WO2008032569A1 - Analyse de masse faisant intervenir l'ionisation par plasmon de surface - Google Patents

Analyse de masse faisant intervenir l'ionisation par plasmon de surface Download PDF

Info

Publication number
WO2008032569A1
WO2008032569A1 PCT/JP2007/066735 JP2007066735W WO2008032569A1 WO 2008032569 A1 WO2008032569 A1 WO 2008032569A1 JP 2007066735 W JP2007066735 W JP 2007066735W WO 2008032569 A1 WO2008032569 A1 WO 2008032569A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
mass spectrometry
substrate
ionization
surface plasmon
Prior art date
Application number
PCT/JP2007/066735
Other languages
English (en)
Japanese (ja)
Inventor
Kouhei Shibamoto
Takashi Korenaga
Kazuhiro Sakata
Original Assignee
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan University filed Critical Tokyo Metropolitan University
Publication of WO2008032569A1 publication Critical patent/WO2008032569A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence

Definitions

  • the present invention relates to a laser desorption mass spectrometry represented by MALDI-MS (Matrix Assisted Laser Desorption / lonization-Mass Spectrometry) and the like. This utilizes the surface enhancement effect of surface plasmons.
  • MALDI-MS Microx Assisted Laser Desorption / lonization-Mass Spectrometry
  • LD-MS Laser Desorption Mass Spectrometry
  • MALDI—TOF—MS Microfluid Assisted Laser
  • sample molecules indirectly receive the energy required for ionization via an absorber that absorbs the irradiation laser energy.
  • the absorber is a matrix molecule in the MALDI method, and is a porous silicon substrate in the DIOS (Desorption / Ionization on Silicon) method.
  • DIOS Desorption / Ionization on Silicon
  • a pyroelectric substrate, a germanium dot substrate, etc. Various things have been developed.
  • an enhancement effect by surface plasmon (SP) is used for soft ionization.
  • the electric field enhancement effect induced by surface plasmon (SP) excitation is known as an effect that dramatically enhances signals depending on the magnitude of the incident electric field, such as Raman scattering signals and IR absorption intensity! .
  • surface plasmon is collective vibration of free electrons generated on a metal surface by photoexcitation.
  • Metals that cause surface plasmon excitation are gold, silver, copper, lithium, force russium, sodium, etc., and the excitation wavelength is specific to the metal (520 ⁇ in the case of gold).
  • excitation conditions submicron or atomic scale surface roughness is required.
  • FIG. 1 schematically shows the situation.
  • the limit of the surface roughness when excitation light is irradiated to the metal nanoparticle, plasmon is excited on the surface of the particle and an enhanced electric field is induced. Since the electric field attenuates rapidly from the surface of the metal nanoparticle, it exists only in a very small space with a particle size.
  • FIG. 2 schematically shows a state in which sample molecules are attached to the surface of the metal nanoparticle.
  • the molecules adsorbed on the first layer are in a relationship that allows charge exchange (charge interaction).
  • charge exchange charge interaction
  • chemical adsorption or a state close to chemical adsorption
  • the effect of surface plasmon is that resonance excitation of surface plasmon occurs on the metal by the excitation light, and the electric field strength in the very vicinity 100 ⁇ ) region on the metal surface increases, and the metal surface and the adsorbed molecule There is a charge interaction between them.
  • the present invention uses the surface enhancement effect of this surface plasmon for the ionization of the sample, so that it is highly sensitive (electromagnetic effect) and soft. Achieves (chemical effect) ionization.
  • Patent Document 1 Japanese Translation of Hei 11 512518
  • the above method is merely an analysis method and is not intended for ionization.
  • the object of the present invention is to perform ionization with high sensitivity (electromagnetic effect) and soft (chemical effect) by utilizing the surface enhancement effect of these surface plasmons for ionization.
  • gold colloid is mixed with a sample, dried, and in that state, laser light is irradiated to excite plasmons on the surface of the gold particles, and the electric field generated there The sample adhering to is ionized and mass spectrometry is performed.
  • the substrate used is a colloidal gold that can uniformly excite surface plasmons at any angle that does not need to be a smooth substrate
  • the incident laser conditions can be any incident as long as the laser can be applied. No problem.
  • colloidal gold excitation is possible by applying a laser beam with a surface plasmon absorption wavelength near 520 nm and a laser beam in the vicinity (532 nm in this case). Since the colloid is a sphere, there is no angular dependence.
  • a sample is attached to the SERS active substrate, and a label is attached to the attached portion. Plasmons are excited on the surface of the substrate by irradiating the light, and the sample attached to the substrate is ionized by the electric field generated there to perform mass spectrometry.
  • the invention's effect is described in detail below.
  • FIG. 1 A diagram simulating the appearance of an electric field when metallic fine particles are irradiated with excitation light.
  • FIG. 3 is a schematic view of an apparatus for measuring a sample according to the present invention.
  • FIG. 4 LDI mass spectrum at various concentrations of N-acetyl-chitotetraose according to the present invention.
  • N-acetyl-chitotetraose (tetrasaccharide) 2 1 (concentration: 1 1, 100 ⁇ , 10 ⁇ , ⁇ solvent: water) 50nm colloidal gold particles 2 ⁇ KBBI 4.5 x 10 1Q / ml, surface plasmon The excitation wavelength was around 520 nm), 21 of which was applied to the sample stage and dried.
  • the sample was set in a measuring apparatus (see Fig. 3), and a mass spectrum was measured.
  • the excitation light is an Nd / YAG laser, which irradiates obliquely from the lower left of the measuring device in Fig. 3, reflects off the prism, and irradiates the sample stage in the center. After that, the light reflected from the sample stage is guided outside through the prism.
  • the sample was excited by ionizing light, ionized, and measured with a linear time-of-flight mass spectrometer.
  • the measurement conditions are as follows.
  • FIG. 5 shows the measurement result of the detection limit of the ion signal.
  • Colloidal gold particles (particle size 50 nm) was 27.7 ⁇ ol (0.4 molecule / gold colloid). It was.
  • the number of molecules adsorbed on the colloid surface is less than one layer (several thousand molecules / one gold colloid). Ions were detected. This level of sample measurement is very rare and far exceeds the detection limits of conventional methods.
  • FIG. 6 shows an LDI mass spectrum when no colloidal gold particles are added to a 1 pmol sample of N-acetyl-chitotetraose. As is clear from this figure, ions derived from the sample were not detected in LDI. With this device, the LDI for a sample volume of 1 pmol is below the detection limit.
  • FIG. 7 shows an LDI mass spectrum using a colloidal gold particle size of 5 nm.
  • This sample is N-acetyl-chitotetraose: 10 imoU colloidal gold fine particles (particle size: 5 nm): 8.3 finol.
  • the surface plasmon is not produced in the colloidal gold particles having a particle diameter of 5 nm. Therefore, only gold colloid that can induce surface plasmons is effective, indicating that surface plasmons are very effective in highly efficient ionization of samples.
  • Gold nanoparticles 60 nm were fixed on the silicon substrate (Figure 8 shows the SEM image. The density of the gold nanoparticles is several 10/10
  • the ionization shown in the above examples uses surface plasmons excited on a metal surface having a nanostructure such as nano-particles to increase ionization efficiency.
  • the ionization enhancement can be obtained in the substrate that exhibits the SERS effect, which is a typical example of plasmon excitation.
  • the same enhancement effect can be obtained on a metal thin film having a surface with a roughness of about several tens of millimeters, not just metal nanocolloids.
  • Fig. 12 shows a substrate having a uniform roughness with a protrusion height of several millimeters on the surface, and a surface with a protrusion height of approximately 10_20nm and a lateral width of approximately 50-100nm.
  • Figure 5 shows the ionization of a substrate with uniform roughness.
  • SERS When the height of the protrusion is about several nm, SERS is inactive, and when the height of the protrusion is 10-20 nm, SERS shows strong activity.
  • no ionization was observed in the SERS inactive substrate, but it was clearly ionized in the SERS active substrate as seen in the lower figure. From this result, it is clear that SER S substrate force contributes to high efficiency of S ionization.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Une ionisation douce (effet chimique) à sensibilité élevée (effet électromagnétique) est effectuée en se servant pour l'ionisation d'un effet d'intensification de surface par plasmon de surface. Un colloïde d'or est mélangé à un échantillon, le mélange est séché et exposé à un faisceau laser tout en poursuivant le séchage pour exciter le plasmon sur les surfaces des particules d'or, et l'échantillon fixé à l'or est ionisé par un champ électrique ainsi produit pour effectuer une analyse de masse. Le substrat utilisé n'a pas besoin d'être un substrat lisse en raison de l'utilisation de colloïde d'or, et le plasmon de surface peut être excité uniformément quel que soit l'angle. Tout angle d'incidence du faisceau laser est possible tant que le faisceau laser peut être appliqué. Dans le cas du colloïde d'or, une longueur d'absorption du plasmon de surface se situe aux environs de 520 nm, et l'excitation est possible uniquement si un faisceau laser ayant une longueur d'onde située aux environs de cette longueur d'absorption (532 nm dans ce cas) est appliqué.
PCT/JP2007/066735 2006-09-13 2007-08-29 Analyse de masse faisant intervenir l'ionisation par plasmon de surface WO2008032569A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-247854 2006-09-13
JP2006247854A JP2008070187A (ja) 2006-09-13 2006-09-13 表面プラズモンによるイオン化を利用した質量分析

Publications (1)

Publication Number Publication Date
WO2008032569A1 true WO2008032569A1 (fr) 2008-03-20

Family

ID=39183632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066735 WO2008032569A1 (fr) 2006-09-13 2007-08-29 Analyse de masse faisant intervenir l'ionisation par plasmon de surface

Country Status (2)

Country Link
JP (1) JP2008070187A (fr)
WO (1) WO2008032569A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081055A (ja) * 2007-09-26 2009-04-16 Tokyo Metropolitan Univ 表面プラズモンによるイオン化を利用した質量分析
JP2010071727A (ja) * 2008-09-17 2010-04-02 Fujifilm Corp 質量分析用デバイス及びそれを用いた質量分析装置、質量分析方法
JP2010271219A (ja) * 2009-05-22 2010-12-02 Fujifilm Corp 質量分析装置、及びそれを用いた質量分析方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121997A (ja) * 2007-11-15 2009-06-04 Tokyo Metropolitan Univ 質量分析における試料の調整方法
JP7471174B2 (ja) * 2020-08-19 2024-04-19 浜松ホトニクス株式会社 試料支持体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512518A (ja) * 1995-09-08 1999-10-26 ファルマシア バイオセンサー アーベー 表面プラズモン共鳴質量分析法
JP2003511675A (ja) * 1999-10-01 2003-03-25 サーロメッド・インコーポレーテッド ナノバーコードとしてのコロイド状ロッド粒子の画像方法
JP2007171003A (ja) * 2005-12-22 2007-07-05 Fujifilm Corp 質量分析用基板並びに分析方法および装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512518A (ja) * 1995-09-08 1999-10-26 ファルマシア バイオセンサー アーベー 表面プラズモン共鳴質量分析法
JP2003511675A (ja) * 1999-10-01 2003-03-25 サーロメッド・インコーポレーテッド ナノバーコードとしてのコロイド状ロッド粒子の画像方法
JP2007171003A (ja) * 2005-12-22 2007-07-05 Fujifilm Corp 質量分析用基板並びに分析方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKATA K. ET AL.: "Kinzoku Nano Biryushijo ni Kyuchaku shita Shiryo Bunshi no Hyomen Zokyo Ion-ka Katei no Kenkyu", THE JPAAN SOCIETY FOR ANALYTICAL CHEMISTRY DAI 55 NENKAI KOEN YOSHISHU, 6 September 2006 (2006-09-06), pages 7, XP003019979 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081055A (ja) * 2007-09-26 2009-04-16 Tokyo Metropolitan Univ 表面プラズモンによるイオン化を利用した質量分析
JP2010071727A (ja) * 2008-09-17 2010-04-02 Fujifilm Corp 質量分析用デバイス及びそれを用いた質量分析装置、質量分析方法
JP2010271219A (ja) * 2009-05-22 2010-12-02 Fujifilm Corp 質量分析装置、及びそれを用いた質量分析方法

Also Published As

Publication number Publication date
JP2008070187A (ja) 2008-03-27

Similar Documents

Publication Publication Date Title
Stolee et al. Laser–nanostructure interactions for ion production
De Giacomo et al. Perspective on the use of nanoparticles to improve LIBS analytical performance: nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS)
JP5069497B2 (ja) 質量分析用デバイス及びそれを用いた質量分析装置
Arakawa et al. Functionalized nanoparticles and nanostructured surfaces for surface-assisted laser desorption/ionization mass spectrometry
US7956321B2 (en) Method of measuring target object in a sample using mass spectrometry
Nizioł et al. Matrix-free laser desorption–ionization with silver nanoparticle-enhanced steel targets
Hua et al. Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides
US9658163B2 (en) Assaying substrate with surface-enhanced raman scattering activity
JP6134975B2 (ja) 測定用デバイス、測定装置および方法
JP2009109395A (ja) 微細構造体の作製方法、微細構造体、ラマン分光用デバイス、ラマン分光装置、分析装置、検出装置、および質量分析装置
CN106807941B (zh) 一种贵金属核壳结构纳米粒子及其制备与应用
CN106807942B (zh) 一种核壳结构纳米基质及其制备与应用
WO2008032569A1 (fr) Analyse de masse faisant intervenir l'ionisation par plasmon de surface
KR101592517B1 (ko) 레이저 탈착 이온화 질량 분석용 기판 및 그 제조방법
Spencer et al. Gold nanoparticles as a matrix for visible-wavelength single-particle matrix-assisted laser desorption/ionization mass spectrometry of small biomolecules
Teng et al. Enhancing reproducibility of SALDI MS detection by concentrating analytes within laser spot
JP2008204654A (ja) Ldiプレート、レーザー脱離イオン化質量分析装置、レーザー脱離イオン化質量分析方法及びldiプレート製造方法
JP5068206B2 (ja) 質量分析装置
US6451616B1 (en) Analysis of molecules bound to solid surfaces using selective bond cleavage processes
JP6593689B2 (ja) Maldi質量分析用マトリックス及びその製法並びにそれを用いた質量分析法
Liu et al. Influence of core size and capping ligand of gold nanoparticles on the desorption/ionization efficiency of small biomolecules in AP‐SALDI‐MS
KR20170041528A (ko) 말디톱 질량분석용 나노섬 고체 매트릭스 및 이의 제조 방법
Kalantar-zadeh et al. Characterization techniques for nanomaterials
JP5013421B2 (ja) グラファイト基板を利用した質量分析
JP2009014608A (ja) 質量分析方法および質量分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806212

Country of ref document: EP

Kind code of ref document: A1