WO2012102356A1 - カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法 - Google Patents

カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法 Download PDF

Info

Publication number
WO2012102356A1
WO2012102356A1 PCT/JP2012/051720 JP2012051720W WO2012102356A1 WO 2012102356 A1 WO2012102356 A1 WO 2012102356A1 JP 2012051720 W JP2012051720 W JP 2012051720W WO 2012102356 A1 WO2012102356 A1 WO 2012102356A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule
anion
type compound
aqueous sample
general formula
Prior art date
Application number
PCT/JP2012/051720
Other languages
English (en)
French (fr)
Inventor
近藤 満
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to US13/980,988 priority Critical patent/US9139533B2/en
Priority to JP2012554850A priority patent/JP5954829B2/ja
Priority to EP12740009.1A priority patent/EP2669275B1/en
Publication of WO2012102356A1 publication Critical patent/WO2012102356A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/20Two benzimidazolyl-2 radicals linked together directly or via a hydrocarbon or substituted hydrocarbon radical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/09Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/018Granulation; Incorporation of ion-exchangers in a matrix; Mixing with inert materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers

Definitions

  • the present invention relates to a capsule-type compound, an anion removing agent, and an anion removing method.
  • Perchlorate ion (ClO 4 ⁇ ), tetrafluoroborate ion (BF 4 ⁇ ), nitrate ion (NO 3 ⁇ ), and bromide ion (Br ⁇ ) are harmful ions but have high solubility in water.
  • iodide ions (I ⁇ ) are also anions that are highly soluble in water and difficult to remove from the aqueous solution.
  • perchlorate ions may cause growth disorders and intellectual disabilities when taken by infants and children in excessive amounts.
  • a capture capsule-type molecule having a structure in which perchlorate ions are encapsulated in a capsule skeleton composed of 4 bitb4 molecules and Cu 2+ 2, and a method for precipitating the generated capture capsule-type molecule is known (for example, (See International Publication No. 2008/029804 pamphlet).
  • bitb is perchlorate ion - in addition, tetrafluoroborate ion (ClO 4) (BF 4 - ) and the like can also show the effect the removal of other anions are known (e.g., JP-2010 No. -022886 and Japanese Patent Application Laid-Open No. 2010-042403).
  • an object of the present invention is to provide at least one anion selected from the group consisting of ClO 4 ⁇ , BF 4 ⁇ , NO 3 ⁇ , Br ⁇ , and I ⁇ and the anion in an aqueous sample containing water. It is to provide a capsule-type compound, an anion remover, and an anion removal method that can efficiently reduce the concentration of the anion.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , and R 13 are respectively Independently, it represents a hydrogen atom or a methyl group.
  • M 1 and M 2 each independently represent Cu 2+ , Fe 2+ , Ni 2+ , Co 2+ , or Zn 2+ .
  • a broken line represents a coordination bond.
  • An anion remover comprising the capsule compound according to any one of ⁇ 1> to ⁇ 4> as an active ingredient.
  • An anion removal method including a step of removing the anion from the aqueous sample by contacting the capsule compound according to any one of the above.
  • ⁇ 7> the aqueous sample, at least ClO 4 - anion removal method according to ⁇ 6> including.
  • At least one anion selected from the group consisting of ClO 4 ⁇ , BF 4 ⁇ , NO 3 ⁇ , Br ⁇ , and I ⁇ and the concentration of the anion in an aqueous sample containing water can be efficiently reduced in a short time, and an anion removing agent and an anion removing method can be provided.
  • FIG. 1 is a molecular structure diagram of a capsule type compound [SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 ”, which is an example of a capsule type compound of the present invention.
  • FIG. It is a graph which shows transition (up to 180 minutes after the addition of anion aqueous solution A) of the anion concentration in Example 2.
  • 6 is a chart of ion chromatography of an aqueous sodium perchlorate solution ([SO 4 ⁇ Cu 2 (m-bitbit) 4 ] SO 4 -before passing through a fixed filter) in Example 4.
  • FIG. 6 is an ion chromatography chart of an aqueous sodium perchlorate solution (after passing through [SO 4 [Cu 2 (m-bitbit) 4 ] SO 4 -fixed filter) in Example 4.
  • FIG. It is a graph which shows transition (up to 180 minutes after the addition of iodide ion aqueous solution B) of iodide ion concentration in Example 5. It is a graph which shows transition (up to 180 minutes after the addition of anion aqueous solution A) of the anion concentration in Comparative Example 1. It is a graph which shows transition (up to 10000 minutes after the addition of anion aqueous solution A) of anion concentration in Comparative Example 1.
  • the capsule type compound of the present invention comprises a capsule skeleton represented by the following general formula (1) and a capsule divalent cation comprising a sulfate ion encapsulated in the capsule skeleton, and a counter ion for the capsule divalent cation. And a sulfate ion.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , and R 13 are each independent.
  • M 1 and M 2 each independently represent Cu 2+ , Fe 2+ , Ni 2+ , Co 2+ , or Zn 2+ .
  • a broken line represents a coordination bond.
  • FIG. 1 shows an example of a capsule-type compound of the present invention, in which R 1 to R 13 in the general formula (1) and in the general formula (2) described later are hydrogen atoms, and M 1 in the general formula (1) 2 is a molecular structure diagram conceptually showing a capsule-type compound in which M 2 is Cu 2+ .
  • the compound in which R 1 to R 13 in the general formula (2) to be described later are hydrogen atoms is 1,3-bis (benzimidazol-1-yl-methyl) -2,4,6-trimethylbenzene ( Hereinafter, it is also referred to as “m-bitb”).
  • a capsule compound in which R 1 to R 13 in the general formula (1) are hydrogen atoms and M 1 and M 2 in the general formula (1) are Cu 2+ is represented by “[ It is also referred to as “SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 ”.
  • the structure of [SO 4 ⁇ Cu 2 (m-bitbit) 4 ] SO 4 is composed of a capsule skeleton formed by two Cu 2+ ions and four molecules of m-bitbit, and the capsule skeleton.
  • An encapsulated divalent cation (part surrounded by a one-dot chain line in FIG.
  • the structure is composed of sulfate ions (SO 4 2 ⁇ ).
  • SO 4 2 ⁇ sulfate ions
  • two oxygen atoms in the contained sulfate ion (SO 4 2 ⁇ ) are coordinated with two Cu 2+ ions, respectively, as indicated by the broken line in FIG.
  • the capsule divalent cation is constituted as a divalent cation as a whole by two Cu 2+ ions, one sulfate ion (SO 4 2 ⁇ ), and four molecules of m-bitbit.
  • [SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 is composed of the capsule-type divalent cation and one sulfate ion (SO 4 2 ⁇ ) as a counter ion as a neutral compound as a whole. Has been. The structure shown in FIG. 1 can be confirmed by single crystal structure analysis.
  • the structure of the capsule-type compound of the present invention other than [SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 is different from the type of ligand (the compound in parentheses in the general formula (1)) and the type of metal ion. Is the same as the structure of [SO 4 -Cu 2 (m-bitb) 4 ] SO 4 .
  • the capsule compound of the present invention comes into contact with an aqueous sample containing at least one anion selected from the group consisting of ClO 4 ⁇ , BF 4 ⁇ , NO 3 ⁇ , Br ⁇ , and I ⁇ and water
  • the anion and the sulfate ion as the counter ion in the capsule compound of the present invention are rapidly counter-ion exchanged, and the anion in the aqueous sample is taken into the capsule compound as a counter ion. Therefore, according to the capsule-type compound of the present invention, the concentration of the anion in the aqueous sample can be efficiently reduced in a short time.
  • the capsule type compound of the present invention and the capsule type compound after the counter ion exchange are both insoluble in water, and this also contributes to the reduction of the anion concentration efficiently in a short time. It is considered a thing. Furthermore, since the capsule-type compound of the present invention is insoluble in water, it has an advantage that the concentration of the anion can be lowered while suppressing contamination of the aqueous sample while suspended in the aqueous sample.
  • insoluble in water means that the solubility in 100 parts by mass of water (25 ° C.) is 0.1 parts by mass or less.
  • 1,4-bis (imidazol-1-yl-methyl) 2,3,5,6-tetramethylbenzene described in WO2008 / 029804 pamphlet is used.
  • bitb was added to an aqueous sample containing perchlorate ions and water, and perchlorate ions were encapsulated in a capsule skeleton composed of four bitb molecules and Cu 2+ 2 pieces. There is a need to generate capture capsule molecules of structure.
  • the capsule type compound of the present invention when used, the capsule type compound of the present invention is added to an aqueous sample containing anions such as perchlorate ions and water, and counterion exchange is performed in the aqueous sample.
  • anions such as perchlorate ions and water
  • counterion exchange is performed in the aqueous sample.
  • the reaction time for counter-ion exchange in the case of using the capsule-type compound of the present invention is shorter than the reaction time for generating the capture capsule-type molecule in the method described in the pamphlet. It is presumed that it contributes to more efficient removal of anions.
  • the present invention is not limited by the above reason.
  • the concentration of the anion in the aqueous sample with the capsule type compound of the present invention does not require a long time (for example, 1 hour or more), and before the treatment (treatment with the capsule type compound of the present invention). It is not necessary to specifically limit the concentration of the anion in the aqueous sample of the previous. Therefore, for example, an aqueous sample having an anion concentration of 20 mM or less can be used as the aqueous sample before treatment.
  • the time required for reducing the concentration of the anion in the aqueous sample with the capsule-type compound of the present invention can be, for example, within 30 minutes, further within 10 minutes, It can also be within 5 minutes.
  • the concentration of the anion in the aqueous sample before treatment can be, for example, 10 mM or less, and further 5 mM or less. It can also be 1 mM or less.
  • the capsule type compound of the present invention can significantly reduce the concentration of ClO 4 ⁇ among the anions (that is, more efficiently in a shorter time).
  • the “aqueous sample” in the present invention is not particularly limited as long as it is a sample containing at least water as a solvent.
  • the “aqueous sample” is preferably an aqueous sample in which the ratio of water in the solvent is 30% by mass or more, more preferably an aqueous sample in which the ratio of water in the solvent is 50% by mass or more, and the ratio of water in the solvent.
  • a water-based sample in which is 80% by mass or more is more preferable.
  • the water-based sample of the present invention may be a polar protic solvent (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetic acid, formic acid, etc.), polar aprotic as well as water.
  • It may contain at least one kind of solvent (tetrahydrofuran, acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, etc.) and nonpolar solvent (benzene, hexane, toluene, diethyl ether, chloroform, ethyl acetate, methylene chloride, etc.).
  • solvent tetrahydrofuran, acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, etc.
  • nonpolar solvent benzene, hexane, toluene, diethyl ether, chloroform, ethyl acetate, methylene chloride, etc.
  • aqueous sample in the present invention include, for example, clean water, sewage, various wastewater (industrial wastewater, etc.), liquid intermediate products, industrial water, drinking water, various aqueous solutions, colloidal solutions (milk, etc.), Suspensions containing food and soil are included.
  • M 1 and M 2 are preferably the same type of cation from the viewpoint of ease of synthesis and the like. Further, M 1 and M 2 are particularly preferably Cu 2+ in that the concentration of anions can be decreased in a shorter time.
  • the compound in parentheses in the general formula (1) is also referred to as a ligand.
  • the ligand in the present invention is a compound represented by the following general formula (2).
  • R 1 ⁇ R 13 have the same meanings as R 1 ⁇ R 13 in general formula (1).
  • R 1 to R 12 are preferably hydrogen atoms from the viewpoint of easiness of synthesis.
  • R 1 to R 13 are preferably hydrogen atoms from the viewpoint of easiness of synthesis.
  • Examples of the method for synthesizing the compound represented by the general formula (2) include H. K. Liu, C. Y. Su, CM Qian, J. Liu, H. Y. Tan, B. S. Kang, Synthesis methods described in J. Chem. Soc., DaltonTrans., 2001, 8, 1167.
  • exemplary compounds of the compound represented by the general formula (2) are shown. However, the present invention is not limited to these.
  • the following exemplary compound (a) is 1,3-bis (benzimidazol-1-yl-methyl) -2,4,6-trimethylbenzene (m-bitbit).
  • the capsule type compound of the present invention can be obtained as a compound insoluble in water (precipitation).
  • the reaction temperature at this time is not particularly limited, but for example, it is preferably 10 ° C. to 80 ° C.
  • the reaction time is not particularly limited, but is preferably 20 minutes or longer.
  • the anion removing agent of the present invention contains the capsule-type compound of the present invention as an active ingredient. Therefore, an anion remover of the present invention, an aqueous sample containing at least one anion selected from the group consisting of ClO 4 ⁇ , BF 4 ⁇ , NO 3 ⁇ , Br ⁇ , and I ⁇ and water, , The concentration of the anion in the aqueous sample can be efficiently reduced in a short time.
  • unit of this invention of a solid state (powder form, crystalline form, etc.) is mentioned.
  • the form (tablet shape etc.) of the mixture of the capsule type compound of this invention of a solid state and other components, such as a binder component is mentioned.
  • the form of the suspension form which the capsule type compound (or mixture containing this invention capsule type compound) of this invention was suspended in the aqueous medium is mentioned. It is done.
  • the anion removal method of the present invention includes an aqueous sample containing at least one anion selected from the group consisting of ClO 4 ⁇ , BF 4 ⁇ , NO 3 ⁇ , Br ⁇ , and I ⁇ , and water.
  • the anion removal method of the present invention since the capsule type compound of the present invention and the anion can be brought into contact with each other, the concentration of the anion in the aqueous sample can be efficiently reduced in a short time. it can.
  • the contact between the aqueous sample and the capsule-type compound of the present invention includes, for example, adding the capsule-type compound of the present invention (or an anion removing agent containing the capsule-type compound of the present invention as an active ingredient) to the aqueous sample. Can be performed. Alternatively, the capsule-type compound of the present invention (or an anion remover containing the capsule-type compound of the present invention as an active ingredient) may be placed in a container in advance and the aqueous sample added thereto. Moreover, it is also preferable to perform the said contact by allowing the said aqueous sample to pass through the filter which fixed the capsule type compound of this invention (or the anion removal agent which contains the capsule type compound of this invention as an active ingredient).
  • the aqueous sample in the present invention contains at least one anion selected from the group consisting of ClO 4 ⁇ , BF 4 ⁇ , NO 3 ⁇ , Br ⁇ , and I ⁇ .
  • the form includes at least one anion selected from the group consisting of ClO 4 ⁇ , BF 4 ⁇ , NO 3 ⁇ , and Br ⁇ .
  • the capsule-type compound of the present invention can significantly reduce the concentration of ClO 4 ⁇ particularly (more efficiently in a shorter time)
  • the aqueous sample in the anion removal method of the present invention is at least ClO 4. 4 - it is preferable to include. That is, the aqueous sample contains at least ClO 4 ⁇ and, if necessary, further contains at least one anion selected from the group consisting of BF 4 ⁇ , NO 3 ⁇ , Br ⁇ , and I ⁇ . preferable.
  • the aqueous sample may be heated from the viewpoint of increasing the contact frequency between the capsule compound of the present invention and the anion.
  • the temperature at the time of the contact can be 0 to 100 ° C., and preferably 20 to 80 ° C.
  • the aqueous sample may be stirred after the contact between the capsule-type compound of the present invention and the anion, or left as it is without stirring, but the contact frequency is increased.
  • stirring is preferable.
  • means such as a stirrer, shaking of a container, ultrasonic irradiation, microwave irradiation, convection by heating, and the like can be used. Among these, ultrasonic irradiation is preferable.
  • the anion can be easily separated from the aqueous sample.
  • a separation method a usual method for separating a precipitate from a solution can be applied as it is, and examples thereof include separation of a supernatant liquid by decantation, filtration by a filter, and separation by a centrifugal separation operation.
  • ClO 4 ⁇ , BF is contained in the aqueous sample by counterion exchange between sulfate ions, which are counter ions in the capsule compound of the present invention, and anions to be removed.
  • Sulfate ions SO 4 2 ⁇
  • SO 4 2 ⁇ which are less harmful than 4 ⁇ , NO 3 ⁇ , Br ⁇ , and I ⁇
  • the released sulfate ions can be easily removed from the aqueous sample by a known method such as a method of precipitating as a poorly tolerable salt in water by adding calcium chloride.
  • a capsule (compound represented by the general formula (2)) is generated by decomposing the capsule-type compound after ion exchange generated by the removal of the anion.
  • the capsule-type compound of the present invention can be synthesized (regenerated) using a ligand.
  • the capsule-type compound after the ion exchange is extracted with an organic solvent such as methanol, and a solution in which a basic reagent such as sodium carbonate is dissolved is added to the obtained extract, or the sulfide is added to the extract. It can be performed by a method of ventilating hydrogen.
  • NiSO 4 ⁇ 6H 2 O 39.4 mg, 0.15 mmol was dissolved in water (30 mL) to obtain an aqueous solution of NiSO 4 ⁇ 6H 2 O.
  • an m-bitb solution in which m-bitb (110 mg, 0.30 mmol) was dissolved in ethanol was prepared, and the obtained m-bbitb solution was added to an aqueous solution of NiSO 4 .6H 2 O at about 40 ° C. Stir for several hours. After the precipitate formed in the reaction solution was removed by filtration, the filtrate was gradually concentrated under reduced pressure to obtain a greenish white solid.
  • this syringe filter was dried at room temperature under reduced pressure for 24 hours, and a syringe filter on which [SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 was fixed (hereinafter referred to as “[SO 4 ⁇ Cu 2 (m-bitbb 4 ) SO 4 -fixed filter ”).
  • Example 2 ⁇ Removal of anion (anion) by capsule type compound ([SO 4 ⁇ Cu 2 (m-bbitb) 4 ] SO 4 )> Sodium perchlorate (61.2 mg, 0.5 mmol), sodium bromide (51.5 mg, 0.5 mmol), sodium nitrate (42.5 mg, 0.5 mmol), sodium sulfate (71.0 mg, 0.5 mmol) Are each accurately weighed and dissolved in ultrapure water (500 mL) having a water temperature of 30 ° C., and an anionic aqueous solution A having a concentration of 1 mM of each anion (ClO 4 ⁇ , Br ⁇ , NO 3 ⁇ , SO 4 2 ⁇ ) is added. Prepared.
  • the “Time (min)” column in Table 1 and the horizontal axis in FIG. 2 represent the elapsed time (unit: minutes) from the addition of the aqueous anion solution A.
  • the vertical axis represents the concentration (unit: mM) of each anion in the aqueous sample 1.
  • Example 2 especially for ClO 4 ⁇ , the concentration decreased remarkably, and the ClO 4 ⁇ concentration, which was 1 mM (about 100,000 ppb), decreased to 0.02 mM or less (about 2,000 ppb or less) within 1 hour of the elapsed time. Declined.
  • Example 3 ⁇ Removal of anion (anion) by capsule type compound ([SO 4 ⁇ Ni 2 (m-bitbit) 4 ] SO 4 )>
  • Example 2 similarly to [SO 4 ⁇ Cu 2 (m- bbitb) 4] SO 4 and [SO 4 ⁇ Ni 2 (m- bbitb) 4] was changed to SO 4
  • Example 2 anion When an experiment of removing (anion) was performed, as in Example 2, [SO 4 ⁇ Ni 2 (m-bitbit) 4 ] SO 4 decreased the anion (anion) concentration in the aqueous sample. was confirmed.
  • Example 4 ⁇ [SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 -Removal of anion (anion) with fixed filter> Prepare 6 mL of sodium perchlorate aqueous solution (0.010 mM) containing 1000 ppb perchlorate ion, and pass this aqueous solution through the [SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 -fixed filter shown above. I let you. [SO 4 ⁇ Cu 2 (m- bbitb) 4] SO 4 - for the after passing through the before passing through the fixed filter, respectively, perchlorate ion contained in sodium perchlorate solution - of (ClO 4) The concentration was determined using ion chromatography. FIG.
  • FIG. 3 shows an ion chromatography chart of an aqueous solution of sodium perchlorate ([SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 -before passing through a fixed filter), and FIG. 4 shows sodium perchlorate.
  • An ion chromatography chart of an aqueous solution [SO 4 ⁇ Cu 2 (m-bitbit) 4 ] SO 4 -after passing through a fixed filter) is shown. From the results of FIGS.
  • Example 4 the concentration of ClO 4 ⁇ could be reduced from 1000 ppb to 12 ppb simply by passing through a [SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 -fixed filter. .
  • the target value of the safety standard concentration of perchlorate ion is set to 24.5 ppb or less in the US Environmental Protection Agency (EPA). In Example 4, this safety standard concentration was achieved in a very short time. .
  • Example 5 Removal of iodide ion by capsule type compound ([SO 4 ⁇ Cu 2 (m-bitbit) 4 ] SO 4 )> Sodium iodide (150 mg, 1 mmol) was accurately weighed and dissolved in ultrapure water (1000 mL) having a water temperature of 30 ° C. to prepare an aqueous iodide ion solution B having a concentration of 1 mM.
  • the collected 20 ⁇ L of the aqueous sample 2 was diluted 25 times with 4800 ⁇ L of ultrapure water, and the iodide ion concentration in the diluted aqueous sample 2 was measured using ion chromatography. From the measurement results, the transition of the iodide ion concentration in the aqueous sample 2 was determined. The transition of the iodide ion concentration in the aqueous sample 2 is shown in FIG.
  • the concentration of I ⁇ decreases to about 0.2 mM within 30 minutes from the addition of the iodide ion aqueous solution B, and decreases to 0.08 mM after 180 minutes from the addition of the iodide ion aqueous solution B. did.
  • Example 2 [Comparative Example 1] ⁇ Removal of perchlorate ion (ClO 4 ⁇ ) with ion exchange resin>
  • [SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 (0.1967 g, 0.1 mmol) was added to an ion exchange resin (SR601188A530E (strongly basic anion exchange resin) manufactured by Purolite) of the same mass. Except for the change, an aqueous sample 3 was prepared in the same manner as in Example 2, and the transition of the concentration of each anion in the aqueous sample 3 was measured in the same manner as in Example 2.
  • the transition of the concentration of each anion in the aqueous sample 3 was measured until 10000 minutes (about 1 week) after the addition of the aqueous anion solution A.
  • the transition of the anion concentration in the aqueous sample 3 is shown in FIG. 6 (up to 180 minutes after the addition of the anionic aqueous solution A) and FIG. 7 (up to 10000 minutes after the addition of the anionic aqueous solution A).
  • 6 and 7 represents the elapsed time (unit: minutes) from the addition of the anion aqueous solution A. 6 and 7 represents the concentration (unit: mM) of each anion in the aqueous sample 3.
  • Example 1 As shown in FIGS. 6 and 7, in Comparative Example 1, it took a longer time than Example 2 to reduce the concentration of each anion. For example, it takes 180 minutes or more to reduce the Br ⁇ concentration to about 0.8 mM, 150 minutes or more to reduce the NO 3 ⁇ concentration to about 0.6 mM, and the ClO 4 ⁇ concentration to about 0.1 mM. It took 1000 minutes or more to lower.
  • Example 2 the capsule type compound ([SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 ) in which M 1 and M 2 in the general formula (1) are Cu 2+ was used.
  • An example of anion removal is shown.
  • M 1 and M 2 are capsules of Ni 2+ ([SO 4 ⁇ Ni 2 (m-bitb) 4 ] SO 4
  • An example of anion removal using) was shown.
  • the present invention is not limited to these examples.
  • M 1 and M 2 in the general formula (1) are similar to Cu 2+ and Ni 2+ in a planar four-coordinate configuration, a tetragonal pyramidal configuration, and
  • the capsule compound that is Fe 2+ , Co 2+ , or Zn 2+ capable of octahedral coordination [SO 4 [Cu 2 (m-bitb) 4 ] SO 4 or [SO 4 ⁇ Ni 2 (m- bbitb) 4] can be prepared in the same manner as SO 4, the same effect as [SO 4 ⁇ Cu 2 (m- bbitb) 4] SO 4 and [SO 4 ⁇ Ni 2 (m- bbitb) 4] SO 4 be able to.
  • capsule compounds [SO 4 ⁇ Cu 2 (m-bitbit) 4 ] SO 4 or [SO 4 ) in which R 1 to R 13 in the general formula (1) are hydrogen atoms are used.
  • An example using ⁇ Ni 2 (m-bitb) 4 ] SO 4 has been shown, but for a capsule compound in which at least one of R 1 to R 13 in the general formula (1) is a methyl group, the starting material is also used. It can be synthesized in the same manner as [SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 or [SO 4 ⁇ Ni 2 (m-bitb) 4 ] SO 4 by changing the (ligand).
  • the basic skeleton of the ligand is coordinated in [SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 or [SO 4 ⁇ Ni 2 (m-bitb) 4 ] SO 4. Since the basic skeleton of the child (m-bitbit) is the same, it is the same as [SO 4 ⁇ Cu 2 (m-bitb) 4 ] SO 4 or [SO 4 ⁇ Ni 2 (m-bitb) 4 ] SO 4 An effect can be obtained.
  • ClO 4 ⁇ , Br ⁇ , and NO 3 ⁇ were removed, in Example 4 ClO 4 ⁇ was removed, and in Example 5, I ⁇ was removed. but, by using the capsule-type compound of the present invention, ClO 4 - for even ClO 4 - - BF 4 in which the structure and properties similar to be removed as well.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

 本発明では、下記一般式(1)で表されるカプセル骨格及び該カプセル骨格に内包された硫酸イオンからなるカプセル型2価カチオンと、前記カプセル型2価カチオンに対する対イオンとしての硫酸イオンと、からなるカプセル型化合物が提供される〔一般式(1)中、R、R、R、R、R、R、R、R、R、R10、R11、R12、及びR13は、それぞれ独立に、水素原子又はメチル基を表し、M及びMは、それぞれ独立に、Cu2+、Fe2+、Ni2+、Co2+、又はZn2+を表す。〕。

Description

カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法
 本発明は、カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法に関する。
 過塩素酸イオン(ClO )、テトラフルオロホウ酸イオン(BF )、硝酸イオン(NO )、及び臭化物イオン(Br)は、有害イオンでありながら水に対する溶解性が高いため、水溶液中からの除去が困難な陰イオンである。また、これらの陰イオンに加えてヨウ化物イオン(I)も、水に対する溶解性が高く水溶液中からの除去が困難な陰イオンである。
 例えば、過塩素酸イオンは、乳幼児や子供が過量に摂取すると、成長障害や知的障害を引き起こすことが懸念されている。
 水溶液中から過塩素酸イオン等の陰イオンを除去する方法としては、例えば、イオン交換樹脂を用いる方法が知られている(例えば、特開2004-346299号公報及び「NEDO海外レポート、No.946、2004.12.15」参照)。
 また、過塩素酸イオンを含む水溶液に、1,4-ビス(イミダゾール-1-イル-メチル)2,3,5,6-テトラメチルベンゼン(以下、「bitb」ともいう)を添加することにより、bitb4分子及びCu2+2個からなるカプセル骨格中に過塩素酸イオンが内包された構造の捕捉カプセル型分子を生成させ、生成した捕捉カプセル型分子を沈殿させる方法が知られている(例えば、国際公開第2008/029804号パンフレット参照)。bitbは、過塩素酸イオン(ClO )以外にも、テトラフルオロホウ酸イオン(BF )等その他の陰イオンの除去にも効果を示すことが知られている(例えば、特開2010-022886号公報及び特開2010-042403号公報参照)。
 しかしながら、水系試料中におけるClO 、BF 、NO 、Br、及びIからなる群から選択される少なくとも1種の陰イオンの濃度を、より短時間でより効率よく低下させることが求められている。
 従って、本発明の目的は、ClO 、BF 、NO 、Br、及びIからなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料中の該陰イオンの濃度を、短時間で効率よく低下させることができるカプセル型化合物、陰イオン除去剤、及び陰イオン除去方法を提供することである。
 前記課題を解決するための手段は以下のとおりである。
<1> 下記一般式(1)で表されるカプセル骨格及び該カプセル骨格に内包された硫酸イオン(SO 2-)からなるカプセル型2価カチオンと、前記カプセル型2価カチオンに対する対イオンとしての硫酸イオン(SO 2-)と、からなるカプセル型化合物。
Figure JPOXMLDOC01-appb-C000002
〔一般式(1)中、R、R、R、R、R、R、R、R、R、R10、R11、R12、及びR13は、それぞれ独立に、水素原子又はメチル基を表す。一般式(1)中、M及びMは、それぞれ独立に、Cu2+、Fe2+、Ni2+、Co2+、又はZn2+を表す。一般式(1)中、破線は配位結合を表す。〕
<2> 前記M及び前記Mが、同一種である<1>に記載のカプセル型化合物。
<3> 前記M及び前記Mが、Cu2+である<1>又は<2>に記載のカプセル型化合物。
<4> 前記R、前記R、前記R、前記R、前記R、前記R、前記R、前記R、前記R、前記R10、前記R11、前記R12、及び前記R13が、水素原子である<1>~<3>のいずれか1項に記載のカプセル型化合物。
<5> <1>~<4>のいずれか1項に記載のカプセル型化合物を有効成分として含む陰イオン除去剤。
<6> ClO 、BF 、NO 、Br、及びIからなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料と、<1>~<4>のいずれか1項に記載のカプセル型化合物と、を接触させて前記水系試料から前記陰イオンを除去する工程を含む陰イオン除去方法。
<7> 前記水系試料が、少なくともClO を含む<6>に記載の陰イオン除去方法。
 本発明によれば、ClO 、BF 、NO 、Br、及びIからなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料中の該陰イオンの濃度を、短時間で効率よく低下させることができるカプセル型化合物、陰イオン除去剤、及び陰イオン除去方法を提供することができる。
本発明のカプセル型化合物の一例である、カプセル型化合物[SO⊂Cu(m-bbitb)]SO」の分子構造図である。 実施例2におけるアニオン濃度の推移(アニオン水溶液Aの添加後180分まで)を示すグラフである。 実施例4における過塩素酸ナトリウム水溶液([SO⊂Cu(m-bbitb)]SO-固定フィルターを通過する前)のイオンクロマトグラフィーのチャートである。 実施例4における過塩素酸ナトリウム水溶液([SO⊂Cu(m-bbitb)]SO-固定フィルターを通過した後)のイオンクロマトグラフィーのチャートである。 実施例5におけるヨウ化物イオン濃度の推移(ヨウ化物イオン水溶液Bの添加後180分まで)を示すグラフである。 比較例1におけるアニオン濃度の推移(アニオン水溶液Aの添加後180分まで)を示すグラフである。 比較例1におけるアニオン濃度の推移(アニオン水溶液Aの添加後10000分まで)を示すグラフである。
≪カプセル型化合物≫
 本発明のカプセル型化合物は、下記一般式(1)で表されるカプセル骨格及び該カプセル骨格に内包された硫酸イオンからなるカプセル型2価カチオンと、前記カプセル型2価カチオンに対する対イオンとしての硫酸イオンと、からなる化合物である。
Figure JPOXMLDOC01-appb-C000003

 
 一般式(1)中、R、R、R、R、R、R、R、R、R、R10、R11、R12、及びR13は、それぞれ独立に、水素原子又はメチル基を表す。一般式(1)中、M及びMは、それぞれ独立に、Cu2+、Fe2+、Ni2+、Co2+、又はZn2+を表す。一般式(1)中、破線は配位結合を表す。
 図1は、本発明のカプセル型化合物の一例として、一般式(1)中及び後述の一般式(2)中のR~R13が水素原子であり、一般式(1)中のM及びMがCu2+であるカプセル型化合物を概念的に示す分子構造図である。
 ここで、後述の一般式(2)中のR~R13が水素原子である化合物は、1,3-ビス(ベンゾイミダゾール-1-イル-メチル)-2,4,6-トリメチルベンゼン(以下、「m-bbitb」ともいう)である。
 また、本明細書中では、一般式(1)中のR~R13が水素原子であり、一般式(1)中のM及びMがCu2+であるカプセル型化合物を、「[SO⊂Cu(m-bbitb)]SO」ともいう。
 図1に示すように、[SO⊂Cu(m-bbitb)]SOの構造は、2個のCu2+イオン及び4分子のm-bbitbにより形成されたカプセル骨格と該カプセル骨格に内包された1個の硫酸イオン(SO 2-)とからなるカプセル型2価カチオン(図1中、一点鎖線で囲んだ部分)と、このカプセル型2価カチオンに対する対イオンとしての1個の硫酸イオン(SO 2-)と、からなる構造となっている。ここで、内包されている硫酸イオン(SO 2-)中の2つの酸素原子は、図1中破線で示すように、それぞれ2個のCu2+イオンと配位結合している。
 カプセル型2価カチオンは、2個のCu2+イオンと、1個の硫酸イオン(SO 2-)と、4分子のm-bbitbと、により全体として2価の陽イオンとして構成されている。[SO⊂Cu(m-bbitb)]SOは、このカプセル型2価カチオンと、対イオンとしての硫酸イオン(SO 2-)1個と、により全体として中性の化合物として構成されている。
 図1に示す構造は、単結晶構造解析により確認することができる。
 [SO⊂Cu(m-bbitb)]SO以外の本発明のカプセル型化合物の構造も、配位子(一般式(1)中のかっこ内の化合物)の種類や金属イオンの種類を除けば[SO⊂Cu(m-bbitb)]SOの構造と同様である。
 本発明のカプセル型化合物は、ClO 、BF 、NO 、Br、及びIからなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料と接触すると、前記陰イオンと、本発明のカプセル型化合物中の対イオンとしての硫酸イオンと、が速やかに対イオン交換し、水系試料中の前記陰イオンがカプセル型化合物に対イオンとして取り込まれる。
 従って、本発明のカプセル型化合物によれば、前記水系試料中の前記陰イオンの濃度を短時間で効率よく低下させることができる。
 ここで、本発明のカプセル型化合物及び対イオン交換後のカプセル型化合物は、いずれも水に不溶であり、このことも、短時間かつ効率のよい前記陰イオンの濃度の低下に寄与しているものと考えられる。
 更に、本発明のカプセル型化合物は水に不溶であるため、水系試料へ懸濁された状態で、水系試料の汚染を抑制しながら前記陰イオンの濃度を低下させることができるという利点を有する。
 ここで、「水に不溶」とは、水100質量部(25℃)に対する溶解度が0.1質量部以下であることを指す。
 更に、本発明のカプセル型化合物を用いることで、国際公開第2008/029804号パンフレットに記載された1,4-ビス(イミダゾール-1-イル-メチル)2,3,5,6-テトラメチルベンゼン(bitb)を用いた陰イオン(過塩素酸イオン)の除去方法と比較しても、前記水系試料中の前記陰イオンの濃度を短時間で効率よく低下させることができる。この理由は以下のように推測される。
 即ち、当該パンフレットに記載された方法では、過塩素酸イオンと水とを含む水系試料中にbitbを添加し、bitb4分子及びCu2+2個からなるカプセル骨格中に過塩素酸イオンが内包された構造の捕捉カプセル型分子を生成させる必要がある。
 これに対し、本発明のカプセル型化合物を用いる場合には、過塩素酸イオン等の陰イオンと水とを含む水系試料中に本発明のカプセル型化合物を添加し、対イオン交換により水系試料中から陰イオンを除去するため、金属-配位子間の配位結合のような強い化学結合の形成を伴うカプセル構造の形成を必要としない。
 このため、上記パンフレットに記載された方法における捕捉カプセル型分子の生成の反応時間よりも、本発明のカプセル型化合物を用いる場合における対イオン交換の反応時間の方が短いことが、より短時間かつより効率のよい陰イオンの除去に寄与しているものと推測される。
 但し、本発明は上記理由によって限定されることはない。
 従って、本発明のカプセル型化合物により水系試料中の前記陰イオンの濃度を低下させるには、長時間(例えば1時間以上)を必要とせず、また、処理前(本発明のカプセル型化合物による処理前。以下同じ。)の水系試料中における前記陰イオンの濃度を特に限定する必要もない。従って、処理前の水系試料として、例えば前記陰イオンの濃度が20mM以下の水系試料を用いることもできる。
 また、本発明のカプセル型化合物により水系試料中の前記陰イオンの濃度を低下させるのに要する時間は、例えば30分以内とすることができ、更には10分以内とすることもでき、更には5分以内とすることもできる。
 また、本発明のカプセル型化合物により水系試料中の前記陰イオンの濃度を低下させる場合において、水系試料中における陰イオンの処理前濃度は、例えば10mM以下とすることができ、更には5mM以下とすることもでき、更には1mM以下とすることもできる。
 本発明のカプセル型化合物は、前記陰イオンの中でも、特にClO の濃度を顕著に(即ち、より短時間でより効率よく)低減させることができる。
 本発明における「水系試料」は、溶媒として少なくとも水を含む試料であれば特に限定はない。
 「水系試料」としては、溶媒中における水の比率が30質量%以上である水系試料が好ましく、溶媒中における水の比率が50質量%以上である水系試料がより好ましく、溶媒中における水の比率が80質量%以上である水系試料が更に好ましい。
 本発明の水系試料は必要に応じ、水以外にも、溶媒として、極性プロトン性溶媒(メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、酢酸、ギ酸、等)、極性非プロトン性溶媒(テトラヒドロフラン、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、等)、及び非極性溶媒(ベンゼン、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、塩化メチレン等)の少なくとも1種を含んでいてもよい。
 本発明における「水系試料」の具体例としては、例えば、上水、下水、各種廃水(工業廃水等)、液状の中間生成物、工業用水、飲料水、各種水溶液、コロイド溶液(牛乳等)、食品や土壌等を含む懸濁液、等が含まれる。
 また、前記一般式(1)中、M及びMは、合成容易性などの観点より、同一種のカチオンであることが好ましい。更には、M及びMは、陰イオンの濃度をより短時間で低下させることができる点で、Cu2+であることが特に好ましい。
 本発明では、一般式(1)中のかっこ内の化合物を配位子ともいう。
 本発明における配位子は下記一般式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000004

 
 一般式(2)中、R~R13は、一般式(1)中のR~R13と同義である。
 前記一般式(1)及び(2)中、R~R12は、合成容易性などの観点より、水素原子であることが好ましい。更に、前記一般式(1)及び(2)中、R~R13は、合成容易性などの観点より、水素原子であることが好ましい。
 前記一般式(2)で表される化合物の合成方法としては、例えば、H. K. Liu, C. Y. Su, C.M. Qian, J. Liu, H. Y. Tan, B. S. Kang, J. Chem. Soc., DaltonTrans., 2001, 8, 1167.に記載の合成方法が挙げられる。
 以下、一般式(2)で表される化合物の例示化合物を示す。但し、本発明はこれらに限定されるものではない。
 下記の例示化合物(a)は、1,3-ビス(ベンゾイミダゾール-1-イル-メチル)-2,4,6-トリメチルベンゼン(m-bbitb)である。
Figure JPOXMLDOC01-appb-C000005

 
 また、本発明のカプセル型化合物の合成方法としては、例えば、水(又は水を含む水性溶媒)中で、Cu2+、Fe2+、Ni2+、Co2+、及びZn2+の少なくとも1種を含む硫酸塩と、一般式(2)で表される化合物と、を反応させる方法が挙げられる。これにより、水に不溶な化合物(沈殿)として本発明のカプセル型化合物を得ることができる。
 このときの反応温度には特に限定はないが、例えば、10℃~80℃とすることが好ましい。
 反応時間にも特に限定はないが、20分以上とすることが好ましい。
≪陰イオン除去剤≫
 本発明の陰イオン除去剤は、上記本発明のカプセル型化合物を有効成分として含む。
 このため、本発明の陰イオン除去剤と、ClO 、BF 、NO 、Br、及びIからなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料と、を接触させることにより、前記水系試料中の前記陰イオンの濃度を短時間で効率よく低下させることができる。
 本発明の陰イオン除去剤の第1の形態としては、固体状態(粉末状、結晶状など)の本発明のカプセル型化合物単体の形態が挙げられる。
 また、本発明の陰イオン除去剤の第2の形態としては、固体状態の本発明のカプセル型化合物と、バインダー成分等の他の成分と、の混合物の形態(錠剤状など)が挙げられる。
 また、本発明の陰イオン除去剤の第3の形態としては、本発明のカプセル型化合物(又は本発明カプセル型化合物を含む混合物)が水系媒体中に懸濁された懸濁液の形態が挙げられる。
≪陰イオン除去方法≫
 本発明の陰イオン除去方法は、ClO 、BF 、NO 、Br、及びIからなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料と、上記本発明のカプセル型化合物と、を接触させて前記水系試料から前記陰イオンを除去する工程を含む。
 本発明の陰イオン除去方法によれば、本発明のカプセル型化合物と前記陰イオンとを接触させることができるので、前記水系試料中の前記陰イオンの濃度を短時間で効率よく低下させることができる。
 前記水系試料と前記本発明のカプセル型化合物との接触は、例えば、本発明のカプセル型化合物(又は本発明のカプセル型化合物を有効成分として含む陰イオン除去剤)を水系試料中に添加することにより行うことができる。また、本発明のカプセル型化合物(又は本発明のカプセル型化合物を有効成分として含む陰イオン除去剤)を予め容器に入れておき、そこに前記水系試料を添加することにより行ってもよい。
 また、前記接触は、本発明のカプセル型化合物(又は本発明のカプセル型化合物を有効成分として含む陰イオン除去剤)を固定したフィルターに、前記水系試料を通過させることによって行うことも好ましい。
 また、本発明における水系試料は、ClO 、BF 、NO 、Br、及びIからなる群から選択される少なくとも1種の陰イオンを含むが、該水系試料のより好ましい形態は、ClO 、BF 、NO 、及びBrからなる群から選択される少なくとも1種の陰イオンを含む形態である。
 更に、本発明のカプセル型化合物は、特にClO の濃度を顕著に(より短時間でより効率よく)低減させることができるので、本発明の陰イオン除去方法における前記水系試料は、少なくともClO を含むことが好ましい。即ち、前記水系試料は、少なくともClO を含み、更に必要に応じ、BF 、NO 、Br、及びIからなる群から選択される少なくとも1種の陰イオンを含むことが好ましい。
 本発明の陰イオン除去方法では、前記本発明のカプセル型化合物と前記陰イオンとの接触頻度を高める観点から、水系試料を加熱してもよい。
 前記接触時の温度は、0~100℃とすることができ、20~80℃とすることが好ましい。
 また、本陰イオン除去方法では、前記本発明のカプセル型化合物と前記陰イオンとの接触後、水系試料を撹拌してもよく、撹拌せずにそのまま放置してもよいが、接触頻度を高める観点からは、撹拌することが好ましい。
 撹拌には、攪拌器、容器の振とう、超音波の照射、マイクロウェーブの照射、加熱による対流、などの手段を用いることができる。中でも、超音波の照射が好ましい。
 本発明の陰イオン除去方法により生じたイオン交換後のカプセル型化合物も水に不溶であるため、水系試料中から前記陰イオンを容易に分離できる。
 分離の方法としては、沈殿物を溶液中から分離する通常の方法をそのまま適用することができ、例えば、上澄み液のデカントによる分離、フィルターによる濾過、遠心分離操作による分離等を挙げることができる。
 なお、本発明の陰イオン除去方法では、本発明のカプセル型化合物における対イオンである硫酸イオンと、除去対象である陰イオンと、の対イオン交換により、水系試料中に、ClO 、BF 、NO 、Br、及びIと比べて害が少ない硫酸イオン(SO 2-)が放出される。
 放出された硫酸イオンは、塩化カルシウムを添加することにより水に難容性の塩として沈殿させる方法等、公知の方法により、水系試料中から容易に除去することができる。
 また、本発明の陰イオン除去方法では、陰イオン除去により生じたイオン交換後のカプセル型化合物を分解して配位子(前記一般式(2)で表される化合物)を生成し、生成した配位子を用いて本発明のカプセル型化合物を合成(再生)することができる。前記分解は、前記イオン交換後のカプセル型化合物をメタノール等の有機溶媒で抽出し、得られた抽出液に炭酸ナトリウムなどの塩基性試薬を溶かした溶液を添加する方法や、前記抽出液に硫化水素を通気させる方法などにより行うことができる。
 以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例において、溶液の調製、または測定に用いた水はすべてイオン交換水を用いた。
〔実施例1〕
<1,3-ビス(ベンゾイミダゾール-1-イル-メチル)-2,4,6-トリメチルベンゼン(m-bbitb)の合成>
 H. K. Liu, C. Y. Su, C.M. Qian, J. Liu, H. Y. Tan, B. S. Kang, J. Chem. Soc., Dalton Trans., 2001, 8, 1167.に記載の合成方法に従い、1,3-ビス(ベンゾイミダゾール-1-イル-メチル)-2,4,6-トリメチルベンゼン(m-bbitb)を合成した。
<カプセル型化合物([SO⊂Cu(m-bbitb)]SO)の合成>
 下記反応スキーム1に従い、カプセル型化合物([SO⊂Cu(m-bbitb)]SO)を合成した。
Figure JPOXMLDOC01-appb-C000006
 以下、反応スキーム1の詳細について説明する。
 まず、CuSO・5HO(37mg,0.15mmol)を水(30mL)に溶かし、CuSO・5HOの水溶液を得た。
 次に、m-bbitb(110mg,0.30mmol)をエタノールに溶かしたm-bbitb溶液を調製し、得られたm-bbitb溶液をCuSO・5HOの水溶液に添加し、室温(25℃)で1週間程静置したところ青色固体が生じた。
 得られた青色固体をろ過して集めて乾燥させて、図1に示す構造の[SO⊂Cu(m-bbitb)]SOを得た(収量98.1mg(収率66.4%))。
 [SO⊂Cu(m-bbitb)]SOの構造は、下記元素分析及び下記結晶学データ(単結晶X線構造解析)により確認した。
 元素分析は、Euro Vector社製Euro EA3000を用いて行った。
 単結晶X線構造解析は、(株)リガク製の構造解析装置(マーキュリー二次元検出器システム)を用い、室温(25℃)でモリブデンKαの線源を用いてX線の反射データを収集し、収集した反射データを(株)リガク製の Crystal Structure プログラムを用いて解析することにより行った。
~元素分析結果~
 Calcd for C100H110Cu2N16O15S2: C, 61.05; H, 5.64; N, 11.39.
 Found: C, 60.66; H, 5.21; N, 11.07.
~結晶学データ~
 分子式: C100H110Cu2N16O15S2, Mr = 1967.28, monoclinic, space group C2/m (No.12), a = 19.508(15)Å, b = 24.484(19)Å, c = 13.377(11)Å, β = 126.072(7)°, V = 5164(7) Å3, Z = 2, Dc = 1.265 gcm-3, μ(Mo Kα) = 0.521 mm-1, T = 293 K, λ = 0.7107Å, ω scan. Of a total of 5935 reflections collected, 3450 were independent (Rint = 0.065). 362 parameters. The structure was solved by direct methods and refined by full-matrix least squares on F. Final R1 [I>2σ(I)] = 0.0892 and wR = 0.1177 (all data); GOF = 1.174.
<カプセル型化合物([SO⊂Ni(m-bbitb)]SO)の合成>
 下記反応スキーム2に従い、ニッケルイオンを用いてカプセル型化合物([SO⊂Ni(m-bbitb)]SO)を合成した。
Figure JPOXMLDOC01-appb-C000007
 以下、反応スキーム2の詳細について説明する。
 まず、NiSO・6HO(39.4mg,0.15mmol)を水(30mL)に溶かし、NiSO・6HOの水溶液を得た。
 次に、m-bbitb(110mg,0.30mmol)をエタノールに溶かしたm-bbitb溶液を調製し、得られたm-bbitb溶液をNiSO・6HOの水溶液に添加し、およそ40℃で数時間撹拌した。反応溶液中に生成した沈殿をろ過して除いた後、ろ液を減圧下で徐々に濃縮し、緑白色固体を得た。得られた緑白色固体をろ過により集め、減圧下で乾燥させ、[SO⊂Ni(m-bbitb)]SOを得た(収量 80mg、0.044mmol;(収率58%))。
 [SO⊂Ni(m-bbitb)]SOの生成は、下記元素分析により確認した。
 元素分析は、Euro Vector社製Euro EA3000を用いて行った。
~元素分析結果~
 Calcd for C100H96N16Ni2O8S2: C, 65.58; H, 5.28; N, 12.24. 
 Found: C, 65.65; H, 5.12; N, 12.36.
<[SO⊂Cu(m-bbitb)]SO-固定フィルターの作製>
 [SO⊂Cu(m-bbitb)]SO(0.20g、0.10mmol)を40mLの水に懸濁させた。この懸濁液を、シリンジに取り付けたシリンジフィルター(ラボラボカンパニー(株)製、フィルターの直径40mm、フィルターの細孔サイズ0.2mm)を通過させ、[SO⊂Cu(m-bbitb)]SOをシリンジフィルターに固定した。次いでこのシリンジフィルターを室温、減圧下で24時間乾燥させ、[SO⊂Cu(m-bbitb)]SOが固定されたシリンジフィルター(以下、「[SO⊂Cu(m-bbitb)]SO-固定フィルター」ともいう)を得た。
〔実施例2〕
<カプセル型化合物([SO⊂Cu(m-bbitb)]SO)によるアニオン(陰イオン)の除去>
 過塩素酸ナトリウム(61.2mg,0.5mmol)、臭化ナトリウム(51.5mg,0.5mmol)、硝酸ナトリウム(42.5mg,0.5mmol)、硫酸ナトリウム(71.0mg,0.5mmol)、をそれぞれ正確に量り取り、水温30℃の超純水(500mL)に溶解させ、各アニオン(ClO 、Br、NO 、SO 2-)の濃度が1mMのアニオン水溶液Aを調製した。
 続いて100mLコニカルビーカーに[SO⊂Cu(m-bbitb)]SO(0.1967g,0.1mmol)を正確に量り取り、上記で調製したアニオン水溶液A100mLを加えて水系試料1とし、この水系試料1を恒温装置で30℃に保ち静置した。
 上記アニオン水溶液Aの添加後10分以内においては2分ごとに、上記アニオン水溶液の添加後10分を超えて30分以内においては10分ごとに、上記アニオン水溶液の添加後30分を超えて180分以内においては30分ごとに、水系試料1から20μLを量り採り、量り採った20μLの水系試料1を超純水4800μLで25倍に希釈し、希釈された水系試料1中における各アニオンの濃度をイオンクロマトグラフィーを用いて測定した。イオンクロマトグラフィーはメトローム社製のMetrohm Compact IC 861 ion chromatographyを用いて行った。測定結果から、水系試料1中におけるアニオン濃度の推移を求めた。
 水系試料1におけるアニオン濃度の推移を表1及び図2に示す。
Figure JPOXMLDOC01-appb-T000008
 表1中の「Time(min)」欄及び図2中の横軸は、上記アニオン水溶液Aの添加からの経過時間(単位:分)を表す。表1中の「Br(mM)」欄、「NO (mM)」欄、「SO 2-(mM)」欄、及び「ClO (mM)」欄、並びに図2中の縦軸は、水系試料1における各アニオンの濃度(単位:mM)である。
 表1及び図2に示すように、アニオン水溶液Aの添加から2分経過後に、Br、NO 、及びClO の濃度の顕著な低下が確認された。アニオン水溶液Aの添加から30分以内に、Brの濃度は0.8mM程度まで、NO の濃度は0.5mM程度まで、ClO の濃度は0.03mM程度まで低下した。
 実施例2において、特にClO については濃度低下が著しく、1mM(約100,000ppb)であったClO 濃度が経過時間1時間以内に0.02mM以下(約2,000ppb以下)にまで低下した。
 また、アニオン水溶液Aの添加からの経過時間に従いSO 2-が増大していることから、[SO⊂Cu(m-bbitb)]SO中の対イオンとしてのSO 2-と、Br、NO 、及びClO と、の対イオン交換が起こっていることが確認された。
〔実施例3〕
<カプセル型化合物([SO⊂Ni(m-bbitb)]SO)によるアニオン(陰イオン)の除去>
 実施例2において、[SO⊂Cu(m-bbitb)]SOを[SO⊂Ni(m-bbitb)]SOに変更したこと以外は実施例2と同様にしてアニオン(陰イオン)の除去の実験を行ったところ、実施例2と同様に、[SO⊂Ni(m-bbitb)]SOが水系試料中のアニオン(陰イオン)濃度を低下させることが確認された。
〔実施例4〕
<[SO⊂Cu(m-bbitb)]SO-固定フィルターによるアニオン(陰イオン)の除去>
 1000ppbの過塩素酸イオンを含む過塩素酸ナトリウム水溶液(0.010mM)6mLを調製し、この水溶液を上記で示した[SO⊂Cu(m-bbitb)]SO-固定フィルターを通過させた。
 [SO⊂Cu(m-bbitb)]SO-固定フィルターを通過する前と通過した後とについて、それぞれ、過塩素酸ナトリウム水溶液中に含まれる過塩素酸イオン(ClO )の濃度をイオンクロマトグラフィーを用いて決定した。
 図3に、過塩素酸ナトリウム水溶液([SO⊂Cu(m-bbitb)]SO-固定フィルターを通過する前)のイオンクロマトグラフィーのチャートを示し、図4に、過塩素酸ナトリウム水溶液([SO⊂Cu(m-bbitb)]SO-固定フィルターを通過した後)のイオンクロマトグラフィーのチャートを示す。
 図3及び図4の結果より、[SO⊂Cu(m-bbitb)]SO-固定フィルターを通過する前は1000ppbであったClO の濃度が、[SO⊂Cu(m-bbitb)]SO-固定フィルターを通過した後では12ppbとなっていることがわかった。
 また、図4に示すように、[SO⊂Cu(m-bbitb)]SO-固定フィルターを通過した後では、SO 2-の強いピークが確認された。この結果から、このフィルターを通過させることで、[SO⊂Cu(m-bbitb)]SO中の対イオンとしてのSO 2-と、ClO と、の対イオン交換が起こっていることが確認された。
 上記のとおり、実施例4では、[SO⊂Cu(m-bbitb)]SO-固定フィルターを通過させるだけで、ClO の濃度を、1000ppbから12ppbまで減少させることができた。現在、米国環境保護庁(EPA)では過塩素酸イオンの安全基準濃度の目標値が24.5ppb以下と設定されているが、本実施例4ではこの安全基準濃度を極めて短い時間で達成できた。
〔実施例5〕
<カプセル型化合物([SO⊂Cu(m-bbitb)]SO)によるヨウ化物イオンの除去>
 ヨウ化ナトリウム(150mg,1mmol)を正確に量り取り、水温30℃の超純水(1000mL)に溶解させ、濃度が1mMのヨウ化物イオン水溶液Bを調製した。
 続いて100mLコニカルビーカーに[SO⊂Cu(m-bbitb)]SO(0.1967g,0.1mmol)を正確に量り取り、上記で調製したヨウ化物イオン水溶液B100mLを加えて水系試料2とし、この水系試料2を恒温装置で30℃に保ち静置した。
 上記ヨウ化物イオン水溶液Bの添加後30分以内においては10分ごとに、上記ヨウ化物イオン水溶液Bの添加後30分を超えて180分以内においては30分ごとに、水系試料2から20μLを量り採り、量り採った20μLの水系試料2を超純水4800μLで25倍に希釈し、希釈された水系試料2中におけるヨウ物イオン濃度をイオンクロマトグラフィーを用いて測定した。測定結果から、水系試料2中におけるヨウ化物イオン濃度の推移を求めた。
 水系試料2におけるヨウ化物イオン濃度の推移を図5に示す。
 図5に示すように、ヨウ化物イオン水溶液Bの添加から30分以内に、Iの濃度は0.2mM程度まで低下し、ヨウ化物イオン水溶液Bの添加から180分では、0.08mMまで低下した。
〔比較例1〕
<イオン交換型樹脂による過塩素酸イオン(ClO )の除去>
 実施例2において[SO⊂Cu(m-bbitb)]SO(0.1967g,0.1mmol)を同質量のイオン交換樹脂(Purolite製SR601188A530E(強塩基性陰イオン交換樹脂))に変更したこと以外は実施例2と同様にして水系試料3を調製し、実施例2と同様にして水系試料3中の各アニオンの濃度の推移を測定した。更に引き続き、アニオン水溶液Aの添加後10000分(約1週間)まで、水系試料3中の各アニオンの濃度の推移を測定した。
 水系試料3におけるアニオン濃度の推移を図6(アニオン水溶液Aの添加後180分まで)及び図7(アニオン水溶液Aの添加後10000分まで)に示す。
 図6及び図7の横軸は、上記アニオン水溶液Aの添加からの経過時間(単位:分)を表す。図6及び図7の縦軸は、水系試料3における各アニオンの濃度(単位:mM)である。
 図6及び図7に示すように、比較例1では各アニオンの濃度を低下させるのに、実施例2よりも長時間を要した。
 例えば、Brの濃度を0.8mM程度まで低下させるのに180分以上、NO の濃度を0.6mM程度まで低下させるのに150分以上、ClO の濃度を0.1mM程度まで低下させるのに1000分以上を要した。
 上記実施例2、4及び5では、一般式(1)中のM及びMがCu2+であるカプセル型化合物([SO⊂Cu(m-bbitb)]SO)を用いた陰イオン除去の例を示し、上記実施例3では、一般式(1)中のM及びMがNi2+であるカプセル型化合物([SO⊂Ni(m-bbitb)]SO)を用いた陰イオン除去の例を示した。
 しかし本発明はこれらの例に限定されることはなく、例えば、一般式(1)中のM及びMがCu2+やNi2+と同様に、平面四配位、正方錐配位、及び八面体配位が可能な、Fe2+、Co2+、又はZn2+であるカプセル型化合物についても、[SO⊂Cu(m-bbitb)]SOや[SO⊂Ni(m-bbitb)]SOと同様にして合成でき、[SO⊂Cu(m-bbitb)]SOや[SO⊂Ni(m-bbitb)]SOと同様の効果を得ることができる。
 また、上記実施例1~5では、一般式(1)中のR~R13が水素原子であるカプセル型化合物([SO⊂Cu(m-bbitb)]SO又は[SO⊂Ni(m-bbitb)]SO)を用いた例を示したが、一般式(1)中のR~R13の少なくとも1つがメチル基であるカプセル型化合物についても、出発物質(配位子)の変更により[SO⊂Cu(m-bbitb)]SO又は[SO⊂Ni(m-bbitb)]SOと同様にして合成できる。得られたカプセル化合物は、配位子の基本骨格が[SO⊂Cu(m-bbitb)]SO中又は[SO⊂Ni(m-bbitb)]SO中の配位子(m-bbitb)の基本骨格が同じであることから、[SO⊂Cu(m-bbitb)]SO又は[SO⊂Ni(m-bbitb)]SOと同様の効果を得ることができる。
 また、上記実施例2及び3ではClO 、Br、及びNO の除去を行い、上記実施例4ではClO の除去を行い、上記実施例5ではIの除去を行ったが、本発明のカプセル型化合物を用いることにより、ClO と構造や性質が類似するBF についてもClO と同様に除去できる。
 日本出願2011-016235の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (7)

  1.  下記一般式(1)で表されるカプセル骨格及び該カプセル骨格に内包された硫酸イオン(SO 2-)からなるカプセル型2価カチオンと、前記カプセル型2価カチオンに対する対イオンとしての硫酸イオン(SO 2-)と、からなるカプセル型化合物。
    Figure JPOXMLDOC01-appb-C000001

     
    〔一般式(1)中、R、R、R、R、R、R、R、R、R、R10、R11、R12、及びR13は、それぞれ独立に、水素原子又はメチル基を表す。一般式(1)中、M及びMは、それぞれ独立に、Cu2+、Fe2+、Ni2+、Co2+、又はZn2+を表す。一般式(1)中、破線は配位結合を表す。〕
  2.  前記M及び前記Mが、同一種である請求項1に記載のカプセル型化合物。
  3.  前記M及び前記Mが、Cu2+である請求項1又は請求項2に記載のカプセル型化合物。
  4.  前記R、前記R、前記R、前記R、前記R、前記R、前記R、前記R、前記R、前記R10、前記R11、前記R12、及び前記R13が、水素原子である請求項1~請求項3のいずれか1項に記載のカプセル型化合物。
  5.  請求項1~請求項4のいずれか1項に記載のカプセル型化合物を有効成分として含む陰イオン除去剤。
  6.  ClO 、BF 、NO 、Br、及びIからなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料と、請求項1~請求項4のいずれか1項に記載のカプセル型化合物と、を接触させて前記水系試料から前記陰イオンを除去する工程を含む陰イオン除去方法。
  7.  前記水系試料が、少なくともClO を含む請求項6に記載の陰イオン除去方法。
PCT/JP2012/051720 2011-01-28 2012-01-26 カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法 WO2012102356A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/980,988 US9139533B2 (en) 2011-01-28 2012-01-26 Capsule-type compound, anion removing agent, and method for removing anion
JP2012554850A JP5954829B2 (ja) 2011-01-28 2012-01-26 カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法
EP12740009.1A EP2669275B1 (en) 2011-01-28 2012-01-26 Capsule-type compound, anion-removing agent, and anion removal method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-016235 2011-01-28
JP2011016235 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012102356A1 true WO2012102356A1 (ja) 2012-08-02

Family

ID=46580919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051720 WO2012102356A1 (ja) 2011-01-28 2012-01-26 カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法

Country Status (4)

Country Link
US (1) US9139533B2 (ja)
EP (1) EP2669275B1 (ja)
JP (1) JP5954829B2 (ja)
WO (1) WO2012102356A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017653A1 (ja) * 2012-07-27 2014-01-30 国立大学法人静岡大学 カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法
WO2016043122A1 (ja) * 2014-09-16 2016-03-24 国立大学法人静岡大学 配位高分子化合物、多孔質材料、陰イオン除去剤、及び陰イオン除去方法
WO2021039929A1 (ja) * 2019-08-28 2021-03-04 国立大学法人静岡大学 イオン性金属錯体、陰イオン検出剤、陰イオン検出方法、及び芳香族化合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346299A (ja) 2003-05-19 2004-12-09 Rohm & Haas Co 高い選択性の過塩素酸塩除去樹脂、ならびにそれを使用する方法およびシステム
WO2008029804A1 (fr) 2006-09-06 2008-03-13 National University Corporation Shizuoka University Agent de captage d'ion acide perchlorique
JP2010022886A (ja) 2008-07-15 2010-02-04 National Univ Corp Shizuoka Univ テトラフルオロホウ酸イオンの除去方法
JP2010042403A (ja) 2008-07-15 2010-02-25 National Univ Corp Shizuoka Univ 水の浄化方法
JP2011016235A (ja) 2009-07-07 2011-01-27 Toyo Aluminum Ekco Products Kk 芯材及び保温用シート

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110499A1 (ja) * 2008-03-05 2009-09-11 国立大学法人静岡大学 水の浄化方法、水の浄化装置、及び水の浄化セット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346299A (ja) 2003-05-19 2004-12-09 Rohm & Haas Co 高い選択性の過塩素酸塩除去樹脂、ならびにそれを使用する方法およびシステム
WO2008029804A1 (fr) 2006-09-06 2008-03-13 National University Corporation Shizuoka University Agent de captage d'ion acide perchlorique
JP2010022886A (ja) 2008-07-15 2010-02-04 National Univ Corp Shizuoka Univ テトラフルオロホウ酸イオンの除去方法
JP2010042403A (ja) 2008-07-15 2010-02-25 National Univ Corp Shizuoka Univ 水の浄化方法
JP2011016235A (ja) 2009-07-07 2011-01-27 Toyo Aluminum Ekco Products Kk 芯材及び保温用シート

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. K. LIU; C. Y. SU; C.M. QIAN; J. LIU; H. Y. TAN; B. S. KANG, J. CHEM. SOC., DALTON TRANS., vol. 8, 2001, pages 1167
H. K. LIU; C. Y. SU; C.M. QIAN; J. LIU; H. Y. TAN; B. S. KANG, J. CHEM. SOC., DALTONTRANS., vol. 8, 2001, pages 1167
SU CHENG-YONG ET AL.: "Ligand-Directed Molecular Architectures: Self-Assembly of Two-Dimensional Rectangular Metallacycles and Three-Dimensional Trigonal or Tetragonal Prisms", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 125, no. 28, 2003, pages 8595 - 8613, XP055116178 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017653A1 (ja) * 2012-07-27 2014-01-30 国立大学法人静岡大学 カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法
WO2016043122A1 (ja) * 2014-09-16 2016-03-24 国立大学法人静岡大学 配位高分子化合物、多孔質材料、陰イオン除去剤、及び陰イオン除去方法
WO2021039929A1 (ja) * 2019-08-28 2021-03-04 国立大学法人静岡大学 イオン性金属錯体、陰イオン検出剤、陰イオン検出方法、及び芳香族化合物

Also Published As

Publication number Publication date
US9139533B2 (en) 2015-09-22
JP5954829B2 (ja) 2016-07-20
US20130299431A1 (en) 2013-11-14
EP2669275A4 (en) 2014-06-25
EP2669275B1 (en) 2016-11-16
EP2669275A1 (en) 2013-12-04
JPWO2012102356A1 (ja) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5190995B2 (ja) 複素環置換芳香族化合物、配位化合物、過塩素酸イオン捕捉剤、過塩素酸イオン捕捉方法、及び、過塩素酸イオン除去方法
Hirayama Chelate extraction of metals into ionic liquids
Park et al. Preparation of core–shell coordination molecular assemblies via the enrichment of structure-directing “codes” of bridging ligands and metathesis of metal units
Bhattacharya et al. Bis (nitrate) diaquauranyl (vi) synthon to generate [1× 2+ 1× 1] and [1× 1+ 1× 1] co-crystalized 3d⋯ 5f self-assemblies
JP5954829B2 (ja) カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法
JP2010022886A (ja) テトラフルオロホウ酸イオンの除去方法
JP2021183615A (ja) Dota合成
Kikukawa et al. Synthesis, Structure Characterization, and Reversible Transformation of a Cobalt Salt of a Dilacunary γ-Keggin Silicotungstate and Sandwich-Type Di-and Tetracobalt-Containing Silicotungstate Dimers
Tong et al. Pentasubstituted ferrocene and dirhodium (II) tetracarboxylate as building blocks for discrete fullerene-like and extended supramolecular structures
JP5448195B2 (ja) 水の浄化方法、水の浄化装置、及び水の浄化セット
JP2010042403A (ja) 水の浄化方法
WO2016043122A1 (ja) 配位高分子化合物、多孔質材料、陰イオン除去剤、及び陰イオン除去方法
JP6188029B2 (ja) カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法
EP3618955A1 (en) Polyoxometalates comprising noble metals and carboxylate-based capping groups and metal clusters thereof
Christuk et al. The [(μ3‐WSe4) 3 (μ3‐Se) 2 (Cu3) 2] 4− Anion, an Inorganic Cluster with a Pin wheel Shape
JP5590654B2 (ja) 複素環置換芳香族化合物、分子検出剤、分子検出方法、及び分子捕捉方法
Adarsh et al. Metalla-macro-tricyclic cryptands: anion encapsulation and selective separation of sulfate via in situ crystallization
JP2012026981A (ja) テトラフルオロホウ酸イオン検出剤、テトラフルオロホウ酸イオン検出キット、及びテトラフルオロホウ酸イオン検出方法
Dittrich et al. Long tailed cage amines: Synthesis, metal complexation, and structure
CN103657742B (zh) 一种铁离子交换改性分子筛的制备方法
Maekawa et al. Sandwich-shaped silver (i) metallomacrocycles encapsulating a XF 6 2−(X= Si, Ge and Sn) anion
JP6159569B2 (ja) 金属化合物
JP2006526589A (ja) 2,2’−ジヒドロキシビフェニルの製造方法
de Araújo Queirós Fluorescent Ligands and Coordination Polymers with Potential Application in Metal Ion Sensing, Photoluminescence and Heterogeneous Catalysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12740009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554850

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980988

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012740009

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012740009

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE