WO2008032753A1 - Polishing apparatus and polishing method - Google Patents

Polishing apparatus and polishing method Download PDF

Info

Publication number
WO2008032753A1
WO2008032753A1 PCT/JP2007/067771 JP2007067771W WO2008032753A1 WO 2008032753 A1 WO2008032753 A1 WO 2008032753A1 JP 2007067771 W JP2007067771 W JP 2007067771W WO 2008032753 A1 WO2008032753 A1 WO 2008032753A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
region
signal
substrate
film thickness
Prior art date
Application number
PCT/JP2007/067771
Other languages
English (en)
French (fr)
Inventor
Yoichi Kobayashi
Yasumasa Hiroo
Tsuyoshi Ohashi
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to CN2007800336241A priority Critical patent/CN101511539B/zh
Priority to JP2008534371A priority patent/JP5283506B2/ja
Priority to US12/310,877 priority patent/US8246417B2/en
Priority to EP07807178.4A priority patent/EP2075089B1/en
Priority to KR1020097007121A priority patent/KR101278236B1/ko
Publication of WO2008032753A1 publication Critical patent/WO2008032753A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion

Definitions

  • the present invention relates to a polishing apparatus and a polishing method, and more particularly to a polishing apparatus and a polishing method for polishing and planarizing a substrate such as a semiconductor wafer.
  • a polishing apparatus for polishing and flattening a substrate such as a semiconductor wafer
  • an apparatus capable of independently adjusting the pressures of a plurality of chambers in the top ring
  • a sensor measures a physical quantity related to the film thickness on the substrate, and a monitoring signal is generated based on the physical quantity.
  • a reference signal indicating the relationship between the monitoring signal and time is prepared in advance.
  • the top signal is used so that the monitoring signal at each measurement point on the substrate converges to the reference signal.
  • the ring pressing force is adjusted. This achieves a uniform residual film thickness within the substrate surface (for example, see WO 2 0 0 5/1 2 3 3 3 5).
  • the conventional polishing apparatus has a problem that the sensor signal value acquired in one area of the substrate may be significantly different from that in another area, and the sensor cannot correctly evaluate the film thickness.
  • One reason for this is signal degradation due to the sensor's effective measurement range.
  • the effective measurement range of the sensor inevitably has a certain size. For this reason, when trying to measure the vicinity of the peripheral edge of the wafer, a part of the effective measurement range of the sensor protrudes from the surface to be polished of the wafer, and the sensor cannot acquire an accurate signal. In such a case, control can be performed by excluding the measurement points where accurate signals cannot be obtained.
  • this method is particularly important when film thickness uniformity at the periphery of the wafer is important. Cannot be adopted.
  • the present invention has been made in view of such problems of the conventional technique, and an object thereof is to provide a polishing apparatus and a polishing method capable of accurately controlling a film thickness profile after polishing a substrate. .
  • one embodiment of the present invention is a polishing apparatus for polishing a substrate having a film formed on a surface, the polishing table having a polishing surface, and a plurality of first plurality on the substrate
  • a top ring that presses the substrate against the polishing table by applying a pressing force independently to the region, a sensor that detects the state of the film at a plurality of measurement points, and an output signal from the sensor,
  • a monitoring device that generates a monitoring signal for each of the second plurality of regions; a storage unit that stores a plurality of reference signals indicating a relationship between a reference value of the monitoring signal and a polishing time; and the second plurality of regions.
  • one of the second plurality of regions is a region including a peripheral portion of the substrate, and one of the plurality of reference signals is connected to a region including the peripheral portion of the substrate. And a reference signal.
  • the plurality of reference signals are provided corresponding to the second plurality of regions, respectively.
  • a signal value of the monitoring signal and a signal value of the reference signal are converted into values related to a polishing time based on the reference signal, and a new monitoring signal and a new reference signal are obtained. Is generated.
  • a value obtained by averaging the new monitoring signal in the second plurality of regions is obtained at an arbitrary time of a polishing process, and the new reference signal at the time is the averaged
  • the new reference signal after the time is translated with respect to the time axis so as to coincide with the measured value.
  • the plurality of reference signals correspond to the same film thickness at the same time.
  • a preferred aspect of the present invention is characterized in that the plurality of reference signals correspond to film thicknesses reflecting a predetermined film thickness difference set between the second plurality of regions at the same time point.
  • a preferred embodiment of the present invention is characterized in that the control period of the control unit is not less than 1 second and not more than 10 seconds.
  • the sensor is an eddy current sensor.
  • control unit detects a polishing end point based on a monitoring signal generated by the monitoring device.
  • Another aspect of the present invention is a polishing method for polishing a substrate by pressing the substrate against a polishing table by applying an independent pressing force to the first plurality of regions on the substrate.
  • a plurality of reference signals indicating the relationship between the reference value of the monitoring signal related to the polishing time and the polishing time are defined, the state of the film on the substrate at a plurality of measurement points is detected using a sensor, and from the output signal of the sensor, A monitoring signal is generated for each of the second plurality of regions on the substrate, and the monitoring signal corresponding to each of the second plurality of regions converges to any one of the plurality of reference signals. And operating a pressing force for the first plurality of regions.
  • a preferred embodiment of the present invention provides a reference substrate of the same type as a substrate to be polished, measures the film thickness of the reference substrate, polishes the reference substrate, and forms a film on the reference substrate at a plurality of measurement points.
  • the state is detected by the sensor, and a monitoring signal in the first region and the second region selected from the second plurality of regions is generated from the output signal of the sensor, and the first region and the second region.
  • the polishing is stopped when the film to be polished in the second region is completely removed, the average polishing rate of the first region and the second region is obtained, and the average polishing rate of the second region is
  • the monitoring signal of the second region is stretched or shrunk along the time axis so as to coincide with the average polishing rate of the first region, and the initial film thickness of the second region is the same as that of the first region.
  • Polishing time required to match the initial film thickness The obtained monitoring signal of the second region expanded or reduced is translated along the time axis for the obtained polishing time, and the translated monitoring signal is used as a reference signal for the second region.
  • the plurality of reference signals are defined.
  • a uniform film thickness can be obtained in the entire region of the substrate.
  • it is not necessary to bring the sensor close to the surface to be polished of the substrate in order to reduce the effective measurement range of the sensor it is possible to use a normal polishing pad having no through hole or back surface depression.
  • FIG. 1 is a schematic diagram showing the overall configuration of a polishing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a cross section of the top ring shown in FIG.
  • FIG. 3 is a plan view showing the relationship between the polishing table and the wafer.
  • Figure 4 shows the trajectory of the sensor scanning over the wafer.
  • FIG. 5 is a plan view showing an example of selecting measurement points to be monitored by the monitoring device from the measurement points on the wafer shown in FIG.
  • FIG. 6 shows the effective measurement range of the sensor at each measurement point.
  • FIG. 7 is a graph showing signal values in each region on the wafer.
  • Figure 8 shows each region based on the monitoring signal when the reference wafer is polished.
  • 9A and 9B are schematic diagrams showing examples of film thickness distribution.
  • FIG. 10 is an example of a monitoring signal when the reference wafer is polished.
  • Figure 11 illustrates the scaling of the monitoring signal with respect to the time axis.
  • Fig. 12 is a diagram for explaining a method of translating the monitoring signal scaled along the time axis further along the time axis.
  • Fig. 13 is a graph for explaining an example of a method for converting the reference signal and the monitoring signal.
  • FIG. 14 is a graph for explaining an example of the application method of the reference signal.
  • FIG. 15 is a graph for explaining another example of the application method of the reference signal.
  • FIG. 16 is a graph for explaining another example of the application method of the reference signal.
  • Fig. 17 is a graph showing the radial film thickness distribution before and after polishing when a reference signal is generated and polishing is performed.
  • Figure 18 is a graph showing the transition of the monitoring signal in uncontrolled polishing.
  • Figure 19 is a graph showing the transition of the monitoring signal in controlled polishing.
  • FIG. 20 is a graph for explaining predictive fuzzy control.
  • FIG. 21 is a schematic diagram for explaining predictive control.
  • Figure 22 is a table showing an example of a fuzzy rule for predictive control.
  • FIG. 23 is a table showing another example of the fuzzy rule for predictive control.
  • Fig. 24 is a diagram showing changes in the circular locus on the impedance coordinate plane when the gap (pad thickness) between the conductive film and the sensor coil is changed.
  • FIG. 1 is a schematic diagram showing the overall configuration of a polishing apparatus according to an embodiment of the present invention.
  • the polishing apparatus includes a polishing table 12 having a polishing pad 10 affixed on its upper surface, and a top ring 14 that holds a wafer as an object to be polished and presses it against the upper surface of the polishing pad 10.
  • the upper surface of the polishing pad 10 constitutes a polishing surface that is in sliding contact with the wafer that is the object to be polished.
  • the polishing table 12 is connected to a motor (not shown) disposed below the polishing table 12 and is rotatable about its axis as indicated by an arrow.
  • a polishing liquid supply nozzle (not shown) is installed above the polishing table 12, and the polishing liquid is supplied onto the polishing pad 10 from the polishing liquid supply nozzle.
  • the top ring 14 is connected to a top ring shaft 18, and is connected to a motor and a lift cylinder (not shown) via the top ring shaft 18. As a result, the top ring 14 can move up and down and can rotate around the top ring shaft 18. On the lower surface of the top ring 14, a wafer as a polishing object is adsorbed and held by a vacuum or the like.
  • the wafer held on the lower surface of the top ring 14 is pressed against the polishing pad 10 on the upper surface of the rotating polishing tape nozzle 12.
  • the polishing liquid is supplied onto the polishing pad 10 from the polishing liquid supply nozzle, and the wafer is polished in a state where the polishing liquid exists between the polishing surface (lower surface) of the wafer and the polishing pad 10.
  • FIG. 2 is a schematic diagram showing a cross section of the top ring shown in FIG.
  • the top ring 14 includes a substantially disc-shaped top ring main body 31 connected to the lower end of the top ring shaft 18 via a universal joint 30, and a lower portion of the top ring main body 31.
  • retainer rings 3 and 2 The top ring body 31 is made of a material having high strength and rigidity such as metal and ceramics.
  • the retainer ring 32 is made of a highly rigid resin material or ceramic.
  • the retainer ring 3 2 may be formed integrally with the top ring main body 31. .
  • the internal pressures of the pressure chambers P1, P2, P3, and P4 can be changed independently from each other by a pressure adjusting unit (not shown).
  • the pressure on C 1, inner middle C 2, outer middle I5C 3, and peripheral edge C 4 can be adjusted almost independently (of course, to be precise, pressure on other areas such as adjacent areas) Somewhat affected by the room).
  • the retainer ring 32 can be pressed against the polishing pad 10 with a predetermined pressing force.
  • a pressure chamber P 5 is formed between the chucking plate 3 5 and the top ring body 31, and pressurized fluid is supplied to the pressure chamber P 5 via the fluid path 41, or a vacuum is drawn. It is supposed to be done.
  • a sensor 50 for monitoring (detecting) the state of the film on the wafer W is embedded in the polishing tape nozzle 1 2! /
  • This sensor 50 is connected to a monitoring device 53, and this monitoring device 53 is connected to a CMP controller 5 4.
  • a CMP controller 5 4 As the sensor 50, an eddy current sensor can be used.
  • the output signal of sensor 50 is sent to monitoring device 53, which performs the necessary conversion-processing (arithmetic processing) on the output signal (sensing signal) of sensor 50 and outputs the monitoring signal. Generated.
  • the monitoring device 53 also functions as a control unit that operates the internal pressures of the pressure chambers P1, P2, P3, and P4 based on the monitoring signal. That is, in the monitoring device 53, the force with which the top ring 14 presses the wafer W "is determined based on the monitoring signal, and this pressing force is transmitted to the CMP controller 54.
  • the CMP controller 54 is A command is sent to the pressure adjustment unit (not shown) so as to change the pressing force of the top ring 1 4 against the wafer W.
  • the monitoring device 5 3 and the control unit may be separate devices. And the CMP controller 54 may be integrated into a single control device.
  • FIG. 3 is a plan view showing the relationship between the polishing table 12 and Ueno and W.
  • sensor 5 0 is placed in a position passing through the heart C w in the wafer W during polishing held by the top ring 1 4.
  • Reference symbol CJ is the center of rotation of the polishing table 1 2.
  • the trajectory running (Inspection) It is possible to detect the amount that increases or decreases continuously according to the film thickness of the conductive film such as ueno and W Cu layers or changes in the film thickness.
  • FIG. 4 shows a trajectory that the sensor 50 scans on the wafer W. That is, the sensor 50 scans the surface of Ueno and W (polished surface) for each rotation of the polishing table 12 force S. When the polishing table 12 is rotated, the sensor 50 is approximately at the center C of the wafer W. A trajectory passing through w (center of the top ring shaft 18) is drawn and the surface to be polished of the wafer W is scanned. Since the rotation speed of the top ring 14 and the rotation speed of the polishing table 12 are usually different, the locus of the sensor 50 on the surface of Ueno, W is accompanied by the rotation of the polishing table 12, as shown in FIG. Scan lines SL 1 , SL 2 , SL 3 ,.
  • the sensor 50 is so disposed in a position passing through the center C w of the wafer W, locus sensor 50 draws passes through the center C w of the wafer W each time.
  • the timing of measurement by the sensor 50 is adjusted, and the center C w of the wafer W is always measured by the sensor 50 every time.
  • the thickness profile of the polished wafer W is generally known to be axial-symmetrically with respect to an axis perpendicular to the street table surface center C w of the wafer W. Therefore, as shown in FIG. 4, when the nth measurement point on the mth scan line SL ra is expressed as MP m — n , the nth measurement point MP MP 2 _ n , ⁇ ⁇ ⁇ ⁇ By tracking the monitoring signal for MP m _ n, the transition of the thickness of wafer W at the radial position of the nth measurement point can be monitored.
  • the number of measurement points in one run is 15 •.
  • the number of measurement points is not limited to this, and can be various values depending on the measurement cycle and the rotation speed of the polishing table 12.
  • an eddy current sensor is used as the sensor 50, there are usually 100 or more measurement points on one scanning line. With this many measurement points, since any of the measurement point substantially coincides with the center C w of the wafer W, it is not necessary to perform adjustment of the total measuring time with respect to the center C w of the wafer W as described above.
  • FIG. 5 is a plan view showing an example of selecting measurement points to be monitored by the monitoring device 53 from the measurement points on the wafer W shown in FIG.
  • the measurement points MP m — MP m 1, 2 at the positions corresponding to the vicinity of the center and the boundary of each region C 1, C2, C 3, C 4 where the pressing force is operated independently.
  • the selection of measurement points to be monitored is not limited to the example shown in FIG.
  • points to be controlled can be selected as measurement points to be monitored, and it is also possible to select all measurement points on the scanning line.
  • the monitoring device 53 performs a predetermined calculation process on the output signal (sensing signal) of the sensor 50 at the selected measurement point to generate a monitoring signal. Furthermore, the monitoring device 53 is based on the generated monitoring signal and a reference signal, which will be described later, and the pressure in the top ring 14 corresponding to each region CI, C2, C3, C4 of Ueno-W. Calculate the pressure in chamber 1, P 2, P 3 and P 4 respectively. That is, the monitoring device 53 compares the monitoring signal acquired at the measurement point selected as described above with the reference signal set for each measurement point in advance, and each monitoring signal is Calculate the optimum pressure values for pressure chambers P1, P2, P3, and P4 to converge to the reference signal.
  • the calculated pressure value is transmitted from the monitoring device 53 to the CMP controller 54, and the CMP controller 54 changes the pressure in the pressure chambers PI, P2, P3, P4. In this way, the pressing force for each region C 1, C 2, C 3, C 4 of the wafer W is adjusted.
  • an average of monitoring signals at neighboring measurement points may be used.
  • the surface of the wafer W is concentrically divided into a plurality of regions according to the radius from the center c w, and the average value or representative value of the monitoring signals for the measurement points in each region is obtained, and this average is obtained.
  • the value or the representative value may be used as a new monitoring signal for control. Arrangement wherein, if so determines Luke belonging to any region seeking distance from C w of each measuring point at each time point during polishing, the sensor Nde plurality parallel in the radial direction of the polishing table 1 2 If the top ring 14 swings around the top ring head shaft 18 during polishing, it can be effectively dealt with. Since each measurement point actually has an area corresponding to the effective diameter measurement range of the sensor, in all cases above, the monitoring signal represents the state of a plurality of regions on the substrate. It can be said.
  • FIG. 6 shows the effective measurement range of the sensor at each measurement point.
  • the effective measurement range on Weno ⁇ W depends on the size of the coil in sensor 50, the effective range spread angle, and the distance from sensor 50 to Weno ⁇ W. It is determined. Then, the sensor 50 acquires information within the range indicated by the dotted line in FIG. 6 at each measurement point. However, the peripheral state of wafer W is measured As a result, a part of the effective measurement range of the sensor 50 protrudes from the surface to be polished of the wafer W (see measurement points MP m — 1; MP m — N in Fig. 6). In such a case, as shown in FIG.
  • the monitoring signals corresponding to the measurement points MP n, MP m — ⁇ ⁇ ⁇ ⁇ at the periphery of Ueno and W are significantly different from the monitoring signals in the other regions.
  • the thickness cannot be properly evaluated.
  • the point at which each monitoring signal changes from decreasing to constant at the end of the polishing time represents the polishing end point (when the metal film is completely removed).
  • each of the areas C1 to C4 of the wafer W is respectively Set the reference signal.
  • This reference signal is a value (reference value) that serves as an index of the monitoring signal at each time point during polishing (polishing point) in order to realize a desired film thickness profile (for example, a profile with a uniform film thickness after polishing). It can be expressed as a graph showing the relationship between the polishing point and the desired monitoring signal value at the polishing point.
  • a wafer of the same type as the wafer to be polished (hereinafter referred to as a reference wafer) is polished in advance, and each region C 1 distributed in the radial direction of the wafer and W based on the monitoring signal at this time is used. Create a reference signal for ⁇ C4.
  • the reference signal set for each region has the same film thickness at the same time.
  • Must be corresponding if a reference signal that can be considered to correspond to the same film thickness at the same time is prepared for each area, and the pressing force is manipulated so that the monitoring signal obtained for each area converges to these reference signals Ueno and W can be polished so that the film thickness in each region is uniform.
  • FIG. 8 is a flowchart showing the flow of polishing the reference wafer and creating a reference signal for each region based on the monitoring signal at this time.
  • a wafer of the same type as the wafer to be polished that is, a reference wafer is prepared.
  • the film thickness distribution in the radial direction of the reference wafer before polishing is measured, and the representative film thickness before polishing of each of the regions C1 to C4 is acquired (step 1).
  • the same type of wafer means that the polishing rate (Removal Rate) at each time point during polishing is approximately equal to the wafer to be polished, and the monitoring signal obtained when the film thickness is the same is approximately equal to the wafer to be polished.
  • the wafer has a film formation range substantially equal to that of the wafer to be polished.
  • a polished film (metal film) of a reference wafer The material of) must be basically the same as the film to be polished on the wafer to be polished. Also, if the resistance of the wafer to be polished itself is so small that it cannot be ignored compared to the resistance of the metal film and affects the monitoring signal during polishing, the resistance of the reference wafer is approximately equal to the resistance of the wafer to be polished. There must be. However, the reference wafer does not necessarily have to be exactly the same specification as the wafer to be polished.
  • the polishing rate of the reference wafer is significantly different from the polishing rate of the wafer to be polished
  • the monitoring signal when the reference wafer is polished is scaled (stretched or reduced) with respect to the time axis.
  • the above polishing speed can be adjusted to control the polishing target.
  • the initial film thickness of the reference wafer is preferably equal to or greater than the initial film thickness of the wafer to be polished.
  • the initial film thickness of the reference wafer is the initial film thickness of the wafer to be polished. Even if it is smaller than the film thickness, polishing control is possible only by shortening the control time described later.
  • the reference wafer After obtaining the film thickness distribution of the reference wafer, the reference wafer is polished, and monitoring signals in the respective regions C1 to C4 are obtained (step 2). While the reference wafer is being polished, the pressure in the pressure chambers P1, P2, P3, and P4 for each region C1 to C4 is kept constant. However, the pressures in the respective pressure chambers P1, P2, P3, and P4 need not be equal to each other. In addition, during the polishing of the reference wafer, other polishing conditions such as the polishing pad 10, the polishing liquid, the rotation speed of the polishing table 12, and the rotation speed of the top ring 14 are basically constant. Preferably, the polishing conditions for polishing the reference wafer are the same as or similar to those for polishing the wafer to be polished.
  • the polishing of the reference wafer is terminated. Then, the film thickness of the film to be polished on the reference wafer after polishing is measured, and the representative film thickness after polishing in each region C 1 -C 4 is obtained (step 3).
  • the film to be polished is a metal film
  • the polishing is stopped before the metal film is removed. This is because the measurement of the film thickness after polishing by the sensor 50 is assured, and when the metal film is removed, the polishing rate changes greatly, and an accurate reference signal cannot be obtained.
  • the obtained monitoring signal for each area of the reference wafer is subjected to processing such as scaling and translation to create a reference signal that can be considered to have a uniform film thickness at each time point. Therefore, the film thickness does not necessarily have to be uniform in polishing the reference wafer.
  • the sharp film thickness by the sensor Since there is a problem in grasping the file, it is expected that a more accurate reference signal can be obtained as the film thickness in the direction of the reference wafer diameter before and after polishing is more uniform.
  • the sensor cannot output a signal that accurately reflects the shape of the irregularities.
  • FIG. 9A it is assumed that there is a steep convex portion at point a on the wafer. Since the effective measurement range of the sensor has a certain size, the sensor does not output a value corresponding to the film thickness of the peak of this convex part, but a signal corresponding to the film thickness averaged within the effective measurement range. " ⁇ Will be output. Therefore, in the film thickness measurement before and after polishing the reference wafer, the measurement values obtained in the area corresponding to the effective measurement range of the sensor 50 are averaged. The film thickness distribution obtained in this way is shown in Fig. 9 B. In Fig. 9 A and Fig. 9 B, the black dot on the dull is the sensor. 5 0 points are shown.
  • the reference signal is corrected so that each reference signal can be considered to correspond to the same film thickness at the same time.
  • FIG. 10 is an example of a monitoring signal when the reference wafer is polished.
  • the value of the monitoring signal does not indicate the film thickness itself. Force The value of the monitoring signal and the film thickness have a certain relationship.
  • the monitoring signal at the peripheral edge of the wafer W is smaller than the monitoring signal in other regions, and is acquired due to the influence of conductive materials, etc.
  • the monitoring signal may not show the value that should be originally obtained. Therefore, by assigning the film thickness before and after polishing measured in steps 1 and 3 to the monitoring signal, the monitoring signal is associated with the film thickness. Specifically, as shown in FIG.
  • the film thicknesses d co S and d C 0 E before and after polishing of the reference region CO are allocated to the start point and the end point of the monitoring signal of the reference region C 0, respectively.
  • the film thickness d ci S, (1 £ before and after polishing of the area C i other than the reference area is allocated to the start point and the end point of the monitoring signal of the area ⁇ i.
  • the reference area C 0 is, for example,
  • the region C 1 including the center of the region can be selected Fig.
  • FIG. 11 is a diagram illustrating the scaling with respect to the time axis of the monitoring signal
  • step 4 the average polishing rate of each region C 1 to C 4
  • the monitoring signal is scaled along the time axis so that they are the same, and scaling here refers to extending or reducing the monitoring signal along the time axis.
  • the polishing time when the reference wafer is pre-polished is TE.
  • the average polishing rate R in the reference region CO is expressed by the following equation (1).
  • the corrected polishing time for region C i is set so that the average polishing rate for i is equal to the average polishing rate for reference region C 0.
  • FIG. 12 is a diagram for explaining a method of translating the monitoring signal scaled along the time axis in this way and further translating along the time axis, and is a diagram for explaining step 5 in FIG. is there.
  • Step 5 work is done to align the initial film thickness in each region.
  • the polishing rate is approximately constant in each region C1 to C4 at each time point during polishing of the reference wafer.
  • the polishing time A ti required for polishing until the initial film thickness d C0 S in the reference area CO matches the initial film thickness d Ci S in the area C i is obtained from the following equation (4): .
  • polishing time t i in the region C i corrected by the above equation (3) is further corrected using the following equation (5).
  • the film thickness of CO and the film thickness of region Ci are equal to each other.
  • the film thicknesses at the time TE can be regarded as being equal to each other. Therefore, the film thicknesses d C0 X and d ci X at time TX (where T i S ⁇ TX TE) can be regarded as being equal to each other.
  • the monitoring signal in region C i is scaled along the time axis. Therefore, the monitoring signal of region C 0 and the monitoring signal after correction of region C i are generally from Ma X (0, T i S) to Min (TE, T i ⁇ + ⁇ ti) It exists only in the interval up to.
  • Max represents the larger value in parentheses
  • Min represents the smaller value.
  • Figure 1 2 is d c . Forces to show examples for S> d ci S Of course d c . In some cases, S and d Ci S, the polishing start time T i S of the region C i is a negative value.
  • the waveform of the reference signal of each region obtained in this way is smoothed as necessary to reduce the noise component (step 6).
  • a smoothing method a moving average, a more general digital filter, or polynomial regression can be applied.
  • the steps 4 to 6 described above are repeated to define the reference signals for all the regions C1 to C4.
  • the time for each signal value of the reference signal is corrected independently for each region and generally takes a different value, and the reference signal of each region is interpolated to obtain a fixed time interval. It is also possible to redefine the reference signal for the same time.
  • the starting point T i S of the reference signal moves to the right in Fig. 12 as the initial film thickness d ci S decreases .
  • the reference signal end point T i ⁇ + ⁇ ti moves to the left in FIG. Since the initial film thickness and the final film thickness generally vary depending on the region, when the reference signal is obtained for each region, the start point and the end point of each reference signal usually do not match. Therefore, the reference signal is set as follows. First, the initial film thicknesses of the respective regions are compared with each other to obtain the minimum value of the initial film thickness Min (d Ci S).
  • the final film thickness in each region is compared with each other, and the maximum value Max (d Ci E) of the final film thickness is obtained. Then, only the monitoring signal in the section from the time corresponding to Min (d ci S) to the time corresponding to Max (d ci E) is used as the reference signal. Alternatively, it is possible to define a reference signal for a wider section by adding the monitoring signal in each area so that the control time can be extended.
  • the reference signal for each area obtained in this way is stored in a storage unit (for example, a hard disk) of the monitoring device 53.
  • a storage unit for example, a hard disk
  • the monitoring signal is not limited to this and is used for various regions. Therefore, the reference signal can be defined for various regions on the surface of the wafer W, not limited to the regions C1 to C4.
  • the pressure chambers P1, P2, P3 are set so that the monitoring signals acquired in each region converge on the respective reference signals. .
  • the pressure of P4 By manipulating the pressure of P4, it is possible to polish with a uniform film thickness. Therefore, as shown in FIG. 7, a uniform final film thickness can be obtained even when the monitoring signal at the periphery of Ueno and W is extremely small compared to other regions.
  • the reference signal is defined for each region, each of the reference signals created as described above is further translated appropriately with respect to the time axis, so that a profile with a desired non-uniform film thickness can be obtained. It can also be realized.
  • polishing time t i is corrected using the following equation (4) ′ instead of equation (4).
  • the film thickness of the area C i at the time T i S which is the starting point of the monitoring signal of the area C i, can be regarded as being larger than the film thickness of the area C 0 by ⁇ d ci. .
  • the film of the region C i at any time TX .. (However, T i S ⁇ TX ⁇ TE in the example of Fig. 12) It can be considered that the thickness is larger by ⁇ d ci than the thickness of the region CO.
  • the monitoring signal of each region created in this way is used as a reference signal and the pressing force is manipulated so that the monitoring signal acquired for each region during polishing converges to these reference signals, In this case, it is expected that a desired profile in which the film thickness of the region C i is larger than the film thickness of the region C 0 by ⁇ d c ;
  • polishing can be performed so that the height from the wiring is uniform.
  • the profile of the remaining film thickness of the film to be polished is made uniform.
  • FIG. 13 shows how to set a monitoring signal MS for a certain area on the wafer.
  • the defined reference signal RS. 6 is a graph showing a method of converting to a new motering signal MS 2 based on the straight line B.
  • the straight line B is a straight line having a slope _ 1 passing through the polishing end point of the reference signal RS 0 .
  • V l of the monitoring signal MS at time 1 ⁇ is given
  • a point P having the same value on the reference signal RS 0 is obtained.
  • the reference signal RS from the time of this point P. Calculate the remaining time T until the polishing end point. This remaining time T can be obtained by referring to the straight line B as shown in FIG.
  • a new model Etaringu signal MS 2 based on the time T determined.
  • Reference signal R S If the same concept is applied to, the above-mentioned line ⁇ can be regarded as a new reference signal for the converted monitoring signal.
  • This new reference signal (straight line is the reference signal RS. Since it represents the remaining time from each point above to the polishing end point, it becomes a saddle-shaped monotonically decreasing function with respect to time, and control calculation becomes easy. .
  • the converted monitoring signal Is expressed as the time remaining until the end of polishing in the corresponding reference signal or a normalized value thereof.
  • each reference signal can be considered to correspond to the same film thickness at the same time, the monitoring signals in all regions can be simply compared with each other as an index indicating the film thickness. At this time, all the converted reference signals are unified in line with the straight line ⁇ .
  • the new monitoring signal MS 2 after conversion changes linearly in proportion to the film thickness of the surface to be polished of the wafer. Therefore, even when the film thickness value of the surface to be polished cannot be measured due to the polishing liquid, the wiring pattern on the surface to be polished of the wafer, the influence of the lower layer, etc., it becomes possible to obtain good control performance by linear calculation. .
  • the polishing end point in the reference signal RS 0 is described as the reference time, but the reference signal RS.
  • the reference time in is not limited to the polishing end point.
  • reference signal RS can be set arbitrarily, such as the time when takes a predetermined value.
  • the entire area does not reach the polishing end point at the same time in the reference signal.
  • Standard for each region created by translation One point on the time axis is set as a common reference time for the signal.
  • the reference signals after conversion at this time are all unified along the straight line B as in the case of the uniform profile.
  • the value of the new monitoring signal after conversion is indefinite in the interval where the reference signal value corresponding to the monitoring signal does not exist or in the interval where the monitoring signal value does not change with the polishing time. In such a case, it is sufficient to stop the control and maintain the conventional values for the set values such as the pressing force of the top ring.
  • FIG. 14 is a graph showing an example of an application method of the reference signal converted as described above.
  • the reference signal RS! Is set so that the polishing time until the polishing end point becomes the desired value at the start of polishing or control start.
  • the parallel movement along the time axis is set a new reference signal RS 2. If the polishing time to the polishing end point of the reference signal RS is a desired value at the polishing start time or control start time, the parallel movement amount of the reference signal RS i may be set to zero.
  • the reference signal RS 2 is fixed with respect to the time axis, and control is performed so that the monitoring signals MS A , MS B , MS c and monitoring signals in other areas not shown converge to the reference signal RS 2 .
  • This makes it possible to improve in-plane uniformity regardless of the initial film thickness profile, even if the value of the monitoring signal before conversion in a certain area differs from other areas at the same film thickness.
  • the initial film thickness vary from wafer to wafer, or even if there is a change in the state of the polishing pad or other equipment, the time until the polishing end point can be expected to be a predetermined value.
  • the polishing time can be made constant, the wafer can be transported in the polishing apparatus at a substantially constant cycle that can be expected. Therefore, the throughput is improved without being delayed by the wafer having a long polishing time.
  • FIG. 15 is a graph showing still another example of the application method of the reference signal.
  • the polishing start time or control starting point the monitoring signal values of the respective regions as averaged value a V coincides with the reference signal, Te ⁇ Tsu a reference signal RS 3 to the time axis and translating sets a new reference signal RS 4.
  • the monitoring signal value averaging method may be any method as long as it obtains a value representative of the progress of wafer polishing, for example, arithmetic average or weighted average.
  • a method of calculating the median or a method of taking the median value may be used.
  • the reference signal RS 4 is fixed with respect to the time axis, and the monitoring signals MS A and M
  • the monitoring signals of S B , MS C and other areas not shown are the reference signal RS
  • FIG. 16 is a graph showing still another example of the application method of the reference signal.
  • the reference signal RS 5 is translated along the time axis so that the average value of the monitoring signals in each region matches the reference signal RS 5 in a predetermined cycle.
  • the reference signal RS 5 is translated to match the average value a V of the monitoring signal, av 2 , av 3 , and new reference signals RS 6 , RS 7 , RS 8 are set respectively.
  • the pressing force or the like for each region C :! to C4 of the wafer is manipulated so that the monitoring signal of each region converges to the reference signal set by parallel translation every moment.
  • the pressing force of each area C1 to C4 of the initial wafer is generally in a reasonable range. If the pressing force in one area increases in the time, the pressing force in another area decreases. Therefore, although this embodiment does not have a function of adjusting the polishing time and the polishing rate, it is possible to perform stable polishing with a small change in the operation amount. In addition, excellent in-plane uniformity can be achieved regardless of the initial film thickness profile.
  • the polishing of the pattern wafer is controlled using a reference signal created using a blanket wafer as a reference wafer.
  • the blanket wafer is a wafer in which one or more materials are formed on the wafer with a uniform thickness, and a so-called pattern is not formed.
  • the polishing rate is different from that of blanket wafers, and before and after the four convexities on the leather polishing surface are eliminated.
  • the film to be polished is a metal film and the sensor is an eddy current sensor, the rate of change of the monitoring signal with respect to the film thickness varies before and after the surface irregularities are eliminated.
  • the film thickness profile is controlled by the above method and there is no function to adjust the polishing rate, the polishing rate is different regardless of the change rate of the motering signal. Good control performance can be expected.
  • the reference signal can also be translated based on the value.
  • the reference signal may be translated based on the monitoring signal of a predetermined area of the wafer. That is, at the start of polishing, the reference signal may be translated so that the reference signal matches the monitoring signal of the predetermined area at the start of polishing, and even during the polishing process, the reference signal is in the predetermined area at that time.
  • the reference signal may be translated so as to match the monitoring signal.
  • a reference signal is defined with respect to the wafer to be polished and a reference signal is defined, and the pressing force is operated based on the reference signal, monitoring of each part of the wafer will be performed every moment during polishing.
  • the film thickness profile can be easily controlled without the complicated operation of individually determining the relationship between the signal and the film thickness.
  • Fig. 17 is a graph showing the radial film thickness distribution before and after polishing when a reference signal is created by the method of this embodiment and polishing is performed in order to achieve a uniform film thickness profile after polishing. It is.
  • controlled polishing polishing method of the present embodiment
  • the pressing force was manipulated so that the monitoring signal for each region converged to each reference signal.
  • non-controlled polishing it is equal to the initial pressing force during controlled polishing! /, The pressing force was applied to the wafer at a constant level. From Fig. 17 it can be seen that good uniformity of the remaining film thickness is obtained including the periphery of the wafer.
  • Fig. 18 is a graph showing the transition of the monitoring signal in uncontrolled polishing
  • Fig. 19 is a graph showing the transition of the monitoring signal in controlled polishing.
  • the monitoring signal values in the three regions on the wafer surface are different.
  • the controlled polishing it can be seen that the monitoring signal is almost converged to one value as shown in Fig.19.
  • Concerning the peripheral edge of the wafer the convergence cannot be visually confirmed from the figure because the monitoring signal value is far away from other areas for the reasons described above.
  • the corrected reference signal is also observed at the periphery of the wafer. Since the polishing control is performed, a uniform film thickness is obtained in all regions including the peripheral portion as shown in FIG.
  • FIG. 20 is a graph for explaining an example of the control calculation method according to the present invention.
  • the monitoring signal conversion method described with reference to FIG. 13 is used.
  • the new reference signal y s (t) at time t after the start of polishing is expressed by the following equation (X). '
  • T. Is the time from the start of polishing to the end of polishing in the reference signal.
  • T the reference signal is relative to the reference signal translated in time with respect to the time axis in one of the two previous methods (see Fig. 14 and Fig. 15).
  • the right side is the averaged value of the monitoring signal of each area at that time.
  • t From time t to time t.
  • the predicted value y p (t, t.) Of the monitoring signal in each area of the wafer after the lapse of time is expressed by the following equation (7).
  • Fig. 22 is an example of a fuzzy rule for determining such a change amount ⁇ u 3 of the pressing force u 3
  • Fig. 2 3 shows the temperature of the polishing pad immediately after sliding with the wafer in addition to the fuzzy rule in Fig. 22. It is an example of a fuzzy rule when T p is considered.
  • the amount of change ⁇ u 3 in the pressure increases greatly as the mismatch degree D 3 and the pressing force u 3 itself of the corresponding region C 3 are smaller, and is adjacent to the region C 3. Even if the discrepancies D 2 and D 4 in regions C 2 and C 4 are small, the direction is increased. For the pressing force of other areas that are independent of each other, the degree of inconsistency of the corresponding area, and the amount of change in pressing force, if a fuzzy rule is determined in the same way, the pressing force is extremely large. Alternatively, control can be performed so that all the inconsistencies converge to zero without changing to small values.
  • the polishing rate rises as the polishing pad temperature increases, and the temperature T p of the polishing pad increases in consideration of the fact that the temperature tends to rise further.
  • the temperature T [rho is set small higher change amount delta u 3.
  • Applicable fuzzy rules are not limited to those shown in Fig. 22 and Fig. 23, but can be arbitrarily defined according to the characteristics of the system.
  • inference methods such as membership functions, logical product methods, implication methods, accumulation methods, and non-fuzzification methods for the antecedent and consequent variables can be selected and used as appropriate.
  • the membership function of the consequent part is set appropriately, the amount of change ⁇ u 3 in the pressing force can be adjusted, and the pressing force u 3 and the amount of change ⁇ ⁇ 3 thus obtained can be adjusted.
  • the area for defining the monitoring signal or the degree of inconsistency is not limited to the above-mentioned C1 to C4. For example, 1 or 2 areas are added to the boundary area, respectively. It is also possible to perform detailed control.
  • the conversion of the monitoring signal described with reference to FIG. 13 to a value related to the polishing time is not necessarily required. If the curvature is small when the time change is represented in the graph, the time t obtained by Eq. (7) in the same way as in Fig. 20.
  • the predicted value of the subsequent monitoring signal is always the reference signal ys (t). If they match, the monitoring signal gradually approaches the reference signal, and good control is expected. If the monitoring signal is not converted to a value related to time, the reference signal described with reference to Figure 15 or Figure 16 In the parallel movement of, for example, the wafer peripheral portion is included. The average value to be used as a reference for parallel movement can be obtained, except for areas where the monitoring signal is significantly different due to the influence of s US parts.
  • predictive fuzzy control in which a prediction value of the degree of inconsistency is obtained and inferred. After the sensor captures information on the surface to be polished of the wafer, the actual pressing force is replaced with a completely new value, the polishing state changes, and the sensor output value changes completely until the sensor outputs to the monitoring device. Many steps are required such as signal transfer, conversion and smoothing to monitoring signal, calculation of pressing force, transfer to control unit, command to pressure adjustment unit, operation of pressing mechanism (pressure chamber). Therefore, it usually takes about 1 to 2 seconds to 10 seconds for the change in operation amount to be fully reflected in the signal waveform. Predictive control is effective for effective control while suppressing the influence of response delay.
  • the control cycle is preferably 1 second or more and 10 seconds or less.
  • the reference signal as described above may be defined only for two regions, region C 1 (wafer center portion) and region C 4 (wafer peripheral portion).
  • the reference signal of the region C 1 is used for controlling the region C 1 and the regions C 2 and C 3 (inner intermediate portion and outer intermediate portion).
  • a reference signal may be defined for each of the entire areas of the wafer surface, and a reference signal corresponding to each area may be used during polishing. In this way, not only the influence of the monitoring signal change at the peripheral edge of the wafer is eliminated, but also the SUS flange and other conductive or magnetic parts are in the top ring and the monitoring signal from the eddy current sensor.
  • the monitoring signal is scaled and translated while assuming that the polishing rate of each region is constant during the polishing of the reference wafer. If the initial film thickness and polishing speed are not extremely different between regions, the amount of scaling and translation is small, and the practicality of grasping the film thickness profile file by monitoring signals is not impaired.
  • the present invention can also be applied to the case where the monitoring signal monotonously increases.
  • an impedance type eddy current sensor is used as the sensor 50, the following method disclosed in Japanese Patent Laid-Open No. 20 05-1 2 16 16 can be applied.
  • the conductive film present on the surface of the wafer W is measured from a sensor (eddy current sensor) 50 embedded in the polishing table 12 through a polishing pad 10.
  • the gap between the sensor 50 and the conductive film changes depending on the thickness of the polishing pad 10 interposed therebetween.
  • the trajectory fluctuates.
  • the thickness of the polishing pad to be used (before using the polishing pad) It is necessary to measure the film thickness of the conductive film to be measured after ⁇ measuring the measurement information of signal component X and signal component Y at a known film thickness.
  • the measurement result (output value) and center of the signal component X and signal component Y of the conductive film to be polished If the elevation angle ⁇ of the measurement line rn connecting the point P with respect to the reference line L is determined, the conductivity of the object to be measured is based on the correlation with the change in elevation angle ⁇ according to the thickness of the conductive film that has been measured in advance.
  • the film thickness of the conductive film can be derived. However, in order to control the remaining film thickness uniformity, it is not always necessary to know the absolute value of the film thickness. It suffices if the film thickness in the radial direction of W can be relatively grasped. Therefore, the elevation angle ⁇ is simply used as the monitoring signal.
  • the reference line L may be a vertical line in FIG. 24 where the reactance component X is constant. Industrial availability and life
  • the present invention can be applied to a polishing apparatus and a polishing method for polishing and flattening a substrate such as a semiconductor wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

明細書 研磨装置および研磨方法 技術分野
本発明は、 研磨装置および研磨方法に係り、 特に半導体ウェハなどの基板を研 磨して平坦化する研磨装置およ 磨方法に関するものである。 背景技術
半導体ウェハなどの基板を研磨して平坦化する研磨装置として、 トップリング 内の複数のチヤンバの圧力を独立に調整できるものが知られている。 この研磨装 置においては、 例えば、 基板上の膜厚に関連した物理量をセンサが測定し、 この 物理量に基づいてモニタリング信号が生成される。 基板の研磨前には、 予め、 モ ニタリング信号と時間との関係を示す基準信号が用意され、 研磨中においては、 基板上のそれぞれの計測点におけるモニタリング信号が基準信号に収束するよう に、 トップリングの押圧力が調節される。 これにより、 基板面内で均一な残膜厚 を実現する (例えば、 WO 2 0 0 5 / 1 2 3 3 3 5参照)。
しかしながら、 従来の研磨装置においては、 基板のある領域において取得され たセンサ信号値が、 他の領域に比べて著しく異なることがあり、 センサが膜厚を 正しく評価することができないという問題がある。 この原因の 1つとして挙げら れるのは、 センサの有効計測範囲に起因する信号の低下である。 センサの有効計 測範囲は必然的にある程度の大きさを持っている。 このため、 ウェハの周縁部の 近傍を計測しょうとすると、 センサの有効計測範囲の一部がゥェハの被研磨面か らはみ出してしまい、センサが正確な信号を取得できない。このような場合には、 正確な信号を取得できない部分の計測点を除外して制御を行うこともできるが、 特にウェハの周縁部の膜厚均一性が重要な場合には、 このような方法を採ること はできない。
また、 別の原因として挙げられるのは、 トップリング内の金属や磁性材料の影 響である。 すなわち、 S U Sなどの導電性の金属部品や磁性を有する材料がトツ プリングに使われると、その影響でセンサの信号の値が局所的に変化してしまう。 発明の開示
本発明は、 このような従来技術の問題点に鑑みてなされたもので、 基板の研磨 後の膜厚プロファイルを精度よく制御することができる研磨装置および研磨方法 を ¾^することを目的とする。
上述した目的を達成するために、 本発明の一態様は、 表面に膜が形成された基 板を研磨する研磨装置であって、 研磨面を有する研磨テーブルと、 基板上の第 1 の複数の領域に対して独立して押圧力を与えることで基板を前記研磨テーブルに 押圧するトップリングと、 複数の計測点における前記膜の状態を検出するセンサ と、 前記センサの出力信号から、 基板上の第 2の複数の領域のそれぞれについて モユタリング信号を生成するモニタリング装置と、 前記モニタリング信号の基準 値と研磨時間との関係を示す複数の基準信号を格納した記憶部と、 前記第 2の複 数の領域のそれぞれに対応する前記モニタリング信号が前記複数の基準信号のい ずれか 1つに収束するように前記第 1の複数の領域に対する押圧力を操作する制 御部とを備えたことを特徴とする。
本発明の好ましい態様は、 前記第 2の複数の領域の 1つは、 基板の周縁部を含 む領域であり、 前記複数の基準信号の 1つは、 前記基板の周縁部を含む領域につ いての基準信号であることを特徴とする。
本発明の好ましい態様は、 前記複数の基準信号は、 前記第 2の複数の領域にそ れぞれ対応して設けられたことを特徴とする。
本発明の好ましい態様は、 前記モニタリング信号の信号値と前記基準信号の信 号値とを、 前記基準信号に基づいて研磨時間に関する値に変換して、 新たなモニ タリング信号と新たな基準信号とを生成することを特徴とする。
本発明の好ましい態様は、 研磨工程の任意の時刻において、 前記第 2の複数の 領域における前記新たなモニタリング信号を平均化した値を求め、 該時刻におけ る前記新たな基準信号が前記平均化した値と一致するように、 該時刻以降の前記 新たな基準信号を時間軸に関して平行移動することを特徴とする。
本発明の好ましい態様は、 前記複数の基準信号は、 同一時点において同一の膜 厚に対応することを特徴とする。
本発明の好ましい態様は、 前記複数の基準信号は、 同一時点において、 前記第 2の複数の領域間に設定された所定の膜厚差を反映した膜厚に対応することを特 徴とする。
本発明の好まし ヽ態様は、 前記制御部の制御周期は、 1秒以上 1 0秒以下であ ることを特 ί敷とする。 本発明の好ましレヽ態様は、 前記センサは、 渦電流センサであることを特徴とす る。
本発明の好ましい態様は、 前記制御部は、 前記モニタリング装置により生成さ れたモニタリング信号に基づいて研磨終点を検知することを特徴とする。
本発明の他の態様は、 基板上の第 1の複数の領域に対して独立した押圧力を与 えることで基板を研磨テーブルに押圧して研磨する研磨方法であって、 基板上の 膜厚に関連するモニタリング信号の基準値と研磨時間との関係を示す複数の基準 信号を定義し、複数の計測点における基板上の膜の状態をセンサを用いて検出し、 前記センサの出力信号から、 基板上の第 2の複数の領域のそれぞれについてモニ タリング信号を生成し、 前記第 2の複数の領域のそれぞれに対応する前記モニタ リング信号が前記複数の基準信号のいずれか 1つに収束するように前記第 1の複 数の領域に対する押圧力を操作することを特徴とする。
本発明の好ましい態様は、 研磨対象となる基板と同種の基準基板を用意し、 前 記基準基板の膜厚を測定し、 前記基準基板を研磨して複数の計測点における前記 基準基板上の膜の状態を前記センサにより検出し、 前記第 2の複数の領域から選 択された第 1の領域および第 2の領域におけるモニタリング信号を前記センサの 出力信号から生成し、 前記第 1の領域及び第 2の領域の被研磨膜が完全に除去さ れた時点で研磨を停止し、 前記第 1の領域および前記第 2の領域の平均研磨速度 を求め、 前記第 2の領域の平均研磨速度が前記第 1の領域の平均研磨速度と一致 するように、 前記第 2の領域のモニタリング信号を時間軸に沿って伸張または縮 小させ、 前記第 2の領域の初期膜厚が前記第 1の領域の初期膜厚と一致するため に必要な研磨時間を求め、 前記伸張または縮小させた第 2の領域のモニタリング 信号を、 前記求めた研磨時間だけ時間軸に沿って平行移動させ、 前記平行移動し たモニタリング信号を前記第 2の領域の基準信号とすることにより前記複数の基 準信号を定義することを特徴とする。
本発明によれば、 基板上の複数の領域について複数の基準信号が設けられるの で、 基板の全領域において均一な膜厚を得ることができる。 また、 センサの有効 測定範囲を縮小させるためにセンサを基板の被研磨面に近づける必要がなくなる ので、貫通孔ゃ裏面窪みなどのない通常の研磨パッドを用いることが可能となる。 図面の簡単な説明
図 1は、 本発明の実施形態に係る研磨装置の全体構成を示す模式図である。 図 2は、 図 1に示すトツプリングの断面を示す模式図である。 図 3は、 研磨テーブルとウェハとの関係を示す平面図である。
図 4は、 センサがゥェハ上を走査する軌跡を示した図である。
図 5は、 図 4に示すウェハ上の計測点のうちモニタリング装置によりモニタリ ングを行う計測点を選択する一例を示す平面図である。
図 6は、 各計測点におけるセンサの有効計測範囲を示す図である。
図 7は、 ウェハ上の各領域における信号値を示すグラフである。
図 8は、 基準ウェハを研磨したときのモニタリング信号に基づいて各領域につ
V、ての基準信号を作成する流れを示すフローチャートである。
図 9 Aおよび図 9 Bは膜厚分布の例を示す模式図である。
図 1 0は、 基準ウェハを研磨したときのモニタリング信号の一例である。 図 1 1は、 モニタリング信号の時間軸に関するスケーリングを説明する図であ る。
図 1 2は、 時間軸に沿つてスケーリングされたモニタリング信号を、 さらに時 間軸に沿って平行移動する方法を説明する図である。
図 1 3は、 基準信号およびモニタリング信号の変換方法の一例を説明するため のグラフである。
図 1 4は、 基準信号の適用方法の一例を説明するためのグラフである。
図 1 5は、 基準信号の適用方法の他の例を説明するためのグラフである。 図 1 6は、 基準信号の適用方法の他の例を説明するためのグラフである。 図 1 7は、 基準信号を作成して研磨を行つた場合の研磨前後の径方向膜厚分布 を示すグラフである。
図 1 8は、 非制御研磨におけるモニタリング信号の推移を示すグラフである。 図 1 9は、 制御研磨におけるモニタリング信号の推移を示すグラフである。 図 2 0は、 予測型のフアジィ制御を説明するためのグラフである。
図 2 1は、 予測型制御を説明するための模式図である。
図 2 2は、 予測型制御用のフアジィルールの一例を示すテ一ブルである。 図 2 3は、 予測型制御用のフアジィルールの他の例を示すテーブルである。 図 2 4は、 導電性膜とセンサコイルとの間のギャップ (パッド厚) を変化させ た場合のインピーダンス座標面における円軌跡の変化を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施形態について図 1乃至図 2 4を参照して詳細に説明する。 図 1は、 本発明の実施形態に係る研磨装置の全体構成を示す模式図である。 図 1に示すように、 研磨装置は、 上面に研磨パッド 1 0が貼設された研磨テーブル 1 2と、 研磨対象物であるウェハを保持して研磨パッド 1 0の上面に押圧するト ップリング 1 4とを備えている。 研磨パッド 1 0の上面は、 研磨対象物であるゥ ェハと摺接する研磨面を構成している。
研磨テーブル 1 2は、 その下方に配置されるモータ (図示せず) に連結されて おり、 矢印で示すようにその軸心周りに回転可能になっている。 また、 研磨テー プル 1 2の上方には図示しない研磨液供給ノズルが設置されており、 この研磨液 供給ノズルから研磨パッド 1 0上に研磨液が供給されるようになっている。
トップリング 1 4は、 トップリングシャフト 1 8に連結されており、 このトツ プリングシャフト 1 8を介してモータ及び昇降シリンダ (図示せず) に連結され ている。 これにより、 トップリング 1 4は昇降可能かつトップリングシャフト 1 8周りに回転可能となっている。 このトップリング 1 4の下面には、 研磨対象物 であるウェハが真空等によって吸着、 保持される。
上述の構成において、 トップリング 1 4の下面に保持されたウェハは、 回転し ている研磨テープノレ 1 2の上面の研磨パッド 1 0に押圧される。 このとき、 研磨 液供給ノズルから研磨パッド 1 0上に研磨液が供給され、 ウェハの被研磨面 (下 面) と研磨パッド 1 0の間に研磨液が存在した状態でウェハが研磨される。
図 2は図 1に示すトツプリングの断面を示す模式図である。図 2に示すように、 トツプリング 1 4は、 トップリングシャフト 1 8の下端に自在継手部 3 0を介し て連結される略円盤状のトツプリング本体 3 1と、 トツプリング本体 3 1の下部 に配置されたリテーナリング 3 2とを備えている。 トップリング本体 3 1は金属 やセラミックス等の強度および剛性が高い材料から形成されている。 また、 リテ ーナリング 3 2は、剛性の高い樹脂材またはセラミックス等から形成されている。 なお、 リテーナリング 3 2をトツプリング本体 3 1と一体的に形成することとし てもよい。 .
トップリング本体 3 1およびリテーナリング 3 2の内側に形成された空間内に は、 ウエノ、 Wに当接する弾性パッド 3 3と、 弾性膜からなる環状の加圧シート 3 4と、 弾性パッド 3 3を保持する概略円盤状のチヤッキングプレート 3 5とが収 容されている。 弾性パッド 3 3の上周端部はチヤッキングプレート 3 5に保持さ れ、 弾性パッド 3 3とチヤッキングプレート 3 5との間には、 4つの圧力室 (ェ ァバッグ) P l, P 2 , P 3 , P 4が設けられている。 これらの圧力室 P l, P 2 , P 3 , P 4にはそれぞれ流体路 3 7, 3 8, 3 9, 4 0を介して加圧空気等 のカロ圧流体が供給され、 あるいは真空引きがされるようになつている。 中央の圧 力室 P 1は円形であり、 他の圧力室 P 2 , P 3 , P 4は環状である。 これらの圧 力室 P l, P 2 , P 3 , P 4は、 同心上に配列されている。
圧力室 P l, P 2 , P 3 , P 4の内部圧力は図示しない圧力調整部により互い に独立して変化させることが可能であり、 これにより、 ウェハ Wの 4つの領域、 すなわち、 中央部 C 1、 内側中間部 C 2、 外側中間咅 I5C 3、 および周縁部 C 4に 対する押圧力を概ね独立に調整することができる (もちろん、 正確には、 隣り合 う領域など他の領域に対する圧力室の影響を多少なりとも受ける)。また、 トップ リング 1 4の全体を昇降させることにより、 リテーナリング 3 2を所定の押圧力 で研磨パッド 1 0に押圧できるようになっている。 チヤッキングプレート 3 5と トツプリング本体 3 1との間には圧力室 P 5が形成され、 この圧力室 P 5には流 体路 4 1を介して加圧流体が供給され、 あるいは真空引きがされるようになって いる。 これにより、 チヤッキングプレート 3 5および弾性パッド 3 3全体が上下 方向に動くことができる。 なお、 ウェハ Wの周囲にはリテーナリング 3 2が設け られ、研磨中にウエノ、 Wがトツプリング 1 4から飛び出さないようになつている。 図 1に示すように、 研磨テープノレ 1 2の内部には、 ウェハ Wの膜の状態を監視 (検知) するセンサ 5 0が埋設されて!/、る。 このセンサ 5 0はモニタリング装置 5 3に接続され、 このモニタリング装置 5 3は CM Pコントローラ 5 4に接続さ れている。 上記センサ 5 0としては渦電流センサを用いることができる。 センサ 5 0の出力信号はモニタリング装置 5 3に送られ、このモニタリング装置 5 3で、 センサ 5 0の出力信号(センシング信号) に対して必要な変換-処理(演算処理) を施してモニタリング信号が生成される。
モニタリング装置 5 3は、 モニタリング信号に基づいて各圧力室 P 1, P 2 , P 3 , P 4の内部圧力を操作する制御部としても機能する。 すなわち、 モニタリ ング装置 5 3では、 モニタリング信号に基づいてトップリング 1 4がウェハ W"を 押圧する力が決定され、 この押圧力が CMPコントローラ 5 4に送信される。 C MPコントローラ 5 4は、 トップリング 1 4のウェハ Wに対する押圧力を変更す るよ'うに図示しない圧力調整部に指令を出す。 なお、 モニタリング装置 5 3と制 御部とを別々の装置としてもよく、 モニタリング装置 5 3と CMPコントローラ 5 4とを一体化して 1つの制御装置としてもよい。
図 3は、 研磨テーブル 1 2とウエノ、 Wとの関係を示す平面図である。 図 3に示 すように、 センサ 5 0は、 トップリング 1 4に保持された研磨中のウェハ Wの中 心 Cwを通過する位置に設置されている。 符号 CJま研磨テーブル 1 2の回転中心 である。例えば、センサ 5 0は、 ウエノ、 Wの下方を通過している間、通過軌跡(走 査線) 上で連続的にゥエノ、 Wの C u層等の導電性膜の膜厚あるいは膜厚の変化に 応じて増加又は減少する量を検出できるようになっている。
図 4は、 センサ 50がウェハ W上を走査する軌跡を示したものである。 すなわ ち、 センサ 50は、 研磨テーブル 12力 S 1回転するごとにゥエノ、 Wの表面 (被研 磨面) を走査するが、 研磨テーブル 12が回転すると、 センサ 50は概ねウェハ Wの中心 Cw (トップリングシャフト 18の中心) を通る軌跡を描いてウェハ W の被研磨面上を走査することになる。 トツプリング 14の回転速度と研磨テープ ル 12の回転速度とは通常異なっているため、 ウエノ、 Wの表面におけるセンサ 5 0の軌跡は、図 4に示すように、研磨テーブル 12の回転に伴って走査線 S L 1, SL2, SL3, …と変化する。 この場合でも、 上述したように、 センサ 50は、 ウェハ Wの中心 Cwを通る位置に配置されているので、 センサ 50が描く軌跡は、 毎回ウェハ Wの中心 Cwを通過する。 そして、 本実施形態では、 センサ 50によ る計測のタイミングを調整して、 センサ 50によってウェハ Wの中心 Cwを毎回 必ず計測するようにしている。
また、 ウェハ Wの研磨後の膜厚プロファイルは、 ウェハ Wの中心 Cwを通り表 面に垂直な軸に関して概ね軸対象になることが知られている。 したがって、 図 4 に示すように、 m番目の走査線 S L ra上の n番目の計測点を M P mnと表わすとき、 各走査線における n番目の計測点 MP MP2_n, ■ · · , MPm_nに対する モニタリング信号を追跡することにより、 n番目の計測点の半径位置におけるゥ ェハ Wの膜厚の推移をモニタリングすることができる。
なお、 図 4においては、 簡略化のため、 1回の走查における計測点の数を 15 •としている。 しかしながら、 計測点の個数はこれに限られるものではなく、 計測 の周期および研磨テーブル 12の回転速度に応じて種々の値にすることができる。 センサ 50として渦電流センサを用いる場合には、 通常、 1つの走査線上に 10 0個以上の計測点がある。 このように計測点を多くすると、 いずれかの計測点が ウェハ Wの中心 Cwに概ね一致するので、上述したウェハ Wの中心 Cwに対する計 測タイミングの調整を行わなくてもよい。
図 5は、 図 4に示すウェハ W上の計測点のうちモニタリング装置 53によりモ エタリングを行う計測点を選択する一例を示す平面図である。図 5に示す例では、 押圧力が独立して操作される各領域 C 1, C2, C 3, C 4の中心近傍と境界線 近傍に対応する位置の計測点 MPm— MPm2, MPm_3, MPm_4, MPm5, MPm6, MPm8, MPm10, MP^い MPm_12, MPm13, MPm_14, MPm15のモニタリングを行っている。 ここで、 図 4に示した例とは異なり、計 測点 MPm— iと MPm— ( i + 1 >との間に別の計測点があってもよい。 なお、 モニタ リングする計測点の選択は、 図 5に示す例に限られず、 ウェハ Wの被研磨面上に おいて制御上着目すべき点をモニタリングすべき計測点として選択することがで き、 走査線上の全計測点を選択することも可能である。
モニタリング装置 5 3は、 選択した計測点におけるセンサ 5 0の出力信号 (セ ンシング信号)に所定の演算処理を行い、モニタリング信号を生成する。さらに、 モニタリング装置 5 3は、 生成されたモニタリング信号と後述する基準信号とに 基づいて、 ウエノヽ Wの各領域 C I , C 2 , C 3 , C 4に対応する、 トップリング 1 4内の圧カ室 1, P 2 , P 3 , P 4の圧力をそれぞれ算出する。 すなわち、 モェタリング装置 5 3は、 上述のようにして選択された計測点につレ、て取得され たモニタリング信号を、 予め計測点ごとに設定された基準信号と比較し、 各モェ タリング信号がそれぞれの基準信号に収束するための圧力室 P 1, P 2, P 3, P 4の最適な圧力値を算出する。 そして、 算出された圧力値はモニタリング装置 5 3から CMPコントローラ 5 4に送信され、 CMPコントローラ 5 4は圧力室 P I , P 2, P 3 , P 4の圧力を変更する。 このようにして、 ウェハ Wの各領域 C 1 , C 2 , C 3 , C 4に対する押圧力が調整される。
ここで、 ノイズの影響を排除してデータを平滑化するために、 近傍の計測点に ついてのモニタリング信号を平均ィ匕したものを使用してもよい。 あるいは、 ゥェ ハ Wの表面を中心 cwからの半径に応じて同心円状に複数の領域に分割し、 各領 域内の計測点に対するモニタリング信号の平均値または代表値を求めて、 この平 均値または代表値を制御用の新たなモニタリング信号として用いてもよい。 ここ で、 研磨中の各時点において各計測点の Cwからの距離を求めてどの領域に属す るかを判断するようにすれば、 センサが研磨テーブル 1 2の半径方向に複数個並 んで配置された場合や、 研磨中にトップリング 1 4がトップリングへッドシャフ ト 1 8を中心として揺動する場合にも効果的に対応することができる。 なお、 各 計測点は、 実際にはセンサの有効径測範囲に対応する面積を有するものであるか ら、 以上全ての場合に関して、 モニタリング信号は基板上の複数の領域の状態を 表わすものであるといえる。
図 6は、 各計測点におけるセンサの有効計測範囲を示す図である。 センサ 5 0 として渦電流センサを用いた場合、 センサ 5 0内のコイルの大きさ、 有効範囲広 がり角、 センサ 5 0からウエノヽ Wまでの距離に応じてウエノヽ W上の有効計測範囲 が決定される。 そして、 センサ 5 0は、 各計測点において図 6の点線で示す範囲 内の情報を取得することとなる。 しかしながら、 ウェハ Wの周縁部の状態を計測 しょうとすると、 センサ 5 0の有効計測範囲の一部がウェハ Wの被研磨面からは み出してしまう (図 6の計測点 MP m1 ; MP mN参照)。 このような場合には、 図 7に示すように、ウエノ、 Wの周縁部における計測点 MP n , MPmΝに対応す るモニタリング信号が、 他の領域におけるモニタリング信号とは大きく異なり、 膜厚を適正に評価することができなくなってしまう。 渦電流センサ以外の方式の センサに関しても、 条件によっては類似のことが起こり得る。 なお、 図 7におい て、 研磨時間終盤でそれぞれのモニタリング信号が減少から一定に転じる点は、 研磨終点 (金属膜が完全に除去される時点) を表わしている。
そこで、 本実施形態では、 このようなゥェノ、 W上の領域によつて同一膜厚でも モニタリング信号値が異なってしまう問題への対処方法として、 ウェハ Wの各領 域 C 1〜C 4についてそれぞれ基準信号を設定する。 この基準信号は、 所望の膜 厚プロファイル (例えば、 研磨後の膜厚が均一なプロファイル) を実現するため に、 研磨中の各時点 (研磨時点) においてモニタリング信号の指標となる値 (基 準値) を示すものであり、 研磨時点とその研磨時点での望ましいモニタリング信 号の値との関係を示すグラフとして表わすことができる。 本実施形態では、 研磨 対象のウェハと同種のウェハ (以下、 これを基準ウェハという) を事前に研磨し て、 このときのモニタリング信号を基にウエノ、 Wの径方向に分布する各領域 C 1 〜C 4についての基準信号を作成する。
ここで、 ウェハの径方向の膜厚が均一になることをねらって各領域に対する押 圧力を操作するものとすれば、 領域ごとに設定される基準信号は、 同一時点にお いて同一膜厚に対応するものでなければならない。 つまり、 同一時点において同 一膜厚に対応すると見なせるような基準信号を領域ごとに用意し、 領域ごとに取 得されるモニタリング信号がこれらの基準信号に収束するように押圧力を操作す れば、 各領域における膜厚が均一になるようにウエノ、 Wを研磨できる。 ' 図 8は、 基準ウェハを研磨して、 このときのモニタリング信号に基づいて各領 域についての基準信号を作成する流れを示すフローチャートである。 まず、 研磨 対象のウェハと同種のウェハ、 すなわち基準ウェハを用意する。 そして、 図 8に 示すように、 研磨前の基準ウェハの径方向における膜厚分布を測定し、 各領域 C 1〜C 4の研磨前の代表膜厚を取得する (ステップ 1 )。 ここで、同種のウェハと は、研磨中の各時点における研磨速度(Removal Rate) が研磨対象ウェハに概ね 等しく, 膜厚が同一のときに取得されるモニタリング信号が研磨対象ウェハに概 ね等しく、 力、つ、 ウェハ周縁部の成膜範囲が研磨対象ウェハに実質的に等しいゥ ェハである。 たとえば、 渦電流センサにおいて、 基準ウェハの被研磨膜 (金属膜 ) の材料は、 研磨対象のウェハの被研磨膜と基本的に同種でなければならない。 また、 研磨対象のウェハ自身の抵抗が金属膜の抵抗に比べて無視できないほど小 さくて研磨中のモニタリング信号に影響を与える場合には、 基準ウェハの抵抗は 研磨対象のゥェハの抵抗に概ね等しくなければならない。ただし、基準ウェハは、 必ずしも研磨対象のウェハと厳密に同一仕様のウェハである必要はない。 たとえ ば、 基準ウェハの研磨速度が研磨対象となるウェハの研磨速度と大幅に異なる場 合には、 基準ウェハを研磨した時のモニタリング信号を時間軸に関してスケーリ ング (伸張または縮小) することにより見かけ上の研磨速度を調整して、 研磨対 象ゥュハの制御に用いることもできる。 また、 制御時間を十分に取る上で、 基準 ウェハの初期膜厚は研磨対象ウェハの初期膜厚と等しいか、 またはより大きいこ とが好ましいが、 基準ウェハの初期膜厚が研磨対象ウェハの初期膜厚より小さい 場合でも後述する制御時間を短くするだけで、 研磨制御は可能である。
基準ウェハの膜厚分布を取得した後、 この基準ウェハを研磨し、 各領域 C l〜 C 4におけるモニタリング信号を取得する(ステップ 2 )。基準ウェハを研磨する 間、 各領域 C 1〜C 4に対する圧力室 P 1, P 2 , P 3 , P 4内の圧力は一定 ( 不変) とする。 ただし、 それぞれの圧力室 P l, P 2 , P 3 , P 4内の圧力を互 いに等しくする必要はない。さらに、基準ウェハの研磨の間は、研磨パッド 1 0、 研磨液、 研磨テーブル 1 2の回転速度、 トップリング 1 4の回転速度などその他 の研磨条件は、 原則として一定とする。 好ましくは、 基準ウェハの研磨時の研磨 条件は、 研磨対象ウェハの研磨時と同一または類似の条件とする。
所定の時間が経過した後、 基準ウェハの研磨を終了させる。 そして、 研磨後の 基準ゥェハ上の被研磨膜の膜厚を測定し、 各領域 C 1 -C 4の研磨後の代表膜厚 を取得する (ステップ 3 )。被研磨膜が金属膜の場合は、金属膜が除去される前に 研磨を停止させる。 これは、 センサ 5 0による研磨後の膜厚の測定を保証するた め、 および金属膜が除去されると研磨速度が大きく変化してしまい、 精度のよい 基準信号が得られないからである。 ただし、 ウェハ Wの各領域の金属膜が除去さ れる時点をモニタリング信号から求め、 この時点の膜厚を 0として基準信号を作 成することも可能であり、 この場合には、 金属膜が完全に除去されるまで基準ゥ ェハを研磨する。
後述するように、 本実施形態では取得された基準ウェハの各領域のモニタリン グ信号に対してスケーリング及び平行移動などの処理を行って各時点における各 領域の膜厚が均一と見なせる基準信号を作成するので、 基準ウェハの研磨におい て必ずしも膜厚が均一である必要はない。 し力 し、 センサによる急峻な膜厚プロ フアイルの把握には問題があるから、 研磨前及び研磨後における基準ゥェハ径方 向の膜厚が均一であるほど、 精度のよい基準信号を得ることが期待できる。
一般に、 ウェハの膜厚プロファイルに局所的な凹凸がある場合、 この凹凸がセ ンサの有効計測範囲よりも小さいと、 センサはその凹凸の形状を正確に反映した 信号を出力できない。 例えば、 図 9 Aに示すように、 ウェハの a点において急峻 な凸部があるとする。 センサの有効計測範囲はある程度の大きさを有するため、 センサはこの凸部のピークの膜厚に対応する値を出力するのではなく、 有効計測 範囲内で平均化された膜厚に対応する信" ^直を出力することになる。 そこで、 基 準ウェハの研磨前後の膜厚測定においては、 センサ 5 0の有効計測範囲に相当す る領域で取得された計測値を平均化して、 この領域の中心点における膜厚値とす ることが好ましい。 このようにして取得された膜厚分布を図 9 Bに示す。 なお、 図 9 Aおよぴ図 9 Bにおいて、 ダラフ上の黒点はセンサ 5 0の計測点を示してい る。
次に、 ステップ 4 , 5 (図 8参照) では、 各基準信号が同一時点において同一 膜厚に対応すると見なせるように、 基準信号を補正する。
図 1 0は、 基準ウェハを研磨したときのモニタリング信号の一例である。 一般 に、 モニタリング信号 (およびセンサ信号) の値は膜厚自体を示すものではない 力 モニタリング信号の値と膜厚とはある一定の関係を有する。 しかしながら、 上述したように、 同一膜厚であってもウェハ Wの周縁部におけるモニタリング信 号が他の領域におけるモニタリング信号よりも小さくなること、 及び、 導電性材 料などの影響により、 取得されるモニタリング信号が本来得られるべき値を示さ ないことがある。 そこで、 ステップ 1 , 3において測定された研磨前後の膜厚を モニタリング信号に割り振ることにより、 モニタリング信号と膜厚とを関連付け る。 具体的には、 図 1 0に示すように、 基準領域 C Oの研磨前後の膜厚 d c o S , d C 0 Eを基準領域 C 0のモニタリング信号の始点および終点にそれぞれ割り振 る。 同様に、 基準領域以外の領域 C iの研磨前後の膜厚 d c i S , (1 £を領域〇 iのモユタリング信号の始点および終点にそれぞれ割り振る。 なお、 基準領域 C 0としては、 例えば、 ゥェハの中心部を含む領域 C 1を選択することができる。 図 1 1は、 モニタリング信号の時間軸に関するスケーリングを説明する図であ る。 ステップ 4では、 各領域 C 1 〜 C 4の平均研磨速度が同一となるように、 モ ニタリング信号を時間軸に沿ってスケーリングする。 なお、 ここでいうスケーリ ングとは、 モニタリング信号を時間軸に沿って伸張または縮小させることを意味 する。 いま、 基準ウェハを事前研磨したときの研磨時間が TEであるとする。 このと き、 基準領域 COにおける平均研磨速度 Rは、 次の式 (1) で表される。
= (dc。S - dc。E) /TE ■ ■ · (1)
そこで、 領域。 iの平均研磨速度が基準領域 C 0の平均研磨速度と等しくなる ように、 領域 C iに対する補正研磨時間を、
Figure imgf000014_0001
とおく。
そして、 もともとの研磨開始時刻を 0として、 領域 C iのモニタリング信号の 各信号値に対応する時刻 t iを、 次の式 (3) に示すように補正する。
Figure imgf000014_0002
上記式 (3) において、 記号 「―」 は置き換えを表わしている。
なお、 図 11には、 dCi S— dciE> dC0S— dc。Eの場合の例を示してい る。
図 12は、 このようにして時間軸に沿ってスケーリングされたモニタリング信 号を、 さらに時間軸に沿って平行移動する方法を説明する図であり、 図 8のステ ップ 5を説明する図である。 このステップ 5では、 各領域における初期膜厚を揃 える作業を行う。
いま、 基準ウェハの研磨中の各時点において、 各領域 C 1〜C4において研磨 速度が近似的に一定であると仮定する。 このとき、 基準領域 COにおける初期膜 厚 dC0Sが領域 C iにおける初期膜厚 dCi Sに一致するまで研磨するのに必要 な研磨時間 A t iは、 次の式 (4) カ ら求められる。
厶 = (dc。S— dCi S) /R ■ · · (4)
そこで、 上記式 (3) で捕正された領域 C iにおける研磨時刻 t iを、 さらに 次の式 (5) を用いて補正する。
t t i+ Δ t; · · - (5)
図 12に示す例においては、 領域 C iのモニタリング信号の各信号値を時間軸 に沿って Δ t だけ平行移動させれば、 領域 C iのモニタリング信号の始点であ る時刻 T i Sにおける領域 COの膜厚と領域 C iの膜厚は互いに等しいとみなす ことができる。 さらに、 領域 C 0と領域 C iとの間では平均研磨速度が等しいの であるから、 時刻 TEにおける膜厚も互いに等しいとみなすことができる。 した がって、 時刻 TX (ただし、 T i S≤TX TE) における膜厚 dC0Xと dci Xは互 、に等しいとみなせる。
上述のように、 領域 C iのモニタリング信号は時間軸に沿ってスケーリングさ れ、 さらに平行移動されるので、 領域 C 0のモニタリング信号と領域 C iの補正 後のモニタリング信号は、 一般に Ma X (0, T i S) から Mi n (TE, T i Ε+Δ t i) までの区間においてのみ共に存在する。 ここで、 Ma xは括弧内の 大きい方の値を、 Mi nは小さい方の値をとることを示す。 図 1 2は dc。S>d ci Sの場合の例を示す力 もちろん dc。Sく dCi Sの場合も有り、その場合には 当該領域 C iの研磨開始時刻 T i Sは負の値となる。
次に、 このようにして得られた各領域の基準信号の波形を、 必要に応じて平滑 化してノィズ成分を低減する(ステップ 6 )。平滑化の方法としては、移動平均や、 より一般的なディジタルフィルタ、多項式回帰を適用することができる。そして、 上述のステップ 4〜6の工程を繰り返し、 全ての領域 C 1〜C 4についての基準 信号を定義する。 なお、 この段階においては、 基準信号の各信号値に対する時刻 は領域ごとにそれぞれ独立に捕正されて一般に異なる値をとる力、ら、 各領域の基 準信号を補間して、 一定の時間間隔の同一時刻に対する基準信号を定義しなおす こともできる。
図 12および式 (4) から分かるように、 初期膜厚 dciSが小さいほど基準信 号の始点 T i Sは図 12の右方向に移動する。 また、 最終膜厚 dciEが大きいほ ど基準信号の終点 T i Ε + Δ t iは図 12の左方向に移動する。 初期膜厚および 最終膜厚は、一般に領域によつて異なるから、領域ごとに基準信号を求めた場合、 各基準信号の始点および終点は通常一致しない。 そこで、 次のようにして基準信 号を設定する。 まず、 各領域の初期膜厚を互いに比較し、 初期膜厚の最小値 Mi n (dCiS) を求める。 同様に、 各領域の最終膜厚を互いに比較し、 最終膜厚の 最大値 Ma x (dCiE) を求める。 そして、 Mi n (dci S) に対応する時刻か ら、 Ma x (dciE) に対応する時刻までの区間のモニタリング信号のみを基準 信号とする。 あるいは、 制御時間を長く取れるように、 各領域のモニタリング信 号を外揷して、 より広い区間の基準信号を定義することもできる。
このようにして得られた各領域についての基準信号は、 モニタリング装置 53 の記憶部 (例えば、 ハードディスク) に格納される。 そして、 ウェハ Wを研磨す るときは、 各領域 C 1〜C 4のモエタリング信号が上記基準信号にそれぞれ収束 するように圧力室 P l, P 2, P 3, P 4のゥヱハ Wに対する押圧力が操作され る。 なお、 以上では圧力室 P 1〜P 4に対応する領域 C 1〜C 4に関して基準信 号を設定する例について説明したが、 上述したように、 モニタリング信号はこれ に限らず様々な領域に対して生成できるから、 基準信号も、 領域 C 1〜C4に限 らずウェハ Wの表面上の様々な領域に対して定義できる。 上述した本実施形態によれば、 同一時刻に同一膜厚を示す基準信号が得られる ので、 各領域において取得されるモニタリング信号がそれぞれの基準信号に収束 するように圧力室 P l, P2, P3, P 4の圧力を操作すれば、 均一な膜厚をね らつて研磨することができる。 したがって、 図 7に示すように、 ウエノ、 Wの周縁 部のモニタリング信号が他の領域に比べて極端に小さい場合でも、 均一な最終膜 厚が得られる。 また、 基準信号は領域ごとに定義されるので、 上述のようにして 作成されたそれぞれの基準信号をさらに時間軸に関して適宜平行移動することに より、 均一ではない所望の残膜厚のプロフアイルを実現することもできる。 たとえば、領域 C iの残膜厚が領域 C 0よりも Δ d c iだけ大きい膜厚プロファ ィルを実現したい場合、 上記式 (5) によって領域 C iにおける研磨時刻 t iを 補正した後で、 さらに研磨時刻 t iを次の式 ( 5 ) ' を用いて補正する。
t i ― t i + Δ dCi/R · · · (5),
換言すれば、 式 (4) の代わりに次の式 (4)' を用いて研磨時刻 t iを補正す る。
Δ t i= (dco S— dCi S +厶 dci) /R - - - (4)' ' ここで、 Δ d c < 0なら、領域 C iの残膜厚は領域 C 0よりも一A dciだけ小 さいことになる。
このようにすれば、 図 12において、 領域 C iのモニタリング信号の始点であ る時刻 T i Sにおける領域 C iの膜厚は領域 C 0の膜厚より Δ dciだけ大きい とみなすことができる。 さらに、 領域 C 0と領域 C iとの間では平均研磨速度が 等しいのであるから、 任意の時刻 TX.. (ただし、 図 12の例では T i S≤TX≤ TE) における領域 C iの膜厚も領域 COの膜厚より Δ dciだけ大きいとみなす ことができる。 したがって、 このようにして作成された各領域のモニタリング信 号を基準信号として、 研磨時において領域ごとに取得されるモニタリング信号が これらの基準信号に収束するように押圧力を操作すれば、 研磨後において領域 C iの膜厚が領域 C 0の膜厚より Δ d c;だけ大きいという所望のプロファイルを 実現することが期待される。
このようにすれば、 たとえば最上層が金属膜でその下に絶縁層、 さらに配線が ある場合に、 絶縁層の厚みの分布を知って金属膜の残膜厚の目標プロファイルを 定義することにより、 配線からの高さが均一になるように研磨を進めることがで きる。 なお'、 以下では、 被研磨膜の残膜厚のプロファイルを均一にする場合を中 心にして詳細な説明を進める。
図 13は、 ウェハ上のある領域のモニタリング信号 MS を、 これに対して設 定された基準信号 R S。と直線 Bとに基づいて、新たなモエタリング信号 M S 2に 変換する方法を示したグラフである。 ここで、 直線 Bは、 基準信号 R S 0の研磨 終点を通る傾き _ 1の直線である。 例えば、 図 1 3に示すように、 時刻 1^にお けるモニタリング信号 M S の値 V lが与えられたとき、 基準信号 R S 0上で同一 の値を有する点 Pを求める。 そして、 この点 Pの時刻から基準信号 R S。の研磨 終点までの残り時間 Tを求める。 この残り時間 Tは、 図 1 3からわかるように、 上記直線 Bを参照することにより求められる。 求められた時間 Tを基に新たなモ エタリング信号 MS 2の時刻 t 1における信号値 V 2を設定する。例えば、 v 2 = T となるように信号値 ν 2を設定する。 あるいは、 信号値 ν 2を基準信号における研 磨開始から研磨終点迄の時間 Τ。で正規化して V 2 = τζτ。としてもよく、 この とき直,線 Βは、 時刻 0で値 1を取り、 傾きが一 1 ΖΤ。の直線となる。
基準信号 R S。に関しても同様の考え方を適用することにすれば、 上述した直 線 Βが変換後のモニタリング信号についての新たな基準信号であると見なせる。 この新たな基準信号 (直線 は、 基準信号 R S。上の各点から研磨終点までの 残り時間を表わすものであるから、 時間に関して,锒形の単調減少関数になり、 制 御演算が容易になる。
研磨後の膜厚が均一なプロファイルをねらって制御する場合、 ウェハ W上の各 領域のモニタリング信号に対して、 それぞれ設定された基準信号を用いて同様の 変換を行えば、 変換されたモニタリング信号は対応する基準信号における研磨終 点までの残り時間、 または、 これを正規化した値として表される。 ところが、 各 基準信号は同一時刻で等しい膜厚に対応するものと見なせるから、 全ての領域の モニタリング信号は、 膜厚を示す指数として相互に単純比較できるようになる。 このとき、 変換後の基準信号は全て直線 Βに一致して一本化される。
また、 このようにすれば、 多くの場合、 変換後の新たなモニタリング信号 M S 2がウェハの被研磨面の膜厚に概ね比例して直線的に変化する。 したがって、 研 磨液やウェハの被研磨面上の配線パターン、 下層の影響などにより被研磨面の膜 厚値が計測できない場合においても、 線形演算で良好な制御性能を得ることが可 能になる。 図 1 3に示す例では、 基準信号 R S 0における研磨終点を基準時刻と して説明したが、 基準信号 R S。における基準時刻は研磨終点に限られるもので はない。 例えば、 基準信号 R S。が所定の値を取る時刻など、 任意に基準時刻を 定めることができる。 特に、 前述のように、 残膜厚が非均一なプロファイルにな るよう研磨を制御する場合には、 基準信号において全ての領域が同時に研磨終点 に達することはないから、式(4) ' に従い平行移動して作成された各領域の基準 信号に対して、 時間軸上の一点を共通の基準時刻として定めることになる。 この ときの変換後の基準信号も、 均一プロファイルの場合同様、 全て直線 Bに一致し て一本化される。 なお、 モニタリング信 ^直に対応する基準信号値がもともと存 在しない区間や、 モニタリング信号値が研磨時間とともに変化しない区間におい ては、 変換後の新たなモニタリング信号の値は不定になる。 このような場合には 制御を休止し、 トップリングの押圧力等の設定値としては従来値を維持すればよ い。 また、 図 1 3において、 基準信号は研磨終点に達するまで存在している。 こ れは、 基準ウェハを研磨終点を過ぎるまで研磨し、 モエタリング信号に基づいて 研磨終点を検知し、 このときの膜厚を 0として基準信号を定義したためである。 図 1 4は、 上述のようにして変換された基準信号の適用方法の例を示すグラフ である。 図 1 4においては、 研磨開始時点または制御開始時点に、 研磨終点まで の研磨時間が所望の値になるように、 基準信号 R S!を時間軸に沿って平行移動 して新たな基準信号 R S 2を設定している。 なお、 研磨開始時点または制御開始 時点において、 基準信号 R S の研磨終点までの研磨時間が所望の値であれば、 基準信号 R S iの平行移動量を 0としてよい。
その後、 時間軸に関して基準信号 R S 2を固定し、 モニタリング信号 M S A, M S B, M S c及び図示しないその他の領域のモニタリング信号が、 基準信号 R S 2 に収束するように制御を行なう。 このようにすれば、 ある領域の変換前のモユタ リング信号の値が同一膜厚時に他の領域と異なっていても、 初期の膜厚プロファ ィルにかかわらず面内均一性を向上させることができるだけでなく、 ウェハ間で 初期膜厚にばらつきがあっても、 あるいは研磨パッド等の装置の状態に変化があ つても、 研磨終点までの時間が所定の値になることが期待できる。 このように、 研磨時間を一定にできれば、 研磨装置内でウェハを予想可能な概ね一定の周期で 搬送することが可能になる。 したがって、 研磨時間の長いウェハに左右されて搬 送が遅れてしまうようなことがなく、 スループットが向上する。
図 1 5は、 基準信号の適用方法のさらに他の例を示すグラフである。 図 1 5に おいては、 研磨開始時点または制御開始時点に、 各領域のモニタリング信号値を 平均化した値 a Vが基準信号と一致するように、 基準信号 R S 3を時間軸に沿つ て平行移動して新たな基準信号 R S 4を設定する。 ここで、 モニタリング信号値 の平均化の方法は、 ウェハの研磨の進渉状況を代表するような値を得るものであ ればどのような方法であってもよく、 例えば、 算術平均または加重平均を算出す る方法、 中央値を取る方法であってもよい。
その後、 時間軸に関して基準信号 R S 4を固定し、 モニタリング信号 M S A, M S B, M S C及ぴ図示しない の他の領域のモニタリング信号がこの基準信号 R S
4に収束するように制御を行なう。 このようにすれば、 ある領域のモ-タリング 信号の値が同一膜厚時に他の領域と異なっていても、図 1 4に示した例に比べて、 ウェハ Wの各領域 C 1〜C 4に対する押圧力等の操作量を極端に変化させる必要 がなく、 安定した研磨を行うことが期待できる。 また、 研磨開始後または制御開 始後の研磨 Bき間が、 基準信号取得時に同一膜厚から研磨した場合の研磨時間と等 しくなることが期待され、 初期の膜厚プロファイルにかかわらず面内均一性を向 上させることができるだけでなく、 研磨パッド等の装置の状態にかかわらず平均 的な研磨レートを実現することができる。
図 1 6は、 基準信号の適用方法のさらに他の例を示すグラフである。 図 1 6に おいては、 所定の周期で、 各領域のモニタリング信号を平均化した値が基準信号 R S 5と一致するように、基準信号 R S 5を時間軸に沿って平行移動する。例えば、 モニタリング信号を平均化した値 a Vい a v 2 , a v 3に一致するように、 基準 信号 R S 5をそれぞれ平行移動し、新たな基準信号 R S 6 , R S 7, R S 8をそれぞ れ設定する。 そして、 各領域のモニタリング信号が、 この時々刻々平行移動して 設定される基準信号に収束するように、 ウェハの各領域 C:!〜 C 4に対する押圧 力等を操作する。 このようにすると、 ある領域のモニタリング信号の値が同一膜 厚時に他の領域と異なっていても、 初期のウェハの各領域 C 1〜C 4の押圧力が 概ね妥当な範囲にある場合、 ある時点においてある領域の押圧力が増加方向にな れば、 別の領域の押圧力は減少方向になる。 したがって、 本実施形態には、 研磨 時間や研磨レートを調整する機能はないが、 操作量の変化を小さくして安定した 研磨を行なうことができる。 さらに、 初期の膜厚プロファイルにかかわらず優れ た面内均一性を達成することができる。
また、 このような場合には特に、 ブランケットウェハを基準ウェハとして作成 した基準信号を用いてパターンウェハの研磨を制御しても、 良好な結果を得るこ とができる。 ここで、 ブランケットウェハとは、 ウェハ上に 1種以上の材料が均 —の厚みに成膜されたウェハであって、 所謂パターンが形成されていないものを いう。 一般に、 パターンウェハの研磨においては、 研磨レートはブランケットゥ ェハとは異なり、 ネ皮研磨面の四凸が解消される前と後で異なる。 また、 被研磨膜 が金属膜でセンサが渦電流センサであるとすれば、 表面の囬凸が解消される前後 で膜厚に対するモニタリング信号の変化速度も異なる。 しかしながら、 上記の方 法で制御するのは膜厚のプロファイルであって研磨レートを調節する機能はない ため、 そのような研磨レートゃモエタリング信号の変化速度の違いに関わらず、 良好な制御性能を期待できる。
パターンウェハにおいては膜厚が小さいと膜厚の測定は困難であり、 また、 研 磨対象の製品ゥェハの種類が変わる度に事前にこれを研磨して基準信号を作成す ることは、 煩雑であるだけでなく製品ウェハを無駄にすることになる。 したがつ て、 ブランケットウェハによる基準信号を適用してパターンウェハの研磨を制御 できることには実用上大きな意味がある。
図 1 5および図 1 6では、 研磨開始時または所定の周期においてモニタリング 信号を平均化した値に基準信号が一致するように平行移動した例を説明したが、 モニタリング信号を平均化した値以外の値を基準として基準信号を平行移動する こともできる。 例えば、 ウェハの所定の領域のモユタリング信号を基準として基 準信号を平行移動してもよい。 すなわち、 研磨開始時において、 基準信号が研磨 開始時の所定の領域のモニタリング信号に一致するように基準信号を平行移動し てもよく、 研磨工程中においても、 基準信号がその時刻における所定の領域のモ 二タリング信号に一致するように基準信号を平行移動してもよい。
以上に示したように、 研磨対象ウェハに対して基準ウェハを適当に定めて基準 信号を定義し、 これに基づいて押圧力を操作することにすれば、 研磨中時々刻々 のウェハ各部位のモニタリング信号と膜厚との関係を個々に定めるという煩雑な 操作なしに、 容易に膜厚プロファイルの制御が可能である。
図 1 7は、 研磨後の膜厚プロファイルが均一になることをねらって、 本実施形 態の方法で基準信号を作成して研磨を行った場合の研磨前後の径方向膜厚分布を 示すグラフである。 制御研磨 (本実施形態の研磨方法) においては、 領域ごとの モニタリング信号が各基準信号に収束するように押圧力を操作した。 一方、 非制 御研磨においては、 制御研磨時の初期押圧力と等し!/、押圧力を一定でウェハに与 えた。 図 1 7から、 ウェハの周縁部を含めて良好な残膜厚均一性が得られること が分かる。
図 1 8は非制御研磨におけるモニタリング信号の推移を示すグラフであり、 図 1 9は制御研磨におけるモニタリング信号の推移を示すグラフである。 図 1 8に 示すように、 非制御研磨では、 ウェハ面上の 3領域 (中心部、 内側中間部、 外側 中間部)でのモニタリング信号の値が異なっている。これに対し、制御研磨では、 図 1 9に示すように、 モニタリング信号が一つの値に概ね収束している様子が分 力る。 ウェハの周縁部に関しては、 前述した理由でモニタリング信号値が他の領 域から大きく離れているため、図から収束性を視覚的に確認することは出来ない。 しかしながら、 実際には、 ウェハの周縁部においても補正された基準信号に沿つ て研磨制御が行われるので、 図 17に示すように周縁部を含む全ての領域におい て均一な膜厚が得られている。
図 20は、 本発明に係る制御演算方法の一例を説明するためのグラフである。 図 20においては、 図 13を参照して説明したモニタリング信号の変換方法が用 いられている。 研磨開始後の時刻 tにおける新しい基準信号 y s (t) は、 以下 の式 (X) で表される。 '
y s (t) =T0- t · · · (6)
上記式 (6) において、 T。は基準信号における研磨開始から研磨終点までの 時間である。
ここで、 T。が、 基準信号を上述した 3通りのうちの前 2通りのいずれかの方 法で時間軸に関して平行移動した基準信号に対するもの (図 14、 図 15参照) であるとする。 図 16に示す例の場合には、 右辺はその時点の各領域のモニタリ ング信号を平均化した値になる。 このとき、 t。を所定の時間として、 時刻 tか ら t。経過後のウェハの各領域におけるモニタリング信号の予測値 y p ( t, t。) は、 以下の式 (7) で表される。
yP (t, t。)
=y (t) + t。 ' {y (t) — y (t-Δ tj} /Δ tm . · ■ - (7) 上記式 (7) において、 y (t) は時刻 tにおけるモニタリング信号、 A tm はモニタリング信号の時間変化に対する傾きを算出するために定められた時間で ある。
このとき、 時刻 tから t。経過後のモニタリング信号の予測値の、 基準信号に 対する不一致度 D (t, t。) を以下の式 (8) のように定義する。
D (t, t J =一 {yp (t, t。) -y s (t + t。)} Zt。 · - · (8) 式 (8) で表される不一致度 Dが正であればモニタリング信号が基準信号に対 して進み気味であることを意味し、 負であれば遅れ気味であることを意味する。 図 20に示すように、基準信号が直線であるとき、周期 Δ tの各時点において、 常にモニタリング信号の予測値が基準信号に一致すれば、 モニタリング信号は基 準信号に漸近し収束することが期待される。 そこで、 例えば、 図 21のように、 裏面に押圧力 u 3が加えられるウェハの領域 C 3の不一致度を D 3、 領域 C 3に 隣接する領域 C 2, C 4の不一致度をそれぞれ D 2, D 4として、 押圧力 u 3の 変化量 Au 3を決定することを考える。 図 22は、 このような押圧力 u 3の変化 量厶 u 3を決定するためのフアジィルールの一例である。 また、 図 23は、 図 2 2のフアジィルールに、 さらにウェハと摺動した直後の研磨パッドの部位の温度 T pを考慮した場合のフアジィルールの一例である。 図 2 2およぴ図 2 3におい て、 " S " は 「小さい」、 "B " は 「大きい」、 " P B " は 「大きく増やす」、 " P S" は 「少し増やす」、 " Z R" は 「変えない」、 "N S " は 「少し減らす」、 "N B " は 「大きく減らす」 を意味する。
図 2 2のフアジィルールに示すように、 押圧の変化量 Δ u 3は、 対応する領域 C 3の不一致度 D 3や押圧力 u 3自体が小さいほど大きく増加させ、 また、 領域 C 3と隣り合う領域 C 2, C 4の不一致度 D 2, D 4が小さい場合にも増やす方 向に調整する。 互いに独立なその他の領域の押圧力、 これに対応する領域の不一 致度、 押圧力の変化量に対しても、 それぞれ同様な考え方でフアジィルールを定 めれば、 押圧力を極端に大きい値または小さレ、値に変更することなく、 すべての 不一致度が零に収束するように制御を行うことができる。
また、 図 2 3に示す例では、 多くの場合、 研磨パッドの温度が高いほど研磨レ ートが上昇し、 これによりさらに温度が上昇し易いことを考慮して、 研磨パッド の温度 T pが低いほど押圧力 u 3の変化量 3を大きく、温度 Τ ρが高いほど変 化量 Δ u 3を小さく設定している。
なお、 適用できるフアジィルールは図 2 2および図 2 3に示したものに限られ るものではなく、 系の特性に応じて任意に定義することができる。 また、 前件部 変数、 後件部変数に対するメンバシップ関数や論理積法、 含意法、 集積法、 非フ アジィ化法等の推論の方法も適宜選択して用いることができる。 例えば、 後件部 のメンバシップ関数を適当に設定すれば、 押圧力の変化量 Δ u 3を調節すること ができるし、 このようにして求められた押圧力 u 3や変化量 Δ ι 3にさらに上下 限の制約を定めることも可能である。 さらに、 モニタリング信号、 あるいは、 不 一致度を定義する領域も、上述の C 1〜 C 4に限られるものではな たとえば、 その境界部に、 それぞれ、 1乃至 2個の領域を追加してよりきめの細かい制御を 行うことも可能である。
また、 上の例で、 元の基準信"^モニタリング信号が時間に関してある程度線 形に近ければ、 図 1 3を用いて説明したモニタリング信号の研磨時間に関する値 への変換は必ずしも必要ない。 モニタリング信号の時間変化をグラフに表わした ときにその曲率が小さい場合、 図 2 0と同様にして、 式 (7 ) により求めた時間 t。後のモニタリング信号の予測値がつねに基準信号 y s ( t ) に一致すれば、 モニタリング信号が次第に基準信号に近づき、 良好な制御が行われるものと期待 される。 モニタリング信号を時間に関する値に変換しない場合、 図 1 5または図 1 6を用いて説明した基準信号の平行移動においては、 例えばウェハ周縁部を含 む領域や s U S部品の影響でモニタリング信号が大きく異なる領域を除いて、 平 行移動の基準となる平均化された値を求めればょレ、。
上述した例では、 不一致度の予測値を求めて推論を行う予測型のファジィ制御 を利用している。 センサがウェハの被研磨面の情報を取り込んでから実際に押圧 力が完全に新しい値に置き換わって研磨状態が変化し、 センサの出力値が完全に 変わるまでには、 センサからモニタリング装置への出力信号の転送、 モニタリン グ信号への変換と平滑化、押圧力の演算、制御部への転送、圧力調整部への指令、 押圧機構 (圧力室) の動作など多くのステップが必要とされる。 したがって、 操 作量の変更が完全に信号波形に反映されるまでには、 通常 1、 2秒から 1 0秒程 度を要する。 このように応答遅れの影響を抑えて効果的な制御を行うために、 予 測型の制御は有効である。
予測型の制御の方法としては、 上述したフアジィ制御だけではなく、 例えば、 適 当な数学モデルを定義してモデル予測制御を行つてもよい。上述した応答遅れを含 めてモデル化することにすれば、 更なる制御性能の向上を期待することができる。 なお、 このような系においては、 制御周期を短くしても、 モニタリング信号に操作 量の変化が十分に反映される前に次の操作を行ってしまうことになり、意味がない だけでなく、不要な操作量の変化やこれによる信号値の変動を引き起こしてしまう おそれがある。 一方、研磨時間は、 通常数十秒から数百秒程度であるから、 制御周 期を長くし過ぎると面内均一性が達成される前に研磨終点に達してしまう。 したが つて、 制御周期は 1秒以上 1 0秒以下であることが好ましレ、。
なお、 押圧力を操作しながら対象ウェハを研磨する場合、 同時に、 金属膜が除 去される時点、 あるいは、 所定の閾値に る時点をモニタリング信号から検知 することで、 研磨終点 (研磨条件を切り替える点を含む) を検知することができ る。
また、 領域 C 1 (ウェハの中心部) と領域 C 4 (ウェハの周縁部) の 2領域に ついてのみ上述のような基準信号を定義してもよい。 この場合は、 領域 C 1と領 域 C 2 , C 3 (内側中間部および外側中間部) の制御に際しては領域 C 1の基準 信号を用いる。 好ましくは、 上述のように、 ウェハ面の全領域についてそれぞれ 基準信号を定義して、 研磨時に各領域にそれぞれ対応する基準信号を用いること にしてもよレ、。 このようにすれば、 単にウェハの周縁部でのモニタリング信号変 化の影響を排除するだけでなく、 S U Sフランジなど、 導電性あるいは磁性を有 する部品がトップリングにあって渦電流センサによるモニタリング信号に影響を 及ぼす場合にも、 その影響を排除して良好な制御性能を得ることができる。 なお、 基準信号を定義する過程で、 基準ウェハの研磨中は各領域の研磨速度が 一定であるとの仮定をおいてモニタリング信号のスケーリングや平行移動を行つ ているが、 研磨時間が十分に長く初期膜厚や研磨速度が領域間で極端に異ならな いならばスケーリングや平行移動の量は小さく、 モニタリング信号による膜厚プ 口ファイルの把握に関して実用性を損なうことはない。
上述の実施形態では、 研磨の進行に伴ってモニタリング信号が単調減少する場 合を示したが、 モニタリング信号が単調増加する場合にも本発明を適用すること ができる。 例えば、 センサ 5 0としてインピーダンスタイプの渦電流センサを用 いる場合、 特開 2 0 0 5— 1 2 1 6 1 6号公報に開示されている次の方法を適用 することもできる。
図 1に示すように、 ウェハ Wの表面に存在する導電性膜は、 研磨テーブル 1 2 に埋め込まれたセンサ (渦電流センサ) 5 0から研磨パッド 1 0を介して測定さ れる。 この場合、 センサ 5 0とその導電性膜との間の隙間は、 これらの間に介在 する研磨パッド 1 0の厚さに応じて変ィヒすることになる。 この結果、 例えば、 図 2 4に示すように、 使用する研磨パッド 1 0の厚さ ( t 1〜 t 4 ) 分の隙間 (ギ ヤップ) Gに応じて、 信号成分 Xおよび信号成分 Yの円弧軌跡が変動する。 この ことから、 この信号成分 Xあるいは信号成分 Yの円弧軌跡から半導体ウェハ Wの 導電性膜の膜厚を高精度に測定するには、 使用する研磨パッドの厚さ毎に (研磨 パッドの使用前毎にでもよい)、既知の膜厚での信号成分 Xおよび信号成分 Yの測 定情報を βしてから、 測定対象の導電性膜の膜厚を測定する必要がある。
しかるに、渦電流センサによる信号成分 Xおよぴ信号成分 Υの測定結果からは、 図 2 4に示すように、 センサコイル端部と導電性膜との間の隙間 Gにかかわらず に、 X成分および Υ成分の導電性膜の膜厚毎の出力値を直線 (r l〜r 3 ) で結 ぶと、 その直線が交差する交点 (中心点) Pを取得することができる。 この予備 測定直,線 r n ( n : 1, 2, 3 ···) は、 その交点 Pを通過する信号成分 Yが一定 の基準線 (図 2 4における水平線) Lに対して、 導電性膜の膜厚に応じた仰角 0 で傾斜する。
このことから、 半導体ウェハ Wの導電性膜を研磨する研磨パッドの厚さが不明 の場合であっても、 研磨する導電性膜の信号成分 Xおよび信号成分 Yの測定結果 (出力値)と中心点 Pを結ぶ測定直線 r nの基準線 Lに対する仰角 Θを求めれば、 予め予備測定済みの導電性膜の膜厚に応じた仰角 Θの変化傾向などとの相関関係 に基づいてその測定対象の導電性膜の膜厚を導出することができる。 ところが、 残膜厚均一性の制御のためには、 必ずしも膜厚絶対値を知る必要はなく、 ウェハ Wの径方向の膜厚を相対的に捉えられればよい。 したがって、 単に仰角 Θをモニ タリング信号とすればよいことになる。 なお、 基準線 Lは、 リアクタンス成分 X を一定とする図 2 4における垂直線としてもよい。 . 産業上の利用可能や生
本発明は、 半導体ウェハなどの基板を研磨して平坦化する研磨装置および研磨 方法に適用可能である。

Claims

請求の範囲
1 . 表面に膜が形成された基板を研磨する研磨装置であって、
研磨面を有する研磨テーブルと、
基板上の第 1の複数の領域に対して独立して押圧力を与えることで基板を前記 研磨テーブルに押圧するトツプリングと、
複数の計測点における前記膜の状態を検出するセンサと、
前記センサの出力信号から、 基板上の第 2の複数の領域のそれぞれについてモ ユタリング信号を生成するモニタリング装置と、
前記モニタリング信号の基準値と研磨時間との関係を示す複数の基準信号を格 納した記憶部と、
前記第 2の複数の領域のそれぞれに対応する前記モエタリング信号が前記複数 の基準信号のいずれか 1つに収束するように前記第 1の複数の領域に対する押圧 力を操作する制御部とを備えたことを特徴とする研磨装置。
2. 前記第 2の複数の領域の 1つは、 基板の周縁部を含む領域であり、 前記複数の基準信号の 1つは、 前記基板の周縁部を含む領域についての基準信 号であることを特徴とする請求項 1に記載の研磨装置。
3 . 前記複数の基準信号は、 前記第 2の複数の領域にそれぞれ対応して設け られたことを特徴とする請求項 1または 2に記載の研磨装置。
4. 前記モニタリング信号の信号値と前記基準信号の信号値とを、 前記基準 信号に基づいて研磨時間に関する値に変換して、 新たなモニタリング信号と新た な基準信号とを生成することを特徴とする請求項 1から 3のいずれカゝ一項に記載 の研磨装置。
5 . 研磨工程の任意の時刻において、 前記第 2の複数の領域における前記新 たなモニタリング信号を平均化した値を求め、 該時刻における前記新たな基準信 号が前記平均化した値と一致するように、 該時刻以降の前記新たな基準信号を時 間軸に関して平行移動することを特徴とする請求項 4に記載の研磨装置。
6 . 前記複数の基準信号は、 同一時点において同一の膜厚に対応することを 特徴とする請求項 1力 ら 5のいずれか一項に記載の研磨装置。
7 . 前記複数の基準信号は、 同一時点において、 前記第 2の複数の領域間に 設定された所定の膜厚差を反映した膜厚に対応することを特徴とする請求項 1か ら 5のいずれか一項に記載の研磨装置。
8 . 前記制御部の制御周期は、 1秒以上 1 0秒以下であることを特徴とする 請求項 1に記載の研磨装置。
9 . センサは、 渦電流センサであることを特徴とする請求項 1から 8の レ、ずれか一項に記載の研磨装置。
1 0. 記制御部は、 前記モニタリング装置により生成されたモニタリング信 号に基づいて研磨終点を検知することを特徴とする請求項 1力 ら 9のいずれか一 項に記載の研磨装置。
1 1 . 基板上の第 1の複数の領域に対して独立した押圧力を与えることで基 板を研磨テーブルに押圧して研磨する研磨方法であって、
基板上の膜厚に関連するモニタリング信号の基準値と研磨時間との関係を示す 複数の基準信号を定義し、
複数の計測点における基板上の膜の状態をセンサを用いて検出し、
前記センサの出力信号から、 基板上の第 2の複数の領域のそれぞれについてモ ニタリング信号を生成し、
前記第 2の複数の領域のそれぞれに対応する前記モユタリング信号が前記複数 の基準信号のいずれか 1つに収束するように前記第 1の複数の領域に対する押圧 力を操作することを特徴とする研磨方法。
1 2. 前記第 2の複数の領域の 1つは、 基板の周縁部を含む領域であり、 前記複数の基準信号の 1つは、 前記基板の周縁部を含む領域についての基準信 号であることを特徴とする請求項 1 1に記載の研磨方法。
1 3 . 前記複数の基準信号は、 前記第 2の複数の領域にそれぞれ対応して設 けられることを特徴とする請求項 1 1または 1 2に記載の研磨方法。
1 4. 前記複数の基準信号は、 ブランケットウェハを研磨して得られること を特徴とする請求項 1 1から 1 3のいずれか一項に記載の研磨方法。
1 5 . 前記複数の基準信号は、 同一時点において同一の膜厚に対応すること を特徴とする請求項 1 1から 1 4のいずれか一項に記載の研磨方法。
1 6 . 研磨対象となる基板と同種の基準基板を用意し、
前記基準基板の膜厚を測定し、
前記基準基板を研磨して複数の計測点における前記基準基板上の膜の状態を前 記センサにより検出し、
前記第 2の複数の領域から選択された第 1の領域および第 2の領域におけるモ ニタリング信号を前記センサの出力信号から生成し、
前記第 1の領域及び第 2の領域の被研磨膜が完全に除去された時点で研磨を停 止し、
前記第 1の領域および前記第 2の領域の平均研磨速度を求め、
前記第 2の領域の平均研磨速度が前記第 1の領域の平均研磨速度と一 ¾ΤΤるよ うに、編己第 2の領域のモニタリング信号を時間軸に沿って伸張または縮小させ、 前記第 2の領域の初期膜厚が前記第 1の領域の初期膜厚と一致するために必要 な研磨時間を求め、
前記伸張または縮小させた第 2の領域のモニタリング信号を、 前記求めた研磨 時間だけ時間軸に沿って平行移動させ、
前記平行移動したモニタリング信号を前記第 2の領域の基準信号とすることに より前記複数の基準信号を定義することを特徴とする請求項 1 5に記載の研磨方 法。
1 7. 前記複数の基準信号は、 同一時点において、 前記第 2の複数の領域間 に設定された所定の膜厚差を反映した膜厚に対応することを特徴とする請求項 1 1力 ら 1 4のいずれか一項に記載の研磨方法。
1 8 . 研磨対象となる基板と同種の基準基板を用意し、 前記基準基板の膜厚を測定し、
前記基準基板を研磨して複数の計測点における前記基準基板上の膜の状態を前 記センサにより検出し、
前記第 2の複数の領域から選択された第 1の領域および第 2の領域におけるモ ユタリング信号を前記センサの出力信号から生成し、
研磨後の前記基準基板の膜厚を測定し、
前記第 1の領域および前記第 2の領域の平均研磨速度を求め、
前記第 2の領域の平均研磨速度が前記第 1の領域の平均研磨速度と一 & るよ うに、前記第 2の領域のモニタリング信号を時間軸に沿って伸張または縮小させ、 前記第 2の領域の初期膜厚が前記第 1の領域の初期膜厚と一致するために必要 な第 1の研磨時間を求め、
前記第 2の領域の初期膜厚が前記第 1の領域の初期膜厚と所定の膜厚差を有す るために必要な第 2の研磨時間を求め、
前記伸張または縮小させた第 2の領域のモニタリング信号を、 前記第 1の研磨 時間と前記第 2の研磨時間との和だけ時間軸に沿って平行移動させ、
前記平行移動したモニタリング信号を前記第 2の領域の基準信号とすることに より前記複数の基準信号を定義することを特徴とする請求項 1 7に記載の研磨方 法。
PCT/JP2007/067771 2006-09-12 2007-09-06 Polishing apparatus and polishing method WO2008032753A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800336241A CN101511539B (zh) 2006-09-12 2007-09-06 研磨装置及研磨方法
JP2008534371A JP5283506B2 (ja) 2006-09-12 2007-09-06 研磨装置および研磨方法
US12/310,877 US8246417B2 (en) 2006-09-12 2007-09-06 Polishing apparatus and polishing method
EP07807178.4A EP2075089B1 (en) 2006-09-12 2007-09-06 Polishing apparatus and polishing method
KR1020097007121A KR101278236B1 (ko) 2006-09-12 2007-09-06 연마장치 및 연마방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-246836 2006-09-12
JP2006246836 2006-09-12

Publications (1)

Publication Number Publication Date
WO2008032753A1 true WO2008032753A1 (en) 2008-03-20

Family

ID=39183809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067771 WO2008032753A1 (en) 2006-09-12 2007-09-06 Polishing apparatus and polishing method

Country Status (7)

Country Link
US (1) US8246417B2 (ja)
EP (1) EP2075089B1 (ja)
JP (1) JP5283506B2 (ja)
KR (1) KR101278236B1 (ja)
CN (1) CN101511539B (ja)
TW (2) TWI435380B (ja)
WO (1) WO2008032753A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927453A (zh) * 2009-06-20 2010-12-29 无锡华润上华半导体有限公司 浅沟槽隔离结构的研磨装置及方法
JP2011251352A (ja) * 2010-05-31 2011-12-15 Tokyo Seimitsu Co Ltd エッジ研磨形状コントロール可能エアフロート研磨ヘッド
JP2013107167A (ja) * 2011-11-21 2013-06-06 Ebara Corp 研磨終点検出方法および研磨装置
JP2014513434A (ja) * 2011-04-29 2014-05-29 アプライド マテリアルズ インコーポレイテッド 除去プロファイルを生成するための研磨パラメータの選択
JP2016510953A (ja) * 2013-03-15 2016-04-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated インシトゥプロファイル制御(ispc)を用いた残留物クリアリングの動的制御
US9390986B2 (en) 2014-03-05 2016-07-12 Ebara Corporation Polishing apparatus and polishing method
KR20160147823A (ko) 2014-04-22 2016-12-23 가부시키가이샤 에바라 세이사꾸쇼 연마 방법 및 연마 장치
KR101870701B1 (ko) * 2016-08-01 2018-06-25 에스케이실트론 주식회사 폴리싱 측정 장치 및 그의 연마 시간 제어 방법, 및 그를 포함한 폴리싱 제어 시스템
JP2019530236A (ja) * 2016-09-21 2019-10-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated フィルタリングのための補償を用いた終点検出
JP2021519221A (ja) * 2018-04-03 2021-08-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 機械学習とパッドの厚さの補正を使用した研磨装置
US11780047B2 (en) 2020-06-24 2023-10-10 Applied Materials, Inc. Determination of substrate layer thickness with polishing pad wear compensation
US11919121B2 (en) 2021-03-05 2024-03-05 Applied Materials, Inc. Control of processing parameters during substrate polishing using constrained cost function
US11931853B2 (en) 2021-03-05 2024-03-19 Applied Materials, Inc. Control of processing parameters for substrate polishing with angularly distributed zones using cost function
JP7475462B2 (ja) 2020-06-08 2024-04-26 アプライド マテリアルズ インコーポレイテッド 隣接する導電層のスタックの研磨中のプロファイル制御
US11989492B2 (en) 2018-12-26 2024-05-21 Applied Materials, Inc. Preston matrix generator

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357290B1 (ko) * 2006-10-06 2014-01-28 가부시끼가이샤 도시바 가공 종점 검지방법, 연마방법 및 연마장치
JP2012508460A (ja) 2008-11-12 2012-04-05 エセック アーゲー フォイルからの半導体チップの剥離及び取外し方法
CN101905438A (zh) * 2010-07-13 2010-12-08 厦门大学 大口径元件抛光压力检测装置
US8571699B2 (en) * 2010-09-10 2013-10-29 Taiwan Semiconductor Manufacturing Company, Ltd. System and method to reduce pre-back-grinding process defects
JP5980476B2 (ja) 2010-12-27 2016-08-31 株式会社荏原製作所 ポリッシング装置およびポリッシング方法
US20120276817A1 (en) * 2011-04-27 2012-11-01 Iravani Hassan G Eddy current monitoring of metal residue or metal pillars
JP5699795B2 (ja) * 2011-05-12 2015-04-15 富士通セミコンダクター株式会社 半導体装置の製造方法及半導体製造装置
US20130017762A1 (en) * 2011-07-15 2013-01-17 Infineon Technologies Ag Method and Apparatus for Determining a Measure of a Thickness of a Polishing Pad of a Polishing Machine
JP2013222856A (ja) * 2012-04-17 2013-10-28 Ebara Corp 研磨装置および研磨方法
CN103624673B (zh) * 2012-08-21 2016-04-20 中芯国际集成电路制造(上海)有限公司 化学机械抛光装置及化学机械抛光的方法
US20140067321A1 (en) * 2012-09-06 2014-03-06 Schmitt Industries, Inc. Systems and methods for monitoring machining of a workpiece
US9409277B2 (en) * 2012-10-31 2016-08-09 Ebara Corporation Polishing apparatus and polishing method
US10090207B2 (en) * 2012-11-28 2018-10-02 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-point chemical mechanical polishing end point detection system and method of using
CN103252707B (zh) * 2013-05-07 2015-08-26 上海华力微电子有限公司 承载装置及利用该装置进行晶片转移的方法
CN105014519A (zh) * 2014-04-22 2015-11-04 沛鑫科技有限公司 半自动金相研磨机
TWI614799B (zh) * 2014-05-16 2018-02-11 Acm Res Shanghai Inc 晶圓拋光方法
CN104044055A (zh) * 2014-05-30 2014-09-17 京东方科技集团股份有限公司 基板研磨方法及装置
JP6399873B2 (ja) * 2014-09-17 2018-10-03 株式会社荏原製作所 膜厚信号処理装置、研磨装置、膜厚信号処理方法、及び、研磨方法
TW201710029A (zh) * 2015-09-01 2017-03-16 Ebara Corp 渦電流檢測器
JP6585445B2 (ja) 2015-09-28 2019-10-02 株式会社荏原製作所 研磨方法
JP6775354B2 (ja) * 2015-10-16 2020-10-28 株式会社荏原製作所 研磨装置、及び、研磨方法
KR102412776B1 (ko) * 2015-10-27 2022-06-24 주식회사 케이씨텍 웨이퍼 가장자리에서의 연마층 두께 검출 정확성이 향상된 화학 기계적 연마 장치
JP6357260B2 (ja) * 2016-09-30 2018-07-11 株式会社荏原製作所 研磨装置、及び研磨方法
CN107336126B (zh) * 2017-08-31 2019-05-28 清华大学 抛光设备的抛光压力控制方法、装置和抛光设备
JP6847811B2 (ja) * 2017-10-24 2021-03-24 株式会社荏原製作所 研磨方法および研磨装置
JP7031491B2 (ja) * 2018-05-22 2022-03-08 株式会社Sumco ワークの両面研磨装置および両面研磨方法
US11951587B2 (en) * 2018-09-26 2024-04-09 Taiwan Semiconductor Manufacturing Co., Ltd. Zone-based CMP target control
CN109648461B (zh) * 2019-01-14 2020-04-28 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 研磨头扫描方法及装置
CN110170904B (zh) * 2019-05-30 2021-04-20 佛山市科莱机器人有限公司 一种对壳体通孔厚度的加工方法
CN110549240B (zh) * 2019-09-18 2020-12-29 清华大学 一种终点检测方法和化学机械抛光装置
CN111037456B (zh) * 2020-01-08 2021-05-14 洛阳聚享新科智能科技有限公司 一种双端面研磨机多变量智能模糊控制系统
CN111761420B (zh) * 2020-06-16 2021-10-15 上海中欣晶圆半导体科技有限公司 一种提高硅片倒角宽幅精度的方法
CN115943016A (zh) * 2020-07-14 2023-04-07 应用材料公司 在化学机械抛光期间检测不合格衬底处理事件的方法
JP2022108789A (ja) * 2021-01-14 2022-07-27 株式会社荏原製作所 研磨装置、研磨方法、および基板の膜厚分布の可視化情報を出力する方法
US20240165768A1 (en) * 2022-11-18 2024-05-23 Applied Materials, Inc. Underlayer topography metal residue detection and overpolishing strategy
CN117862986B (zh) * 2024-03-06 2024-05-10 长沙韶光芯材科技有限公司 一种玻璃基片研磨装置及研磨方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514273A (ja) * 2000-07-31 2004-05-13 エイエスエムエル ユーエス インコーポレイテッド 化学機械研磨における終点検出のための原位置方法及び装置
JP2005121616A (ja) 2003-10-20 2005-05-12 Ebara Corp 渦電流センサ
WO2005123335A1 (en) 2004-06-21 2005-12-29 Ebara Corporation Polishing apparatus and polishing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838447A (en) * 1995-07-20 1998-11-17 Ebara Corporation Polishing apparatus including thickness or flatness detector
US5838448A (en) * 1997-03-11 1998-11-17 Nikon Corporation CMP variable angle in situ sensor
WO2000026613A1 (en) * 1998-11-02 2000-05-11 Applied Materials, Inc. Optical monitoring of radial ranges in chemical mechanical polishing a metal layer on a substrate
US6280289B1 (en) 1998-11-02 2001-08-28 Applied Materials, Inc. Method and apparatus for detecting an end-point in chemical mechanical polishing of metal layers
US6776692B1 (en) * 1999-07-09 2004-08-17 Applied Materials Inc. Closed-loop control of wafer polishing in a chemical mechanical polishing system
US6706541B1 (en) * 1999-10-20 2004-03-16 Advanced Micro Devices, Inc. Method and apparatus for controlling wafer uniformity using spatially resolved sensors
US6602724B2 (en) * 2000-07-27 2003-08-05 Applied Materials, Inc. Chemical mechanical polishing of a metal layer with polishing rate monitoring
US6966816B2 (en) * 2001-05-02 2005-11-22 Applied Materials, Inc. Integrated endpoint detection system with optical and eddy current monitoring
US6722946B2 (en) * 2002-01-17 2004-04-20 Nutool, Inc. Advanced chemical mechanical polishing system with smart endpoint detection
US7008295B2 (en) * 2003-02-04 2006-03-07 Applied Materials Inc. Substrate monitoring during chemical mechanical polishing
US6945845B2 (en) * 2003-03-04 2005-09-20 Applied Materials, Inc. Chemical mechanical polishing apparatus with non-conductive elements
US7025658B2 (en) * 2003-08-18 2006-04-11 Applied Materials, Inc. Platen and head rotation rates for monitoring chemical mechanical polishing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514273A (ja) * 2000-07-31 2004-05-13 エイエスエムエル ユーエス インコーポレイテッド 化学機械研磨における終点検出のための原位置方法及び装置
JP2005121616A (ja) 2003-10-20 2005-05-12 Ebara Corp 渦電流センサ
WO2005123335A1 (en) 2004-06-21 2005-12-29 Ebara Corporation Polishing apparatus and polishing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2075089A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927453A (zh) * 2009-06-20 2010-12-29 无锡华润上华半导体有限公司 浅沟槽隔离结构的研磨装置及方法
JP2011251352A (ja) * 2010-05-31 2011-12-15 Tokyo Seimitsu Co Ltd エッジ研磨形状コントロール可能エアフロート研磨ヘッド
JP2014513434A (ja) * 2011-04-29 2014-05-29 アプライド マテリアルズ インコーポレイテッド 除去プロファイルを生成するための研磨パラメータの選択
US10493590B2 (en) 2011-04-29 2019-12-03 Applied Materials, Inc. Selection of polishing parameters to generate removal or pressure profile
JP2013107167A (ja) * 2011-11-21 2013-06-06 Ebara Corp 研磨終点検出方法および研磨装置
JP2016510953A (ja) * 2013-03-15 2016-04-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated インシトゥプロファイル制御(ispc)を用いた残留物クリアリングの動的制御
US9390986B2 (en) 2014-03-05 2016-07-12 Ebara Corporation Polishing apparatus and polishing method
KR20160147823A (ko) 2014-04-22 2016-12-23 가부시키가이샤 에바라 세이사꾸쇼 연마 방법 및 연마 장치
US10399203B2 (en) 2014-04-22 2019-09-03 Ebara Corporation Polishing method and polishing apparatus
KR101870701B1 (ko) * 2016-08-01 2018-06-25 에스케이실트론 주식회사 폴리싱 측정 장치 및 그의 연마 시간 제어 방법, 및 그를 포함한 폴리싱 제어 시스템
US11389922B2 (en) 2016-08-01 2022-07-19 Sk Siltron Co., Ltd. Polishing measurement device and abrasion time controlling method thereof, and polishing control system including same
JP7062644B2 (ja) 2016-09-21 2022-05-06 アプライド マテリアルズ インコーポレイテッド フィルタリングのための補償を用いた終点検出
JP2019530236A (ja) * 2016-09-21 2019-10-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated フィルタリングのための補償を用いた終点検出
JP2021519221A (ja) * 2018-04-03 2021-08-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 機械学習とパッドの厚さの補正を使用した研磨装置
JP7085639B2 (ja) 2018-04-03 2022-06-16 アプライド マテリアルズ インコーポレイテッド 機械学習とパッドの厚さの補正を使用した研磨装置
JP2022137014A (ja) * 2018-04-03 2022-09-21 アプライド マテリアルズ インコーポレイテッド 機械学習とパッドの厚さの補正を使用した研磨装置
US11524382B2 (en) 2018-04-03 2022-12-13 Applied Materials, Inc. Polishing apparatus using machine learning and compensation for pad thickness
JP7441889B2 (ja) 2018-04-03 2024-03-01 アプライド マテリアルズ インコーポレイテッド 機械学習とパッドの厚さの補正を使用した研磨装置
US11989492B2 (en) 2018-12-26 2024-05-21 Applied Materials, Inc. Preston matrix generator
JP7475462B2 (ja) 2020-06-08 2024-04-26 アプライド マテリアルズ インコーポレイテッド 隣接する導電層のスタックの研磨中のプロファイル制御
US11780047B2 (en) 2020-06-24 2023-10-10 Applied Materials, Inc. Determination of substrate layer thickness with polishing pad wear compensation
US11919121B2 (en) 2021-03-05 2024-03-05 Applied Materials, Inc. Control of processing parameters during substrate polishing using constrained cost function
US11931853B2 (en) 2021-03-05 2024-03-19 Applied Materials, Inc. Control of processing parameters for substrate polishing with angularly distributed zones using cost function
US11969854B2 (en) 2021-03-05 2024-04-30 Applied Materials, Inc. Control of processing parameters during substrate polishing using expected future parameter changes

Also Published As

Publication number Publication date
TW200822204A (en) 2008-05-16
KR101278236B1 (ko) 2013-06-24
CN101511539B (zh) 2012-08-22
EP2075089B1 (en) 2015-04-15
TWI588883B (zh) 2017-06-21
TWI435380B (zh) 2014-04-21
TW201426843A (zh) 2014-07-01
JPWO2008032753A1 (ja) 2010-01-28
US8246417B2 (en) 2012-08-21
EP2075089A1 (en) 2009-07-01
JP5283506B2 (ja) 2013-09-04
EP2075089A4 (en) 2012-12-05
KR20090057306A (ko) 2009-06-04
US20100029177A1 (en) 2010-02-04
CN101511539A (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
WO2008032753A1 (en) Polishing apparatus and polishing method
TWI357846B (en) Polishing apparatus, polishing method, and substra
JP6585445B2 (ja) 研磨方法
JP6196858B2 (ja) 研磨方法および研磨装置
JP5080933B2 (ja) 研磨監視方法および研磨装置
JP2022137014A (ja) 機械学習とパッドの厚さの補正を使用した研磨装置
KR101884049B1 (ko) 연마 장치 및 연마 방법
JP5094320B2 (ja) 研磨監視方法、研磨装置、およびモニタリング装置
CN109844923B (zh) 用于化学机械抛光的实时轮廓控制
US11478893B2 (en) Polishing method and polishing apparatus
JP7361637B2 (ja) 研磨方法、研磨装置、およびプログラムを記録したコンピュータ読み取り可能な記録媒体
KR20220116316A (ko) 압전 압력 제어를 갖는 연마 캐리어 헤드
KR20060026432A (ko) 연마 패드 상의 막두께를 제어하는 장치 및 방법
KR101712920B1 (ko) 화학 기계적 연마 장치
KR102144854B1 (ko) 기판 처리 장치
JP6817778B2 (ja) 局所研磨装置、局所研磨方法およびプログラム
KR20220103048A (ko) 연마 장치, 연마 방법 및 기판의 막 두께 분포의 가시화 정보를 출력하는 방법
KR101653536B1 (ko) 화학 기계적 연마 장치
KR20070068285A (ko) 화학적 기계적 연마 장치
US20240181593A1 (en) Polishing process apparatus
KR101619043B1 (ko) 화학 기계적 연마 장치 및 방법
JP2022143015A (ja) 膜厚測定方法、ノッチ部の検出方法、および研磨装置
TW202310975A (zh) 研磨裝置及研磨方法
KR101655070B1 (ko) 화학 기계적 연마 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033624.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534371

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12310877

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007807178

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097007121

Country of ref document: KR