WO2020066302A1 - 多軸モータ駆動装置 - Google Patents

多軸モータ駆動装置 Download PDF

Info

Publication number
WO2020066302A1
WO2020066302A1 PCT/JP2019/030796 JP2019030796W WO2020066302A1 WO 2020066302 A1 WO2020066302 A1 WO 2020066302A1 JP 2019030796 W JP2019030796 W JP 2019030796W WO 2020066302 A1 WO2020066302 A1 WO 2020066302A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
axis motor
axis
measurement
force
Prior art date
Application number
PCT/JP2019/030796
Other languages
English (en)
French (fr)
Inventor
鈴木 健一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980031857.0A priority Critical patent/CN112106289A/zh
Priority to JP2020548089A priority patent/JP7429879B2/ja
Publication of WO2020066302A1 publication Critical patent/WO2020066302A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/28Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • H02P5/52Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another additionally providing control of relative angular displacement

Definitions

  • the present disclosure relates to a shape measurement function by a multi-axis motor driving device that drives a multi-axis motor.
  • Measurement is an indispensable technology for performing high-precision machining.
  • the measurement accuracy needs to be higher than the processing accuracy, it is costly to improve the measurement accuracy.
  • the value of the measurement is difficult to understand because the measurement itself does not create anything visible. For these reasons, investment tends to be difficult to improve in improving measurement accuracy. This is particularly noticeable in developing machine manufacturers. For example, there are extreme cases where efforts are made to increase the rigidity and accuracy of the processing apparatus, but the evaluation of the processing result is still visually observed. This is because there is still little entry into applications that require true processing accuracy, but it is expected that investment in measurement will increase in order to improve yield and secure reliability in the future.
  • the conventional configuration includes, in a processing machine having a plurality of servomotors, a shape measuring device including a measuring element that contacts a surface of a workpiece with low contact force, and a position detector that measures a position of the measuring element.
  • a shape measuring device including a measuring element that contacts a surface of a workpiece with low contact force, and a position detector that measures a position of the measuring element.
  • the shape of the workpiece is measured by following the workpiece with an air cylinder after processing.
  • the present disclosure has as its object to provide a multi-axis motor drive device capable of realizing a shape measurement function while suppressing an additional cost as a processing machine in order to solve the conventional problem.
  • a multi-axis motor drive device is a multi-axis motor drive device that controls a plurality of axis motors, a position command generator that generates a position command from a measurement start position to a measurement end position, A force command generator that generates a force command in a direction perpendicular to the trajectory of the position command, and receives the position command, the force command, and the position of the multi-axis motor as input and outputs a current command to the multi-axis motor.
  • a current command generation unit to generate, a motor control unit to control the plurality of motors based on the current command, and a motor position storage to store the positions of the plurality of motors from the measurement start position to the measurement end position. Unit.
  • the present disclosure can provide a multi-axis motor control device capable of realizing a shape measuring function while suppressing an additional cost as a processing machine.
  • FIG. 1 is a control block diagram of the multi-axis motor drive device according to the first embodiment.
  • FIG. 2 is a control block diagram of the multi-axis motor drive device according to the second embodiment.
  • FIG. 3 is a control block diagram of the multi-axis motor drive device according to the third embodiment.
  • FIG. 4 is a control block diagram of the multi-axis motor drive device according to the fourth embodiment.
  • a multi-axis motor drive device is a multi-axis motor drive device that controls a plurality of axis motors, a position command generator that generates a position command from a measurement start position to a measurement end position, A force command generator that generates a force command in a direction perpendicular to the trajectory of the position command, and receives the position command, the force command, and the position of the multi-axis motor as input and outputs a current command to the multi-axis motor.
  • a current command generation unit to generate, a motor control unit to control the plurality of motors based on the current command, and a motor position storage to store the positions of the plurality of motors from the measurement start position to the measurement end position. Unit. This makes it possible to obtain the shape information of the measurement target from the motor position storage unit while reducing the cost increase as a processing machine. Therefore, the multi-axis motor driving device can realize the shape measuring function while suppressing the additional cost as a processing machine.
  • the current command generation unit may include a hybrid controller that receives the position command, the force command, and the position of the multi-axis motor to generate the current command for the multi-axis motor.
  • the measurement accuracy can be improved by using the hybrid controller.
  • the current command generation unit is configured to perform a position control of a first motor included in the plurality of motors based on the position command, and a position controller included in the plurality of motors based on the force command.
  • a force controller that performs force control of a second motor different from the first motor may be included.
  • the multi-axis motor driving device may further include a measurement index calculator that generates a measurement index from the positions of the plurality of motors.
  • the measurement index may indicate a quadrant protrusion amount or a surface roughness. This makes it possible to simplify the interface with the outside while simplifying the storage capacity of the multi-axis motor drive device, and to easily manage the measurement indices outside.
  • the position command generator may include a position command switch that selectively outputs one of the position command and an external processing position command. Thereby, the operation for processing and the operation for shape measurement can be switched.
  • FIG. 1 is a control block diagram of a multi-axis motor drive device 1 according to the present embodiment.
  • the multi-axis motor drive device 1 controls a multi-axis motor.
  • the multi-axis motor drive device 1 controls two motors, an A-axis motor 2A and a B-axis motor 2B.
  • AA-axis motor 2A is connected to A-axis position detector 3A
  • B-axis motor 2B is connected to B-axis position detector 3B.
  • the A-axis position detector 3A detects the A-axis motor position 31A, which is the motor position of the A-axis motor 2A, and feeds back the detected A-axis motor position 31A to the multi-axis motor driving device 1.
  • the B-axis position detector 3B detects the B-axis motor position 31B, which is the motor position of the B-axis motor 2B, and feeds back the detected B-axis motor position 31B to the multi-axis motor driving device 1.
  • the A-axis motor 2A drives the Y-axis ball screw 41
  • the B-axis motor 2B drives the X-axis ball screw 42.
  • the measurement head 43 can be moved to a free position on the XY coordinates by the biaxial ball screw.
  • the multi-axis motor drive device 1 includes a force command generator 11, a position command generator 12, a current command generator 13, a motor control unit 14, and a motor position storage unit 15.
  • the position command generator 12 generates a position command 121 from the measurement start position to the measurement end position. Specifically, the position command 121 is generated such that the position command trajectory 6 is passed from the measurement object 5 to the outside by the radius of the measurement head 43 so that the measurement head 43 operates near the measurement object 5. You. For example, the position command 121 is represented by continuous values on XY coordinates. The measuring head 43 draws a locus along the measurement target 5 according to the position command locus 6. At this time, it is necessary to surely press the measuring head 43 against the measuring object 5 for shape measurement.
  • the force command generator 11 In order to control the pressing force 7 applied to the measurement object, the force command generator 11 generates a force command 111 in a direction perpendicular to the locus of the position command. Normally, the value of the force command 111 may be a constant value, but the value of the force command 111 can be adjusted according to the rigidity of the measurement target or the measurement head.
  • the current command generation unit 13 receives the position command 121, the force command 111, and the A-axis motor position 31A and the B-axis motor position 31B, which are the positions of the multi-axis motor, and is a current command to the multi-axis motor.
  • An A-axis current command 131A and a B-axis current command 131B are generated.
  • the current command generator 13 includes a hybrid controller 13a.
  • Hybris motor position 31A and B-axis motor position 31B are input to hybrid controller 13a.
  • the hybrid controller 13a generates an A-axis current command 131A and a B-axis current command 131B using the force command 111 and the position command 121, and the A-axis motor position 31A and the B-axis motor position 31B.
  • Control that simultaneously performs position control in one direction and force control in the other direction is generally called hybrid force-position control, and is used for a copying operation of a deburring robot.
  • the hybrid controller 13a includes a component parallel to the position command trajectory 6 in the current command for performing the position control so that the A-axis motor position 31A and the B-axis motor position 31B follow the position command 121;
  • An A-axis current command 131A and a B-axis current command 131B are generated by synthesizing a current command for applying the force command 111 in a direction perpendicular to the command trajectory 6.
  • the motor control unit 14 controls the A-axis motor 2A and the B-axis motor 2B based on the A-axis current command 131A and the B-axis current command 131B.
  • the motor control unit 14 includes an A-axis current controller 14A and a B-axis current controller 14B.
  • the A-axis current controller 14A controls the current of the A-axis motor 2A so that the current of the A-axis motor 2A follows the A-axis current command 131A.
  • the B-axis current controller 14B controls the current of the B-axis motor 2B so that the current of the B-axis motor 2B follows the B-axis current command 131B.
  • the motor position storage unit 15 sequentially stores the A-axis motor position 31A and the B-axis motor position 31B, which are motor positions of a plurality of axes. That is, the motor position storage unit 15 stores the positions of the motors of a plurality of axes from the measurement start position to the measurement end position. Further, the motor position storage unit 15 displays the stored motor positions of the plurality of axes or transfers the motor positions to an external device (not shown).
  • the multi-axis motor drive device 1 mounted on the processing machine can be used for shape measurement as it is.
  • the shape measuring function can be realized while suppressing the additional cost as a processing machine.
  • the measuring head 43 is replaced with a processing head during processing. For example, if a tool changer is provided, head exchange can be automated.
  • FIG. 2 is a control block diagram of the multi-axis motor drive device 1A according to the present embodiment.
  • the multi-axis motor driving device 1A shown in FIG. 2 differs from the multi-axis motor driving device 1 shown in FIG.
  • the current command generator 13A includes a force controller 13b and a position controller 13c.
  • the force command 111 and the A-axis motor position 31A are input to the force controller 13b.
  • the force controller 13b generates an A-axis current command 131A using the input force command 111 and the A-axis motor position 31A.
  • the position command 121 and the B-axis motor position 31B are input to the position controller 13c.
  • the position controller 13c generates a B-axis current command 131B using the input position command 121 and B-axis motor position 31B. That is, the position controller 13c controls the position of the B-axis motor 2B (first motor) included in the multi-axis motor based on the position command 121.
  • the force controller 13b controls the force of the A-axis motor 2A (second motor) included in the multi-axis motor based on the force command 111.
  • the current of each axis is independently controlled.
  • This control configuration can be applied when measuring a part of the measurement target 5. For example, as shown in the lower right of FIG. 2, this is a case where the surface roughness of a linear portion in the X axis direction is measured.
  • the axis that requires position control is the X axis
  • the axis that requires force control is the Y axis. That is, the axis requiring position control and the axis requiring force control are completely separated.
  • the control configuration of the present embodiment can be applied.
  • it is not always necessary to actually perform the processing and the measurement in the same posture and there is a case where only the measurement of a specific portion is necessary.
  • the configuration of the present embodiment can be applied to such a case.
  • the configuration of the present embodiment is different from the configuration of the first embodiment in that the direction of shape measurement is restricted, but the control is simpler than when the hybrid controller 13a involving complicated coordinate transformation is used. Position control and force control can be realized. Thereby, the development cost and product cost of the multi-axis motor drive device 1A can be reduced.
  • FIG. 3 is a control block diagram of the multi-axis motor drive device 1B according to the present embodiment.
  • the multi-axis motor driving device 1B shown in FIG. 3 includes a measurement index calculator 16 in addition to the configuration shown in FIG.
  • the measurement index calculator 16 calculates a measurement index using a large number of data indicating the shape of the measurement target 5 stored in the motor position storage unit 15.
  • the data amount of the measurement index is smaller than the data amount of the original data stored in the motor position storage unit 15.
  • the measurement index is information indicating the processing accuracy, for example, the quadrant projection amount.
  • the measurement index calculator 16 calculates the amount of deviation of the actual motor position in the radial direction from the circular locus to be drawn by the two-axis motor position, and calculates the maximum value and the minimum value of the amount of deviation in the specific angle range. Thus, the quadrant protrusion amount is calculated.
  • the measurement index may be the surface roughness of the machined surface.
  • the measurement index calculator 16 generates a cross-sectional curve from the fluctuation of the motor position in the force control direction, and calculates the maximum peak height from the waviness curve that is a low frequency component of the cross-sectional curve or the roughness curve of the high frequency component.
  • a parameter such as a maximum valley height or a ten-point average roughness is calculated as a measurement index.
  • the measurement index calculator 16 may switch the type of the measurement index to be calculated (such as the amount of quadrant protrusions or surface roughness) according to the measurement target.
  • the data of the shape measurement result can be compressed. Thereby, the resources of the multi-axis motor drive device 1B can be reduced. Also, an interface for transmitting data to an external controller can be realized by simple means. Further, by using the measurement index, an operator who determines the measurement result can easily make the determination.
  • FIG. 4 is a control block diagram of a multi-axis motor drive device 1C according to the present embodiment. 4 is different from the position command generator 12 in the configuration of the position command generator 12A in the motor drive device 1 shown in FIG.
  • the position command generator 12A includes an internal position command generator 12a, an external position command receiver 12b, and a position command switch 12c.
  • the internal position command generator 12a has the same function as the position command generator 12 shown in FIG. 1, and generates an internal position command for realizing the position command trajectory 6 for measurement.
  • the external position command receiver 12b receives, for example, a position command trajectory during machining from an external controller (not shown) and generates an external position command corresponding to the position command trajectory.
  • the position command switch 12c selectively outputs one of the internal position command and the external position command as the position command 121. Specifically, the position command switch 12c outputs an internal position command as the position command 121 during measurement, and outputs an external position command as the position command 121 during machining. At the time of machining, the position control of all axes may be performed after invalidating the force control in the hybrid controller 13a.
  • the multi-axis motor driving device 1C can perform position control according to an external position command trajectory from an external controller during machining, and can perform shape measurement according to an internal position command trajectory during measurement. In this way, processing and measurement can be appropriately performed by the single multi-axis motor driving device 1C.
  • the multi-axis motor drive device can realize the shape measurement function while suppressing the additional cost as a processing machine by using the multi-axis servo system used for processing as it is for shape measurement. it can.
  • the accuracy of the shape measurement function is equivalent to the processing accuracy.However, when the measurement accuracy is further required, the shape measurement is periodically performed using a reference calibration object to measure the error. Perform this measurement using the minute as the calibration value. This enables more accurate shape measurement.
  • the present disclosure may be realized as a control method or the like executed by a multi-axis motor drive device.
  • the division of functional blocks in the block diagram is merely an example, and a plurality of functional blocks can be implemented as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be transferred to other functional blocks. You may. Also, the functions of a plurality of functional blocks having similar functions may be processed by a single piece of hardware or software in parallel or time division.
  • the multi-axis motor driving device according to one or more aspects has been described based on the embodiments, the present disclosure is not limited to the embodiments. Unless departing from the gist of the present disclosure, various modifications conceivable by those skilled in the art may be applied to the present embodiment, and a form constructed by combining components in different embodiments may be in the range of one or more aspects. May be included within.
  • the present disclosure can be applied to a multi-axis motor drive device and the like.
  • Multi-axis motor drive device 11 Force command generator 111 Force command 12 Position command generator 12a Internal position command generator 12b External position command receiver 12c Position command switch 121 Position command 13, 13A Current command Generator 13a Hybrid controller 13b Force controller 13c Position controller 131A A-axis current command 131B B-axis current command 14 Motor controller 14A A-axis current controller 14B B-axis current controller 15 Motor position storage 16 Measurement index calculator 2A A-axis motor 2B B-axis motor 3A A-axis position detector 3B B-axis position detector 31A A-axis motor position 31B B-axis motor position 41 Y-axis ball screw 42 X-axis ball screw 43 Measurement head 5 Measurement target 6 Position command locus 7 Force

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Numerical Control (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

多軸モータ駆動装置(1)は、A軸モータ(2A)とB軸モータ(2B)を制御する装置であって、測定開始位置から測定終了位置までの位置指令(121)を生成する位置指令生成器(12)と、位置指令の軌跡と垂直な方向の力指令(111)を生成する力指令生成器(11)と、位置指令(121)と力指令(111)とA軸モータ位置(31A)とB軸モータ位置(31B)とを入力としてA軸電流指令(131A)とB軸電流指令(131B)を生成する電流指令生成部(13)と、A軸電流指令(131A)とB軸電流指令(131B)に基づきA軸モータ(2A)とB軸モータ(2B)を制御するモータ制御部(14)と、測定開始位置から測定終了位置までのA軸モータ位置(31A)とB軸モータ位置(31B)を記憶するモータ位置記憶部(15)とを備える。

Description

多軸モータ駆動装置
 本開示は、複数軸のモータを駆動する多軸モータ駆動装置による形状測定機能に関する。
 高精度な加工を行うにあたって、測定は欠くべからざる技術である。しかし測定精度は加工精度より高くする必要があるため測定精度を向上させるためにはコストがかかる。また測定そのものは目に見えるものを作り出さないため測定の価値がわかりにくい。これらの理由で、測定精度の向上には投資が進みにくい傾向がある。これは特に発展途上の加工機メーカにおいて顕著である。例えば、加工装置の高剛性化及び高精度化には努力するが、加工結果の評価についてはいまだ目視という極端な例もある。これは、本当の加工精度を必要とする用途への参入がまだ少ないためもあるが、今後の歩留まり向上及び信頼性確保のため、測定への投資も増えていくものと思われる。
 これらの加工と測定を融合させる従来の技術として、加工精度測定器を追加した加工機がある(例えば、特許文献1参照)。
 前記従来の構成は、複数のサーボモータを有する加工機に、被加工物の表面に低接触力で接触する測定子と、前記測定子の位置を測定する位置検出器とを備える形状測定器を、追加で搭載しており、加工後にエアシリンダで被加工物を測定子で倣って形状測定するものであった。
特開2006-337148号公報
 この従来の構成では、通常は別装置である形状測定器の一部を加工機に搭載しており、測定子及びエアシリンダの追加などが加工機のコストアップになる。また加工機のコントローラにも形状測定機能を追加する必要があり、コントローラ開発への負担が大きかった。
 本開示は、前記従来の課題を解決するために、加工機としての追加コストを抑えつつ、形状測定機能を実現することができる多軸モータ駆動装置を提供することを目的とする。
 本開示の一態様に係る多軸モータ駆動装置は、複数軸のモータを制御する多軸モータ駆動装置であって、測定開始位置から測定終了位置までの位置指令を生成する位置指令生成器と、前記位置指令の軌跡と垂直な方向の力指令を生成する力指令生成器と、前記位置指令と前記力指令と前記複数軸のモータの位置とを入力として前記複数軸のモータへの電流指令を生成する電流指令生成部と、前記電流指令に基づき前記複数軸のモータを制御するモータ制御部と、前記測定開始位置から前記測定終了位置までの前記複数軸のモータの位置を記憶するモータ位置記憶部とを備える。
 本開示は、加工機としての付加コストを抑えつつ形状測定機能を実現できる多軸モータ制御装置を提供できる。
図1は、実施の形態1に係る多軸モータ駆動装置の制御ブロック図である。 図2は、実施の形態2に係る多軸モータ駆動装置の制御ブロック図である。 図3は、実施の形態3に係る多軸モータ駆動装置の制御ブロック図である。 図4は、実施の形態4に係る多軸モータ駆動装置の制御ブロック図である。
 本開示の一態様に係る多軸モータ駆動装置は、複数軸のモータを制御する多軸モータ駆動装置であって、測定開始位置から測定終了位置までの位置指令を生成する位置指令生成器と、前記位置指令の軌跡と垂直な方向の力指令を生成する力指令生成器と、前記位置指令と前記力指令と前記複数軸のモータの位置とを入力として前記複数軸のモータへの電流指令を生成する電流指令生成部と、前記電流指令に基づき前記複数軸のモータを制御するモータ制御部と、前記測定開始位置から前記測定終了位置までの前記複数軸のモータの位置を記憶するモータ位置記憶部とを備える。これにより、加工機としてのコストアップを低減しつつ、モータ位置記憶部から測定対象の形状情報を得ることが可能となる。よって、当該多軸モータ駆動装置は、加工機としての付加コストを抑えつつ形状測定機能を実現できる。
 例えば、前記電流指令生成部は、前記位置指令と前記力指令と前記複数軸のモータの位置とを入力として前記複数軸のモータの前記電流指令を生成するハイブリッド制御器を含んでもよい。これにより、ハイブリッド制御器を用いることで測定精度を向上できる。
 例えば、前記電流指令生成部は、前記位置指令に基づき前記複数軸のモータに含まれる第1モータの位置制御を行う位置制御器と、前記力指令に基づき、前記複数軸のモータに含まれる前記第1モータと異なる第2モータの力制御を行う力制御器とを含んでもよい。これにより、より簡単な制御構成で測定対象の形状測定が可能となる。
 例えば、前記多軸モータ駆動装置は、さらに、前記複数軸のモータの位置から測定指標を生成する測定指標計算器を備えてもよい。例えば、前記測定指標は、象限突起量又は表面粗さを示してもよい。これにより、多軸モータ駆動装置の記憶容量を削減しつつ、外部とのインターフェースを簡素化し、外部での測定指標管理を容易にできる。
 例えば、前記位置指令生成器は、前記位置指令と、外部からの加工用位置指令との一方を選択的に出力する位置指令切替器を備えてもよい。これにより、加工用の動作と形状測定用の動作を切り替えることができる。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 図1は、本実施の形態に係る多軸モータ駆動装置1の制御ブロック図である。多軸モータ駆動装置1は、複数軸のモータを制御する。ここでは、多軸モータ駆動装置1は、A軸モータ2AとB軸モータ2Bとの2つのモータを制御する。
 A軸モータ2AにはA軸位置検出器3Aが接続されており、B軸モータ2BにはB軸位置検出器3Bが接続されている。A軸位置検出器3Aは、A軸モータ2Aのモータ位置であるA軸モータ位置31Aを検出し、検出したA軸モータ位置31Aを多軸モータ駆動装置1にフィードバックする。B軸位置検出器3Bは、B軸モータ2Bのモータ位置であるB軸モータ位置31Bを検出し、検出したB軸モータ位置31Bを多軸モータ駆動装置1にフィードバックする。
 A軸モータ2Aは、Y軸ボールねじ41を駆動し、B軸モータ2BはX軸ボールねじ42を駆動する。2軸のボールねじにより、測定ヘッド43をXY座標上の自由な位置に動かすことができる。
 多軸モータ駆動装置1は、力指令生成器11と、位置指令生成器12と、電流指令生成部13と、モータ制御部14と、モータ位置記憶部15とを備える。
 この機構を用いて、測定対象5の形状測定する場合の動作について説明する。まず、位置指令生成器12は、測定開始位置から測定終了位置までの位置指令121を生成する。具体的には、測定対象5の近傍を測定ヘッド43が動作するように、測定対象5から測定ヘッド43の半径分だけ外側を通るような位置指令軌跡6が実現される位置指令121が生成される。例えば、位置指令121はXY座標上の連続した値で表現される。この位置指令軌跡6に従い測定ヘッド43は測定対象5に沿った軌跡を描く。このとき、形状測定のためには確実に測定ヘッド43を測定対象5に押し付ける必要がある。
 この測定対象に加えられる加圧力7を制御するため、力指令生成器11は、位置指令の軌跡と垂直な方向の力指令111を生成する。通常、力指令111の値は一定値でよいが、力指令111の値は測定対象又は測定ヘッドの剛性に応じて調整可能である。
 電流指令生成部13は、位置指令121と、力指令111と、複数軸のモータの位置であるA軸モータ位置31A及びB軸モータ位置31Bとを入力として複数軸のモータへの電流指令であるA軸電流指令131AとB軸電流指令131Bとを生成する。この電流指令生成部13は、ハイブリッド制御器13aを含む。
 ハイブリッド制御器13aには、力指令111と位置指令121、及びA軸モータ位置31AとB軸モータ位置31Bとが入力される。ハイブリッド制御器13aは、これらの力指令111と位置指令121、及びA軸モータ位置31AとB軸モータ位置31Bを用いて、A軸電流指令131AとB軸電流指令131Bを生成する。ある方向に対する位置制御と、残りの方向に対する力制御とを同時に行う制御は、一般に力と位置のハイブリッド制御と呼ばれ、バリ取りロボットの倣い動作などに用いられている。具体的には、ハイブリッド制御器13aは、A軸モータ位置31AとB軸モータ位置31Bを位置指令121に追従するよう位置制御を行うための電流指令における位置指令軌跡6に平行な成分と、位置指令軌跡6に垂直な方向に力指令111を加えるための電流指令とを合成することで、A軸電流指令131AとB軸電流指令131Bを生成する。これにより位置と力のハイブリッド制御が実現できる。
 モータ制御部14は、A軸電流指令131AとB軸電流指令131Bに基づきA軸モータ2AとB軸モータ2Bを制御する。このモータ制御部14は、A軸電流制御器14Aと、B軸電流制御器14Bとを含む。
 A軸電流制御器14Aは、A軸電流指令131AにA軸モータ2Aの電流が追従するようA軸モータ2Aの電流を制御する。B軸電流制御器14Bは、B軸電流指令131BにB軸モータ2Bの電流が追従するようB軸モータ2Bの電流を制御する。
 モータ位置記憶部15は、複数軸のモータ位置であるA軸モータ位置31AとB軸モータ位置31Bとを逐次記憶する。つまり、モータ位置記憶部15は、測定開始位置から測定終了位置までの複数軸のモータの位置を記憶する。また、モータ位置記憶部15は、記憶した複数軸のモータ位置を表示する、あるいは図示しない外部装置に転送する。
 この構成により、加工機に搭載された多軸モータ駆動装置1をそのまま形状測定に使用することができる。これにより、加工機としての追加コストを抑えつつ、形状測定機能を実現することができる。また、測定ヘッド43は加工時に加工ヘッドに差し替えられる。例えば、ツールチェンジャーを装備していれば、ヘッド交換を自動化することも可能である。
 (実施の形態2)
 図2は、本実施の形態に係る多軸モータ駆動装置1Aの制御ブロック図である。図2に示す多軸モータ駆動装置1Aは、図1に示す多軸モータ駆動装置1に対して、電流指令生成部13Aの構成が電流指令生成部13と異なる。電流指令生成部13Aは、力制御器13bと位置制御器13cを備える。
 力制御器13bには、力指令111とA軸モータ位置31Aが入力される。力制御器13bは、入力された力指令111とA軸モータ位置31Aを用いてA軸電流指令131Aを生成する。位置制御器13cには、位置指令121とB軸モータ位置31Bが入力される。位置制御器13cは、入力された位置指令121とB軸モータ位置31Bを用いてB軸電流指令131Bを生成する。つまり、位置制御器13cは、位置指令121に基づき複数軸のモータに含まれるB軸モータ2B(第1モータ)の位置制御を行う。力制御器13bは、力指令111に基づき、複数軸のモータに含まれるA軸モータ2A(第2モータ)の力制御を行う。このように、各軸の電流が独立に制御される。
 この制御構成は、測定対象5の一部を測定する場合に適用できる。例えば図2の右下に示すようにX軸方向の直線部分の表面粗さを測定する場合である。この例では、位置制御を必要とする軸がX軸であり、力制御を必要とする軸がY軸である。つまり、位置制御を必要とする軸と力制御を必要とする軸とが完全に分離している。このような場合に、本実施の形態の制御構成を適用できる。ここで、実際に加工と測定を常に同じ姿勢で行う必要はなく、特定の部分の測定のみが必要なケースもあり、このようなケースに本実施の形態の構成を適用できる。
 このように、本実施の形態の構成は、実施の形態1の構成に対して、形状測定の方向に制限が生じるものの、複雑な座標変換を伴うハイブリッド制御器13aを用いる場合よりシンプルな制御で位置制御と力制御を実現できる。これにより、多軸モータ駆動装置1Aの開発コスト及び製品コストを下げることができる。
 (実施の形態3)
 図3は、本実施の形態に係る多軸モータ駆動装置1Bの制御ブロック図である。図3に示す多軸モータ駆動装置1Bは、図1に示す構成に加え、測定指標計算器16を備える。測定指標計算器16は、モータ位置記憶部15に記憶されている測定対象5の形状を示す多数のデータを用いて測定指標を算出する。ここで、例えば、測定指標のデータ量は、モータ位置記憶部15に記憶されている元のデータのデータ量の少ない。
 具体的には、測定指標は、加工精度を示す情報であり、例えば、象限突起量である。この場合、測定指標計算器16は、2軸のモータ位置が描くべき円軌跡に対する実際のモータ位置の半径方向のずれ量を計算し、特定角度範囲におけるずれ量の最大値及び最小値を算出することで象限突起量を算出する。
 また、位置指令軌跡6が直線である場合には、測定指標は、加工面の表面粗さであってもよい。この場合は、測定指標計算器16は、力制御方向のモータ位置の変動から断面曲線を生成し、断面曲線の低周波数成分であるうねり曲線又は高周波数成分の粗さ曲線から、最大山高さ、最大谷高さ、又は十点平均粗さなどのパラメータを測定指標として算出する。
 なお、測定指標計算器16は、測定対象に応じて、計算する測定指標の種別(象限突起量又は表面粗さ等)を切り替えてもよい。
 このように、測定指標を生成することで、形状測定結果のデータの圧縮を実現できる。これにより、多軸モータ駆動装置1Bのリソースを削減できる。また、外部コントローラにデータを伝えるインターフェースを簡易な手段で実現できる。また、測定指標を用いることで、測定結果を判断する作業者は、判断を容易に行うことができる。
 (実施の形態4)
 図4は、本実施の形態に係る多軸モータ駆動装置1Cの制御ブロック図である。図4に示す多軸モータ駆動装置1Cは、図1に示すモータ駆動装置1に対して、位置指令生成器12Aの構成が位置指令生成器12と異なる。位置指令生成器12Aは、内部位置指令生成器12a、外部位置指令受信器12b、及び位置指令切替器12cを備える。
 内部位置指令生成器12aは、図1に示す位置指令生成器12と同様の機能を有し、測定用の位置指令軌跡6が実現される内部位置指令を生成する。外部位置指令受信器12bは、図示しない外部コントローラから、例えば加工時の位置指令軌跡を受信し、当該位置指令軌跡に対応する外部位置指令を生成する。位置指令切替器12cはこれら内部位置指令と外部位置指令の一方を位置指令121として選択的に出力する。具体的には、位置指令切替器12cは、測定時には内部位置指令を位置指令121として出力し、加工時には外部位置指令を位置指令121として出力する。なお加工時には、ハイブリッド制御器13aにおける力制御を無効としたうえで全ての軸の位置制御が行われてもよい。
 この構成により、多軸モータ駆動装置1Cは、加工時には外部コントローラからの外部位置指令軌跡に従い位置制御を行い、測定時には内部位置指令軌跡に従い形状測定を行うことが可能となる。このように、単一の多軸モータ駆動装置1Cにより、加工と測定とを適切に行える。
 以上のように、本開示に係る多軸モータ駆動装置は、加工に用いる多軸サーボシステムをそのまま形状測定用に用いることで、加工機としての付加コストを抑えつつ形状測定機能を実現することができる。
 なお、上記実施の形態では、複数軸を2軸としているが、3軸以上でもこの形状測定機能を実現できる。そのため、本開示の手法は、加工機だけでなく産業用ロボットへの適用も可能と考える。
 また、形状測定機能の精度として加工精度と同等の精度が得られると考えるが、さらに測定精度を求める場合には、定期的に基準となる校正用測定物を用いて形状測定を行い、その誤差分を校正値として用いて本測定を行う。これにより、さらに高精度な形状測定が可能となる。
 当然、この形状測定結果を加工機のコントローラにフィードバックして、次回以降の加工での指令補正などに使用することも可能である。
 以上、本実施の形態に係る多軸モータ駆動装置について説明したが、本開示は、この実施の形態に限定されるものではない。
 例えば、本開示は、多軸モータ駆動装置により実行される制御方法等として実現されてもよい。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
 以上、一つまたは複数の態様に係る多軸モータ駆動装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本開示は、多軸モータ駆動装置等に適用できる。
 1、1A、1B、1C 多軸モータ駆動装置
 11 力指令生成器
 111 力指令
 12 位置指令生成器
 12a 内部位置指令生成器
 12b 外部位置指令受信器
 12c 位置指令切替器
 121 位置指令
 13、13A 電流指令生成部
 13a ハイブリッド制御器
 13b 力制御器
 13c 位置制御器
 131A A軸電流指令
 131B B軸電流指令
 14 モータ制御部
 14A A軸電流制御器
 14B B軸電流制御器
 15 モータ位置記憶部
 16 測定指標計算器
 2A A軸モータ
 2B B軸モータ
 3A A軸位置検出器
 3B B軸位置検出器
 31A A軸モータ位置
 31B B軸モータ位置
 41 Y軸ボールねじ
 42 X軸ボールねじ
 43 測定ヘッド
 5 測定対象
 6 位置指令軌跡
 7 加圧力

Claims (6)

  1.  複数軸のモータを制御する多軸モータ駆動装置であって、
     測定開始位置から測定終了位置までの位置指令を生成する位置指令生成器と、
     前記位置指令の軌跡と垂直な方向の力指令を生成する力指令生成器と、
     前記位置指令と前記力指令と前記複数軸のモータの位置とを入力として前記複数軸のモータへの電流指令を生成する電流指令生成部と、
     前記電流指令に基づき前記複数軸のモータを制御するモータ制御部と、
     前記測定開始位置から前記測定終了位置までの前記複数軸のモータの位置を記憶するモータ位置記憶部とを備える
     多軸モータ駆動装置。
  2.  前記電流指令生成部は、
     前記位置指令と前記力指令と前記複数軸のモータの位置とを入力として前記複数軸のモータの前記電流指令を生成するハイブリッド制御器を含む
     請求項1記載の多軸モータ駆動装置。
  3.  前記電流指令生成部は、
     前記位置指令に基づき前記複数軸のモータに含まれる第1モータの位置制御を行う位置制御器と、
     前記力指令に基づき、前記複数軸のモータに含まれる前記第1モータと異なる第2モータの力制御を行う力制御器とを含む
     請求項1記載の多軸モータ駆動装置。
  4.  前記多軸モータ駆動装置は、さらに、
     前記複数軸のモータの位置から測定指標を生成する測定指標計算器を備える
     請求項1~3のいずれか1項に記載の多軸モータ駆動装置。
  5.  前記測定指標は、象限突起量又は表面粗さを示す
     請求項4記載の多軸モータ駆動装置。
  6.  前記位置指令生成器は、前記位置指令と、外部からの加工用位置指令との一方を選択的に出力する位置指令切替器を備える
     請求項1~5のいずれか1項に記載の多軸モータ駆動装置。
PCT/JP2019/030796 2018-09-26 2019-08-06 多軸モータ駆動装置 WO2020066302A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980031857.0A CN112106289A (zh) 2018-09-26 2019-08-06 多轴电动机驱动装置
JP2020548089A JP7429879B2 (ja) 2018-09-26 2019-08-06 多軸モータ駆動装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180285 2018-09-26
JP2018180285 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020066302A1 true WO2020066302A1 (ja) 2020-04-02

Family

ID=69950483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030796 WO2020066302A1 (ja) 2018-09-26 2019-08-06 多軸モータ駆動装置

Country Status (3)

Country Link
JP (1) JP7429879B2 (ja)
CN (1) CN112106289A (ja)
WO (1) WO2020066302A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295191A (ja) * 1987-05-26 1988-12-01 富士通株式会社 2腕協調ロボットシステムの制御方法
JPH0538662A (ja) * 1991-08-02 1993-02-19 Fujitsu Ltd 倣い制御装置
JPH08336782A (ja) * 1995-06-07 1996-12-24 Mitsubishi Electric Corp ロボット制御装置の通信方法およびロボット制御装置
JP2005059171A (ja) * 2003-08-18 2005-03-10 Kawasaki Heavy Ind Ltd 駆動手段の制御方法および制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218487A (ja) * 1999-02-01 2000-08-08 Topcon Corp レンズ研削加工装置
JP4045307B1 (ja) * 2006-09-26 2008-02-13 三菱電機株式会社 永久磁石同期電動機のベクトル制御装置
JP2009116751A (ja) * 2007-11-08 2009-05-28 Yaskawa Electric Corp 多軸制御システムの設計ツール
JP2010130778A (ja) * 2008-11-27 2010-06-10 Yaskawa Electric Corp 電動機制御装置及びその象限突起補償調整方法
JP2017085720A (ja) * 2015-10-26 2017-05-18 株式会社明電舎 永久磁石同期電動機の位置センサレス制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295191A (ja) * 1987-05-26 1988-12-01 富士通株式会社 2腕協調ロボットシステムの制御方法
JPH0538662A (ja) * 1991-08-02 1993-02-19 Fujitsu Ltd 倣い制御装置
JPH08336782A (ja) * 1995-06-07 1996-12-24 Mitsubishi Electric Corp ロボット制御装置の通信方法およびロボット制御装置
JP2005059171A (ja) * 2003-08-18 2005-03-10 Kawasaki Heavy Ind Ltd 駆動手段の制御方法および制御装置

Also Published As

Publication number Publication date
JP7429879B2 (ja) 2024-02-09
CN112106289A (zh) 2020-12-18
JPWO2020066302A1 (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
US9063533B2 (en) Multi-spindle translation control for multiple coordinate systems
JP5366018B2 (ja) ロボットの教示手順校正装置および方法
JP5905158B2 (ja) 数値制御装置
US9915516B2 (en) Method for controlling shape measuring apparatus
JP6942577B2 (ja) 工作機械の数値制御装置及び数値制御方法
US9205525B2 (en) System and method for offsetting measurement of machine tool
US10994422B2 (en) Robot system for adjusting operation parameters
JP5079165B2 (ja) 数値制御装置及び数値制御方法
JP2017027360A (ja) 機械の誤差補償システム及び誤差補償方法、誤差補償プログラム
JP2011048467A (ja) 加工システム
JP2006155530A (ja) 数値制御装置及び数値制御工作機械
JP5713764B2 (ja) 工作機械の補正値演算方法及びプログラム
Luo et al. Adaptive skew force free model-based synchronous control and tool center point calibration for a hybrid 6-DoF gantry-robot machine
CN109874403B (zh) 数控装置
US20210331261A1 (en) Gear machining apparatus
WO2020066302A1 (ja) 多軸モータ駆動装置
JP5764366B2 (ja) 工作機械の補正値演算方法及びプログラム
US20090125142A1 (en) Numerically controlled grinding machine and process for controlling same
JP4356857B2 (ja) 多軸nc研磨加工機
JP2000194409A (ja) ロボットのプログラム変換装置
JP2922617B2 (ja) 力制御ロボットにおける押付力方向の指定方法
JP6985673B1 (ja) 加工プログラム生成方法および加工プログラム生成装置
JPH0569280A (ja) マシニングセンタの測定装置およびワークの加工精度測定方法
JPH0916259A (ja) ロボット制御装置
KR20050016504A (ko) 다관절 로봇 및 그 제어 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864404

Country of ref document: EP

Kind code of ref document: A1