WO2008029804A1 - Agent de captage d'ion acide perchlorique - Google Patents

Agent de captage d'ion acide perchlorique Download PDF

Info

Publication number
WO2008029804A1
WO2008029804A1 PCT/JP2007/067223 JP2007067223W WO2008029804A1 WO 2008029804 A1 WO2008029804 A1 WO 2008029804A1 JP 2007067223 W JP2007067223 W JP 2007067223W WO 2008029804 A1 WO2008029804 A1 WO 2008029804A1
Authority
WO
WIPO (PCT)
Prior art keywords
perchlorate
heterocyclic
ion
aromatic compound
substituted aromatic
Prior art date
Application number
PCT/JP2007/067223
Other languages
English (en)
French (fr)
Inventor
Mitsuru Kondo
Original Assignee
National University Corporation Shizuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Shizuoka University filed Critical National University Corporation Shizuoka University
Priority to US12/439,997 priority Critical patent/US8101084B2/en
Priority to EP07806678.4A priority patent/EP2067774B1/en
Priority to JP2008533163A priority patent/JP5190995B2/ja
Publication of WO2008029804A1 publication Critical patent/WO2008029804A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/61Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds

Definitions

  • the present invention relates to a perchlorate ion scavenger.
  • Perchlorate is a substance that damages the thyroid gland, which controls the metabolic effects of adults and promotes physical development in children. In recent years, there have been many reports of cases in which high concentrations of perchlorate ions have been detected in soil. Perchlorate ion (CIO-)
  • KCIO potassium chlorate
  • perchlorate ions cannot be selectively captured from a system in which a plurality of anions are present.
  • the object of the present invention is to capture perchlorate ions in a liquid sample with a high degree of selectivity and efficiency and to capture heterocyclic-substituted aromatic compounds, coordination compounds, and perchlorate ions. And a perchlorate ion capturing method and a perchlorate ion removing method.
  • one of IT, R 3 , and R 4 is R y in a meta position or a para position with respect to R x ,
  • R x and R y independently of each other represent the following heterocyclic substituents
  • R 2 , R 3 , R 4 and R 5 the remainder except R y is each independently a hydrogen atom, a substituted or unsubstituted aliphatic group having 1 to 30 carbon atoms, or a sulfonic acid
  • R 6 and R 7 each independently represent a hydrogen atom or a methyl group
  • A is a 5-membered member containing at least one nitrogen atom.
  • R 2 , R 4 and R 5 are each independently a hydrogen atom, a force representing a substituted or unsubstituted aliphatic group having 30 to 30 carbon atoms, or a sulfonic acid group, or a hydrogen atom at the same time.
  • a 1 represents a 5-membered or 6-membered heterocyclic group containing at least one nitrogen atom.
  • a coordination compound comprising the heterocyclic-substituted aromatic compound according to any one of ⁇ 1> to ⁇ 6> and a metal ion capable of planar tetracoordinate or octahedral coordination.
  • the metal ion is at least selected from Zn 2+ , Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Ag + , Pd 2+ , and Pt 2+ It is a coordination compound described in 7>.
  • one of R 2 , R 3 , and R 4 is R y in a meta position or a para position with respect to R x ,
  • R x and R y independently of each other represent the following heterocyclic substituents
  • R 2 , R 3 , R 4 and R 5 the remainder excluding R y is independently a hydrogen atom, a substituted or unsubstituted aliphatic group having 1 to 30 carbon atoms, or a sulfonic acid
  • R 6 and R 7 each independently represent a hydrogen atom or a methyl group
  • A is a 5-membered member containing at least one nitrogen atom. Or a 6-membered heterocyclic group.
  • R 2 , R 4 and R 5 are each independently a hydrogen atom, a force representing a substituted or unsubstituted aliphatic group having 30 to 30 carbon atoms, or a sulfonic acid group, or a hydrogen atom at the same time.
  • a 1 represents a 5-membered or 6-membered heterocyclic group containing at least one nitrogen atom.
  • ⁇ 15> Further includes metal ions capable of planar tetracoordinate or octahedral coordination ⁇ 9> to ⁇
  • Slippery is a perchlorate ion scavenger.
  • the perchlorate ion scavenger according to ⁇ 15> which is contained as a part of the metal ion strength salt.
  • the metal ion is selected from Zn 2+ , Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Ag + , Pd 2+ , and Pt 2+ force
  • the perchlorate ion scavenger according to ⁇ 15> to ⁇ 17> which is at least one of the above.
  • the heterocyclic-substituted aromatic compound according to claim 1 a metal ion capable of planar tetracoordination or octahedral coordination, and the liquid sample are brought into contact with each other,
  • the heterocyclic-substituted aromatic compound according to claim 1 a metal ion capable of planar tetracoordination or octahedral coordination, and the liquid sample are brought into contact with each other, A capture step for forming a capture capsule-type molecule that captures perchlorate ion;
  • a perchlorate ion capturing method and a perchlorate ion removing method can be provided.
  • One trapping capsule molecule in the present invention is one perchlorate ion (CIO) molecule
  • the state of including 4 is expressed ignoring the atomic radius.
  • One capture capsule molecule in the present invention is perchlorate ion (one CIO molecule)
  • FIG. 3 is a graph showing changes in the visible ultraviolet absorption spectrum when a sodium perchlorate aqueous solution is dropped into a solution containing copper sulfate (IV) heptahydrate and bitb according to an embodiment of the present invention. is there.
  • FIG. 4 is a graph showing the amount of perchlorate ions present in an aqueous solution when copper sulfate (IV) heptahydrate and bitb are added to an aqueous solution containing sodium perchlorate according to an example of the present invention.
  • FIG. 5 is a view showing a two-dimensional sheet type structure (A layer) of a coordination compound according to an example of the present invention.
  • FIG. 6 is a view showing a two-dimensional sheet type structure (B layer) of a coordination compound according to an example of the present invention.
  • FIG. 7 is a diagram showing a three-dimensional structure of a coordination compound according to an example of the present invention.
  • FIG. 8 is a reflection spectrum when a coordination compound according to an example of the present invention is added to an aqueous sodium perchlorate solution.
  • FIG. 9 is a graph showing perchlorate ion removal efficiency in an example of the present invention.
  • the heterocycle-substituted aromatic compound of the present invention is represented by the following general formula (I).
  • one of IT, R 3 , and R 4 is R y in a meta position or a para position with respect to R x ,
  • R x and R y independently of each other represent the following heterocyclic substituents
  • R 2 , R 3 , R 4 and R 5 the remainder excluding R y is each independently a hydrogen atom, a substituted or unsubstituted aliphatic group having 1 to 30 carbon atoms, or a sulfonic acid
  • R 6 and R 7 each independently represent a hydrogen atom or a methyl group
  • A is a 5-membered member containing at least one nitrogen atom.
  • the heterocyclic-substituted aromatic compound of the present invention When the heterocyclic-substituted aromatic compound of the present invention is brought into contact with a specific anion and a metal ion capable of planar tetracoordinate or octahedral coordination in a liquid sample, a plurality of the metal ions are collected. At the same time, the specific anion is incorporated to form a capsule molecule (self-assembly reaction).
  • a capsule molecule incorporating an anion is referred to as a “capture capsule type molecule”.
  • perchlorate ions are approximately the same size as the space, they are selectively taken in and do not leave easily.
  • the compound of the present invention not only can capture perchlorate ions with high selectivity but also does not easily dissociate, so that it can be reliably captured.
  • the compound of the present invention easily forms a high molecular structure that is not possible with such a capture capsule type molecule for other anions other than those described above.
  • the self-assembly reaction by the compounds of the present invention is extremely high for perchlorate ions.
  • the perchlorate ions can be captured efficiently and reliably.
  • R Y is in the para position with respect to R X , that is, R 3 is R Y , so that the perchlorate ion is not separated and there is no gap in the capture space.
  • R Y and R X are preferably the same heterocyclic substituent from the viewpoint of being able to limit the number of isomers of the captured capsule-type molecule to be produced and facilitating product identification.
  • R X and R Y , R 6 and R 7 are preferably both hydrogen atoms from the viewpoint of forming a trapping capsule molecule without causing steric hindrance with other substituents of the aromatic ring.
  • R Y is each independently a hydrogen atom, a substituted or unsubstituted aliphatic group having 1 to 30 carbon atoms, or a sulfonic acid
  • the power to represent a group is not a hydrogen atom at the same time.
  • R 4 and R 5 the remainder excluding R Y is preferably a substituted or unsubstituted aliphatic group having from 30 to 30 carbon atoms.
  • the viewpoint of synthesis and the compounds represented by the general formula (I) may be sterically hindered. From 10 to 10 is preferred, and from 2 to 2 is more preferred.
  • Examples of the substituent that can be substituted for the aliphatic group include a halogen atom, a sulfonic acid group, a nitro group, a hydroxyl group, and a halogenated alkyl group, a force S, ease of synthesis, stability, and insolubility in water. From the viewpoint, a fluorine atom or a perfluoroalkyl group is preferable.
  • the heterocyclic group represented by A may be substituted with a substituent such as an alkyl group having 1 to 6 carbon atoms or a sulfonic acid group.
  • the heterocyclic group may contain an oxygen atom or a sulfur atom in addition to a nitrogen atom.
  • heterocyclic group represented by A examples include a heterocyclic group capable of coordinating with the metal ion.
  • Such heterocyclic groups include pyrrolyl groups other than pyrrole 1yl groups, 2H-pi 2H-pyrrolyl group other than roll 1yl group, imidazolyl group, pyrazolyl group, isothiazol group other than isothiazo 1yl group, isoxazolyl group other than isoxazole-1yl group, pyrrolidine 1yl group Other than pyrrolidinyl group, imidazolidinyl group, virazolidinyl group, pyridyl group other than pyridine 1yl group, virazyl group, pyrimidinyl group, pyridazinyl group, piperidinyl group other than piperidine 1yl group, piperazinyl group, morpholine 4yl group Other morpholinyl groups and groups represented by the following structural formula are preferred.
  • a pyrrolyl group other than a 1 yl group, an imidazolyl group, a pyridyl group other than a pyridine 1 yl group, and a group represented by the following structural formula are more preferable.
  • an imidazolyl group is particularly preferable.
  • Such a heterocyclic-substituted aromatic compound represented by the general formula (I) includes a viewpoint of ease of synthesis, a viewpoint of prevention of formation of an isomer, and a capsule space that does not release a capture molecule. From the viewpoint of forming, a compound represented by the following general formula ( ⁇ ) is preferable.
  • R 2 , R 4 and IT are in general formula (I) except that they are not R y .
  • a 1 has the same meaning as A in general formula (I), and the preferred range is also the same.
  • the compound of the present invention is obtained, for example, by reacting a halogen-substituted aromatic compound with a compound corresponding to A in the general formula (I) in the presence of an alkali metal salt, and replacing the halogen atom with A. It can be easily synthesized by substitution. For example, imidazole and ⁇ , ⁇ dibromo- ⁇ -xylene are heated and reacted in the presence of sodium hydride to produce 1,3-bis (imidazo 1Lu 1-Rumethyl) benzene can be synthesized. Examples of such synthetic methods include C.-H. Zhou, R.-G. Xie, and H.-M. Zhao, Organic. Preparations and Procedures Int., 1996, 28 (3), 345. It is described in.
  • exemplified compounds (exemplified compounds (a) to (g)) of the heterocyclic-substituted aromatic compound represented by the general formula (I) or the general formula ( ⁇ ) are shown.
  • the present invention is not limited to these.
  • the exemplified compound (a) or the exemplified compound (b) is more preferable.
  • the coordination compound of the present invention includes the above-described heterocyclic-substituted aromatic compound of the present invention and a metal ion capable of planar tetracoordination or regular octahedral coordination.
  • a metal ion capable of planar tetracoordination or regular octahedral coordination.
  • perchlorate ions can be captured with high selectivity as in the case of using the heterocyclic-substituted aromatic compound itself.
  • Examples of the structure of the polymer complex include a two-dimensional sheet structure in which four molecules of the heterocyclic-substituted aromatic compound are coordinated with each metal ion.
  • each heterocycle-substituted aromatic compound is arranged between two metal ions, coordinated to one metal ion at the nitrogen atom in one heterocycle, and the other heterocycle. It is coordinated to the other metal ion at the nitrogen atom in the ring.
  • the coordination compound of the present invention may contain an anion other than a perchlorate ion as a counter ion of the metal ion. These anions may be coordinated to the metal ion (for example, It may not be coordinated to the metal ion (see FIG. 6 described later).
  • the anion in the two-dimensional sheet type structure is (1) a metal in another two-dimensional sheet type structure. It may be coordinated with ions or (2) hydrogen bonded with water bonded to metal ions in another two-dimensional sheet structure.
  • the structure of the coordination compound is a three-dimensional structure in which a plurality of two-dimensional sheet-type structures are stacked.
  • Examples of the metal ions capable of planar tetracoordinate or octahedral coordination included in the coordination compound of the present invention include, for example, Zn 2+ , Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+, Ag +, Pd 2+ , and Pt 2+, and the like.
  • Cu 2+ is particularly preferred, with Zn 2+ , Cu 2+ , Ni 2+ , Pd 2+ , and Pt 2+ being preferred.
  • Anions other than perchlorate ions which may be contained in the coordination compound of the present invention
  • the method for synthesizing the coordination compound of the present invention comprises the step of combining the metal ion (component A) and the heterocyclic-substituted aromatic compound (component B) with a molar ratio [component A / component B] force S 1.
  • An example is a method of reacting at a rate of / 2.
  • a metal salt comprising the A component and an anion other than perchlorate ion is used as a solvent (for example, water, dimethylformamide, methanol). , Ethanol, propanol, acetonitrile, acetone, etc.) to make a solution A, and the B component is dissolved in another solvent (for example, dimethylformamide, methanol, ethanol, propanol, acetonitrile, acetone, etc.)
  • a solvent for example, water, dimethylformamide, methanol, ethanol, propanol, acetonitrile, acetone, etc.
  • a method may be mentioned in which solution B is mixed and solution A and solution B are mixed and reacted.
  • a solvent in the case where the A component and the B component may be dissolved and reacted in the same solvent a single solvent such as methanol, dimethylformamide, or ethanol is used.
  • a mixed solvent such as water / acetonitrile, water / dimethylformamide, water / methanol, water / ethanol, methanol / dimethylformamide, ethanol / dimethylformamide, etc. may be used.
  • the perchlorate ion scavenger of the present invention is a heterocyclic substituted fragrance represented by the general formula (I). Includes group compounds.
  • the form of the perchlorate ion scavenger of the present invention is not particularly limited.
  • the form in which the heterocyclic-substituted aromatic compound represented by the general formula (I) is a solid such as powder or tablet Is mentioned.
  • it may be in the form of a mixture of the solid and other components (porous solid such as zeolite and activated carbon).
  • the solid or the mixture may be dissolved or dispersed in a solvent.
  • the heterocyclic substituted aromatic compound represented by the general formula (I) is, as described above, perchlorate ion and Upon contact with a metal ion capable of planar tetracoordinate or octahedral coordination, a trapped capsule molecule is formed. Therefore, the perchlorate ion in the liquid sample can be captured with high selectivity by adding the perchlorate ion scavenger of the present invention containing the heterocycle-substituted aromatic compound to the liquid sample.
  • the perchlorate ion-trapping agent of the present invention has a planar tetracoordinate or octahedral configuration. It contains metal ions that can be relocated.
  • examples of the metal ion capable of planar tetracoordination or regular octahedral coordination include the same ion species as the metal ion in the coordination compound described above, and the preferred range is also the same.
  • the form in the case where the perchlorate ion scavenger of the present invention contains the metal ion is not particularly limited, but the following two forms are suitable.
  • the metal ion is contained as a part of the coordination compound in the perchlorate ion scavenger of the present invention. That is, the perchlorate ion scavenger of the present invention is a form containing the coordination compound.
  • This first form is preferable in that it is not necessary to directly dissolve the metal ion in the liquid sample.
  • the perchlorate ion scavenger of the present invention contains the metal ion as a part of a salt. That is, the perchlorate ion scavenger of the present invention is in the form of a mixture containing the heterocyclic substituted aromatic compound and the metal salt containing the metal ion.
  • This second form is suitable in that it is not necessary to synthesize the coordination compound in advance.
  • the perchlorate ion scavenger of the present invention does not contain the metal ion
  • the perchlorate ion scavenger and the metal salt containing the metal ion are separately added to the liquid sample. By doing so (both may be added simultaneously or at different times), the heterocyclic-substituted aromatic compound, the metal ion and the perchlorate ion can be brought into contact with each other.
  • liquid sample examples include aqueous solutions containing perchlorate ions, peptidic organic solvents such as methanol and ethanol, and aprotic organic solvents such as acetone, acetonitrile, and tetrahydrofuran.
  • metal ions capable of planar tetracoordinate or octahedral coordination contained in the metal salt include, for example, Zn 2+ Cu 2+ Ni 2+ Co 2+ Fe 2+ Mn 2+ Ag + Pd 2+ , And Pt 2+ .
  • Zn 2+ Cu 2+ Ni 2+ Pd 2+ Pt 2+ is preferred from the viewpoint of forming a stable capture capsule type molecule due to the strong binding of the heterocyclic ring to the metal ion, and the capture capsule type. From the viewpoint of ease of molecular formation, Cu 2+ is particularly preferred!
  • Examples of the anion contained in the metal salt include OH_SO 2 —, CO 2 —, and NO.
  • NO— is preferred from the viewpoint of solubility of the metal salt. Also capture
  • Perchlorate ion (so 2 _ is preferred from the viewpoint of selectivity with CIO.
  • OH— and CO 2 are preferable.
  • the perchlorate ion capturing method of the present invention is a method for capturing perchlorate ions in a liquid sample, wherein the heterocyclic-substituted aromatic compound, the metal ion, and the liquid sample are captured. And a capture step of forming a capture capsule-type molecule capturing perchlorate ions.
  • the heterocyclic-substituted aromatic compound, the metal ion, and perchlorate ions are brought into contact with each other in a liquid sample, and these can interact with each other.
  • a trapping capsule molecule enclosing one perchlorate ion is formed by the four heterocyclic-substituted aromatic compounds and two metal ions, and the perchlorate ion can be reliably captured. .
  • the capture capsule type molecule In addition to trapping one molecule of perchlorate ion, the capture capsule type molecule captures perchlorate ion by coordination bond outside the capture capsule type molecule (two metal ions). Can do. Therefore, one molecule of the capture capsule type molecule can capture three molecules of perchlorate ion. Furthermore, in addition to the three perchlorate ions, one molecule of the capture capsule type molecule further perchlorate ions between another capture capsule type molecule. It has been confirmed that one molecule can be captured. That is, it is known that one molecule of the capture capsule type can capture up to 4 molecules of perchlorate ion.
  • the above-mentioned form can be confirmed by the ability S to endure by, for example, single crystal structure analysis and visible / ultraviolet spectrum.
  • a method of contacting the heterocyclic-substituted aromatic compound, the metal ion, and perchlorate ion in a liquid sample is not particularly limited.
  • the perchlorate ion scavenger and the metal salt containing the metal ion are added to the liquid sample (both are added at the same time).
  • a method in which a liquid sample containing perchlorate ions is passed through a filter filled with a perchlorate ion scavenger and a metal salt is passed through a filter filled with a perchlorate ion scavenger and a metal salt.
  • the contact frequency of the heterocyclic-substituted aromatic compound, the metal ion, and the perchlorate ion is increased, and the reactivity of the trapping capsule type molecule forming reaction is improved.
  • the liquid sample may be heated.
  • the heating temperature varies depending on the type of solvent, type of metal salt, type of heterocycle-substituted aromatic compound, type of coordination compound, etc. 0 to 100 ° C is preferred 20 to 70 ° C Is more preferable.
  • the perchlorate ion scavenger (and the metal salt if necessary) is added to the liquid sample, it may be left as it is without being stirred or stirred after the addition, Stirring is preferred from the viewpoint of increasing the contact frequency of the perchlorate ion scavenger, metal ions, and perchlorate ions and improving the reactivity of the trapped capsule-type molecule forming reaction.
  • stirring means such as a stirrer, shaking of a container, and convection by heating can be used. Among these, shaking of the container is preferable.
  • the capture capsule-type molecule formed in the capture step in this capture method captures perchlorate ions at a specific ratio, by quantifying the capture capsule-type molecule, Perchlorate ions can be quantified.
  • the captured capsule-type molecules precipitated from the solution are redissolved in acetonitrile and the like, and the visible / ultraviolet spectroscopic spectrum is measured, thereby increasing the absorption in the ultraviolet region derived from the heterocyclic-substituted aromatic compound.
  • Capturing power for capturing chlorate ions One method is to determine the amount of perchlorate ions by determining the ratio of the maximum absorption intensity at 540 nm, which is peculiar to psell-type molecules.
  • the perchlorate ion removal method of the present invention is a method for removing perchlorate ions from a liquid sample, which is formed in the capture step in the perchlorate ion capture method, and in the capture step. And a removal step of precipitating the trapped capsule type molecules and removing them from the liquid sample.
  • a separation method it is possible to apply a normal method for separating a precipitate from a solution as it is, for example, separation of a supernatant liquid by decantation, filtration by a filter, separation by a centrifugal separation operation, and the like. it can.
  • the trapped capsule molecule removed from the liquid sample can be regenerated and recovered into the heterocyclic-substituted aromatic compound.
  • the capture capsule type molecule since the capture capsule type molecule has the same configuration as that of a general metal complex, it is decomposed by the same method as that of a general metal complex to generate the heterocyclic-substituted aromatic compound again.
  • the following method can be used.
  • the trapped capsule molecules incorporating perchlorate ions are extracted into an organic solvent such as acetonitrile or methanol, and hydrogen sulfide or the like is contacted with the solution as a metal precipitant to precipitate the metal sulfide.
  • an alkali reagent, potassium carbonate, or the like that can precipitate a metal as a hydroxide salt or carbonate can be used.
  • the heterocycle-substituted aromatic compound remaining in the solution can be collected by concentrating to dryness and recrystallized from an organic solvent such as acetonitrile or methanol to regenerate the heterocycle-substituted aromatic compound. It is.
  • a method for regenerating the heterocyclic-substituted aromatic compound a method of contacting an acid such as nitric acid or hydrochloric acid can be used in addition to the method of contacting the metal precipitant. That is, by adding the acid to the solution from which the capture capsule type molecule is extracted, the coordination bond between the metal ion and the heterocyclic-substituted aromatic compound is cut, and the capture capsule type molecule is decomposed. be able to.
  • the solution after capture capsule type molecular decomposition is concentrated to dryness, water is added to remove the heterocyclic-substituted aromatic compound as a precipitate, and then the heterocyclic-substituted aromatic is removed from an organic solvent such as acetonitrile or methanol.
  • the compound can be recrystallized and regenerated.
  • perchlorate ion removal method of the present invention since the perchlorate ions can be selectively removed as described above, the metal ions and the metal ions in an aqueous solution containing only a liquid such as a waste liquid, a beverage, or milk. By stirring together with the heterocyclic-substituted aromatic compound, perchlorate ions can be efficiently removed from foods, soil forces and the like.
  • Exemplified Compound (b) is a method similar to that of Exemplified Compound (a) except that dibromodurene is changed to 1,4 bis-bromomethyl-2,3,5,6-tetrakis-trifluoromethylbenzene. Can be synthesized. [Example 2]
  • Copper perchlorate ( ⁇ ) hexahydrate (manufactured by Kishida Chemical Co., Ltd.) 0 ⁇ 093 g (0.25 mmol) and the example compound (a) (bitb) O. 147 g (0. 5 mmol) was added into a mixed solution of acetonitrile / water (25 ml / 25 ml) (acetonitrile is manufactured by Kanto Chemical Co., Inc.), and the mixed solution was stirred and allowed to stand for several days to obtain purple crystals. .
  • the obtained purple crystals were collected, and the structure of the purple crystals was confirmed by single crystal structure analysis and mass spectrometric measurement.
  • X-ray reflection data was collected using a molybdenum Ka radiation source at room temperature using a structural analysis device (Mercury two-dimensional detector system) manufactured by Rigaku Corporation.
  • the structural analysis was performed using the Crystal Structure program manufactured by Rigaku Corporation.
  • the mass spectrometry measurement was performed using the LCT mass spectrometer made from Micromass.
  • Fig. 1 and Fig. 2 show the structure of the trapped capsule molecule, which was clarified from the single crystal structure analysis data and mass spectrometry.
  • the structure of the trapping capsule type molecule is a structure that encapsulates one molecule of capsule skeleton force perchlorate ion formed by two copper ( ⁇ ) ions and bitb4 molecule.
  • each copper (II) ion is coordinated with one molecule of perchlorate ion from the outside of the capsule.
  • the size of the space formed by two copper ( ⁇ ) ions and bitb4 molecules is 6.5A (0.65 belly) X6.5A (0.65 belly) X5.
  • the visible ultraviolet absorption spectrum was measured with a V570 UV-Vis.NIR supectro meter manufactured by JASCO Corporation.
  • Fig. 3 shows only the absorption spectrum in the 400nm to 700nm region where the change was clear.
  • perchlorate was removed from the aqueous solution because the perchlorate of the tris (2,2'-biviridine) iron ( ⁇ ) complex was not extracted into nitrobenzene. If chloric acid remains, a perchlorate salt of tris (2,2'-bibilidine) iron ( ⁇ ) complex is formed, and this is extracted into nitrobenzene, which causes the nitrobenzene layer to become colored, and this spectral spectrum. Can be used to determine the amount of perchlorate ion present in the aqueous solution).
  • the amount of perchlorate released was quantified by measuring the absorption at 524 nm.
  • the absorption was measured with a V570 UV-Vis.NIR supectrometer manufactured by JASCO Corporation.
  • FIG. 4 is a graph showing the amount of perchlorate ions remaining in each aqueous solution.
  • the horizontal axis and the vertical axis both represent the amount of perchlorate ions present in the aqueous solution. Specifically, the horizontal axis represents the abundance of perchlorate ions before adding copper sulfate ( ⁇ ) heptahydrate and bitb, and the vertical axis represents copper sulfate (11) heptahydrate and bitb. Represents the amount of perchlorate ions present after addition.
  • the alternate long and short dash line is a theoretical line assuming that two copper ( ⁇ ) ions and four molecules of bitb do not capture perchlorate ions at all. If this assumption is made, the amount of perchlorate ions in the aqueous solution will not change before and after the addition of copper (II) sulfate heptahydrate and bitb. It is a 0 straight line.
  • the broken line in Fig. 4 is a theoretical line when it is assumed that two copper (4) ions and four molecules of bitb remove only one molecule of perchlorate ion.
  • the broken line is a straight spring with a slope of 1 and an intercept of 0.1.
  • the plot is the measured value of the abundance of perchlorate ion after adding copper sulfate ( ⁇ ) heptahydrate and bitb, and the solid line is a straight line estimated from these measured values. .
  • the heterocyclic substituted aromatic compound that is, the perchlorate ion scavenger
  • the metal ion capable of planar tetracoordinate or octahedral coordination and the liquid sample are contacted. It was confirmed that perchlorate ions can be removed quantitatively from the liquid sample by forming trapping capsule molecules capturing perchlorate ions and precipitating the trapping force pseudo molecules. .
  • the reagent was synthesized using copper sulfate pentahydrate (CuSO ⁇ 5 ⁇ 0) from Wako Pure Chemical Industries, Ltd. and dimethylformamide (DMF) from Kanto Chemical Co., Inc.
  • CuSO ⁇ 5 ⁇ 0 copper sulfate pentahydrate
  • DMF dimethylformamide
  • Each Oml also had a melting power.
  • Each of the obtained solutions was reacted at once and left at room temperature for 1 week to obtain water-insoluble blue crystals.
  • the blue crystal contained seven water molecules for one copper ( ⁇ ) ion as a crystal solvent.
  • the blue crystals were not soluble in the solvent and could not be subjected to mass spectrometry, the ratio of carbon, hydrogen, and nitrogen in the blue crystals was confirmed by elemental analysis and agreed with the results of single crystal structure analysis. Confirmed to do.
  • the obtained blue crystals did not dissolve in any of water, dimethylformamide, methanol and ethanol.
  • This result also shows that the blue crystal is a coordination compound (a polymer complex represented by ⁇ [Cu (bitb) (HO)] [Cu (bitb) (SO)] ⁇ ) that does not have the structure of a trapped capsule molecule. It shows having a structure.
  • the reason why the blue crystal takes the structure of the coordination compound rather than the structure of the trapping capsule type molecule is thought to be that the size of the sulfate ion is larger than the size of the perchlorate ion. .
  • the size of the molecule that can be encapsulated by the capsule skeleton consisting of bitb4 molecules and two metal ions does not match the size of the sulfate ion, so the capsule skeleton was not formed and the coordination compound was formed. It seems to be.
  • Figures 5-7 show the structures of coordination compounds, which were clarified from the results of elemental analysis and single crystal structure analysis.
  • bitb is coordinated to one copper ( ⁇ ⁇ ⁇ ) ion at the nitrogen atom in one heterocyclic ring and coordinated to the other copper ( ⁇ ) ion at the nitrogen atom in the other heterocyclic ring. is doing.
  • the coordination compound has a structure spread in an infinite chain, in FIG. 5 to FIG. 7, atoms and molecules located in the peripheral part of the figure are omitted. In FIGS. 5 to 7, hydrogen atoms are omitted.
  • the structure of the coordination compound is a three-dimensional structure in which two types of two-dimensional sheet-type structures (A layer shown in FIG. 5 and B layer shown in FIG. 6) are alternately stacked ( Figure 7)
  • the A layer shown in Fig. 5 is a two-dimensional sheet-type structure that is formed by coordinating four molecules of bitb to one copper (II) ion, and extends two-dimensionally in an infinite chain. . More specifically, the A layer is a negatively charged two-dimensional sheet type structure [Cu (bitb) (SO)] in which two molecules of sulfate ions are coordinated with the copper ( ⁇ ) ion. is there.
  • arrows a and b represent axes parallel to the two-dimensional plane of A laye r (hereinafter also referred to as “a axis” and “b axis”).
  • the B layer shown in Fig. 6 is also a two-dimensional sheet-type structure that is formed by coordinating four molecules of bitb to one copper (II) ion and that extends two-dimensionally in an infinite chain. More specifically, the B layer is a positively charged two-dimensional sheet-type structure [Cu (bitb) (HO)], which is further coordinated with water (molecular weight) to the copper (II) ion. is there.
  • arrows a and b represent axes parallel to the two-dimensional plane of the B layer (hereinafter also referred to as “a-axis” and “b-axis”).
  • the three-dimensional structure shown in FIG. 7 is a structure in which the A layer and the B layer are alternately stacked.
  • the arrow c is not parallel to the two-dimensional plane of the A layer and the B layer. Represents an axis.
  • the A layer and the B layer are respectively arranged on the ab plane and have a structure in which they are alternately stacked along their force axes.
  • Example 2 copper perchlorate (11) hexahydrate (manufactured by Kishida Chemical Co., Ltd.) 0.093 g (0.25 mmol) was converted to copper (II) sulfate heptahydrate (Wako Pure Chemical Industries, Ltd.) The same procedure as in Example 2 was carried out except that 0.062 g (0.025 mmol) was used, and water-insoluble blue crystals were obtained. The blue crystals obtained were collected and the unit cell was confirmed by single crystal structure analysis.
  • the polymer-type coordination compound synthesized in Example 6 ⁇ [Cu (bitb) (HO)] [Cu (bitb) (SO)] ⁇ confidently generated.
  • Example 6 instead of the starting copper sulfate pentahydrate (CuSO ⁇ 5 ⁇ ⁇ ), copper ( ⁇ ) ions having anions such as nitric acid, chloride, carbonic acid, acetic acid, hydroxide, etc. As a result, the insoluble Cu-bitb coordination compound was obtained in a yield of 30% or more in the same manner as in Example 6.
  • the obtained Cu-bitb coordination compound is also considered to have a high molecular structure due to its low solubility in water, dimethylformamide, methanol and ethanol.
  • the change in the color of the precipitate is thought to be caused by the change in the precipitate from the Cu-bitb coordination compound (A) to the trapped capsule molecule ([Cu (bitb)] (CIO)).
  • the thick solid line is the reflection spectrum of the blue precipitate 1.5 hours after the addition of Cu-bitb coordination compound (A), and the thick dotted line is the Cu-bitb coordination compound (A ) Reflection spectrum of purple precipitate 6 hours after addition.
  • the thin solid line is the reflection spectrum of Cu-bitb coordination compound (A), and the thin broken line is the trapped capsule molecule ([Cu (bitb
  • the absorption spectrum of the blue precipitate after 1.5 hours from the addition has an absorption maximum at around 590 nm, and the reflection of Cu-bitb coordination compound (A). It matches the spectrum.
  • the absorption spectrum of the purple precipitate 6 hours after the addition has an absorption maximum near 540 nm, and the trapped capsule type molecule [[Cu (bitb)] (CIO))
  • reaction solution 1 obtained in Example 9 was filtered to remove the purple precipitate, and the filtrate was tris (2,2′-biviridine) iron ( ⁇ ) Complex 1
  • perchlorate ion removal efficiency [%] was determined according to the following formula 1.
  • Perchlorate ion removal efficiency [%] ((perchlorate ion concentration in the blank solution reaction solution 1 perchlorate ion concentration) / (perchlorate ion concentration in the blank solution)) X 100
  • Example 9 instead of adding 29-95 mg (0.02 mmol) of Cu-bitb coordination compound (A) to 10 ml of 0.5 mM aqueous sodium perchlorate solution, copper sulfate 4 ⁇ 9 Add 9mg (0.02mmol) and bitbll.78mg (0.04mmol) to each other and conduct filtration, extraction, and absorption spectrum measurement in the same manner as above. The removal efficiency was determined.
  • Each interfering anion was mixed as a sodium salt. Further, the molar ratio of the perchlorate ion to the disturbing anion was adjusted to 1: 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

明 細 書
過塩素酸イオン捕捉剤
技術分野
[0001] 本発明は、過塩素酸イオン捕捉剤に関する。
背景技術
[0002] 過塩素酸塩は、成人の代謝作用を司り小児の身体発育を促進する甲状腺に障害 を及ぼす物質である。近年、土壌'水中において高濃度の過塩素酸イオンが検出さ れた事例が、相次いで報告されている。また、過塩素酸イオン (CIO―)は、水に対し
4
て高い溶解度を示し、全ての陰イオンの中で、最も陽イオンと相互作用しにくい陰ィ オンの一つであるため、沈殿等として水溶液から取り出すことが困難なイオンである。 過塩素酸イオンの水道水への影響に鑑み、近年、河川における過塩素酸イオン濃 度についての調査が行われている(例えば、環境システム計測制御学会学会誌「EI CA」、 2006年、第 11巻、第 3号、 p.215-218参照)。
過塩素酸塩 (又は過塩素酸イオン)により汚染された廃液から過塩素酸塩を除去す る技術として、過塩素酸塩を濃縮し、濃縮された過塩素酸塩溶液に KC1を加えて過 塩素酸カリ(KCIO )を生成させ、冷却して結晶化させる方法が知られている(例えば
4
、特表平 9 504472号公報参照)。また、樹脂を用いて過塩素酸塩を除去する水処 理システム(例えば、特開 2004— 346299号公報及び「NEDO海外レポート、 Νο·94 6、 2004· 12· 15、インターネット < http://www.nedo.go.jp/kankobutsu/report/946/946 -07.pdf〉」参照)も知られて!/、る。
一方、種々のイオンを取り込むようにカプセルを形成しうる化合物が知られている( 例えば、 J.Am.Chem.Soc, 2003, Vol.125, Νο.28, ρ·8595_8613参照)。この化合物は 、カプセル内に取り込まれるイオンの種類やイオンのサイズにかかわらず、カプセル 骨格を形成しやす!/、構造を有する。
発明の開示
発明が解決しょうとする課題
[0003] しかしながら、過塩素酸塩から過塩素酸カリを生成させ結晶化させる上記の方法で は、溶液から溶媒を蒸発させる濃縮工程を有するため、溶液の状態を保持したまま、 溶液中の過塩素酸イオンを捕捉することはできない。また、樹脂を用いて過塩素酸塩 を除去する上記の方法では、樹脂の再生にコストがかかる他、過塩素酸イオン捕捉 に関し、選択性に劣る問題がある。
一方、上記カプセルを形成しうる化合物を用いて過塩素酸イオンの除去を試みたと しても、複数の陰イオンが存在する系から過塩素酸イオンを選択的に捕捉することは できない。
[0004] 従って、本発明の目的は、液体試料中の過塩素酸イオンを高!/、選択性で効率よく 捕捉することができる複素環置換芳香族化合物、配位化合物、過塩素酸イオン捕捉 剤、過塩素酸イオンの捕捉方法、及び、過塩素酸イオン除去方法を提供することで ある。
課題を解決するための手段
[0005] 前記課題を解決するための手段は以下のとおりである。
< 1 > 下記一般式 (I)で表される複素環置換芳香族化合物である。
[0006] [化 1]
Figure imgf000004_0001
[0007] 式中、 IT、 R3、及び R4のうち 1つは、 Rxに対してメタ位又はパラ位にある Ryであり、
Rx及び Ryは互いに独立して下記の複素環置換基を表し、
[0008] [化 2]
Figure imgf000005_0001
[0009] R2、 R3、 R4及び R5のうち、 Ryを除いた残りは、それぞれ独立に、水素原子、炭 素数 1〜30の置換若しくは未置換の脂肪族基、又はスルホン酸基を表す力 同時に 水素原子であることはなぐ前記複素環置換基のうち、 R6及び R7はそれぞれ独立に 、水素原子又はメチル基を表し、 Aは、窒素原子を少なくとも 1つ含む 5員又は 6員の
[0010] < 2 > 前記 Ryが Rxに対してパラ位にあるく 1〉記載の複素環置換芳香族化合物で ある。
[0011] < 3 > 前記 R6及び R7が共に水素原子である < 1〉記載の複素環置換芳香族化合 物である。
[0012] < 4〉 前記脂肪族基の炭素数が 1〜 10である < 1〉記載の複素環置換芳香族化 合物である。
[0013] < 5 > 下記一般式 (Π)で表される複素環置換芳香族化合物である。
[0014] [化 3]
Figure imgf000005_0002
[0015] 式中、
Figure imgf000006_0001
R2、 R4及び R5は、それぞれ独立に、水素原子、炭素数;!〜 30の置換若 しくは未置換の脂肪族基、又はスルホン酸基を表す力 同時に水素原子であること はなぐ A1は、窒素原子を少なくとも 1つ含む 5員又は 6員の複素環基を表す。
[0016] < 6 > 下記式 (a)で表される複素環置換芳香族化合物である。
[0017] [化 4]
Figure imgf000006_0002
[0018] < 7 > < 1〉〜< 6〉のいずれか 1つ記載の複素環置換芳香族化合物と、平面四 配位又は正八面体配位可能な金属イオンと、を含む配位化合物である。
[0019] < 8 > 前記金属イオンが、 Zn2+、 Cu2+、 Ni2+、 Co2+、 Fe2+、 Mn2+、 Ag+、 Pd2+、 及び Pt2+から選ばれる少なくとも 1種であるく 7〉記載の配位化合物である。
[0020] < 9 > 下記一般式 (I)で表される複素環置換芳香族化合物を含む過塩素酸イオン 捕捉剤である。
[0021] [化 5]
Figure imgf000006_0003
[0022] 式中、 R2、 R3、及び R4のうち 1つは、 Rxに対してメタ位又はパラ位にある Ryであり、
Rx及び Ryは互いに独立して下記の複素環置換基を表し、
[0023] [化 6]
Rx, Ry
Figure imgf000007_0001
[0024] R2、 R3、 R4及び R5のうち、 Ryを除いた残りは、それぞれ独立に、水素原子、炭 素数 1〜30の置換若しくは未置換の脂肪族基、又はスルホン酸基を表す力 同時に 水素原子であることはなぐ前記複素環置換基のうち、 R6及び R7はそれぞれ独立に 、水素原子又はメチル基を表し、 Aは、窒素原子を少なくとも 1つ含む 5員又は 6員の 複素環基を表す。
[0025] く 10〉 前記 が Rxに対してパラ位にあるく 9〉記載の過塩素酸イオン捕捉剤であ
[0026] < 11 > 前記 R6及び R7が共に水素原子である < 9〉記載の過塩素酸イオン捕捉剤 である。
[0027] < 12 > 前記脂肪族基の炭素数が 1〜; 10であるく 9〉記載の過塩素酸イオン捕捉 剤である。
[0028] < 13 > 下記一般式 (Π)で表される複素環置換芳香族化合物を含む過塩素酸ィォ ン捕捉剤である。
[0029] [化 7]
Figure imgf000008_0001
[0030] 式中、
Figure imgf000008_0002
R2、 R4及び R5は、それぞれ独立に、水素原子、炭素数;!〜 30の置換若 しくは未置換の脂肪族基、又はスルホン酸基を表す力 同時に水素原子であること はなぐ A1は、窒素原子を少なくとも 1つ含む 5員又は 6員の複素環基を表す。
[0031] <14> 下記式 (a)で表される複素環置換芳香族化合物を含む過塩素酸イオン捕 捉剤である。
[0032] [化 8]
Figure imgf000008_0003
[0033] <15> 更に、平面四配位又は正八面体配位可能な金属イオンを含む <9〉〜<
14〉の!/、ずれか 1つ記載の過塩素酸イオン捕捉剤である。
[0034] <16> <7〉又は <8〉記載の配位化合物を含み、前記金属イオンが、該配位化 合物の一部として含まれるく 15〉記載の過塩素酸イオン捕捉剤である。
[0035] <17> 前記金属イオン力 塩の一部として含まれる < 15〉記載の過塩素酸イオン 捕捉剤である。 [0036] < 18 > 前記金属イオンが、 Zn2+、 Cu2+、 Ni2+、 Co2+、 Fe2+、 Mn2+、 Ag+、 Pd2+ 、及び Pt2+力、ら選ばれる少なくとも 1種である < 15〉〜く 17〉の!/、ずれか 1つ記載 の過塩素酸イオン捕捉剤である。
[0037] < 19 > 液体試料中の過塩素酸イオンを捕捉する方法であって、
< 1〉〜ぐ 6〉の!/、ずれか 1つ記載の複素環置換芳香族化合物と、平面四配位又 は正八面体配位可能な金属イオンと、前記液体試料とを接触させて、過塩素酸ィォ ンを捕捉した捕捉カプセル型分子を形成させる捕捉工程を含む過塩素酸イオン捕 捉方法である。
[0038] < 20 > 液体試料中から過塩素酸イオンを除去する方法であって、
< 1〉〜ぐ 6〉の!/、ずれか 1つ記載の複素環置換芳香族化合物と、平面四配位又 は正八面体配位可能な金属イオンと、前記液体試料とを接触させて、過塩素酸ィォ ンを捕捉した捕捉カプセル型分子を形成させる捕捉工程と、
前記捕捉カプセル型分子を沈殿させて液体試料中から除去する除去工程と、 を含む過塩素酸イオン除去方法である。
発明の効果
[0039] 本発明によれば、液体試料中の過塩素酸イオンを高!/、選択性で効率よく捕捉する ことができる複素環置換芳香族化合物、配位化合物、過塩素酸イオン捕捉剤、過塩 素酸イオン捕捉方法、及び、過塩素酸イオン除去方法を提供することができる。 図面の簡単な説明
[0040] [図 1]本発明における捕捉カプセル型分子 1分子が過塩素酸イオン(CIO ) 1分子
4 を内包する様子を、原子半径を無視して表したものである。
[図 2]本発明における捕捉カプセル型分子 1分子が過塩素酸イオン(CIO 1分子
4 を内包する様子を、ファンデルワールス半径を考慮して表したものである。
[図 3]本発明の実施例に係る硫酸銅 (Π) 7水和物及び bitbを含む溶液に、過塩素酸 ナトリウム水溶液を滴下していったときの可視紫外吸収スペクトルの変化を表すグラフ である。
[図 4]本発明の実施例に係る過塩素酸ナトリウムを含む水溶液に、硫酸銅 (Π) 7水和 物及び bitbを加えときの水溶液中の過塩素酸イオンの存在量を表すグラフである。 [図 5]本発明の実施例に係る配位化合物の二次元シート型構造 (A layer)を示す図 である。
[図 6]本発明の実施例に係る配位化合物の二次元シート型構造 (B layer)を示す図 である。
[図 7]本発明の実施例に係る配位化合物の三次元構造を示す図である。
[図 8]本発明の実施例に係る配位化合物を過塩素酸ナトリウム水溶液に添加したとき の反射スペクトルである。
[図 9]本発明の実施例における過塩素酸イオン除去効率を示すグラフである。
発明を実施するための最良の形態
[0041] <複素環置換芳香族化合物 >
本発明の複素環置換芳香族化合物は、下記一般式 (I)で表される。
[0042] [化 9]
Figure imgf000010_0001
[0043] 式中、 IT、 R3、及び R4のうち 1つは、 Rxに対してメタ位又はパラ位にある Ryであり、
Rx及び Ryは互いに独立して下記の複素環置換基を表し、
[0044] [化 10]
Figure imgf000011_0001
[0045] R2、 R3、 R4及び R5のうち、 Ryを除いた残りは、それぞれ独立に、水素原子、炭 素数 1〜30の置換若しくは未置換の脂肪族基、又はスルホン酸基を表す力 同時に 水素原子であることはなぐ前記複素環置換基のうち、 R6及び R7はそれぞれ独立に 、水素原子又はメチル基を表し、 Aは、窒素原子を少なくとも 1つ含む 5員又は 6員の
[0046] 本発明の複素環置換芳香族化合物は、液体試料中で、平面四配位又は正八面体 配位可能な金属イオンと特定の陰イオンとに接触すると、複数集まって前記金属ィォ ンとともに、前記特定の陰イオンを取り込んでカプセル分子を形成する(自己集積化 反応)。本発明においては、陰イオンを取り込んだカプセル分子を、「捕捉カプセル 型分子」という。
このとき、捕捉カプセル型分子では、上記化合物と金属イオンとで 6. 5Α (0. 65η m) Χ 6. 5Α (0. 65nm) Χ 5. θΑ (0. 50nm)の空間が形成されるため、このサイズ 以下の陰イオンのみが内包されうる。このような陰イオンとしては、例えば、過塩素酸 イオン(CIO やテトラフルォロホウ酸イオン (BF _)を挙げることができる力 特に、
4 4
過塩素酸イオンは、前記空間とほぼ同等のサイズであるため、選択的に取り込まれ、 容易に離脱しない。
この結果、本発明の化合物は、過塩素酸イオンを選択性高く捕捉できるだけでなく 、容易に離脱させないので、確実に捕捉することができる。なお、本発明の化合物は 、上記以外の他の陰イオンに対しては、このような捕捉カプセル型分子ではなぐ高 分子構造を容易に形成する。
本発明の化合物による自己集積化反応は、過塩素酸イオンに対して極めて高い選 択性を示すため、液体中に過塩素酸イオンが存在する場合、効率よくかつ確実に過 塩素酸イオンを捕捉することができる。
[0047] 上記一般式 (I)において、 RYが RXに対してパラ位にあること、即ち、 R3が RYであるこ とが、過塩素酸イオンが離脱しない、隙間の無い捕捉空間を形成させる観点から、好 ましい。
また、 RYと RXは同一の複素環置換基であることが、生成する捕捉カプセル型分子の 異性体の数を制限でき、生成物の同定を行いやすい観点からは、好ましい。
RX及び RYにおいて、 R6及び R7は、芳香族環の他の置換基と立体障害を起こすこと なぐ捕捉カプセル型分子を形成しうる観点から、共に水素原子であることが好ましい
[0048] R2、 R3、 R4及び R5のうち、 RYを除いた残りは、それぞれ独立に、水素原子、炭 素数 1〜30の置換若しくは未置換の脂肪族基、又はスルホン酸基を表す力 同時に 水素原子であることはない。
Figure imgf000012_0001
R4及び R5のうち、 RYを除いた残りとしては、炭素数;!〜 30の置換若しく は未置換の脂肪族基が好ましレ、。
R2、 R3、 R4及び R5で表される脂肪族基の炭素数としては、合成容易性の観点 や、一般式 (I)で表される化合物同士が立体的に障害となることなくカプセルを形成 し、また陰イオンのカプセル内からの離脱を防ぐ観点から、;!〜 10が好ましぐ;!〜 2 がより好ましい。
この脂肪族基に置換可能な置換基としては、ハロゲン原子、スルホン酸基、ニトロ基 、ヒドロキシル基、ハロゲン化アルキル基を挙げることができる力 S、合成容易性、安定 性、及び水に対する不溶性の観点から、フッ素原子、又はパーフルォロアルキル基 が好ましい。
[0049] RX及び RYにおいて、 Aで表される複素環基は、炭素数 1〜6のアルキル基やスルホ ン酸基等の置換基で置換されていてもよい。また、前記複素環基中には、窒素原子 の他に、酸素原子や硫黄原子が含まれていてもよい。
Aで表される複素環基としては、前記金属イオンに配位可能な複素環基が挙げら れる。このような複素環基としては、ピロ一ルー 1 ィル基以外のピロリル基、 2H—ピ ロール 1 ィル基以外の 2H—ピロリル基、イミダゾリル基、ピラゾリル基、イソチアゾ 一ルー 1 ィル基以外のイソチアゾリル基、イソォキサゾールー 1 ィル基以外のイソ ォキサゾリル基、ピロリジン 1 ィル基以外のピロリジニル基、イミダゾリジニル基、 ビラゾリジニル基、ピリジン 1 ィル基以外のピリジル基、ビラジル基、ピリミジニル 基、ピリダジニル基、ピぺリジン 1 ィル基以外のピペリジニル基、ピペラジニル基 、モルホリン 4 ィル基以外のモルホリニル基、下記構造式で表される基が好まし い。
[0050] [化 11]
Figure imgf000013_0001
[0051] 上記の中でも、合成容易性と金属イオンに対する配位性との観点からは、ピロ一ノレ
1 ィル基以外のピロリル基、イミダゾリル基、ピリジン 1 ィル基以外のピリジル 基、下記構造式で表される基がより好ましい。
[0052] [化 12]
Figure imgf000014_0001
Figure imgf000014_0002
[0053] 上記の中でもイミダゾリル基が特に好ましい。
[0054] このような、一般式 (I)で表される複素環置換芳香族化合物としては、合成の容易 性の観点、異性体の生成の阻止の観点、及び捕捉分子を離脱させないカプセル空 間を形成させる観点からは、下記一般式 (Π)で表される化合物が好ましい。
[0055] [化 13]
Figure imgf000014_0003
[0056] 一般式(Π)において、
Figure imgf000014_0004
R2、 R4、及び ITは、 Ryでないこと以外は、一般式(I)にお
R2、 R4、及び R5について前述した事項をそのまま適用可能である。
また、一般式 (II)において、 A1は、一般式 (I)における Aと同義であり、好ましい範 囲も同様である。
[0057] 本発明の化合物は、例えば、ハロゲン置換された芳香族化合物と、一般式 (I)中の Aに相当する化合物とをアルカリ金属塩の存在下で反応させて、ハロゲン原子を Aで 置換することにより容易に合成することができる。例えば、イミダゾールと α, α ジブ ロモ -ρ-キシレンを水素化ナトリウムの存在下で加熱反応させて、 1 , 3—ビス(イミダゾ 一ルー 1ーィルーメチル)ベンゼンを合成することができる。このような合成方法として は、例えは、 C.-H. Zhou, R.-G. Xie, and H.-M. Zhao, Organic. Preparations and Pr ocedures Int., 1996, 28(3), 345に記載されている。
[0058] 以下、一般式 (I)又は一般式 (Π)で表される複素環置換芳香族化合物の例示化合 物(例示化合物(a)〜(g) )を示す。ただし本発明はこれらに限定されるものではなレヽ
[0059] [化 14]
Figure imgf000016_0001
[0060] [化 15]
Figure imgf000017_0001
Figure imgf000017_0002
[0061] 上記例示化合物(a)〜(g)のうち、例示化合物(a)又は例示化合物 (b)がより好まし い。
[0062] <配位化合物 >
本発明の配位化合物は、前述した本発明の複素環置換芳香族化合物と、平面四 配位又は正八面体配位可能な金属イオンと、を含む。 [0063] 本発明の配位化合物を液体試料中で過塩素酸イオンに接触させると、該配位化合 物を構成する前記複素環置換芳香族化合物及び前記金属イオンが、過塩素酸ィォ ンを取り込んだ捕捉カプセル型分子に再構成される。
このため、前記複素環置換芳香族化合物そのものを用いる場合と同様に、過塩素 酸イオンを選択性高く捕捉することができる。
[0064] 本発明の配位化合物の具体的な構造としては、該配位化合物に含まれる複数の 金属イオンのそれぞれに対し、前記複素環置換芳香族化合物が複数配位した高分 子錯体の構造が挙げられる。
該高分子錯体の構造としては、例えば、各金属イオンに対し前記複素環置換芳香 族化合物が 4分子ずつ配位した二次元シート型構造などがある。該二次元シート型 構造においては、各複素環置換芳香族化合物は、二つの金属イオン間に配置され、 一方の複素環中の窒素原子の部分で一方の金属イオンに配位し、他方の複素環中 の窒素原子の部分で他方の金属イオンに配位している。
本発明の配位化合物には、金属イオンの対イオンとして、過塩素酸イオン以外の陰 イオンが含まれ得る力 これらの陰イオンは、前記金属イオンに配位していてもよいし (例えば、後述の図 5参照)、前記金属イオンに配位していなくてもよい (例えば、後 述の図 6参照)。
また、前記配位化合物の構造が前記陰イオンを含む前記二次元シート型構造であ る場合、該二次元シート型構造中の陰イオンは、(1)別の二次元シート型構造中の 金属イオンと配位結合するか、(2)別の二次元シート型構造中の金属イオンに結合 した水と水素結合していてもよい。前記(1)及び(2)の場合には、前記配位化合物の 構造は二次元シート型構造が複数重なった三次元構造となる。
[0065] 本発明の配位化合物に含まれる平面四配位又は正八面体配位可能な金属イオン としては、例えば、 Zn2+、 Cu2+、 Ni2+、 Co2+、 Fe2+、 Mn2+、 Ag+、 Pd2+、及び Pt2+ が挙げられる。
中でも、配位化合物の形成性の観点等からは、 Zn2+、 Cu2+、 Ni2+、 Pd2+、 Pt2+が 好ましぐ Cu2+が特に好ましい。
[0066] また、本発明の配位化合物に含まれることがある、過塩素酸イオン以外の陰イオン としては、例えば、 OH SO CO NO― CH COO C O HCOO
4 3 3 3 2 4
CI Br― F― PF―、ァセチノレアセトナト(C H O— )、 BF― SiF 2— CF SO―
6 5 7 2 4 6 3 3 等が挙げられる。
中でも、配位化合物の形成性の観点等からは、 NO― SO 2— OH― CO 2 が好
3 4 3 ましぐ so 2_がより好ましい。
4
[0067] 本発明の配位化合物の合成方法としては、前記金属イオン (A成分)と、前記複素 環置換芳香族化合物 (B成分)とを、モル比〔A成分/ B成分〕力 S 1/2となる割合で反 応させる方法が挙げられる。
[0068] 前記 A成分と前記 B成分とを反応させる方法としては、前記 A成分と過塩素酸ィォ ン以外の陰イオンとからなる金属塩を、溶剤(例えば、水、ジメチルホルムアミド、メタ ノール、エタノール、プロパノール、ァセトニトリル、アセトン、等)中に溶解させて溶液 Aとし、前記 B成分を別の溶剤(例えば、ジメチルホルムアミド、メタノール、エタノール 、プロパノール、ァセトニトリル、アセトン、等)中に溶解させて溶液 Bとし、溶液 Aと溶 液 Bとを混合して反応させる方法が挙げられる。
[0069] また、前記 A成分と前記 B成分とを同一の溶剤中に溶解させて反応させてもよぐこ の場合の溶剤としては、メタノール、ジメチルホルムアミド、又はエタノール等の単一 溶媒を使用してもよいし、水/ァセトニトリル、水/ジメチルホルムアミド、水/メタノー ル、水/エタノール、メタノール/ジメチルホルムアミド、エタノール/ジメチルホルム アミド等の混合溶剤を使用してもよ!/、。
[0070] <過塩素酸イオン捕捉剤、過塩素酸イオン捕捉方法、過塩素酸イオン除去方法〉 本発明の過塩素酸イオン捕捉剤は、前記一般式 (I)で表される複素環置換芳香族 化合物を含む。
本発明の過塩素酸イオン捕捉剤の形態としては特に限定はないが、例えば、前記 一般式 (I)で表される複素環置換芳香族化合物が、粉末状又は錠剤状等の固体で ある形態が挙げられる。また、前記固体と他の成分 (ゼオライト、活性炭、などの多孔 性固体等)との混合物の形態であってもよい。また、前記固体又は混合物が溶剤中 に溶解または分散された形態であってもよい。
[0071] 一般式 (I)で表される複素環置換芳香族化合物は、前述の通り、過塩素酸イオンと 、平面四配位又は正八面体配位可能な金属イオンとに接触すると、捕捉カプセル型 分子を形成する。従って、前記複素環置換芳香族化合物を含む本発明の過塩素酸 イオン捕捉剤を液体試料中に添加することにより、液体試料中の過塩素酸イオンを 選択性高く捕捉することができる。
[0072] 液体試料中で前記複素環置換芳香族化合物と前記金属イオンと過塩素酸イオンと を接触させる観点より、本発明の過塩素酸イオン捕捉剤に、平面四配位又は正八面 体配位可能な金属イオンを含んでもょレ、。
ここで、平面四配位又は正八面体配位可能な金属イオンとしては、前述した配位化 合物中の金属イオンと同様のイオン種が挙げられ、好ましい範囲も同様である。 ここで、本発明の過塩素酸イオン捕捉剤が前記金属イオンを含む場合の形態とし ては特に限定はな!/、が、以下の 2形態が好適である。
第 1の形態は、本発明の過塩素酸イオン捕捉剤に、前記金属イオンが、前述の配 位化合物の一部として含まれる形態である。即ち、本発明の過塩素酸イオン捕捉剤 、前記配位化合物を含む形態である。この第 1の形態は、液体試料中に金属ィォ ンを直接溶解させる必要がない点で好適である。
第 2の形態は、本発明の過塩素酸イオン捕捉剤に、前記金属イオンが、塩の一部と して含まれる形態である。即ち、本発明の過塩素酸イオン捕捉剤が、前記複素環置 換芳香族化合物と、前記金属イオンを含む金属塩と、を含む混合物である形態であ る。この第 2の形態は、予め前記配位化合物を合成する必要がない点で好適である
[0073] また、本発明の過塩素酸イオン捕捉剤が前記金属イオンを含まない場合には、過 塩素酸イオン捕捉剤と、前記金属イオンを含む金属塩と、を別々に液体試料に添カロ することにより(両者は同時に添加しても時期をずらして添加してもよい)、前記複素 環置換芳香族化合物と前記金属イオンと過塩素酸イオンとを接触させることができる
[0074] 液体試料としては、過塩素酸イオンを含む水溶液、メタノールやエタノール等のプ 口トン性有機溶媒、アセトン、ァセトニトリル、テトラヒドロフラン等の非プロトン性有機 溶媒が挙げられる。 [0075] 前記金属塩に含まれる平面四配位又は正八面体配位可能な金属イオンとしては、 例えば、 Zn2+ Cu2+ Ni2+ Co2+ Fe2+ Mn2+ Ag+ Pd2+、及び Pt2+が挙げら れる。
中でも、複素環が強く金属イオンに結合することによる、安定な捕捉カプセル型分 子の形成という観点からは、 Zn2+ Cu2+ Ni2+ Pd2+ Pt2+が好ましく、捕捉カプセ ル型分子形成の容易性の観点からは、 Cu2+が特に好まし!/、。
[0076] 前記金属塩に含まれる陰イオンとしては、例えば、 OH_ SO 2—、 CO 2—、 NO
4 3 3
CH COO— C O 2— HCOO— CI— Br― F― PF―、ァセチノレアセトナト(C H
3 2 4 6 5 7
O― )、 BF SiF 2— CF SO 等が挙げられる。
2 4 6 3 3
上記陰イオンのうち、金属塩の溶解性の観点からは NO—が好ましい。また、捕捉
3
対象である過塩素酸イオン (CIO との選択性の観点からは so 2_が好ましい。ま
4 4
た、試料液の汚染抑制の観点からは OH—や CO 2 が好ましい。
3
[0077] 以上より、前記金属塩としては、 CuSO Cu (N〇 ) Cu (OH) 、又は CuC〇カ
4 3 2 2 3 特に好ましい。
[0078] また、本発明の過塩素酸イオン捕捉方法は、液体試料中の過塩素酸イオンを捕捉 する方法であって、前記複素環置換芳香族化合物と、前記金属イオンと、前記液体 試料とを接触させて、過塩素酸イオンを捕捉した捕捉カプセル型分子を形成させる 捕捉工程を含む。
[0079] 本捕捉方法では、液体試料中で、前記複素環置換芳香族化合物と、前記金属ィォ ンと、過塩素酸イオンとが接触して、これらが相互作用しうる状態となる。この結果、前 記複素環置換芳香族化合物 4分子と金属イオン 2個とによって過塩素酸イオン 1個を 内包する捕捉カプセル型分子を形成し、過塩素酸イオンを確実に捕捉することがで きる。
捕捉カプセル型分子は、過塩素酸イオン 1分子を内包して捕捉するほか、前記捕 捉カプセル型分子の外側(2個の金属イオン)にも、配位結合により過塩素酸イオン を捕捉することができる。従って、捕捉カプセル型分子 1分子は、過塩素酸イオンを 3 分子捕捉することが可能である。さらに、捕捉カプセル型分子 1分子は、前記過塩素 酸イオン 3分子に加え、別の捕捉カプセル型分子との間に、過塩素酸イオンをさらに 1分子捕捉することが確認されている。即ち、捕捉カプセル型分子 1分子は、過塩素 酸イオンを最大 4分子まで捕捉できることがわかっている。
以上の形態は、例えば単結晶構造解析及び可視 ·紫外分光スペクトル等により確 言忍すること力 Sでさる。
[0080] 液体試料中で、前記複素環置換芳香族化合物と、前記金属イオンと、過塩素酸ィ オンとを接触させる方法につ!/、ては、特に限定はなレ、。
前述の過塩素酸イオン捕捉剤が前記金属イオンを含む場合には、過塩素酸イオン 捕捉剤を、過塩素酸イオンを含む液体試料に添加する方法や、過塩素酸イオンを含 む液体試料を、過塩素酸イオン捕捉剤を充填したフィルターに通過させる方法等が 挙げられる。
前述の過塩素酸イオン捕捉剤が前記金属イオンを含まない場合には、過塩素酸ィ オン捕捉剤と、前記金属イオンを含む金属塩とを、前記液体試料に添加(両者は同 時に添加しても時期をずらして添加してもよレ、)する方法や、過塩素酸イオンを含む 液体試料を、過塩素酸イオン捕捉剤及び金属塩を充填したフィルターに通過させる 方法等が挙げられる。
[0081] 本発明の過塩素酸イオン捕捉方法においては、前記複素環置換芳香族化合物と 金属イオンと過塩素酸イオンとの接触頻度を高め、捕捉カプセル型分子形成反応の 反応性を向上させる観点からは、液体試料を加熱してもよい。加熱の温度としては、 溶媒の種類、金属塩の種類、複素環置換芳香族化合物の種類、及び配位化合物の 種類などによっても異なる力 0〜; 100°Cが好ましぐ 20〜70°Cがより好ましい。
[0082] 前記過塩素酸イオン捕捉剤(及び、必要に応じ前記金属塩)を前記液体試料に添 加する場合、添加後に撹拌してもよぐ撹拌せずにそのまま放置してもよいが、過塩 素酸イオン捕捉剤と金属イオンと過塩素酸イオンとの接触頻度を高め、捕捉カプセ ル型分子形成反応の反応性を向上させる観点からは、撹拌することが好ましい。 撹拌には、攪拌器、容器の振とう、加熱による対流、などの手段を用いることができ る。中でも、容器の振とうが好ましい。
[0083] 本捕捉方法における捕捉工程で形成された捕捉カプセル型分子は特定の割合で 過塩素酸イオンを捕捉しているので、捕捉カプセル型分子を定量することによって、 過塩素酸イオンを定量することができる。
定量の手段としては、溶液から沈殿した捕捉カプセル型分子をァセトニトリルなどに 再溶解させて可視 ·紫外分光スペクトルを測定することにより、前記複素環置換芳香 族化合物に由来する紫外領域の吸収に対する、過塩素酸イオンを捕捉した捕捉力 プセル型分子に特有な 540nmの極大吸収強度の比を求めることで過塩素酸イオン の定量を行う方法が挙げられる。
[0084] 本発明の過塩素酸イオン除去方法は、液体試料中から過塩素酸イオンを除去する 方法であって、前記過塩素酸イオン捕捉方法における捕捉工程と、該捕捉工程にお いて形成された捕捉カプセル型分子を沈殿させて液体試料中から除去する除去ェ 程と、を含む。
上記捕捉工程で形成された捕捉カプセル型分子は、液体試料中で沈殿するため、 液体試料中から過塩素酸イオンのみを容易に分離できる。
分離の方法としては、沈殿物を溶液中から分離する通常の方法をそのまま適用す ること力 Sでき、例えば、上澄み液のデカントによる分離、フィルターによる濾過、遠心 分離操作による分離等を挙げることができる。
[0085] 本発明の過塩素酸イオン除去方法では、液体試料中から除去された捕捉カプセル 型分子を前記複素環置換芳香族化合物に再生し、回収することができる。
ここで、前記捕捉カプセル型分子は、一般的な金属錯体と同様の構成を有するた め、一般的な金属錯体と同様の方法により分解し、再度前記複素環置換芳香族化 合物を生じる。
再生の方法としては、例えば、以下の方法を用いることができる。
即ち、過塩素酸イオンを取り込んだ捕捉カプセル型分子をァセトニトリル、あるいは メタノール等の有機溶媒に抽出し、その溶液に硫化水素などを金属沈殿剤として接 触させて、金属硫化物を沈殿させる。該金属沈殿剤としては、硫化水素以外に、金 属を水酸化物塩や炭酸塩として沈殿させることができる、アルカリ試薬や炭酸カリウム などを用いることができる。次に、溶液中に残った前記複素環置換芳香族化合物を 濃縮乾固して集め、ァセトニトリル、あるいはメタノールなどの有機溶媒から再結晶さ せ、前記複素環置換芳香族化合物を再生させることが可能である。 また、前記複素環置換芳香族化合物を再生する方法として、上記の金属沈殿剤を 接触させる方法以外に、硝酸や塩酸などの酸を接触させる方法を用いることもできる 。即ち、捕捉カプセル型分子が抽出された溶液に前記酸を添加することにより、前記 金属イオンと前記複素環置換芳香族化合物との間の配位結合を切断し、捕捉カプセ ル型分子を分解することができる。捕捉カプセル型分子分解後の前記溶液を濃縮乾 固後、水を添加して前記複素環置換芳香族化合物を沈殿として取り出し、続いて、ァ セトニトリルやメタノールなどの有機溶媒から前記複素環置換芳香族化合物を再結 晶させて再生させることが可能である。
[0086] 本発明の過塩素酸イオン除去方法では、上述のように選択的に過塩素酸イオンを 除去できるため、廃液、飲料、又は牛乳等の液体だけでなぐ水溶液中で前記金属 イオン及び前記複素環置換芳香族化合物と共に撹拌することにより、食品、土壌等 力、らも、効率よく過塩素酸イオンを除去することができる。
実施例
[0087] 以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定され るものではない。
[0088] 〔実施例 1〕
<例示化合物(a) (1 , 4 ビス(イミダゾールー 1ーィルーメチル)2, 3, 5, 6 テトラ メチルベンゼン; bitb)の合成〉
下記反応スキーム 1に従って例示化合物(a) (bitb)の合成を行った。
まず、イミダゾール(関東化学(株)製) 0· 33g (5mmol)の THF溶液 10mlに、 Na H (関東化学(株)製) 0· 095g (4mmol)の THF懸濁液(5ml)をゆっくりと加え、 20 分撹拌した (THF (テトラヒドロフラン)は関東化学 (株)製、以下同じ)。
前記撹拌後の溶液に、 1 , 4 ビスブロモメチルー 2, 3, 5, 6 テトラメチルベンゼ ン (東京化成工業 (株)製、慣用名:ジブロモズレン) 0· 64g (2mmol)の THF溶液(1 5ml)をゆっくり添加し、 60°Cで 3〜5時間還流した。還流後の溶液を室温に冷却し、 冷却後の溶液に水(40ml)を加え、更にクロ口ホルム(関東化学 (株)製)を加えて粗 生成物をクロ口ホルムで抽出した。得られたクロ口ホルム抽出液を無水硫酸ナトリウム で乾燥させた。乾燥後のクロ口ホルム抽出液を濃縮し石油エーテル(関東化学 (株) 製)を加えることで例示化合物(a)を収率 53%で得た。
[0089] [化 16] 反応スキーム 1
Figure imgf000025_0001
dibromodurene
(1, 4 - bisbro顏 ethyl
2, 3, 5, 6-tetramethylbenzene)
Figure imgf000025_0002
3〜5hrs (60。C) /TH
Extracted with C H C I
Figure imgf000025_0003
Dried over
anhydrous N a 2 S O 4
Figure imgf000025_0004
b i t b
(例示化合物 (a) )
[0090] 上記で得られた例示化合物(a)は、 NMRにより構造を確認した。
〜NMRデータ〜
'Η NMR spectrum(300MHz, CDCl, r.t.): δ 7.24(d, 2Η), 6.97(s, 2Η), 6.75(d, 2H),
5.17(s, 4H), 2.19(s, 12H)
[0091] <例示化合物(b)の合成 >
例示化合物(b)は、前記ジブロモズレンを 1, 4 ビスーブロモメチルー 2, 3, 5, 6 ーテトラキスートリフルォロメチルベンゼンに換える以外は前記く例示化合物(a)の 合成〉と同様の方法により合成できる。 [0092] 〔実施例 2〕
<過塩素酸を取り込んだ捕捉カプセル型分子の形成〉
過塩素酸銅 (Π) 6水和物(キシダ化学 (株)製) 0· 093g (0. 25mmol)と、実施例 1 で得られた例示化合物(a) (bitb) O. 147g (0. 5mmol)とを、ァセトニトリル/水(25 ml/25ml)の混合溶液中に加え(ァセトニトリルは関東化学 (株)製)、この混合溶液 を撹拌し、その後数日間静置させ、紫色結晶を得た。
得られた紫色結晶を集めて、紫色結晶の構造を単結晶構造解析及び質量分析測 定により確認した。
単結晶構造解析は、(株)リガク製の構造解析装置 (マーキュリー二次元検出器シ ステム)を用い、室温でモリブデン K aの線源を用いて X線の反射データを収集した 。構造解析は、(株)リガク製の Crystal Structureプログラムを用いて行った。
また、質量分析測定は、 Micromass社製の LCT質量分析計を用いて行った。
[0093] 〜単結晶構造解析データ〜
monoclinic space group P2ん (No.14), a = 25.73 (2) A , b = 13.26(1) A , c = 27.73(4
1
) A , β = 117.52(1)。 , V = 8383(13) A3, Z = 4, R = 0.090, Rw = 0.223
[0094] 上記単結晶構造解析データ及び質量分析測定より、前記紫色結晶は、以下の反 応によって得られた [Cu (bitb) ] (C10 ) であることがわかった。
2 4 4 4
[0095] [化 17]
Figure imgf000026_0001
[0096] また、上記単結晶構造解析データ及び質量分析測定より、前記紫色結晶([Cu (b
2 itb) ] (CIO ) )は、捕捉カプセル型分子であることがわ力、つた。
4 4 4
上記単結晶構造解析データ及び質量分析測定より明らかとなった捕捉カプセル型 分子の構造を、図 1及び図 2に示す。 [0097] 図 1に示すように、捕捉カプセル型分子の構造は、銅 (Π)イオン 2個及び bitb4分子 により形成されたカプセル骨格力 過塩素酸イオン 1分子を内包する構造である。な お、図示しないが、両方の銅(II)イオンには、カプセルの外側から過塩素酸イオンが 1分子ずつ配位している。
また、図 2に示すように、銅 (Π)イオン 2個及び bitb4分子により形成される空間のサ ィズは、 6.5A(0. 65腹) X6.5A(0. 65腹) X5. θΑ(0. 50腹)であり、過塩 素酸イオンを離脱不能な程度に内包するサイズであった。
また、図 1及び図 2では水素原子を省略して表している。
[0098] また、得られた紫色結晶は、ジメチルホルムアミド、メタノール、エタノール、ァセトニ トリル、アセトンのいずれにも溶解した。この結果も、該紫色結晶が捕捉カプセル型分 子の構造を有することを示す。
[0099] 〔実施例 3〕
<過塩素酸の捕捉に関する確認 >
硫酸銅(Π) 7水和物(5mM)と bitb (10mM)とを含む水/ァセトニトリル(1: 1)混合 溶液 20mlに、過塩素酸ナトリウム水/ァセトニトリル(1:1)混合溶液(2. 5mM)を、 0〜20mlの範囲で滴下し、溶液を 40mlに調製した後、それぞれの可視紫外吸収ス ベクトルを測定し、変化を追跡した。
ここで、可視紫外吸収スペクトルは、 日本分光(株)製の V570 UV-Vis.NIR supectro meterにて測定した。
[0100] モル比〔CuSO : bitb:NaC10〕が、 〔2:4:0〕、 [2:4:0. 25〕、 [2:4:0. 5〕、〔2:4
4 4
: 0. 75〕、及び〔2: 4: 1〕であるときの可視紫外吸収スペクトルを図 3に示す。
なお、図 3は、変化が明らかであった、 400nm〜700nm領域の吸収スペクトルの みを示している。
図 3のグラフからわかるように、過塩素酸ナトリウム水溶液滴下前 (すなわち、前記モ ル比が〔2 :4:0〕のとき)は、 600nm付近に吸収がみられた力 過塩素酸ナトリウム水 溶液を滴下し、過塩素酸ナトリウムのモル比率を増加させるに従い、スペクトルが変 化して!/、つた。前記モル比が〔2:4:1〕となった段階で、 540nmの吸収が新たに現れ 、吸収スペクトルの変化が止まった。新たに現れた 540nmの吸収は、捕捉カプセル 型分子([Cu (bitb) ] (CIO ) )の吸収と一致したことから、過塩素酸を取り込んだ
2 4 4 4
捕捉カプセル型分子が生成したことが確認された。
また、このカプセル形成に伴い、過塩素酸を取り込んだ捕捉カプセル型分子に特 徴的な 540nmの吸収が上昇することが確認され、この吸収を利用した過塩素酸ィォ ンの定量が行えることが示唆された。
[0101] 〔実施例 4〕
<水溶液中の過塩素酸の除去 1 >
過塩素酸ナトリウム 1. Ommolを含む水溶液 20mlに、硫酸銅(9. 988mg, 2. Om mol)と bitb (0. 02355g、 4. Ommol)を固体状態で加え、よく攪拌した。撹拌後、生 じた不溶物をろ過してのぞき、ろ液に残った過塩素酸イオンを定量した。定量の方法 は過塩素酸イオンの定量に通常使用される方法を用いた。具体的には、ろ液に過剰 のトリス(2, 2 '—ビビリジン)鉄(II)錯体の塩化物を加え、さらにニトロベンゼン 20ml を加えた。ニトロベンゼン中にトリス(2, 2 '—ビビリジン)鉄(Π)錯体の過塩素酸塩が 抽出されな力、つたことから、過塩素酸塩が水溶液中から取り除かれたことが確認され た(過塩素酸が残っていた場合にはトリス(2, 2 '—ビビリジン)鉄 (Π)錯体の過塩素酸 塩が生成し、これがニトロベンゼン中に抽出されることによりニトロベンゼン層が着色 し、この分光スペクトルを測定することにより、水溶液中に存在していた過塩素酸ィォ ンの定量を行うことができる)。
ここで、分光スペクトルの測定は、 日本分光(株)製の V570 UV-Vis.NIR supectrom eterにより行った。
[0102] 〔実施例 5〕
<水溶液中の過塩素酸の除去 2〉
各量 (0. lmmol、 0. 2mmol、 0. 3mmol、 0. 4mmol、 0. 5mmol)の過塩素酸ナ トリウムを含む水溶液(100ml)のそれぞれに、硫酸銅(Π) 7水和物 0· 049g (0. 2m mol)と bitbO. 117g (0. 4mmol)とをカロ免、 ί覺持した。
撹拌後、各水溶液中に残った過塩素酸イオンの存在量を、以下のようにして定量し た。
即ち、撹拌後の水溶液に、トリス(2, 2 '—ビビリジン)鉄 (Π)錯体を加えて過塩素酸 塩〔Fe (bpy) ] (CIO ) を生成し、その過塩素酸塩をニトロベンゼン中に抽出し、抽
3 4 2
出された過塩素酸塩の 524nmの吸収を測定することにより定量した。ここで、吸収の 測定は、 日本分光(株)製の V570 UV-Vis.NIR supectrometerにより行った。
[0103] 前記各水溶液中に残った過塩素酸イオンの存在量を表すグラフを図 4に示す。
図 4中、横軸及び縦軸は、いずれも水溶液中の過塩素酸イオンの存在量を表す。 詳細には、横軸は、硫酸銅(Π) 7水和物及び bitbを加える前の過塩素酸イオンの存 在量を表し、縦軸は、硫酸銅(11) 7水和物及び bitbを加えた後の過塩素酸イオンの 存在量を表す。
図 4中、一点鎖線は、 2個の銅(Π)イオン及び 4分子の bitbが、過塩素酸イオンを全 く捕捉しないと仮定した場合の理論直線である。このように仮定した場合は、硫酸銅( II) 7水和物及び bitbを加える前後において、水溶液中の過塩素酸イオンの存在量 は変わらないこととなるため、一点鎖線は、傾き 1、切片 0の直線である。
図 4中、破線は、 2個の銅(Π)イオン及び 4分子の bitbが、過塩素酸イオンを 1分子 のみ除去すると仮定した場合の理論直線である。即ち、破線は、傾き 1、切片—0. 1 の直泉である。
図 4中、プロットは、硫酸銅(Π) 7水和物及び bitbを加えた後の過塩素酸イオンの存 在量の実測値であり、実線は、これらの実測値から見積もった直線である。
[0104] 図 4から明らかなように、 2個の銅(Π)イオン及び 4分子の bitbは、過塩素酸イオンを
1分子より多く除去することが確認された。
これは、 1分子の捕捉カプセル型分子が、 1分子の過塩素酸イオンを内包して捕捉 することに加え、カプセル骨格の外側(金属イオンの箇所)にも過塩素酸イオンを捕 捉して除去するためと考えられる。
[0105] 以上により、本発明における複素環置換芳香族化合物(即ち、過塩素酸イオン捕 捉剤)と、平面四配位又は正八面体配位可能な金属イオンと、前記液体試料とを接 触させて、過塩素酸イオンを捕捉した捕捉カプセル型分子を形成させ、前記捕捉力 プセル型分子を沈殿させることで、過塩素酸イオンを前記液体試料中から量論的に 除去できることが確認できた。
[0106] 〔実施例 6〕 <銅 (Π)イオンと bitbとを含む配位化合物の合成と構造 1 >
試薬は、和光純薬工業株式会社の硫酸銅五水和物(CuSO · 5Η 0)、関東化学 株式会社のジメチルホルムアミド(DMF)、を用いて合成した。
bitb 58. 9mg (0. 2mmol)を DMF20mlに、硫酸銅 25. Omg (0. lmmol)を水 2
Omlにそれぞれ溶力もた。得られたそれぞれの溶液を一気に反応させ、室温下で 1 週間静置することによって水不溶性の青色結晶を得た。
構造解析の結果、該青色結晶は、結晶溶媒として銅 (Π)イオン 1つに対して水分子 7つを含んでいた。また、該青色結晶は溶媒に溶けず、質量分析を行うことができな かったため、該青色結晶中の炭素、水素、及び窒素の比を元素分析で確認し、単結 晶構造解析結果と一致することを確認した。
[0107] 〜元素分析データ〜
理論ィ直(C H CuN O S) C, 48.45; H, 6.78; N, 12.55
実測値 C, 48.72; H, 6.41; N, 12.73
(測定装置 Euro Vector社製 Euro EA3000)
[0108] 〜単結晶構造解析データ〜
monoclinic space group C2/m(No. l2), C H CuN O S, Mw (式量) 892.5, a = 12
.3(1) A, b = 27.3(2) A, c = 13.8(1)A, β = 113.42(1)。 , V = 4252(62) A3, Z = 4, R = 0.114, Rw = 0.470
[0109] 元素分析及び単結晶構造解析の結果より、得られた青色結晶は、実施例 2のような 捕捉カプセル型分子ではなぐ配位化合物({ [Cu (bitb) (H O) ] [Cu (bitb) (S o ) ] }で表される高分子錯体)であることがわ力、つた。該配位化合物の詳細な構造 については後述する。
[0110] また、得られた青色結晶は、水、ジメチルホルムアミド、メタノール、エタノールのい ずれにも溶解しなかった。この結果も、該青色結晶が、捕捉カプセル型分子の構造 ではなぐ配位化合物({ [Cu (bitb) (H O) ] [Cu (bitb) (SO ) ] }で表される 高分子錯体)の構造を有することを示す。
該青色結晶が、捕捉カプセル型分子の構造ではなく配位化合物の構造をとる理由 は、硫酸イオンのサイズが過塩素酸イオンのサイズより大きいことが原因と考えられる 。即ち、 bitb4分子及び金属イオン 2個からなるカプセル骨格が内包し得る分子のサ ィズと、硫酸イオンのサイズとがー致しないため、カプセル骨格を形成せず、配位化 合物を形成したものと思われる。
[0111] 元素分析及び単結晶構造解析の結果よりにより明らかとなった配位化合物の構造 を図 5〜7に示す。
図 5及び図 6中、 6つの結合手を有するイオン種は銅(Π)イオンを表し、 2つの銅(II) イオン間に配置する、 1つの 6員環と 2つの 5員環 (複素環)とを含む分子は bitbを表 す。ここで、 bitbは、一方の複素環中の窒素原子の部分で一方の銅 (Π)イオンに配 位し、他方の複素環中の窒素原子の部分で他方の銅 (Π)イオンに配位している。ま た、該配位化合物は無限鎖状に広がった構造を有しているため、図 5〜図 7では、図 の周辺部に位置する原子や分子を省略して表している。また、図 5〜図 7では、水素 原子を省略して表している。
図 5〜7に示すように、該配位化合物の構造は、 2種類の二次元シート型構造(図 5 に示す A layer及び図 6に示す B layer)が交互に積層された三次元構造(図 7)である
以下、各構造の詳細について説明する。
[0112] 図 5に示す A layerは、 1つの銅(II)イオンに bitbが 4分子配位して形成された、二次 元的に無限鎖状に広がった二次元シート型構造体である。より詳細には、 A layerは 、前記銅 (Π)イオンに対し、更に、硫酸イオンが 2分子配位した、負電荷を持つ二次 元シート型構造体 [Cu (bitb) (SO ) ] である。図 5中、矢印 a及び矢印 bは、 A laye rの二次元平面に平行な軸を表す(以下、「a軸」「b軸」ともいう)。
[0113] 図 6に示す B layerも、 1つの銅(II)イオンに bitbが 4分子配位して形成された、二次 元的に無限鎖状に広がった二次元シート型構造である。より詳細には、 B layerは、前 記銅 (II)イオンに対し、更に、水分子力 ¾分子配位した、正電荷を持つ二次元シート 型構造体 [Cu (bitb) (H O) ] である。図 6中、矢印 a及び矢印 bは、 B layerの二次 元平面に平行な軸を表す(以下、「a軸」「b軸」ともいう)。
[0114] 図 7に示す三次元構造は、前記 A layer及び前記 B layerが交互に積層された構造 である。図 7中、矢印 cは、前記 A layer及び前記 B layerの二次元平面に平行でない 軸を表す。 図 7に示すように、前記 A layer及び前記 B layerは、それぞれ ab面上に 配置され、それら力 軸に沿って交互に積層した構造となっている。
図 7において、 A layer中、銅(II)イオンに配位している硫酸イオンは、となりの B laye r中の銅 (II)イオンに配位している水分子に水素結合している(O— O = 2. 98A)。 その結果、水素結合を介した三次元構造となってレ、る。
[0115] 〔実施例 7〕
<銅 (Π)イオンと bitbとを含む配位化合物の合成と構造 2 >
実施例 2において、過塩素酸銅 (11) 6水和物(キシダ化学 (株)製) 0. 093g (0. 25 mmol)を、硫酸銅(II) 7水和物(和光純薬工業(株)製) 0· 062g (0. 025mmol)に 代えた以外は実施例 2と同様の操作を行い、水不溶性の青色結晶を得た。得られた 青色結晶を集めて、単結晶構造解析によりユニットセルを確認し、実施例 6で合成さ れた高分子型の配位化合物 { [Cu (bitb) (H O) ] [Cu (bitb) (SO ) ] }が生成 していることを確言忍した。
[0116] 〜単結晶構造解析データ〜
a = 12·4(3)Α, b = 27·4(7)Α, c = 13·8(3)Α, β = 113.6(1)。
[0117] 〔実施例 8〕
<銅 (Π)イオンと bitbとを含む配位化合物の合成と構造 3 >
実施例 6において、出発物質である硫酸銅五水和物(CuSO · 5Η Ο)の代わりに、 硝酸、塩化物、炭酸、酢酸、水酸化物、などの陰イオンを有する銅 (π)イオンを用い て合成を行ったところ、実施例 6と同様に、不溶性の Cu— bitb配位化合物を 30%以 上の収率で得ることができた。
得られた Cu— bitb配位化合物についても、水、ジメチルホルムアミド、メタノーノレ、 エタノールへの溶解度の低さから、高分子構造を取っていると考えられる。
[0118] 〔実施例 9〕
<銅 (Π)イオンと bitbとを含む配位化合物による過塩素酸の捕捉〉
銅 (Π)イオンと bitbとを含む配位化合物として、実施例 6で合成した配位化合物 { [ Cu (bitb) (H O) ] [Cu (bitb) (SO ) ] } (以下、「Cu— bitb配位化合物(A)」と もいう)を用い、過塩素酸の捕捉実験を行った。 具体的には、まず、 0. 5mMの過塩素酸ナトリウム水溶液を調製し、この水溶液 10 mlに、含まれて!/、る銅(II)イオンのモル数で計算して過塩素酸イオンの 2倍当量の C u— bitb配位化合物(A) 29. 95mg (0. 02mmol)を添加した。これを 6時間静置す ることで反応させ、反応溶液 1を得た。
[0119] 溶液中には、 Cu— bitb配位化合物 (A)添加直後は、 Cu— bitb配位化合物 (A)そ のものと思われる青色の沈殿物が存在していた力 6時間静置後、この沈殿物は紫 色に変化していた。
沈殿物の色の変化は、沈殿物が、 Cu— bitb配位化合物 (A)から捕捉カプセル型 分子([Cu (bitb) ] (CIO ) )へと変化したために生じたものと考えられる。
2 4 4 4
[0120] 次に、 Cu— bitb配位化合物 (A)添加から 1. 5時間経過後の青色沈殿物、及び、 Cu— bitb配位化合物 (A)添加から 6時間経過後の紫色沈殿物について、それぞれ 反射スペクトルを測定した。測定結果を図 8に示す。
図 8中、太い実線は、 Cu— bitb配位化合物 (A)添加から 1. 5時間経過後の青色 沈殿物の反射スペクトルであり、太!/、一点鎖線は Cu— bitb配位化合物 (A)添加から 6時間経過後の紫色沈殿物の反射スペクトルである。また、細い実線は Cu— bitb配 位化合物 (A)の反射スペクトルであり、細い破線は捕捉カプセル型分子([Cu (bitb
2
) ] (CIO ) )の反射スペクトルである。
4 4 4
[0121] 図 8から明らかなように、添加から 1. 5時間経過後の青色沈殿物の吸収スペクトル は、 590nm付近に吸収極大を有しており、 Cu— bitb配位化合物(A)の反射スぺタト ルと一致した。一方、添加から 6時間経過後の紫色沈殿物の吸収スペクトルは、 540 nm付近に吸収極大を有しており、捕捉カプセル型分子([Cu (bitb) ] (CIO ) )の
2 4 4 4 反射スペクトルと一致した。
[0122] 以上より、 Cu— bitb配位化合物 (A)は、過塩素酸イオンに接触してから 6時間経 過後までに、捕捉カプセル型分子([Cu (bitb) ] (CIO ) )に変化したことが確認さ
2 4 4 4
れ 。
即ち、 Cu— bitb配位化合物 (A)から生じた銅(Π)イオン及び bitbが、過塩素酸ィ オンを捕捉し、捕捉カプセル型分子を形成したことが確認された。
[0123] 〔実施例 10〕 <銅 (II)イオンと bitbとを含む配位化合物による過塩素酸の除去〉
銅(Π)イオンと bitbとを含む配位化合物として、前述の Cu— bitb配位化合物 (A)を 用い、以下のようにして過塩素酸の捕捉実験を行った。
まず、実施例 9で得られた反応溶液 1をろ過して紫色の沈殿物を取り除き、ろ液に 過塩素酸イオンの 0· 5倍当量となるトリス(2, 2 '—ビビリジン)鉄 (Π)錯体 1 · 55mg (
2. 5 11101)を加え、さらに、ニトロベンゼン 10mlを加えて鉄(II)錯体〔Fe (bpy) 〕(C
3 lO ) を抽出した。抽出されたニトロベンゼン中の鉄(II)錯体〔Fe (bpy) ] (CIO ) に
4 2 3 4 2 ついて、吸収スペクトルを測定した。
別途、ブランク溶液として、 Cu— bitb配位化合物(A)を加えていない 0. 5mMの過 塩素酸ナトリウム水溶液 10mlを用意し、このブランク溶液についても、上記反応溶液 1に対する操作と同様の操作を行い、鉄 (Π)錯体〔Fe (bpy) ] (CIO ) の吸収スぺク
3 4 2
トルを測定した。
[0124] 反応溶液 1の吸収スペクトル及びブランク溶液の吸収スペクトル中、鉄 (II)錯体〔Fe
(bpy) ] (CIO ) 由来の吸収極大の強度(吸収波長 524nm)から、過塩素酸イオン
3 4 2
の濃度 (鉄 (Π)錯体〔Fe (bpy) ] (CIO ) の濃度)を見積もった。
3 4 2
さらに、下記式 1に従って過塩素酸イオンの除去効率〔%〕を求めた。
過塩素酸イオンの除去効率〔%〕 = ( (ブランク溶液中の過塩素酸イオンの濃度 反応溶液 1中の過塩素酸イオンの濃度) / (ブランク溶液中の過塩素酸イオンの濃 度)) X 100 · · · 式 1
[0125] 次に、対照実験として、硫酸銅 (銅 (Π)イオン)と bitbとを別々に加える方法による過 塩素酸の除去実験を行った。
具体的には、実施例 9において、 0. 5mMの過塩素酸ナトリウム水溶液 10mlに、 C u— bitb配位化合物(A) 29· 95mg (0. 02mmol)を添加する代わりに、硫酸銅 4· 9 9mg (0. 02mmol)と bitbl l . 78mg (0. 04mmol)とを另リ々に添カロし、更に、上記と 同様にして、ろ過、抽出、吸収スペクトルの測定を行い、過塩素酸イオンの除去効率 を求めた。
[0126] 得られた結果を表 1の「なし」の欄に示す。また、表 1のデータをグラフに表したもの を図 9の「なし」の箇所に示す。図 9中、斜線模様を付した棒グラフ(上側)は、銅 (Π) イオンと bitbとを含む配位化合物(Cu— bitb配位化合物 (A) )を用いる方法による除 去効率を表し、ドット模様を付した棒グラフ(下側)は、硫酸銅 (銅 (Π)イオン)と bitbと を別々に加える方法による除去効率を表す。
表 1及び図 9に示すように、銅 (Π)イオンと bitbとを含む配位化合物を用レ、た場合の 結果(除去効率 95. 51 %)でも、硫酸銅 (銅 (Π)イオン)と bitbとを別々に加えた場合 の結果(除去効率 95. 91 %)とほとんど変わらず、過塩素酸イオンの除去が進行して いることがわかった。
[0127] 次に、妨害陰イオンとして、炭酸イオン (CO 、塩化物イオン (C 、酢酸イオン
3
(CH COO— )、アジ化物イオン(N―)、テトラフルォロホウ酸イオン(BF―)、及びトリ
3 3 4 フルォロメタンスルホン酸イオン(CF SO―)のそれぞれを混入させた 0· 5mM過塩
3 3
素酸ナトリウム水溶液 10mlのそれぞれについて、上記と同様の方法により、銅 (II)ィ オンと bitbとを含む配位化合物による過塩素酸の除去実験及び硫酸銅 (銅 (II)ィォ ン)と bitbとを別々に加える方法による過塩素酸の除去実験を行った。
なお、各妨害陰イオンはナトリウム塩として混入させた。また、過塩素酸イオンと妨 害陰イオンとの比率はモル比で 1: 1となるように調製した。
得られた結果を表 1及び図 9に示す。図 9中、斜線模様を付した棒グラフ(上側)は 、銅 (Π)イオンと bitbとを含む配位化合物を用いる方法による除去効率を表し、ドット 模様を付した棒グラフ(下側)は、硫酸銅 (銅 (II)イオン)と bitbとを別々に加える方法 による除去効率を表す。
[0128] [表 1]
銅(II)イオンと bitbとを 銅(II)イオンと bitbとを含む 妨害陰イオン 別々に加えたときの 配位化合物を加えたときの
除去効率(%) 除去効率(%) なし 95.91 95.51
co3 2- 99.94 99.88
cr 95.41 97.1 1
CH3COO" 99.60 95.46
N3— 99.17 94.87
BF4- 97.48 71.87
CF3SO3- 86.45 88.69
[0129] 表 1及び図 9に示すように、妨害陰イオンの存在下においても、妨害陰イオンがな い場合と同様の結果が得られた。即ち、銅 (II)イオンと bitbを別々に加える方法、及 び銅(Π)イオンと bitbとを含む配位化合物を加える方法のレ、ずれにぉレ、ても、過塩素 酸を選択的に沈殿除去できることが明らかとなった。
[0130] 日本出願 2006— 241297の開示はその全体が参照により本明細書に取り込まれ 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、 特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記さ れた場合と同程度に、本明細書中に参照により取り込まれる。

Claims

請求の範囲
下記一般式 (I)で表される複素環置換芳香族化合物。
Figure imgf000037_0001
[式中、 R2、 R 及び R4のうち 1つは、 Rxに対してメタ位又はパラ位にある Ryであり、 R 及び Ryは互いに独立して下記の複素環置換基を表し、
[化 2]
Rx, Ry
Figure imgf000037_0002
R2、 R3、 R4及び R5のうち、 Ryを除いた残りは、それぞれ独立に、水素原子、炭 素数 1〜30の置換若しくは未置換の脂肪族基、又はスルホン酸基を表す力 同時に 水素原子であることはなぐ
前記複素環置換基のうち、 R6及び R7はそれぞれ独立に、水素原子又はメチル基を 表し、 Aは、窒素原子を少なくとも 1つ含む 5員又は 6員の複素環基を表す。 ] [2] 前記 Ryが Rxに対してパラ位にある請求項 1記載の複素環置換芳香族化合物。
[3] 前記 R6及び R7が共に水素原子である請求項 1記載の複素環置換芳香族化合物。
[4] 前記脂肪族基の炭素数が;!〜 10である請求項 1記載の複素環置換芳香族化合物
Figure imgf000038_0001
[式中、
Figure imgf000038_0002
R2、 R4及び R5は、それぞれ独立に、水素原子、炭素数;!〜 30の置換若 しくは未置換の脂肪族基、又はスルホン酸基を表す力 同時に水素原子であること はなぐ A1は、窒素原子を少なくとも 1つ含む 5員又は 6員の複素環基を表す。 ] 下記式 (a)で表される複素環置換芳香族化合物。
[化 4]
Figure imgf000038_0003
[7] 請求項 1〜請求項 6のいずれか 1項記載の複素環置換芳香族化合物と、平面四配 位又は正八面体配位可能な金属イオンと、を含む配位化合物。
前記金属イオンが、 Zn2+、 Cu2+、 Ni2+、 Co2+、 Fe2+、 Mn2+、 Ag+、 Pd2+、及び P t2+から選ばれる少なくとも 1種である請求項 7記載の配位化合物。
下記一般式 (I)で表される複素環置換芳香族化合物を含む過塩素酸イオン捕捉剤
[化 5]
Figure imgf000039_0001
[式中、 R2、 R 及び R4のうち 1つは、 Rxに対してメタ位又はパラ位にある Ryであり、 R 及び Ryは互いに独立して下記の複素環置換基を表し、
[化 6]
Rx, Ry
Figure imgf000039_0002
R2、 R3、 R4及び R5のうち、 Ryを除いた残りは、それぞれ独立に、水素原子、炭 素数 1〜30の置換若しくは未置換の脂肪族基、又はスルホン酸基を表す力 同時に 水素原子であることはなぐ
前記複素環置換基のうち、 R6及び R7はそれぞれ独立に、水素原子又はメチル基を 表し、 Aは、窒素原子を少なくとも 1つ含む 5員又は 6員の複素環基を表す。 ]
[10] 前記 Ryが Rxに対してパラ位にある請求項 9記載の過塩素酸イオン捕捉剤。
[11] 前記 R6及び R7が共に水素原子である請求項 9記載の過塩素酸イオン捕捉剤。
[12] 前記脂肪族基の炭素数が 1〜 10である請求項 9記載の過塩素酸イオン捕捉剤。
[13] 下記一般式 (Π)で表される複素環置換芳香族化合物を含む過塩素酸イオン捕捉 剤。
[化 7]
Figure imgf000040_0001
[式中、
Figure imgf000040_0002
R2、 R4及び R5は、それぞれ独立に、水素原子、炭素数;!〜 30の置換若 しくは未置換の脂肪族基、又はスルホン酸基を表す力 同時に水素原子であること はなぐ A1は、窒素原子を少なくとも 1つ含む 5員又は 6員の複素環基を表す。 ] 下記式 (a)で表される複素環置換芳香族化合物を含む過塩素酸イオン捕捉剤。
[化 8]
Figure imgf000041_0001
[15] 更に、平面四配位又は正八面体配位可能な金属イオンを含む請求項 9〜請求項 1
4の!/、ずれか 1項記載の過塩素酸イオン捕捉剤。
[16] 請求項 7又は請求項 8記載の配位化合物を含み、前記金属イオンが、該配位化合 物の一部として含まれる請求項 15記載の過塩素酸イオン捕捉剤。
[17] 前記金属イオンが、塩の一部として含まれる請求項 15記載の過塩素酸イオン捕捉 剤。
[18] 前記金属イオンが、 Zn2+、 Cu2+、 Ni2+、 Co2+、 Fe2+、 Mn2+、 Ag+、 Pd2+、及び P t2+から選ばれる少なくとも 1種である請求項 15〜請求項 17のいずれか 1項記載の 過塩素酸イオン捕捉剤。
[19] 液体試料中の過塩素酸イオンを捕捉する方法であって、
請求項 1〜請求項 6のいずれか 1項記載の複素環置換芳香族化合物と、平面四配 位又は正八面体配位可能な金属イオンと、前記液体試料とを接触させて、過塩素酸 イオンを捕捉した捕捉カプセル型分子を形成させる捕捉工程を含む過塩素酸イオン 捕捉方法。
[20] 液体試料中から過塩素酸イオンを除去する方法であって、
請求項 1〜請求項 6のいずれか 1項記載の複素環置換芳香族化合物と、平面四配 位又は正八面体配位可能な金属イオンと、前記液体試料とを接触させて、過塩素酸 イオンを捕捉した捕捉カプセル型分子を形成させる捕捉工程と、
前記捕捉カプセル型分子を沈殿させて液体試料中から除去する除去工程と、 を含む過塩素酸イオン除去方法。
PCT/JP2007/067223 2006-09-06 2007-09-04 Agent de captage d'ion acide perchlorique WO2008029804A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/439,997 US8101084B2 (en) 2006-09-06 2007-09-04 Perchlorate ion trapping agent
EP07806678.4A EP2067774B1 (en) 2006-09-06 2007-09-04 Perchloric acid ion trapping agent
JP2008533163A JP5190995B2 (ja) 2006-09-06 2007-09-04 複素環置換芳香族化合物、配位化合物、過塩素酸イオン捕捉剤、過塩素酸イオン捕捉方法、及び、過塩素酸イオン除去方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006241297 2006-09-06
JP2006-241297 2006-09-06

Publications (1)

Publication Number Publication Date
WO2008029804A1 true WO2008029804A1 (fr) 2008-03-13

Family

ID=39157231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067223 WO2008029804A1 (fr) 2006-09-06 2007-09-04 Agent de captage d'ion acide perchlorique

Country Status (4)

Country Link
US (1) US8101084B2 (ja)
EP (1) EP2067774B1 (ja)
JP (1) JP5190995B2 (ja)
WO (1) WO2008029804A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110499A1 (ja) * 2008-03-05 2009-09-11 国立大学法人静岡大学 水の浄化方法、水の浄化装置、及び水の浄化セット
JP2010022886A (ja) * 2008-07-15 2010-02-04 National Univ Corp Shizuoka Univ テトラフルオロホウ酸イオンの除去方法
JP2010042403A (ja) * 2008-07-15 2010-02-25 National Univ Corp Shizuoka Univ 水の浄化方法
JP2012026981A (ja) * 2010-07-27 2012-02-09 Maezawa Ind Inc テトラフルオロホウ酸イオン検出剤、テトラフルオロホウ酸イオン検出キット、及びテトラフルオロホウ酸イオン検出方法
WO2012102356A1 (ja) 2011-01-28 2012-08-02 国立大学法人静岡大学 カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法
JP2013142082A (ja) * 2012-01-12 2013-07-22 Kuraray Co Ltd 金属錯体、並びにそれからなるアニオン除去材
WO2014017653A1 (ja) * 2012-07-27 2014-01-30 国立大学法人静岡大学 カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036924A (ja) * 2011-08-10 2013-02-21 Kuraray Co Ltd アニオンセンサー及びそれを用いたアニオン検出キット
CN105001247B (zh) * 2015-07-15 2018-03-09 洛阳师范学院 4‑溴间苯二甲酸和1,4‑二(咪唑‑1‑亚甲基)苯混配镉配合物及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1745447A1 (de) * 1967-04-01 1971-09-16 Schering Ag Verfahren zur Herstellung von Polyamiden
JPH09504472A (ja) 1993-10-26 1997-05-06 サイオコル・コーポレーション 過塩素酸塩の除去方法
JP2004346299A (ja) 2003-05-19 2004-12-09 Rohm & Haas Co 高い選択性の過塩素酸塩除去樹脂、ならびにそれを使用する方法およびシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565837A (en) 1967-04-01 1971-02-23 Schering Ag Polyamide resins containing an n,n'-dipiperazyl component
BE790089A (fr) * 1971-10-14 1973-04-13 Ici Ltd Derives de l'imidazole
JPH094472A (ja) 1995-06-21 1997-01-07 Sanshin Ind Co Ltd エンジンのスロットルセンサ装置
JP4848615B2 (ja) 2003-12-26 2011-12-28 大日本印刷株式会社 折りたたみフォーム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1745447A1 (de) * 1967-04-01 1971-09-16 Schering Ag Verfahren zur Herstellung von Polyamiden
JPH09504472A (ja) 1993-10-26 1997-05-06 サイオコル・コーポレーション 過塩素酸塩の除去方法
JP2004346299A (ja) 2003-05-19 2004-12-09 Rohm & Haas Co 高い選択性の過塩素酸塩除去樹脂、ならびにそれを使用する方法およびシステム

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHENG-YONG SU ET AL.: "Coordination-directed assembly of trigonal and tetragonal molecular boxes encapsulating anionic guests", J. CHEM. SOC. DALTON TRANS., 2001, pages 359 - 361, XP002568103, DOI: doi:10.1039/b010118o
HARTSHORN C.M. ET AL.: "Poly(pyrazol-1-ylmethyl)benzenes: new multidentate ligands", AUST. J. CHEM., vol. 48, no. 9, 1995, pages 1587 - 1599, XP001000022 *
J. AM. CHEM. SOC., vol. 125, no. 28, 2003, pages 8595 - 8613
JOURNAL OF THE SOCIETY OF ENVIRONMENTAL INSTRUMENTATION CONTROL AND AUTOMATION (EICA), vol. 11, no. 3, 2006, pages 215 - 218
See also references of EP2067774A4 *
SHEN H.Y. ET AL.: "Synthesis and characterization of copper(II), iron(II), cobalt(II), nickel(II) and manganese(II) complexes of azido-1,4-bis(imidazol-1-yl-methyl)benzene (bix) or 1,4-bis (imidazol-1-yl-methyl)-2,5-dimethyl-benzene (Mebix)", SYNTH. REACT. INORG. MET. ORG. CHEM., vol. 28, no. 8, 1999, pages 1331 - 1338, XP003021608 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110499A1 (ja) * 2008-03-05 2009-09-11 国立大学法人静岡大学 水の浄化方法、水の浄化装置、及び水の浄化セット
JP5448195B2 (ja) * 2008-03-05 2014-03-19 国立大学法人静岡大学 水の浄化方法、水の浄化装置、及び水の浄化セット
JP2010022886A (ja) * 2008-07-15 2010-02-04 National Univ Corp Shizuoka Univ テトラフルオロホウ酸イオンの除去方法
JP2010042403A (ja) * 2008-07-15 2010-02-25 National Univ Corp Shizuoka Univ 水の浄化方法
JP2012026981A (ja) * 2010-07-27 2012-02-09 Maezawa Ind Inc テトラフルオロホウ酸イオン検出剤、テトラフルオロホウ酸イオン検出キット、及びテトラフルオロホウ酸イオン検出方法
WO2012102356A1 (ja) 2011-01-28 2012-08-02 国立大学法人静岡大学 カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法
US9139533B2 (en) 2011-01-28 2015-09-22 National University Corporation Shizuoka University Capsule-type compound, anion removing agent, and method for removing anion
JP5954829B2 (ja) * 2011-01-28 2016-07-20 国立大学法人静岡大学 カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法
JP2013142082A (ja) * 2012-01-12 2013-07-22 Kuraray Co Ltd 金属錯体、並びにそれからなるアニオン除去材
WO2014017653A1 (ja) * 2012-07-27 2014-01-30 国立大学法人静岡大学 カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法
JPWO2014017653A1 (ja) * 2012-07-27 2016-07-11 国立大学法人静岡大学 カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法

Also Published As

Publication number Publication date
JPWO2008029804A1 (ja) 2010-01-21
EP2067774B1 (en) 2014-11-26
EP2067774A1 (en) 2009-06-10
JP5190995B2 (ja) 2013-04-24
US20100200508A1 (en) 2010-08-12
EP2067774A4 (en) 2010-03-24
US8101084B2 (en) 2012-01-24

Similar Documents

Publication Publication Date Title
WO2008029804A1 (fr) Agent de captage d&#39;ion acide perchlorique
Bhalla et al. Radiofluorination of a pre‐formed gallium (III) aza‐macrocyclic complex: towards next‐generation positron emission tomography (PET) imaging agents
Li et al. Viologen-derived material showing photochromic, visually oxygen responsive, and photomodulated luminescence behaviors
Hao et al. Selective anion sensing by a ruthenium (ii)–bipyridyl-functionalized tripodal tris (urea) receptor
de Bettencourt-Dias et al. Secondary-sphere chlorolanthanide (III) complexes with a 1, 3, 5-triazine-based ligand supported by anion− π, π–π, and hydrogen-bonding interactions
Khandar et al. Coordination complexes and polymers from the initial application of phenyl-2-pyridyl ketone azine in mercury chemistry
de Bettencourt-Dias et al. Anion-π and H-bonding interactions supporting encapsulation of [Ln (NO3) 6/5] 3–/2–(Ln= Nd, Er) with a triazine-based ligand
Boulebd et al. New Schiff bases derived from benzimidazole as efficient mercury-complexing agents in aqueous medium
JP2010022886A (ja) テトラフルオロホウ酸イオンの除去方法
Tang et al. Structural tuning and sensitization of uranyl phosphonates by incorporation of countercations into the framework
Sun et al. Synthesis and Reactivity of Bis (silylene)‐Coordinated Calcium and Divalent Lanthanide Complexes
JP2010042403A (ja) 水の浄化方法
JP5448195B2 (ja) 水の浄化方法、水の浄化装置、及び水の浄化セット
Zhao et al. New Bimetallic Reactivity in Pt2II, II/Pt2IV, IV Transformation Mediated by a Benzene Ring
Podyachev et al. Synthesis, IR and NMR characterization and ion extraction properties of tetranonylcalix [4] resorcinol bearing acetylhydrazone groups
Li et al. Copper (i) complexes based on ligand systems with two different binding sites: synthesis, structures and reaction with O 2
Hua et al. Ammonium Phenylphosphonamidodiselenoates and Phenylphosphonamidodi‐selenoic Diamides from the Selenation of Primary and Secondary Amines
Bharara et al. Hydroxy-and alkoxy-bridged dinuclear uranyl–Schiff base complexes: hydrolysis, transamination and extraction studies
JP2016160256A (ja) 細孔性高分子化合物、分離対象化合物の分離方法、単結晶、結晶構造解析用試料の作製方法、及び解析対象化合物の分子構造決定方法
Kubota et al. Synthesis, structure, and luminescence properties of arylpyridine-substituted terpyridine Zn (II) and Cd (II) complexes
Aragay et al. Synthesis, characterization and X-ray crystal structure determination of cyclopalladated [Csp2, N, N′]−, zwitterionic and chelated compounds in the reaction of 3, 5-diphenyl-N-alkylaminopyrazole derived ligands with Pd (II)
WO2012102356A1 (ja) カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法
Kandasamy et al. Removal of chromium, copper, and nickel ions using bidentate polymeric ligand derived from 4‐aminophenol and salicylaldehyde
Barone et al. Activation of ketones by electrophilic metal complexes: Synthesis of some ketonyl platinum (II) complexes and X-ray crystal structure of [PtCl {CH2C (O) CH3}(1, 10-phenanthroline)]· 1/2Y (Y= H2O or CH2Cl2)
WO2014017653A1 (ja) カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806678

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008533163

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12439997

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007806678

Country of ref document: EP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)