、誘導電動機と比較して、永久磁石による磁束が確立してい るので励磁電流が不要であることや、回転子に電流が流れないため、二次銅損が発 生しないことなどから高効率な電動機として知られており、近年、電気車の制御装置 への適用が検討されて 、る。
永久磁石同期電動機のうち、近年注目を集めている埋め込み磁石永久磁石同期電 励機 (Interior permanent magnet synchronous machine ^以 f IPMsMと 略す)は、永久磁石による磁束により発生するトルクの他に、回転子の磁気抵抗の違 いを利用したリラクタンストルクを利用することで効率的にトルクを得ることが知られて いる。
[0003] しかしながら、 IPMSMは、あるトルクを発生する d軸電流、 q軸電流の組み合わせ が無数に存在することが知られている。さらに、 d軸電流、 q軸電流それぞれの大きさ をいくらにする力 即ち電流ベクトルをどのように選択するかによって、電動機に流れ る電流の大きさや力率、鉄損、銅損等の電動機の特性が大きく変化することが知られ ている。このことから、 IPMSMを効率よく運転するには、用途に応じた適切な電流べ タトルを選択して運転する必要がある。つまり、永久磁石同期電動機のベクトル制御 装置においては、電動機に流れる電流ベクトルを以下に述べる所望の条件を満たす ように瞬時制御するための適切な電流指令を生成する必要があり、トルク指令から電 流指令を生成する電流指令生成部を如何に構成するかがシステム構成上重要とな る。
[0004] 電流指令の選択方法としては、電動機の効率を最大とする方法、電動機の力率を 1とする方法、ある鎖交磁束に対して得られるトルクを最大とする方法、ある電動機電 流に対して得られるトルクを最大とする方法等が存在するが、電気車の制御装置へ の適用に際しては、ある電流に対して得られるトルクを最大とする方法 (以下、最大ト ルク制御と呼称する) 電動機の高効率運転を可能としつつ、インバータの電流定 格を最小とでき、これによりインバータの損失も最小化できるため最適である。
関連した従来技術としては、電動機の種々のトルクに対応する d軸電流 id、 q軸電 流 iqの最適値を事前に測定してマップィ匕しておき、電動機の運転中にトルク指令に 応じてこのマップを随時参照して、トルク指令に応じた d軸電流指令 id *、 q軸電流指 令 iq *を得て、これに電動機の電流が一致するよう電流制御する方法が特許文献 1 に示されている。
[0005] 特許文献 1 :特開 2006— 121855号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、マップを参照する方法に関しては、マップを作成するために種々のト ルクで電動機を運転しながら電流を測定し、最適な d軸電流 id、 q軸電流 iqの組み合 わせを決定する作業ステップが必須となり、マップの作成に多大な手間が力かる上、 マップも容量が大きく複雑なものとなり、マップを格納するために大きなメモリ容量が 必要となるなど実際のベクトル制御装置への実装も容易ではなく好ましくない。
[0007] この発明は、上記のような従来の問題点を解決するためになされたもので、マップ を使用することなぐ簡易な演算式で最大トルク制御を実現できる d軸電流指令 id*、 q軸電流指令 iq *を得る事ができ、実際のベクトル制御装置への容易な実装を可能 とする電流指令生成部を備えた永久磁石同期電動機のべ外ル制御装置を提供す ることを目的とする。 課題を解決するための手段
[0008] この発明に係わる永久磁石同期電動機のベクトル制御装置は、直流電圧を任意の 周波数の交流電圧に変換して出力するインバータによって駆動される永久磁石同期 電動機の電流を、前記電動機の回転電気角に同期して回転する dq軸座標上の量で ある d軸電流 id、 q軸電流 iqに分離してそれぞれを制御する構成とした永久磁石同期 電動機のベクトル制御装置であって、与えられたトルク指令力 d軸電流指令 id *、 q 軸電流指令 iq *を生成する電流指令生成部と、前記電動機の電流が前記電流指令 に一致するように動作する電流制御部を備え、前記電流指令生成部は、前記トルク 指令を利用して第一の d軸基本電流指令 idl *を生成する d軸基本電流指令生成部 と、前記第一の d軸基本電流指令 idl *を入力とし、ゼロ以下に制限した値を第二の d軸基本電流指令 id2 *として出力するリミッタ部と、第二の d軸基本電流指令 id2 * を入力とし、この電流指令 id2 *を、前記電流制御部より出力された d軸電流指令補 正値 dVに応じて補正した値を d軸電流指令 id *として出力する d軸電流指令補正部 と、前記 d軸電流指令 id *から q軸電流指令 iq *を生成する q軸電流指令生成部とを 具備し、前記トルク指令に対応したトルクを最小の電流で発生できる d軸電流指令 id *、 q軸電流指令 iq *を生成するようにしたものである。
発明の効果
[0009] この発明の永久磁石同期電動機のベクトル制御装置によれば、マップを使用せず 、簡易な演算式で最大トルク制御を実現することができ、かつ高速域では弱め磁束 制御が可能となる d軸電流指令 id *、 q軸電流指令 iq *を得ることができ、実際のベ タトル制御装置への容易な実装を可能とした電流指令生成部を有する永久磁石同 期電動機のベクトル制御装置を得ることができる。
図面の簡単な説明
[0010] [図 1]この発明の実施の形態 1における永久磁石同期電動機のベクトル制御装置の 構成を示す概略図である。
[図 2]この発明の実施の形態 1におけるトルク曲線と最小電流条件を示す曲線との関 係を示す図である。
[図 3]この発明の実施の形態 1における電流指令生成部の構成を示すブロック図であ る。
[図 4]この発明の実施の形態 2における電流指令生成部の構成を示すブロック図であ る。
符号の説明
[0011] 1 :コンデンサ、 2 :インバータ、 3、 4、 5 :電流検出器、 6 :電動機、
7 :レゾルバ、 8 :電圧検出器、 10 :電流指令生成部、 11 : d軸基本電流指令 生成部、 12 :リミッタ部、 13 :絶対値回路、 14 :加算器 (d軸電流指令補正部) 15、 15A: q軸電流指令生成部、 20 :電流制御部、 100 :ベクトル制御装置。 発明を実施するための最良の形態
[0012] 実施の形態 1.
図 1は、この発明の実施の形態 1における永久磁石同期電動機のベクトル制御装 置の構成を示す図である。
図 1に示すように、実施の形態 1の永久磁石同期電動機のベクトル制御装置の主回 路は、直流電源となるコンデンサ 1、コンデンサ 1の直流電圧から任意の周波数の交 流電圧に変換するインバータ 2、永久磁石同期電動機 (以下、単に電動機と称す) 6 から構成されている。
回路上には、コンデンサ 1の電圧を検出する電圧検出器 8、インバータ 2の出力線の 電流 、 iv、 iwを検出する電流検出器 3、 4、 5が配置され、電動機 6には、ロータ位 置情報 Θ mを検出するレゾルバ 7が配置されており、それぞれの検出信号はベクトル 制御装置 100に入力されている。
[0013] なお、レゾルバ 7の代わりにエンコーダを使用しても良いし、レゾルバ 7から得られる 位置信号の代わりに、電圧、電流から位置信号を演算して求める位置センサレス方 式を使用してもよぐこの場合、レゾルバ 7は不要となる。つまり、位置信号の取得はレ ゾルバ 7を使用すること〖こ限定されな!、。
また、電流検出器 3、 4、 5に関して、最低 2相に設置してあれば残りの 1相の電流は 演算して求めることが可能であるので、そのように構成しても良いし、インバータ 2の 直流側電流からインバータ 2の出力電流を再現して取得する構成でもよ ヽ。
[0014] インバータ 2にはベクトル制御装置 100により生成されるゲート信号 U、 V、 W、 X、 Y、 Zが入力され、インバータ 2に内蔵されるスイッチング素子が PWM制御される。 インバータ 2は電圧型 PWMインバータが好適であり、その構成は公知であるので詳 細な説明は割愛する。
ベクトル制御装置 100には、図示しない上部の制御装置から、トルク指令 T*が入力 される構成となっており、ベクトル制御装置 100は、トルク指令 T*に電動機 6の発生 トルク Tがー致するようにインバータ 2を制御する構成となって 、る。
[0015] 次に、ベクトル制御装置 100の構成を説明する。
ベクトル制御装置 100は、電流指令生成部 10、電流制御部 20から構成されている。
[0016] 電流指令生成部 10は、この発明の中心をなす部分であり、トルク指令 T*と、 d軸 電流指令補正量 dVを入力とし、 d軸電流指令 id *、 q軸電流指令 iq *を生成する機 能を有する。 d軸電流指令補正量 dVは、高速回転領域にて電動機 6の誘起電圧が インバータ 2の出力可能な最大電圧を超過しな 、ように、弱め磁束運転を行うために d軸電流指令を補正するための量である。
d軸電流指令補正量 dVの算出方法の一例としては、電動機 6への電圧指令がある 設定値を超過した場合に、超過量に応じて d軸電流指令補正量 dV (ゼロ以下の値を とる)を発生させる等の公知技術が存在するが、ここではその具体的構成は問わない ため、説明は省略する。
なお、この電流指令生成部 10は、この発明の中心的な部分であるので詳細は後述 する。
[0017] 電流制御部 20は、インバータ 2の直流電圧 EFC、電動機 6の位置情報 Θ mが入力 され、インバータ 2の出力側で検出した三相静止軸上の電動機電流 iu、 iv、 iwを、電 動機の回転電気角に同期して回転する dq座標上の量に変換した電流である d軸電 流 id、 q軸電流 iqに変換する。そして、この d軸電流 id、 q軸電流 iq力 電流指令生成 部 10にて生成した d軸電流指令 id*、 q軸電流指令 iq *にそれぞれ一致するように インバータ 2へのゲート信号 U、 V、 W、 X、 Y、 Ζのオンオフを決定する機能を有する 。なお、電流制御部 20の構成については、多くの公知技術が適用できるので、ここで は詳細な説明は省略する。
[0018] 以下に、この発明の中心である電流指令生成部 10の構成を理解する上で必要とな る基本原理の説明を行う。
ある電流で最大トルクを得る最大トルク制御を実現するための d軸電流 id、 q軸電流 iqの条件(以下、最小電流条件と称す)は、既に公知である以下の式(1)の通りであ る。
[0019] [数 1]
Figure imgf000008_0001
ここで、 Ldは d軸インダクタンス (H)、 Lqは q軸インダクタンス (Η)、 φ aは永久磁石磁 束 (Wb)、 idは d軸電流 (A)、 iqは q軸電流 (A)である。
[0020] 式(1)の関係を満たすように d軸電流 id、 q軸電流 iqを決定することで、あるトルク T を発生する場合において、 id、 iq力もなる電流ベクトルの大きさを最小とできる。即ち
、電動機 6の電流の大きさを最小とできる。
[0021] 一方、電動機 6が発生するトルク Tを表す式は、既に公知である以下の式(2)の通り である。
[0022] [数 2]
T = Pn { iq + (Ld— Lq )idiq \ ) ここで、 Pnは電動機 6の極対数である。
[0023] 式(2)を q軸電流 iqにつ 、て変形すると、以下の式(3)となる。
[0024] [数 3]
Figure imgf000008_0002
式(1)と式(3)の連立方程式を解いて id、 iqを求めると、あるトルク Tを最小電流で 発生させることのできる d軸電流 id、 q軸電流 iqの組み合わせを求めることができる。 ここで、式(1)、式(3)において、トルク Tをトルク指令 T*、 d軸電流 idを d軸電流指 令 id *、 q軸電流 iqを q軸電流指令 iq *に読み替えて、式(1)、(3)の連立方程式を i d *、 iq *について解くことにより、上位の制御部から入力されたトルク指令 T*に対 して、最小電流にてトルク指令 T*に一致したトルク Tを発生することのできる d軸電 流指令 id *、 q軸電流指令 iq *を得ることが理論上は可能となる。
[0026] 図 2は、この発明の実施の形態 1におけるトルク曲線と最小電流条件を示す曲線と の関係を示す図である。
図 2に示すトルク曲線と最小電流条件を示す曲線との関係は、横軸を d軸電流 id、縦 軸を q軸電流 iqとして、式(1)、式(3)の関係を図示したものであり、右上から左下へ の曲線 Torが、式(3)のトルク Tにカ行トルクとして T= 50Nm〜1500Nmを代入して 描画したトルク曲線である。又、左上力も右下への曲線 Imi力 式(1)で表現される最 小電流条件を示す曲線であり、あるトルク Tを最小電流で発生できる d軸電流 id、 q軸 電流 iqの組み合わせを示すものである。
あるトルク Tを最小電流にて発生させることのできる d軸電流 id、 q軸電流 iqは、図 2 における式(1)を示す曲線 Imiと式(3)を示す曲線 Torの交点を求めることで得ること ができる。
なお、図 2にお!/、て、式(1)、(3)中の Pn、: Ld、: Lq、 φ &に ίま、 300KW程度の電気 車駆動用の電動機を想定した定数を仮定している。
[0027] なお、回生時のトルク曲線と最小電流条件を示す曲線は、図 2の図示しない第三象 限に位置し、図 2に示すカ行時の各曲線を横軸に対して線対称となるよう描画した曲 線となる。従って、そのことを考慮すれば、図 2に示したカ行時の各曲線で回生時に っ ヽても同様に考えることができる。
具体的には、トルク Τとしてカ行トルク 1300Nmを発生する場合の最小電流条件は、 id=— 200A、 iq = 237A程度の組み合わせとなることが図 2から分かる力 トルク丁と して回生トルク 1300Nmを発生する場合の最小電流条件は、 id=— 200A、 iq = 237A程度の組み合わせとなる。
もちろん、回生時のトルク曲線と最小電流条件を示す曲線をカ行時とは別に設けて、 回生運転時における、最小電流条件を満たす d軸電流 id、 q軸電流 iqを求める構成と しても構わない。 [0028] ところで、式(1)が示す曲線 Imiと式(3)が示す曲線 Torの交点を求めるためには、 式(1)と式(3)の連立方程式を idと iqにつ 、て解く必要があるが、この連立方程式は 4次方程式となり、解を得ることは困難であり、実際のベクトル制御装置への実装は困 難である。このため、従来技術では、上述したとおりマップを用いてあるトルク Tを最 小電流にて発生させることのできる d軸電流 id、 q軸電流 iqを得る構成として 、る場合 が多い。
[0029] これに対し、この出願の発明は、トルク Tを最小電流にて発生させることのできる d軸 電流 id、 q軸電流 iqを、マップを用いず簡易な演算式で算出するものであり、以下こ の点について詳述する。
図 2の最小電流条件を示す曲線 Imiは、二次曲線で表されるものの、 d軸電流 id、 q 軸電流 iqが小さい領域 (id>— 50A、 iqく 75A付近)を除くとほとんど直線状である ことが分かる。そこで、最小電流条件を示す曲線を、 d軸電流 id、 q軸電流 iqが小さい 領域 (id> - 50A、 iqく 75A)を除 ヽた範囲にぉ 、て直線近似した場合の近似直線 lapを図 2に破線で示している。
図 2より、近似直線 lapは、ほぼ最小電流条件の曲線上に存在していることが分かる。
[0030] この発明の対象である電気車の制御用途では、 d軸電流 id、 q軸電流 iqが小さい領 域において電動機 6が運転されるケースは、電気車の速度を一定に維持する目的で 微小なトルクで運転する定速運転扱!ヽ時等に限られ、その頻度は全運転時間のうち のわずかである。このため、最小電流条件を示す曲線を直線で近似しても、ほとんど の場合は最小電流条件にて運転されることになり、実用上の問題はな 、。
図 2の最小電流条件を示す曲線の近似直線を、以下の式 (4)とおく。
[0031] 画 a + b ( 4 )
[0032] 図 2の例では、傾き a=—l. 0309、切片 b=30. 0となっている。
式 (4)の近似直線を使用した場合、あるトルク Tを最小電流にて発生させることのでき る d軸電流 id、 q軸電流 iqは、トルク曲線 Torと最小電流条件を示す近似直線 lapとの 交点を求めることで得られ、これらは前記式(3)と、式 (4)の連立方程式を解けば求 めることが可能である。この連立方程式は、二次方程式となるので、容易に解くことが 可能となる。式 (3)、式 (4)を整理すると、以下の式 (5)を得る。
[0033] [数 5]
{ (Ld― Lq ) d 2 + {(αΡ„ α ) + bP„ (Ld― Lq )}d + bP >a - Γ = 0 ( 5 )
[0034] 式(5)より、 d軸電流 idを求めると、以下の式(6)のとおりとなる。
[0035] [数 6]
.
Figure imgf000011_0001
( 6 )
[0036] 式 (6)から、あるトルク Tを最小電流にて発生させることのできる、即ち最大トルク制 御を実現する d軸電流 idを得ることが可能となる。
q軸電流 iqは、式(3)に idを代入することで得られる。
なお、式 (6)中の a、 bは図 2に示したように、式 (1)の最小電流条件を示す曲線の近 似直線から、あらかじめ求めておくとよい。
[0037] 以上が最大トルク制御を実現できる電流ベクトル即ち d軸電流 id、 q軸電流 iqの組 み合わせを得る方法の原理説明である。
次に、永久磁石同期電動機のベクトル制御に好適な、具体的な電流指令生成部 1
0の構成を以下に説明する。
[0038] 図 3はこの発明の実施の形態 1における電流指令生成部 10の構成を示す図である 図 3に示すように、トルク指令 T *を絶対値回路 13を介して得たトルク指令絶対値 Ta bs *と、式 (4)で表される最小電流条件を示す近似直線の傾き a、切片 bから、 d軸基 本電流指令生成部 11により以下の式(7)に基づき第一の d軸基本電流指令 idl *が 算出される。
なお、式(7)は、式(6)の d軸電流 idを第一の d軸基本電流指令 idl *に、トルク Tをト ルク指令絶対値 Tabs *にそれぞれ置き換えて得たものである。
[0039] [数 7]
Figure imgf000012_0001
( 7 )
[0040] 式(7)により算出された第一の d軸基本電流指令 idl *は、リミッタ部 12に入力され 、 idl *が正の場合、リミッタ部 12の出力である第二の d軸基本電流指令 id2 *はゼ 口となり、 idl *が負であれば、リミッタ部 12の出力である id2 *は idl *と等しくなる。 つまり、 id2 *がゼロより大きくならないように制限する機能を有する。
[0041] このように、第二の d軸基本電流指令 id2 *の上限値をゼロに制限することで、特に トルク指令 T*が小さい領域 (おおよそ 50Nm以下)において、図 2の第一象限(図示 しない)にトルク曲線と最小電流条件を示す近似直線との交点が生じて、最小電流条 件から大きく外れた d軸電流指令 id*、q軸電流指令 iq *が算出されることを防止で きる。
別の見方をすれば、トルク指令 T*が小さい領域においては、自動的に公知技術 である id = 0に固定する制御に移行することが可能となる。
なお、式(7)において、トルク指令絶対値 Tabs *を使用することで、カ行トルク、回生 トルクの!/ヽずれを出力する場合にお!、ても、単一の式(7)で第一の d軸基本電流指 令 idl *を得ることが可能となり演算の簡易化が図れる。
[0042] 次いで、 d軸電流指令補正部をなす加算器 14にて第二の d軸基本電流指令 id2 * と d軸電流指令補正量 dVの和をとつた値を、 d軸電流指令 id *とする。
なお、 d軸電流指令補正量 dVは電動機 6の運転状態に応じてゼロ以下の値を取る。 このようにして、電動機 6の回転が中低速で、電動機 6の電圧力インバータ 2の出力 可能な最大電圧以下である場合には、 d軸電流指令補正量 dVはゼロとなり最小電 流条件を満たす d軸電流指令 id *が得られ、高速回転領域にて電動機 6の電圧がィ ンバータ 2の出力可能な最大電圧を超過する状態においては、 d軸電流指令補正量 dVに応じて d軸電流指令 id *を減少させてゆくことが可能となり、弱め磁束運転が可 能となる。
[0043] 最後に、 q軸電流指令生成部 15において、以下の式 (8)に d軸電流指令 id *、トル ク指令 T *を代入することで、 q軸電流指令 iq *を得る。 なお、式(8)は、式(3)の d軸電流 idを d軸電流指令 id *に、 q軸電流 iqを q軸電流指 令 iq *に、トルク Tをトルク指令 T*にそれぞれ置き換えて得た式である。
[0044] [数 8]
Figure imgf000013_0001
[0045] このようにして、この発明の実施の形態 1の永久磁石同期電動機のベクトル制御装 置によれば、マップを使用せず、簡易な演算式で最大トルク制御を実現することがで き、かつ高速域では弱め磁束制御が可能となる d軸電流指令 id *、 q軸電流指令 iq *を得ることが可會となる。
この d軸電流指令 id *、 q軸電流指令 iq *に電動機 6の電流が一致するように、電流 制御器 20によって制御を実施することにより、電動機 6を最大トルク制御することが可 能な永久磁石同期電動機のベクトル制御装置を得ることが可能となる。
[0046] なお、上記に示した電流指令生成部 10内の各演算式に使用されている電動機定 数 Ld、 Lq、 φ aや、近似直線の傾き a、切片 bは任意のタイミングで変更しても良い。 例えば、電動機 6の速度、トルクの大きさ、電流の大きさ、カ行 Z回生等の運転状態 に応じて変更したり、トルク指令 T*、 d軸電流指令 id*、 q軸電流指令 iq *あるいは 検出値である d軸電流 id、 q軸電流 iqに応じて変更したり、調整することが考えられる このようにすれば、図 2に示す d軸電流 id、 q軸電流 iq力 、さい領域(id>— 50A、 iq く 75A付近)においても、より正確な最小電流条件が算出できるなど、より理想的な 動作点が得られる。
[0047] なお、電動機定数 Ld、 Lq、 φ aや、近似直線の傾き a、切片 bを変更したり調整した りする際には、電動機 6の速度、トルクの大きさ、電流の大きさ、トルク指令 T*、 d軸 電流指令 id *、 q軸電流指令 iq *あるいは d軸電流 id、 q軸電流 iqの各値をそのまま 参照せずに、前記各値をローパスフィルタや一次遅れ回路のような遅れ要素を介し た値を参照する構成とするのが、制御系の安定性を確保する観点力も望ましい。 また、特に電動機定数 Ld、 Lqは磁気飽和の影響を受けて値が変化する場合がある ので、適宜補正するように構成するのが好ましい。
[0048] 実施の形態 2.
図 4は、この発明の実施の形態 2の永久磁石同期電動機のベクトル制御装置にお ける電流指令生成部 10の構成例を示す図である。
ここでは、図 3に示した実施の形態 1の構成例と異なる部分のみ説明し、同様の部分 は図 3と同一の符号をつけて説明は省略する。
図 4に示すように、実施の形態 2の電流指令生成部 10においては、図 3の q軸電流指 令生成部 15が、図 4では q軸電流指令生成部 15Aに変更して 、る。
[0049] q軸電流指令生成部 15Aにおいて、以下の式(9)に d軸電流指令 id *、近似直線 の傾き a、切片 bを代入することで、 q軸電流指令 iq *を得る。
なお、式(9)は、式 (4)の d軸電流 idを d軸電流指令 id *に、 q軸電流 iqを q軸電流指 令 iq *にそれぞれ置き換えて得た式である。
[0050] [数 9] iq * = aid * +b ( 9 )
[0051] この実施の形態 2によれば、式(9)から q軸電流指令 iq *を算出することで、式 (8) から iq *を演算する実施の形態 1と比べて、式構成が簡単であるため、演算量を抑 制することが可能となり、安価なマイコンが使用できる。
[0052] 以上の実施の形態に示した構成は、本発明の内容の一例であり、別の公知の技術 と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略 する等、変更して構成することも可能であることは言うまでもな 、。
[0053] さらに、上述の実施の形態においては、電気車の制御装置への適用を考慮して発 明内容の説明を実施しているが、この発明の適用分野はこれに限られるものではなく 、電気自動車、エレベータ、電力システム等、種々の関連分野への応用が可能であ ることは言うまでもない。

Claims

請求の範囲
[1] 直流電圧を任意の周波数の交流電圧に変換して出力するインバータによって駆動 される永久磁石同期電動機の電流を、前記電動機の回転電気角に同期して回転す る dq軸座標上の量である d軸電流 id、 q軸電流 iqに分離してそれぞれを制御する構 成とした永久磁石同期電動機のベクトル制御装置であって、与えられたトルク指令か ら d軸電流指令 id *、 q軸電流指令 iq *を生成する電流指令生成部と、前記電動機 の電流が前記電流指令に一致するように動作する電流制御部を備え、
前記電流指令生成部は、前記トルク指令を利用して第一の d軸基本電流指令 idl * を生成する d軸基本電流指令生成部と、前記第一の d軸基本電流指令 idl *を入力 とし、ゼロ以下に制限した値を第二の d軸基本電流指令 id2 *として出力するリミッタ 部と、第二の d軸基本電流指令 id2 *を入力とし、この電流指令 id2 *を、前記電流 制御部より出力された d軸電流指令補正値 dVに応じて補正した値を d軸電流指令 id *として出力する d軸電流指令補正部と、前記 d軸電流指令 id*から q軸電流指令 iq *を生成する q軸電流指令生成部とを具備し、前記トルク指令に対応したトルクを最 小の電流で発生できる d軸電流指令 id *、 q軸電流指令 iq *を生成するようにしたこ とを特徴とする永久磁石同期電動機のベクトル制御装置。
[2] 前記 d軸基本電流指令生成部は、前記電動機のトルクと d軸電流と q軸電流との関 係を示す式と、 d軸電流と q軸電流との関係を示した傾きと切片を有する一次式との 交点を求めることにより、第一の d軸基本電流指令 idl *を生成する構成としたことを 特徴とする請求項 1に記載の永久磁石同期電動機のベクトル制御装置。
[3] 前記一次式は、前記電動機が、あるトルクを最小の電流で発生できる条件を示した 曲線を線形近似した一次式であることを特徴とする請求項 2に記載の永久磁石同期 電動機のベクトル制御装置。
[4] 前記 d軸基本電流指令生成部は、以下の第一の数式から第一の d軸基本電流指 令 idl *を生成することを特徴とする請求項 1に記載の永久磁石同期電動機のベタト ル制御装置。
[数 10] *—
Figure imgf000016_0001
ただし、
Tabs *はトルク指令の絶対値、 Ldは d軸インダクタンス (H)、 Lqは q軸インダクタンス( H)、 φ aは永久磁石磁束 (Wb)、 Pnは電動機の極対数、 aは前記一次式の傾き、 bは 前記一次式の切片である。
[5] 前記第一の数式において、式中の Ld、 Lq、 φ a、 a、 bのうち何れ力は、任意のタイ ミングで変更されることを特徴とする請求項 4に記載の永久磁石同期電動機のベタト ル制御装置。
[6] 前記第一の数式において、式中の Ld、 Lq、 φ a、 a、 bのうち何れ力は、前記電動機 の d軸電流 id、 q軸電流 iq、前記 d軸電流指令 id *、 q軸電流指令 iq *、前記トルク指 令 T*を含む信号に応じて変更されることを特徴とする請求項 4に記載の永久磁石 同期電動機のベクトル制御装置。
[7] 前記 q軸電流指令 iq *は、前記 d軸電流指令 id *を以下の第二の数式に代入して 生成することを特徴とする請求項 1に記載の永久磁石同期電動機のベクトル制御装 置。
[数 11]
• *一
Figure imgf000016_0002
ただし、
T*はトルク指令、 Ldは d軸インダクタンス (H)、 Lqは q軸インダクタンス(H)、 φ aは 永久磁石磁束 (Wb)、 Pnは電動機の極対数である。
[8] 前記第二の数式において、式中の Ld、 Lq、 φ aのうち何れかは、任意のタイミング で変更されることを特徴とする請求項 7に記載の永久磁石同期電動機のベクトル制 御装置。
[9] 前記第二の数式において、式中の Ld、 Lq、 φ aのうち何れかは、前記電動機の d軸 電流 id、 q軸電流 iq、前記 d軸電流指令 id*、 q軸電流指令 iq *、前記トルク指令 T* を含む信号に応じて変更されることを特徴とする請求項 7に記載の永久磁石同期電 動機のベクトル制御装置。
[10] 前記 q軸電流指令 iq *は、前記 d軸電流指令 id *を以下の第三の数式に代入して 生成することを特徴とする請求項 1に記載の永久磁石同期電動機のベクトル制御装 置。
[数 12] iq * = aid * +b ただし、
aは前記一次式の傾き、 bは前記一次式の切片である。
[11] 前記第三の数式において、式中の a、 bのうち何れかは、任意のタイミングで変更さ れることを特徴とする請求項 10に記載の永久磁石同期電動機のベクトル制御装置。
[12] 前記第三の数式において、式中の a、 bのうち何れかは、前記電動機の d軸電流 id、 q軸電流 iq、前記 d軸電流指令 id *、 q軸電流指令 iq *、前記トルク指令 T *を含む 信号に応じて変更されることを特徴とする請求項 10に記載の永久磁石同期電動機 のベクトル制御装置。
PCT/JP2006/319034 2006-09-26 2006-09-26 Dispositif de commande de vecteur pour moteur de synchronisation à aimant permanent WO2008038338A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020087030500A KR101053315B1 (ko) 2006-09-26 2006-09-26 영구자석 동기 전동기의 벡터 제어 장치
CN2006800557288A CN101507101B (zh) 2006-09-26 2006-09-26 永磁体同步电动机的矢量控制装置
US12/377,495 US8148926B2 (en) 2006-09-26 2006-09-26 Permanent magnet synchronization motor vector control device
CA 2660380 CA2660380C (en) 2006-09-26 2006-09-26 Permanent magnet synchronization motor vector control device
EP20060810559 EP2068438B1 (en) 2006-09-26 2006-09-26 Permanent magnet synchronization motor vector control device
ES06810559T ES2424967T3 (es) 2006-09-26 2006-09-26 Dispositivo de control vectorial de motor síncrono con imán permanente
JP2007504199A JP4045307B1 (ja) 2006-09-26 2006-09-26 永久磁石同期電動機のベクトル制御装置
PCT/JP2006/319034 WO2008038338A1 (fr) 2006-09-26 2006-09-26 Dispositif de commande de vecteur pour moteur de synchronisation à aimant permanent
IN1380CHN2009 IN2009CN01380A (ja) 2006-09-26 2009-03-11
HK09111796A HK1135521A1 (en) 2006-09-26 2009-12-16 Permanent magnet synchronization motor vector control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/319034 WO2008038338A1 (fr) 2006-09-26 2006-09-26 Dispositif de commande de vecteur pour moteur de synchronisation à aimant permanent

Publications (1)

Publication Number Publication Date
WO2008038338A1 true WO2008038338A1 (fr) 2008-04-03

Family

ID=39124554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319034 WO2008038338A1 (fr) 2006-09-26 2006-09-26 Dispositif de commande de vecteur pour moteur de synchronisation à aimant permanent

Country Status (10)

Country Link
US (1) US8148926B2 (ja)
EP (1) EP2068438B1 (ja)
JP (1) JP4045307B1 (ja)
KR (1) KR101053315B1 (ja)
CN (1) CN101507101B (ja)
CA (1) CA2660380C (ja)
ES (1) ES2424967T3 (ja)
HK (1) HK1135521A1 (ja)
IN (1) IN2009CN01380A (ja)
WO (1) WO2008038338A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013004589A1 (de) 2012-03-23 2013-09-26 Fanuc Corp. Regelvorrichtung für einen Synchronmotor
WO2019182547A1 (ru) * 2018-03-20 2019-09-26 Дмитрий Валерьевич ХАЧАТУРОВ Способ управления синхронным электродвигателем на постоянных магнитах

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676551B1 (ja) * 2009-12-22 2011-04-27 ファナック株式会社 コギングトルク補正量算出機能を有するモータ制御装置
JP2012100369A (ja) * 2010-10-29 2012-05-24 Hitachi Appliances Inc 冷凍装置および永久磁石同期モータの制御装置
JP5948613B2 (ja) * 2011-08-10 2016-07-06 パナソニックIpマネジメント株式会社 モータの制御装置
JP5693429B2 (ja) 2011-10-21 2015-04-01 三菱重工業株式会社 モータ制御装置、モータ制御方法
CN103378789B (zh) * 2012-04-29 2015-07-15 东菱技术有限公司 永磁同步电机转矩脉动抑制方法
US9369078B2 (en) 2013-03-11 2016-06-14 Steering Solutions Ip Holding Corporation Method of current reference generation for a motor
US9461574B2 (en) 2013-03-12 2016-10-04 Steering Solutions Ip Holding Corporation Motor control system for determining a reference d-axis current and a q-axis current
US9531311B2 (en) 2013-03-13 2016-12-27 Steering Solutions Ip Holding Corporation Generation of a current reference to control a brushless motor
EP3014757B1 (en) * 2013-06-28 2023-04-05 Nissan Motor Co., Ltd. Variable magnetization machine controller and method
JP5717808B2 (ja) 2013-07-18 2015-05-13 ファナック株式会社 同期電動機の電流制御装置
CN103607156B (zh) * 2013-11-25 2015-10-14 东南大学 一种混合励磁同步电机功率因数控制方法
CN104953918B (zh) * 2015-06-30 2017-07-07 广东美的制冷设备有限公司 空调系统电网电压跌落时输入电流闭环限幅方法及系统
KR101736006B1 (ko) 2016-04-01 2017-05-15 엘에스산전 주식회사 전류 지령 보정 장치
WO2020003772A1 (ja) * 2018-06-29 2020-01-02 日本電産株式会社 モータ制御装置、モータ制御方法、およびモータシステム
JP7155691B2 (ja) * 2018-07-13 2022-10-19 株式会社デンソー 回転電機の制御装置
US10526008B1 (en) * 2018-07-31 2020-01-07 Steering Solutions Ip Holding Corporation Machine current limiting for permanent magnet synchronous machines
WO2020066302A1 (ja) * 2018-09-26 2020-04-02 パナソニックIpマネジメント株式会社 多軸モータ駆動装置
US11424706B2 (en) * 2019-11-15 2022-08-23 Steering Solutions Ip Holding Corporation Battery current limiting of permanent magnet synchronous motor drives using operation condition monitoring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274699A (ja) * 2002-03-12 2003-09-26 Toshiba Corp モータ制御装置
JP2006025583A (ja) * 2004-07-07 2006-01-26 C & S Kokusai Kenkyusho:Kk 同期電動機のベクトル制御方法及び同装置
JP2006121855A (ja) 2004-10-25 2006-05-11 Nissan Motor Co Ltd 交流モータ制御装置
JP2006141095A (ja) * 2004-11-10 2006-06-01 Toyota Industries Corp 永久磁石型同期モータを駆動制御する装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585349Y2 (ja) * 1992-12-17 1998-11-18 東陶機器株式会社 洗浄水供給装置
JP3791625B2 (ja) * 1995-08-11 2006-06-28 日産自動車株式会社 車両の四輪駆動制御装置
JPH10243700A (ja) * 1997-02-27 1998-09-11 Fuji Electric Co Ltd 永久磁石同期電動機の制御装置
JP4042278B2 (ja) * 1999-11-30 2008-02-06 株式会社明電舎 同期電動機の制御方式
JP3520002B2 (ja) * 1999-12-08 2004-04-19 三菱電機株式会社 誘導電動機のベクトル制御装置
US6867526B2 (en) * 2001-09-05 2005-03-15 Koyo Seiko Co., Ltd. Brushless DC motor
JP2003153600A (ja) * 2001-11-14 2003-05-23 Nissan Motor Co Ltd 電動機制御装置における電流指令値の補正方法
US6936991B2 (en) * 2002-06-03 2005-08-30 Ballard Power Systems Corporation Method and apparatus for motor control
JP3849979B2 (ja) * 2002-07-02 2006-11-22 本田技研工業株式会社 電動パワーステアリング装置
US7075266B2 (en) * 2003-03-28 2006-07-11 Hitachi, Ltd. Apparatus for controlling an a. c. motor
JP2005337583A (ja) * 2004-05-26 2005-12-08 Toshiba Corp 冷蔵庫
JP4380437B2 (ja) * 2004-07-01 2009-12-09 株式会社日立製作所 永久磁石同期電動機の制御装置及びモジュール
US7023168B1 (en) * 2004-09-13 2006-04-04 General Motors Corporation Field weakening motor control system and method
US7323833B2 (en) * 2005-05-05 2008-01-29 Delphi Technologies, Inc. Voltage mode control with phase advancing for position controlled electric machines
US7667426B2 (en) * 2005-06-17 2010-02-23 Gm Global Technology Operations, Inc. On-line minimum copper loss control of interior permanent-magnet synchronous machine for automotive applications
JP4489002B2 (ja) * 2005-10-26 2010-06-23 三菱電機株式会社 ハイブリッド励磁回転電機、及びハイブリッド励磁回転電機を備えた車両
EP2075906A4 (en) * 2006-10-19 2013-09-11 Mitsubishi Electric Corp VECTOR CONTROL OF A PERMANENT MAGNET SYNCHRONOUS MOTOR
JP2010011575A (ja) * 2008-06-25 2010-01-14 Mitsubishi Electric Corp 車両用電動機の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274699A (ja) * 2002-03-12 2003-09-26 Toshiba Corp モータ制御装置
JP2006025583A (ja) * 2004-07-07 2006-01-26 C & S Kokusai Kenkyusho:Kk 同期電動機のベクトル制御方法及び同装置
JP2006121855A (ja) 2004-10-25 2006-05-11 Nissan Motor Co Ltd 交流モータ制御装置
JP2006141095A (ja) * 2004-11-10 2006-06-01 Toyota Industries Corp 永久磁石型同期モータを駆動制御する装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2068438A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013004589A1 (de) 2012-03-23 2013-09-26 Fanuc Corp. Regelvorrichtung für einen Synchronmotor
US9000694B2 (en) 2012-03-23 2015-04-07 Fanuc Corporation Synchronous motor control apparatus
US9136789B2 (en) 2012-03-23 2015-09-15 Fanuc Corporation Synchronous motor control apparatus
DE102013004589B4 (de) 2012-03-23 2023-06-22 Fanuc Corp. Regelvorrichtung für einen Synchronmotor
WO2019182547A1 (ru) * 2018-03-20 2019-09-26 Дмитрий Валерьевич ХАЧАТУРОВ Способ управления синхронным электродвигателем на постоянных магнитах

Also Published As

Publication number Publication date
HK1135521A1 (en) 2010-06-04
US20100277111A1 (en) 2010-11-04
US8148926B2 (en) 2012-04-03
EP2068438B1 (en) 2013-05-15
CN101507101B (zh) 2012-06-27
ES2424967T3 (es) 2013-10-10
EP2068438A1 (en) 2009-06-10
CN101507101A (zh) 2009-08-12
CA2660380A1 (en) 2008-04-03
EP2068438A4 (en) 2012-04-18
KR101053315B1 (ko) 2011-08-01
IN2009CN01380A (ja) 2015-08-07
KR20090028710A (ko) 2009-03-19
CA2660380C (en) 2012-08-21
JPWO2008038338A1 (ja) 2010-01-28
JP4045307B1 (ja) 2008-02-13

Similar Documents

Publication Publication Date Title
WO2008038338A1 (fr) Dispositif de commande de vecteur pour moteur de synchronisation à aimant permanent
JP4205157B1 (ja) 電動機の制御装置
US7986116B2 (en) Apparatus for controlling torque of electric rotating machine
WO2008047438A1 (fr) Contrôleur vectoriel d'un moteur synchrone à aimant permanent
JP2000032799A (ja) 回転電機の制御装置及び制御方法
WO2012029715A1 (ja) 電動機の駆動装置
JP2004064909A (ja) モータ制御装置
JP2002223600A (ja) モータ制御装置
JP3852289B2 (ja) モーター制御装置
JP2010200430A (ja) 電動機の駆動制御装置
JP7094859B2 (ja) モータ制御装置及びモータ制御方法
WO2015137372A1 (ja) 電動機の駆動装置
JPH08275599A (ja) 永久磁石同期電動機の制御方法
JP3353781B2 (ja) モータ制御装置
JP4135753B2 (ja) モーター制御装置およびモーター制御方法
JP3939481B2 (ja) 交流モータの制御装置
JP2006050705A (ja) 電動機制御装置
JP2020039227A (ja) 電動機の駆動装置
JP3933348B2 (ja) 埋込磁石形同期電動機の制御装置
JP7053335B2 (ja) モータ制御装置、電動車両
CN113169696A (zh) 控制方法及相关联的控制系统
JP3290099B2 (ja) リラクタンス型同期電動機の制御装置
JP2001197774A (ja) シンクロナスリラクタンスモータの制御装置
WO2023195172A1 (ja) モータ制御装置、モータ制御方法
JP2005102385A (ja) モーター制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055728.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007504199

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06810559

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087030500

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2660380

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12377495

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006810559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1380/CHENP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009115655

Country of ref document: RU

Kind code of ref document: A