JPWO2014017653A1 - カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法 - Google Patents
カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法 Download PDFInfo
- Publication number
- JPWO2014017653A1 JPWO2014017653A1 JP2014527039A JP2014527039A JPWO2014017653A1 JP WO2014017653 A1 JPWO2014017653 A1 JP WO2014017653A1 JP 2014527039 A JP2014527039 A JP 2014527039A JP 2014527039 A JP2014527039 A JP 2014527039A JP WO2014017653 A1 JPWO2014017653 A1 JP WO2014017653A1
- Authority
- JP
- Japan
- Prior art keywords
- capsule
- type compound
- anion
- compound
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 340
- 239000002775 capsule Substances 0.000 title claims abstract description 282
- 150000001450 anions Chemical class 0.000 title claims abstract description 147
- 238000000034 method Methods 0.000 title claims description 38
- 239000003795 chemical substances by application Substances 0.000 title claims description 15
- -1 halide ions Chemical class 0.000 claims abstract description 75
- 150000002500 ions Chemical class 0.000 claims abstract description 43
- 150000001768 cations Chemical class 0.000 claims abstract description 42
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 70
- 229910020366 ClO 4 Inorganic materials 0.000 claims description 50
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 32
- 239000008233 hard water Substances 0.000 claims description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- 239000004480 active ingredient Substances 0.000 claims description 7
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 89
- 239000000523 sample Substances 0.000 description 84
- 230000000052 comparative effect Effects 0.000 description 57
- 239000007864 aqueous solution Substances 0.000 description 54
- 239000010949 copper Substances 0.000 description 50
- 239000000243 solution Substances 0.000 description 43
- 238000006243 chemical reaction Methods 0.000 description 37
- 229910002651 NO3 Inorganic materials 0.000 description 27
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- 239000013078 crystal Substances 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000003786 synthesis reaction Methods 0.000 description 13
- 230000007704 transition Effects 0.000 description 13
- 238000005342 ion exchange Methods 0.000 description 12
- 150000004683 dihydrates Chemical class 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 10
- 229910001424 calcium ion Inorganic materials 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 239000011575 calcium Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 8
- 238000000921 elemental analysis Methods 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 238000004255 ion exchange chromatography Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 150000004689 octahydrates Chemical class 0.000 description 6
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 230000002194 synthesizing effect Effects 0.000 description 6
- 229910021642 ultra pure water Inorganic materials 0.000 description 6
- 239000012498 ultrapure water Substances 0.000 description 6
- CTYAHNFEJSUUSP-UHFFFAOYSA-N 1-[[3-(benzimidazol-1-ylmethyl)-2,4,6-trimethylphenyl]methyl]benzimidazole Chemical group C1=NC2=CC=CC=C2N1CC1=C(C)C(CN2C3=CC=CC=C3N=C2)=C(C)C=C1C CTYAHNFEJSUUSP-UHFFFAOYSA-N 0.000 description 5
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 5
- 239000013522 chelant Substances 0.000 description 5
- 150000004682 monohydrates Chemical class 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 238000004448 titration Methods 0.000 description 5
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 4
- 239000003673 groundwater Substances 0.000 description 4
- 239000008267 milk Substances 0.000 description 4
- 235000013336 milk Nutrition 0.000 description 4
- 210000004080 milk Anatomy 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010668 complexation reaction Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 239000010842 industrial wastewater Substances 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000004317 sodium nitrate Substances 0.000 description 3
- 235000010344 sodium nitrate Nutrition 0.000 description 3
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 3
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 3
- 241000894007 species Species 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 229910001431 copper ion Inorganic materials 0.000 description 2
- MPTQRFCYZCXJFQ-UHFFFAOYSA-L copper(II) chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Cu+2] MPTQRFCYZCXJFQ-UHFFFAOYSA-L 0.000 description 2
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- UIANYESDIYVJNS-UHFFFAOYSA-N 1-[[4-(imidazol-1-ylmethyl)-2,3,5,6-tetramethylphenyl]methyl]imidazole Chemical compound CC=1C(C)=C(CN2C=NC=C2)C(C)=C(C)C=1CN1C=CN=C1 UIANYESDIYVJNS-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 208000012239 Developmental disease Diseases 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 208000036626 Mental retardation Diseases 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 208000016285 Movement disease Diseases 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 229910001422 barium ion Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- ODWXUNBKCRECNW-UHFFFAOYSA-M bromocopper(1+) Chemical compound Br[Cu+] ODWXUNBKCRECNW-UHFFFAOYSA-M 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-M chlorate Inorganic materials [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 239000003186 pharmaceutical solution Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D235/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
- C07D235/02—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
- C07D235/04—Benzimidazoles; Hydrogenated benzimidazoles
- C07D235/20—Two benzimidazolyl-2 radicals linked together directly or via a hydrocarbon or substituted hydrocarbon radical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/08—Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/12—Macromolecular compounds
- B01J41/13—Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
- C02F2001/422—Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/101—Sulfur compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/105—Phosphorus compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/108—Boron compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/163—Nitrates
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
この過塩素酸イオン(ClO4 −)は、甲状腺のヨウ化物イオンの取り込みを妨害し、その結果、人の成長ホルモンの分泌を阻害することが知られている。このため、過塩素酸イオンは、子供が過量に摂取すると運動障害や精神遅滞などの発育障害を誘発するとされている有害イオンである。近年、この過塩素酸イオンは、例えば、環境水(地下水、河川水、等)、野菜、果物、牛乳などから検出されている。しかし、過塩素酸イオンは、水や有機溶媒に対する溶解性が高く、水溶液中からの除去が非常に困難な陰イオンである。
また、過塩素酸イオンを含む水溶液に、1,4−ビス(イミダゾール−1−イル−メチル)2,3,5,6−テトラメチルベンゼン(以下、「bitb」ともいう)を添加することにより、bitb4分子及びCu2+2個からなるカプセル骨格中に過塩素酸イオンが内包された構造の捕捉カプセル型分子を生成させ、生成した捕捉カプセル型分子を沈殿させる方法が知られている(例えば、国際公開第2008/029804号パンフレット参照)。
しかしながら、水系試料中における、ClO4 −、BF4 −、NO3 −、CF3SO3 −、及びPF6 −からなる群から選択される少なくとも1種の陰イオンの濃度を、上述した、特開2004−346299号公報、国際公開第2008/029804号パンフレット、NEDO海外レポート(No.946、2004.12.15)、及び錯体化学会第61回討論会講演要旨集1PA−75(2011)に記載された従来の技術よりも、短時間でより効率よく低下させることが求められている。
また、本発明の目的は、このカプセル型化合物を用いた陰イオン除去剤及び陰イオン除去方法を提供することである。
更に、本発明者の検討により、この新規なカプセル型化合物は、上述の[SO4⊂Cu2(m−bbitrb)4]SO4よりも高い収率で合成できることが判明した。
即ち、前記課題を解決するための具体的な手段は以下のとおりである。
<1>に記載のカプセル型化合物及び<2>に記載のカプセル型化合物は、いずれも、ClO4 −、BF4 −、NO3 −、CF3SO3 −、及びPF6 −からなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料中の前記陰イオンの濃度を、環境及び人体への影響が少ない特定のハロゲン化物イオンを放出しながら短時間で効率よく低下させることができる化合物であり、しかも高い収率で合成できる化合物である。その理由は、両者が上記共通点を有しているためである。
<4> 前記M1及び前記M2が、同一種である<1>〜<3>のいずれか1項に記載のカプセル型化合物である。
<5> 前記M1及び前記M2が、Cu2+である<1>〜<4>のいずれか1項に記載のカプセル型化合物である。
<6> 前記R1、前記R2、前記R3、前記R4、前記R5、前記R6、前記R7、前記R8、前記R9、前記R10、前記R11、前記R12、及び前記R13が、水素原子である<1>〜<5>のいずれか1項に記載のカプセル型化合物である。
<8> ClO4 −、BF4 −、NO3 −、CF3SO3 −、及びPF6 −からなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料中の前記陰イオンの除去に用いられる<7>に記載の陰イオン除去剤である。
<9> 前記水系試料が、更に、Ca2+及びBa2+の少なくとも一方を含む<8>に記載の陰イオン除去剤である。
<10> 前記水系試料が、硬水である<8>又は<9>に記載の陰イオン除去剤である。
<12> 前記水系試料が、少なくともClO4 −を含む<11>に記載の陰イオン除去方法である。
<13> 前記水系試料が、更に、Ca2+及びBa2+の少なくとも一方を含む<11>又は<12>に記載の陰イオン除去方法である。
<14> 前記水系試料が、硬水である<11>〜<13>のいずれか1項に記載の陰イオン除去方法である。
また、本発明によれば、このカプセル型化合物を用いた陰イオン除去剤及び陰イオン除去方法を提供することができる。
以下、本発明のカプセル型化合物について説明する。
本明細書中において、「本発明のカプセル型化合物」との用語は、第1実施形態のカプセル型化合物及び第2実施形態のカプセル型化合物の総称である。
第1実施形態のカプセル型化合物は、下記一般式(1)で表されるカプセル骨格、及び、該カプセル骨格に内包された1価の陰イオン1個からなるカプセル型3価カチオンと、前記カプセル型3価カチオンに対する対イオンとしての、Cl−、Br−、及びI−からなる群から選択されるハロゲン化物イオン3個と、からなる化合物である。
カプセル型化合物(A)は、第1実施形態のカプセル型化合物において、前記一般式(1)(及び後述の一般式(2))中のR1〜R13が水素原子であり、前記一般式(1)(及び後述の一般式(2))中のM1及びM2がCu2+であり、前記一般式(1)で表されるカプセル骨格に内包された1価の陰イオンがCl−であり、前記対イオンとしての3個のハロゲン化物イオンがCl−である一例である。
ここで、後述の一般式(2)中のR1〜R13が水素原子である化合物は、1,3−ビス(ベンゾイミダゾール−1−イル−メチル)−2,4,6−トリメチルベンゼン(以下、「m−bbitrb」ともいう)である。
ここで、カプセル骨格に内包されている1個の塩化物イオン(Cl−)は、カプセル骨格中の銅イオンに配位していてもよいし、配位していなくてもよい。
このカプセル型化合物(A)は、カプセル型3価カチオンと、対イオンとしての塩化物イオン(Cl−)3個と、からなる中性の化合物である。
上記カプセル型化合物(A)を、本明細書中では、[Cl⊂Cu2(m−bbitrb)4]Cl3ともいう。
従って、第1実施形態のカプセル型化合物によれば、前記水系試料中の前記陰イオンの濃度を短時間で効率よく低下させることができる(即ち、前記水系試料中の前記陰イオンを短時間で効率よく除去できる)。
ここで、第1実施形態のカプセル型化合物及び対イオン交換後のカプセル型化合物は、いずれも水に不溶であり、このことも、短時間かつ効率のよい前記陰イオンの濃度の低下に寄与しているものと考えられる。
更に、第1実施形態のカプセル型化合物は水に不溶であるため、水系試料へ懸濁された状態で、水系試料の汚染を抑制しながら前記陰イオンの濃度を低下させることができるという利点を有する。
ここで、「水に不溶」とは、水100質量部(25℃)に対する溶解度が0.1質量部以下であることを指す。
即ち、当該パンフレットに記載された方法では、ClO4 −と水とを含む水系試料中にbitbを添加し、bitb4分子及びCu2+2個からなるカプセル骨格中にClO4 −が内包された構造の捕捉カプセル型分子を生成させる必要がある。
これに対し、第1実施形態のカプセル型化合物を用いる場合には、前記陰イオン(例えばClO4 −)と水とを含む水系試料中に第1実施形態のカプセル型化合物を添加し、対イオン交換により水系試料中から前記陰イオンを除去するため、金属−配位子間の配位結合のような強い化学結合の形成を伴うカプセル構造の形成を必要としない。
このため、上記パンフレットに記載された方法における捕捉カプセル型分子の生成の反応時間よりも、第1実施形態のカプセル型化合物を用いる場合における対イオン交換の反応時間の方が短いことが、より短時間かつより効率のよい前記陰イオンの濃度の低下に寄与しているものと推測される。
また、第1実施形態のカプセル型化合物により水系試料中の前記陰イオンの濃度を低下させるのに要する時間は、例えば30分以内とすることができ、更には10分以内とすることもでき、更には5分以内とすることもできる。
また、第1実施形態のカプセル型化合物により水系試料中の前記陰イオンの濃度を低下させる場合において、水系試料中における前記陰イオンの処理前濃度は、例えば10mM以下とすることができ、更には5mM以下とすることもでき、更には1mM以下とすることもできる。
第1実施形態のカプセル型化合物は、上述の陰イオンの中でも、ClO4 −及びNO3 −(特にClO4 −)の濃度を顕著に(即ち、より短時間でより効率よく)低減させることができる。
例えば、第1実施形態のカプセル型化合物を用い、水を含む水系試料中の陰イオン(例えばClO4 −)を除去する際、操作の効率の面では、第1実施形態のカプセル型化合物の水和物に含まれる水分子を完全に除去することなく、この水和物と水系試料とを接触させることにより、第1実施形態のカプセル型化合物と水系試料とを接触させることも好ましい。
上記比較カプセル型化合物(X)を、本明細書中では、[SO4⊂Cu2(m−bbitrb)4]SO4ともいう。
即ち、第1実施形態のカプセル型化合物に含まれるカプセル型カチオンの価数が3価であることから、第1実施形態のカプセル型化合物1分子は、対イオン交換により、理論上、最大3分子の(いずれも1価の陰イオンである)前記陰イオン(例えばClO4 −)を捕捉することができる。
これに対し、上記比較カプセル型化合物(X)に含まれるカプセル型カチオンの価数は2価であるため、比較カプセル型化合物(X)1分子が対イオン交換により捕捉できる前記陰イオンは、理論上、最大でも2分子である。
以上のように、第1実施形態のカプセル型化合物(例えばカプセル型化合物(A))は、上記比較カプセル型化合物(X)と比較して、理論上、カプセル型化合物1分子が捕捉できる前記陰イオンの分子数が多い。このため、第1実施形態のカプセル型化合物(例えばカプセル型化合物(A))は、上記比較カプセル型化合物(X)と比較して、前記水系試料中の前記陰イオンの濃度を短時間で効率よく低下させることができると考えられる。
これに対し、第1実施形態のカプセル型化合物を用いた陰イオン(例えばClO4 −)の除去では、対イオン交換により、水系試料中に、SO4 2−ではなく、SO4 2−よりも環境及び人体に与える影響が少ない特定のハロゲン化物イオン(Cl−、Br−、及びI−からなる群から選択される少なくとも1種)が放出される点で有利である。
これに対し、第1実施形態のカプセル化合物を用いた前記陰イオンの除去では、SO4 2−ではなく前記特定のハロゲン化物イオンが放出されるので、陰イオンの除去対象となる水系試料に前記陽イオンが含まれている場合でも、前記陽イオンの量をある程度高く維持しながら、前記陰イオンの量を減少させることができる。
このため、第1実施形態のカプセル型化合物は、前記陰イオンと前記陽イオンとを含む水系試料中の前記陰イオンの除去に用いられる陰イオン除去剤として特に有用である。かかる陰イオン除去剤によれば、前記陽イオンの量をある程度高く維持しながら前記陰イオンの量を減少させることができる。
このような水系試料として、具体的には、牛乳、飲料水(硬水、地下水、ミネラルウォーター等)、医療用水溶液、工業廃水等が挙げられる。
例えば、近年では、健康維持等の観点から、硬水中のミネラル分(Ca2+及びBa2+の少なくとも一方)を維持しつつ、かつ、前記陰イオンの量を減少させることが求められる場合がある。この点で、第1実施形態のカプセル型化合物は、硬水用の陰イオン除去剤として特に有用である。
この理由の詳細は明らかではないが、M2L4型の構造のカプセル型化合物(塩)においては、硫酸塩よりもハロゲン化物塩の方が溶媒に対する溶解度が低くなり易い(即ち沈殿し易い)傾向があるため、と推測される。
第1実施形態のカプセル型化合物を比較カプセル型化合物(X)よりも高い収率で合成できる理由として、より詳細には、第1実施形態のカプセル型化合物では、比較カプセル型化合物(X)における対イオンとしての硫酸イオン(SO4 2−)が、3個のハロゲン化物イオンに置き換わることにより、疎水性のカプセル骨格間に、硫酸イオンに比べて疎水性が強いハロゲン化物イオンが存在することとなり、その結果、カプセル型化合物の水に対する溶解度が下がるため、と推測される。
「水系試料」としては、溶媒中における水の比率が30質量%以上である水系試料が好ましく、溶媒中における水の比率が50質量%以上である水系試料がより好ましく、溶媒中における水の比率が80質量%以上である水系試料が更に好ましい。
本発明の水系試料は必要に応じ、水以外にも、溶媒として、極性プロトン性溶媒(メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、酢酸、ギ酸、等)、極性非プロトン性溶媒(テトラヒドロフラン、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、等)、及び非極性溶媒(ベンゼン、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、塩化メチレン等)の少なくとも1種を含んでいてもよい。
中でも、前述したとおり、牛乳、飲料水(硬水、地下水、ミネラルウォーター等)、医療用の水、工業廃水が好適である。
前記カプセル骨格に内包される陰イオンが1価の陰イオンであることにより、前記カプセル型化合物(A)の場合と同様に、カプセル型3価カチオンが構成されるので、前記カプセル型化合物(A)の場合と同様の効果が奏される。
前記カプセル骨格に内包される1価の陰イオンとしては、例えば、ハロゲン化物イオン(例えば、Cl−、Br−、又はI−)、ClO4 −、BF4 −、NO3 −、CF3SO3 −、PF6 −、N3 −が挙げられる。中でも、Cl−、Br−、又はI−が好ましく、Cl−又はBr−がより好ましい。
また、前記対イオンとしての3個のハロゲン化物イオンは、Cl−、Br−、及びI−からなる群から選択される3個のハロゲン化物イオンであれば特に限定はないが、合成容易性の観点からは、3個のハロゲン化物イオンが同一種であることが好ましい。合成容易性の観点からは、更に、前記カプセル骨格に内包された1価の陰イオン及び前記対イオンとしての3個のハロゲン化物イオンが同一種であることがより好ましい。
前記対イオンとしての3個のハロゲン化物イオンは、3個のCl−又は3個のBr−であることが更に好ましい。
前記一般式(1)及び(2)中、R1〜R12は、合成容易性などの観点より、水素原子であることが好ましい。更に、前記一般式(1)及び(2)中、R1〜R13は、合成容易性などの観点より、水素原子であることが好ましい。
下記の例示化合物(a)は、1,3−ビス(ベンゾイミダゾール−1−イル−メチル)−2,4,6−トリメチルベンゼン(m−bbitrb)である。
このときの反応温度には特に限定はないが、例えば、10℃〜80℃とすることが好ましい。
反応時間にも特に限定はないが、20分以上とすることが好ましい。
第2実施形態のカプセル型化合物は、上述の一般式(1)で表されるカプセル骨格、及び、該カプセル骨格に内包された硫酸イオン(SO4 2−)からなるカプセル型2価カチオンと、前記カプセル型2価カチオンに対する対イオンとしての、Cl−、Br−、及びI−からなる群から選択されるハロゲン化物イオン2個と、からなる化合物である。
このため、第2実施形態のカプセル型化合物によれば、第1実施形態のカプセル型化合物と同様に、ClO4 −、BF4 −、NO3 −、CF3SO3 −、及びPF6 −からなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料中の前記陰イオンの濃度を、環境及び人体への影響が少ない特定のハロゲン化物イオンを放出しながら短時間で効率よく低下させることができる。
更に、第2実施形態のカプセル型化合物は、対イオンがハロゲン化物イオンであるため、第1実施形態のカプセル型化合物と同様に、高い収率で合成できる。
より詳細には、第2実施形態のカプセル型化合物を比較カプセル型化合物(X)よりも高い収率で合成できる理由は、第2実施形態のカプセル型化合物では、比較カプセル型化合物(X)における対イオンとしての硫酸イオン(SO4 2−)が、2個のハロゲン化物イオンに置き換わることにより、疎水性のカプセル骨格間に、硫酸イオンに比べて疎水性が強いハロゲン化物イオンが存在することとなり、その結果、カプセル型化合物の水に対する溶解度が下がるため、と推測される。
第2実施形態のカプセル型化合物において、上記相違点以外は第1実施形態のカプセル型化合物と同様であり、好ましい態様や好ましい用途も同様である。
以下、この一例に係るカプセル型化合物を、「カプセル型化合物(C)」や、[SO4⊂Cu2(m−bbitrb)4]Cl2ともいう。
即ち、第2実施形態のカプセル型化合物(例えばカプセル型化合物(C))では、比較カプセル型化合物(X)における対イオンとしての硫酸イオン(SO4 2−)が、2個のハロゲン化物イオンに置き換わったことにより、疎水性のカプセル骨格間に、硫酸イオンに比べて疎水性が強いハロゲン化物イオンが存在することで、カプセル型化合物の水に対する溶解度が下がったためと考えられる。
即ち、第2実施形態のカプセル型化合物(例えばカプセル型化合物(C))では、第1実施形態のカプセル型化合物(例えばカプセル型化合物(A))において、カプセル骨格に内包されている1価の陰イオンが硫酸イオン(SO4 2−)に置き換わったことにより、カプセル型カチオンの価数が3価から2価に減少し、その結果、カプセル型化合物の水に対する溶解度が下がったためと考えられる。
対イオン交換前のカプセル型化合物を合成する際の、反応温度及び反応時間の好ましい範囲は、第1実施形態のカプセル型化合物の合成方法における反応温度及び反応時間の好ましい範囲と同様である。
本発明の陰イオン除去剤は、上記本発明のカプセル型化合物を有効成分として含む。
このため、本発明の陰イオン除去剤と、ClO4 −、BF4 −、NO3 −、CF3SO3 −、及びPF6 −からなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料と、を接触させることにより、前記水系試料中の前記陰イオンの濃度を短時間で効率よく低下させることができる。
また、本発明の陰イオン除去剤の第2の態様としては、固体状態の本発明のカプセル型化合物(又はその水和物)と、バインダー成分等の他の成分と、の混合物の態様(錠剤状など)が挙げられる。
また、本発明の陰イオン除去剤の第3の態様としては、本発明のカプセル型化合物(又は、本発明のカプセル型化合物(又はその水和物)を含む混合物)が水系媒体中に懸濁された懸濁液の態様が挙げられる。
本発明の陰イオン除去方法は、ClO4 −、BF4 −、NO3 −、CF3SO3 −、及びPF6 −からなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料と、上記本発明のカプセル型化合物と、を接触させて前記水系試料から前記陰イオンを除去する工程を含む。
本発明の陰イオン除去方法によれば、本発明のカプセル型化合物と前記陰イオンとを接触させることができるので、前記水系試料中の前記陰イオンの濃度を短時間で効率よく低下させることができる。
また、前記接触は、本発明のカプセル型化合物(又は、本発明のカプセル型化合物の水和物、若しくは、本発明のカプセル型化合物を有効成分として含む陰イオン除去剤)を固定したフィルターに、前記水系試料を通過させることによって行うことも好ましい。
前記接触時の温度は、0〜100℃とすることができ、20〜80℃とすることが好ましい。
撹拌には、攪拌器、容器の振とう、超音波の照射、マイクロウェーブの照射、加熱による対流、などの手段を用いることができる。中でも、超音波の照射が好ましい。
分離の方法としては、沈殿物を溶液中から分離する通常の方法をそのまま適用することができ、例えば、上澄み液のデカントによる分離、フィルターによる濾過、遠心分離操作による分離等を挙げることができる。
このため、陰イオン除去後の水系試料は、後処理をすることなくそのまま排水する、あるいは使用することができる。また、陰イオン除去後の水系試料中に放出されたハロゲン化物イオンは、必要に応じ、イオン交換樹脂によるイオン交換法、銀イオンによる沈殿除去法、あるいは電気分解による分解除去法(例えば特開平11−99391参照)等、公知の方法により、水系試料中から除去してもよい。
<1,3−ビス(ベンゾイミダゾール−1−イル−メチル)−2,4,6−トリメチルベンゼン(m−bbitb)の合成>
Liu, H.-K.; Hu, J.; Wang, T.-W.; Yu, X.-L.; Liu, J.; Kang, B. J. Chem. Soc., Dalton Trans. 2001, 359.に記載の合成方法に従い、1,3−ビス(ベンゾイミダゾール−1−イル−メチル)−2,4,6−トリメチルベンゼン(m−bbitrb)を合成した。
塩化銅2水和物(0.2557g,1.50mmol)を水100mLに、m−bbitrb(1.1414g,3.00mmol)をエタノール100mLに、それぞれ溶解させた。得られた2つの溶液を混合し加熱濃縮して、青色微結晶として、前述のカプセル型化合物(A)の2水和物([Cl⊂Cu2(m−bbitrb)4]Cl3・2H2O)を得た(収量1.3146g,収率95.8%)。
カプセル型化合物(A)の2水和物([Cl⊂Cu2(m−bbitrb)4]Cl3・2H2O)の構造は、元素分析及び単結晶構造解析によって確認した。結果を以下に示す。
元素分析は、Euro Vector社製Euro EA3000を用いて行った。
単結晶構造解析は、(株)リガク製の構造解析装置(マーキュリー二次元検出器システム)を用い、室温(25℃)でモリブデンKαの線源を用いてX線の反射データを収集し、収集した反射データを(株)リガク製の Crystal Structure プログラムを用いて解析することにより行った。
理論値:C,65.74; H,5.52; N,12.27.
実測値:C,65.72; H,5.30; N,12.16.
Tetragonal, a = b = 15.2312 (8) Å、c = 23.338 (2) Å、Space group = I4/m (#87)、Z = 2、R1 = 0.0783、wR2 = 0.1696、T = 293K.
図1に示すように、カプセル型化合物(A)の構造は、前述したとおりの構造であることが確認された。
過塩素酸ナトリウム(0.0306g,0.25mmol)を正確に量り取り、水温30℃の超純水250mLに溶解させ、過塩素酸イオンを1mmol/L(=1mM)含む水溶液を調製した。続いて上記カプセル型化合物(A)の2水和物([Cl⊂Cu2(m−bbitrb)4]Cl3・2H2O)(0.0992g,0.054mmol)を正確に量り取り、そこに先ほど調製した過塩素酸イオンを含む水溶液を100mL添加し、過塩素酸イオンを含む水溶液とカプセル型化合物(A)とを接触させ、反応溶液とした。
得られた反応溶液を、恒温震盪装置を用いて100rpmの速度で震盪し、かつ、温度を30℃に保ちながら、過塩素酸イオンを含む水溶液の添加後(即ち、過塩素酸イオンを含む水溶液とカプセル型化合物(A)との接触後)180分間における、反応溶液中の過塩素酸イオン濃度(mM)の推移を測定した。
反応溶液中の過塩素酸イオン濃度は、反応溶液から200μL採取し、採取した反応溶液に超純水4800μLを加えて25倍希釈測定用溶液を作製し、作製した25倍希釈測定用溶液中の過塩素酸イオン濃度をイオンクロマトグラフィーを用いて測定し、得られた測定結果(25倍希釈測定用溶液中の過塩素酸イオン濃度)に基づいて求めた。イオンクロマトグラフィーはメトローム社製のMetrohm Compact IC 861 ion chromatographyを用いて行った。
また、ブランクとして過塩素酸イオン1mmol/L(=1mM)水溶液を調整し、
このブランク中における過塩素酸イオン濃度を、上記の反応溶液中の過塩素酸イオン濃度と同様の手法によって求めた。
図2は、過塩素酸イオンを含む水溶液の添加後(即ち、過塩素酸イオンを含む水溶液とカプセル型化合物(A)との接触後)180分間における、反応溶液中の過塩素酸イオン濃度(mM)の推移を示すグラフである。
図2中、横軸(Time(min))は、過塩素酸イオンを含む水溶液の添加(即ち、過塩素酸イオンを含む水溶液とカプセル型化合物(A)との接触)からの経過時間(分)を示し、縦軸は、反応溶液中の過塩素酸イオン濃度(mM)を示す。経過時間0分における過塩素酸イオン濃度(mM)は、ブランク中における過塩素酸イオン濃度である(後述の図3〜図5及び図7、図8、図10についても同様である)。
図2に示すように、過塩素酸イオンを含む水溶液とカプセル型化合物(A)とを接触させることにより、短時間(180分間)で反応溶液中の過塩素酸イオン濃度を低下させることができた。
<比較カプセル型化合物(X)の8水和物([SO4⊂Cu2(m−bbitrb)4]SO4・8H2O)の合成>
実施例1中、「カプセル型化合物(A)の2水和物([Cl⊂Cu2(m−bbitrb)4]Cl3・2H2O)の合成」において、塩化銅2水和物を、硫酸銅5水和物に変更したこと以外は実施例1と同様にして、比較カプセル型化合物(X)の8水和物([SO4⊂Cu2(m−bbitrb)4]SO4・8H2O)を合成した。
実施例1中、「カプセル型化合物(A)による過塩素酸イオン(ClO4 −)の除去」において、カプセル型化合物(A)の2水和物([Cl⊂Cu2(m−bbitrb)4]Cl3・2H2O)(0.0992g,0.054mmol)を、比較カプセル型化合物(X)の8水和物([SO4⊂Cu2(m−bbitrb)4]SO4・8H2O)(0.0992g,0.050mmol)に変更したこと以外は実施例1と同様にして、過塩素酸イオンを含む水溶液の添加後(即ち、過塩素酸イオンを含む水溶液と比較カプセル型化合物(X)との接触後)180分間における、反応溶液中の過塩素酸イオン濃度(mM)の推移を測定した。
測定結果を図3に示す。
この理由として、カプセル型化合物(A)は、比較カプセル型化合物(X)と比較して、理論上、1分子当たりに捕捉できる過塩素酸イオンの分子数が多いこと(即ち、1分子当たりの過塩素酸イオンの除去活性が高いこと)、具体的には、カプセル型化合物(A)1分子が捕捉できる過塩素酸イオンの分子数が最大3分子であるのに対し、比較カプセル型化合物(X)1分子が捕捉できる過塩素酸イオンの分子数が最大2分子であることが考えられる。
具体的には、カプセル型化合物(A)の2水和物([Cl⊂Cu2(m−bbitrb)4]Cl3・2H2O)(0.0992g,0.054mmol)の理論上の過塩素酸イオン除去量は0.162mmol(0.0161g)であるのに対し、比較カプセル型化合物(X)の8水和物([SO4⊂Cu2(m−bbitrb)4]SO4・8H2O)(0.0992g,0.050mmol)の理論上の過塩素酸イオン除去量は0.100mmol(0.00995g)である。
従って、実施例1における過塩素酸イオンを含む水溶液が、更に、Ca2+及びBa2+からなる群から選択される少なくとも1種の陽イオンを含む場合には、比較例1の過塩素酸イオンを含む水溶液が上記陽イオンを含む場合と比較して、上記陽イオンの濃度をある程度高く維持しながら、過塩素酸イオンの濃度を低下させることができるという効果が期待できる。
その理由は、比較例1における対イオン交換では、水溶液中に上記陽イオンを沈殿させる効果が高い硫酸イオンが放出されるのに対し、実施例1における対イオン交換では、水溶液中に硫酸イオンではなく塩化物イオンが放出されるためである。
後述する実施例2〜4における水溶液が上記陽イオンを含む場合にも、同様の効果が期待できる。
<カプセル型化合物(A)による硝酸イオン(NO3 −)の除去>
まず、硝酸ナトリウム(0.0214g,0.25mmol)を正確に量り取り、水温30℃の超純水250mLに溶解させ、硝酸イオンを1mmol/L(=1mM)含む水溶液を調製した。
次に、実施例1中、「カプセル型化合物(A)による過塩素酸イオン(ClO4 −)の除去」において、カプセル型化合物(A)の2水和物([Cl⊂Cu2(m−bbitrb)4]Cl3・2H2O)に添加した過塩素酸イオンを含む水溶液100mLを、上記で調製した硝酸イオンを含む水溶液100mLに変更したこと以外は実施例1と同様にして、硝酸イオンを含む水溶液の添加後(即ち、硝酸イオンを含む水溶液とカプセル型化合物(A)との接触後)180分間における、反応溶液中の硝酸イオン濃度(mM)の推移を測定した。
測定結果を図4に示す。
<比較カプセル型化合物(X)による硝酸イオン(NO3 −)の除去>
比較例1中、「比較カプセル型化合物(X)による過塩素酸イオン(ClO4 −)の除去」において、比較カプセル型化合物(X)の8水和物([SO4⊂Cu2(m−bbitrb)4]SO4・8H2O)に添加した過塩素酸イオンを含む水溶液100mLを、上記実施例2で調製した硝酸イオンを含む水溶液100mLに変更したこと以外は比較例1と同様にして、硝酸イオンを含む水溶液の添加後(即ち、硝酸イオンを含む水溶液と比較カプセル型化合物(X)との接触後)180分間における、反応溶液中の硝酸イオン濃度(mM)の推移を測定した。
測定結果を図5に示す。
この理由については、上述した過塩素酸イオンの除去の場合と同様に、カプセル型化合物(A)は、比較カプセル型化合物(X)と比較して、理論上、1分子当たりに捕捉できる硝酸イオンの分子数が多いこと(即ち、1分子当たりの硝酸イオンの除去活性が高いこと)、具体的には、カプセル型化合物(A)1分子が捕捉できる硝酸イオンの分子数が最大3分子であるのに対し、比較カプセル型化合物(X)1分子が捕捉できる硝酸イオンの分子数が最大2分子であることが考えられる。
<カプセル型化合物(B)([Br⊂Cu2(m−bbitrb)4]Br3)の合成>
臭化銅(0.033g,0.15mmol)を水30mLに、m−bbitrb(0.11g,0.30mmol)をエタノール30mLにそれぞれ溶解させた。これらの溶液をゆっくりと拡散し反応させることにより、青色の結晶として[Br⊂Cu2(m−bbitrb)4]Br3(本実施例において、「カプセル型化合物(B)」ともいう)を合成した(収量0.1164g,収率78.8%)。
カプセル型化合物(B)([Br⊂Cu2(m−bbitrb)4]Br3)の構造は、
カプセル型化合物(A)における4つのCl−を、それぞれBr−に置き換えた構造である。
カプセル型化合物(B)([Br⊂Cu2(m−bbitrb)4]Br3)の構造は、元素分析及び単結晶構造解析によって確認した。結果を以下に示す。
理論値:C,61.01; H,4.92; N,11.38.
実測値:C,61.02; H,4.60; N,11.40.
Tetragonal, a = b = 15.3248 (10) Å、c = 23.354 (3) Å、Space group = I4/m (#87)、Z = 2、R1 = 0.0933、wR2 = 0.1855、T = 293K.
図6に示すように、カプセル型化合物(B)の構造は、ハロゲン化物イオンの種類以外はカプセル型化合物(A)の構造と同様であることが確認された。
実施例1中、「カプセル型化合物(A)による過塩素酸イオン(ClO4 −)の除去」において、カプセル型化合物(A)の2水和物([Cl⊂Cu2(m−bbitrb)4]Cl3・2H2O)(0.0992g,0.054mmol)を、カプセル型化合物(B)([Br⊂Cu2(m−bbitrb)4]Br3)(0.0992g,0.050mmol)に変更したこと以外は実施例1と同様にして、過塩素酸イオンを含む水溶液の添加後(即ち、過塩素酸イオンを含む水溶液とカプセル型化合物(B)との接触後)180分間における、反応溶液中の過塩素酸イオン濃度(mM)の推移を測定した。
測定結果を図7に示す。
<カプセル型化合物(B)による硝酸イオン(NO3 −)の除去>
まず、硝酸ナトリウム(0.0214g,0.25mmol)を正確に量り取り、水温30℃の超純水250mLに溶解させ、硝酸イオンを1mmol/L(=1mM)含む水溶液を調製した。
次に、実施例3中、「カプセル型化合物(B)による過塩素酸イオン(ClO4 −)の除去」において、カプセル型化合物(B)([Br⊂Cu2(m−bbitrb)4]Br3)に添加した過塩素酸イオンを含む水溶液100mLを、上記で調製した硝酸イオンを含む水溶液100mLに変更したこと以外は実施例3と同様にして、硝酸イオンを含む水溶液の添加後(即ち、硝酸イオンを含む水溶液とカプセル型化合物(B)との接触後)180分間における、反応溶液中の硝酸イオン濃度(mM)の推移を測定した。
測定結果を図8に示す。
<カプセル型化合物(A)の収率の確認>
実施例1と同様のカプセル型化合物(A)の合成を、30回行った。
30回の合成において、カプセル型化合物(A)の収率は、70%〜96%の範囲であった。このように、高い収率でカプセル型化合物(A)を合成できることがわかった。
<比較カプセル型化合物(X)の収率の確認>
比較例1と同様の比較カプセル型化合物(X)の合成を20回行った。
20回の合成において、比較カプセル型化合物(X)の収率は、最高でも68%であり、実施例5における収率と比較して低かった。
<カプセル型化合物(A)による、硬水からの過塩素酸イオン(ClO4 −)の除去>
市販の硬水(商品名:コントレックス)250mLに過塩素酸ナトリウム(30.6mg,0.25mmol)を溶かして、過塩素酸イオン1.0mMを含む硬水250mLを調製した。
調製した硬水にカプセル型化合物(A)(99.2mg)を添加し、恒温震盪装置を使って25℃で3時間撹拌した。
カプセル型化合物(A)を添加する前の硬水に含まれる過塩素酸イオン及びカルシウムイオンのそれぞれの濃度を、イオンクロマトフラフィー及びキレート滴定法によって決定した。同様に、カプセル型化合物(A)を添加して3時間撹拌した後の硬水に含まれる過塩素酸イオン及びカルシウムイオンのそれぞれの濃度を、イオンクロマトフラフィー及びキレート滴定法によって決定した。
その結果、過塩素酸イオンの濃度は、上記3時間撹拌後におよそ0.35mMまで減少していた。これに対し、カルシウムイオンの濃度は、カプセル型化合物(A)を添加する前と上記3時間撹拌後とにおいて、実質的な差(変化)は見られなかった。
<カプセル型化合物(A)による、カルシウムイオン及び過塩素酸イオン(ClO4 −)を含むサンプル水溶液からの過塩素酸イオン(ClO4 −)の除去>
塩化カルシウムと過塩素酸ナトリウムと超純水とを用い、カルシウムイオン0.5g(2.0g/L)及び過塩素酸イオン24.8mg(99.5mg/L;1mM)を含むサンプル水溶液を調製した。
このサンプル水溶液にカプセル型化合物(A)(397mg)を添加し、恒温震盪装置を使って25℃で3時間撹拌した。
カプセル型化合物(A)を添加する前のサンプル水溶液に含まれる過塩素酸イオン及びカルシウムイオンのそれぞれの濃度を、イオンクロマトフラフィー及びキレート滴定法によって決定した。同様に、カプセル型化合物(A)を添加して3時間撹拌した後のサンプル水溶液に含まれる過塩素酸イオン及びカルシウムイオンのそれぞれの濃度を、イオンクロマトフラフィー及びキレート滴定法によって決定した。
その結果、過塩素酸イオンの濃度は、上記3時間撹拌後に0.3mMまで減少した。これに対し、カルシウムイオンの濃度は、カプセル型化合物(A)を添加する前と上記3時間撹拌後とにおいて、実質的な差(変化)は見られなかった。具体的には、キレート滴定法により決定されたカルシウムイオンの濃度は、カプセル型化合物(A)を添加する前及び上記3時間撹拌後のいずれにおいても、1.96g/Lであった。
<カプセル型化合物(C)の1水和物([SO4⊂Cu2(m−bbitrb)4]Cl2・H2O)の合成>
硫酸銅5水和物(0.037g,0.15mmol)の水溶液30mL、m−bbitrb(0.11g,0.30mmol)のエタノール溶液30mL、及び塩化ナトリウム(0.008g,0.15mmol)の水/エタノール混合溶液30mLを混合し、2週間静置した。これにより、青色のブロック状結晶として、カプセル型化合物(C)の1水和物([SO4⊂Cu2(m−bbitrb)4]Cl2・H2O)が、前述のカプセル型化合物(A)と同様に高収率で得られた。
カプセル型化合物(C)の構造は、元素分析、赤外線吸収スペクトル、及び単結晶構造解析によって確認した。結果を以下に示す。
理論値: C, 65.49; H, 5.39; N, 12.22.
実測値: C, 65.56; H, 5.19; N, 12.34.
〜赤外吸収スペクトルデータ(KBrペレットを用いて測定した。数値の単位はcm-1である。吸収の相対強度をw(弱い)、m(中程度)、s(強い)で示す。)〜
3342 (w), 3064 (w), 2972 (w), 1612 (w), 1516 (s), 1463 (s), 1402 (m), 1388 (w), 1296 (m), 1236 (w), 1203 (m), 1138 (m), 1107 (m), 1083 (m), 1043 (m), 1010 (w), 920 (w), 744 (s), 611 (w), 480 (w), 418 (m).
〜単結晶構造解析結果〜
Tetragonal, a = b = 16.689 (5) Å、 c = 32.737 (9) Å、 V = 1938 (3) Å3, space group = P4/ncc (# 130)、 Z = 2、R1 = 0.0713, wR2= 0.1446、T = 298K.
図9に示すように、カプセル型化合物(C)の構造は、カプセル型化合物(A)のカプセル骨格と同じカプセル骨格に硫酸イオンが内包され、かつ、カプセル骨格の外側に2個のCl−が存在する構造、即ち、[SO4⊂Cu2(m−bbitrb)4]Cl2で表される構造であることが確認された。
<カプセル型化合物(C)による硝酸イオン(NO3 −)の除去>
硝酸ナトリウム(0.0214g,0.25mmol)を正確に量り取り、水温30℃の超純水250mLに溶解させ、硝酸イオンを1mmol/L含む水溶液を調製した。続いてカプセル型化合物(C)の1水和物(0.18g)を正確に量り取り、そこに先ほど調整した硝酸イオンを含む水溶液を100mL添加し、反応溶液とした。
得られた反応溶液を、恒温震盪装置を用いて100rpmの速度で震盪し、かつ、温度を30℃に保ちながら、硝酸イオンを含む水溶液の添加後180分間における、反応溶液中の硝酸イオン濃度(mM)の推移を測定した。硝酸イオン濃度(mM)の測定方法は、実施例2と同様とした。
上述の「カプセル型化合物(C)による硝酸イオン(NO3 −)の除去」において、カプセル型化合物(C)の1水和物(0.18g)を、カプセル型化合物(A)の2水和物(0.18g)に変更したこと以外は上述の「カプセル型化合物(C)による硝酸イオン(NO3 −)の除去」と同様にして、カプセル型化合物(A)による硝酸イオン(NO3 −)の除去を行った。
測定結果を図10に示す。
図10では、カプセル型化合物(C)を添加した場合の硝酸イオン濃度の推移、及び、カプセル型化合物(A)を添加した場合の硝酸イオン濃度の推移を並べて示している。
図10に示すように、カプセル型化合物(C)を添加した場合、硝酸イオンの濃度は、30分後に0.26mMまで、3時間後に0.18mMまで減少した。一方、カプセル型化合物(A)を添加した場合、硝酸イオンの濃度は、30分後におよそ0.4mMまで、3時間後に0.27mMまで減少した。
このように、カプセル型化合物(A)及びカプセル型化合物(C)のいずれを用いた場合にも、硝酸イオンの濃度を効率よく低下させることができた。両者を対比すると、カプセル型化合物(C)を用いた場合には、カプセル型化合物(A)を用いた場合と比較して、硝酸イオンの濃度をより効率よく低下させることができた。
しかし本発明はこれらの例に限定されることはなく、例えば、一般式(1)中のM1及びM2がCu2+と同様に、平面四配位、正方錐配位、及び八面体配位が可能な、Fe2+、Co2+、Pt2+、Pd2+、又はZn2+であるカプセル型化合物又はその水和物や、内包される1価の陰イオンがCl−及びBr−以外の1価の陰イオンであるカプセル型化合物又はその水和物、対イオンがI−であるカプセル型化合物又はその水和物についても同様にして合成でき、同様の効果を得ることができる。
また、上記実施例では、一般式(1)及び一般式(2)中のR1〜R13が水素原子である例を示したが、一般式(1)及び一般式(2)中のR1〜R13の少なくとも1つがメチル基である場合にも、出発物質(配位子m−bbitrb)の変更により同様にして合成でき、更に、配位子の基本骨格が同じであることから、上記実施例と同様の効果を得ることができる。
また、上記実施例ではClO4 −及びNO3 −の除去を行ったが、本発明のカプセル型化合物を用いることにより、ClO4 −及びNO3 −と構造や性質が類似するBF4 −、CF3SO3 −、PF6 −についてもClO4 −及びNO3 −と同様に除去できる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (14)
- 下記一般式(1)で表されるカプセル骨格、及び、該カプセル骨格に内包された1価の陰イオン1個からなるカプセル型3価カチオンと、
前記カプセル型3価カチオンに対する対イオンとしての、Cl−、Br−、及びI−からなる群から選択されるハロゲン化物イオン3個と、
からなるカプセル型化合物。
〔一般式(1)中、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、及びR13は、それぞれ独立に、水素原子又はメチル基を表す。一般式(1)中、M1及びM2は、それぞれ独立に、Cu2+、Fe2+、Ni2+、Co2+、Pt2+、Pd2+、又はZn2+を表す。一般式(1)中、破線は配位結合を表す。〕 - 下記一般式(1)で表されるカプセル骨格、及び、該カプセル骨格に内包された硫酸イオン(SO4 2−)からなるカプセル型2価カチオンと、
前記カプセル型2価カチオンに対する対イオンとしての、Cl−、Br−、及びI−からなる群から選択されるハロゲン化物イオン2個と、
からなるカプセル型化合物。
〔一般式(1)中、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、及びR13は、それぞれ独立に、水素原子又はメチル基を表す。一般式(1)中、M1及びM2は、それぞれ独立に、Cu2+、Fe2+、Ni2+、Co2+、Pt2+、Pd2+、又はZn2+を表す。一般式(1)中、破線は配位結合を表す。〕 - 前記カプセル骨格に内包された1価の陰イオンが、Cl−又はBr−である請求項1に記載のカプセル型化合物。
- 前記M1及び前記M2が、同一種である請求項1〜請求項3のいずれか1項に記載のカプセル型化合物。
- 前記M1及び前記M2が、Cu2+である請求項1〜請求項4のいずれか1項に記載のカプセル型化合物。
- 前記R1、前記R2、前記R3、前記R4、前記R5、前記R6、前記R7、前記R8、前記R9、前記R10、前記R11、前記R12、及び前記R13が、水素原子である請求項1〜請求項5のいずれか1項に記載のカプセル型化合物。
- 請求項1〜請求項6のいずれか1項に記載のカプセル型化合物を有効成分として含む陰イオン除去剤。
- ClO4 −、BF4 −、NO3 −、CF3SO3 −、及びPF6 −からなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料中の前記陰イオンの除去に用いられる請求項7に記載の陰イオン除去剤。
- 前記水系試料が、更に、Ca2+及びBa2+の少なくとも一方を含む請求項8に記載の陰イオン除去剤。
- 前記水系試料が、硬水である請求項8又は請求項9に記載の陰イオン除去剤。
- ClO4 −、BF4 −、NO3 −、CF3SO3 −、及びPF6 −からなる群から選択される少なくとも1種の陰イオン並びに水を含む水系試料と、請求項1〜請求項6のいずれか1項に記載のカプセル型化合物と、を接触させて前記水系試料から前記陰イオンを除去する工程を含む陰イオン除去方法。
- 前記水系試料が、少なくともClO4 −を含む請求項11に記載の陰イオン除去方法。
- 前記水系試料が、更に、Ca2+及びBa2+の少なくとも一方を含む請求項11又は請求項12に記載の陰イオン除去方法。
- 前記水系試料が、硬水である請求項11〜請求項13のいずれか1項に記載の陰イオン除去方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012167805 | 2012-07-27 | ||
JP2012167805 | 2012-07-27 | ||
PCT/JP2013/070381 WO2014017653A1 (ja) | 2012-07-27 | 2013-07-26 | カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2014017653A1 true JPWO2014017653A1 (ja) | 2016-07-11 |
JP6188029B2 JP6188029B2 (ja) | 2017-08-30 |
Family
ID=49997456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014527039A Expired - Fee Related JP6188029B2 (ja) | 2012-07-27 | 2013-07-26 | カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6188029B2 (ja) |
WO (1) | WO2014017653A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016043122A1 (ja) * | 2014-09-16 | 2017-06-29 | 国立大学法人静岡大学 | 配位高分子化合物、多孔質材料、陰イオン除去剤、及び陰イオン除去方法 |
WO2021039929A1 (ja) * | 2019-08-28 | 2021-03-04 | 国立大学法人静岡大学 | イオン性金属錯体、陰イオン検出剤、陰イオン検出方法、及び芳香族化合物 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029804A1 (fr) * | 2006-09-06 | 2008-03-13 | National University Corporation Shizuoka University | Agent de captage d'ion acide perchlorique |
JP2010022886A (ja) * | 2008-07-15 | 2010-02-04 | National Univ Corp Shizuoka Univ | テトラフルオロホウ酸イオンの除去方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5954829B2 (ja) * | 2011-01-28 | 2016-07-20 | 国立大学法人静岡大学 | カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法 |
JP2013142082A (ja) * | 2012-01-12 | 2013-07-22 | Kuraray Co Ltd | 金属錯体、並びにそれからなるアニオン除去材 |
-
2013
- 2013-07-26 WO PCT/JP2013/070381 patent/WO2014017653A1/ja active Application Filing
- 2013-07-26 JP JP2014527039A patent/JP6188029B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029804A1 (fr) * | 2006-09-06 | 2008-03-13 | National University Corporation Shizuoka University | Agent de captage d'ion acide perchlorique |
JP2010022886A (ja) * | 2008-07-15 | 2010-02-04 | National Univ Corp Shizuoka Univ | テトラフルオロホウ酸イオンの除去方法 |
Non-Patent Citations (5)
Title |
---|
SU,CHENG-YONG ET AL.: "Coordination-directed assembly of trigonal and tetragonal molecular boxes encapsulating anionic gues", J.CHEM.SOC.,DALTON TRANS., vol. (4), JPN7013003458, 2001, pages 359-361 * |
半田絢子他: "水溶液中の過塩素酸イオンに対して呈色活性を示すカプセル型金属錯体", 錯体化学会第61回討論会要旨集, JPN6013046333, 1 September 2011 (2011-09-01), JP, pages 154 * |
望月優他: "カプセル型金属錯体による水溶液中からの陰イオン捕捉", 日本化学会第90春季年会講演予稿集II, JPN6013046325, 12 March 2010 (2010-03-12), JP, pages 183 * |
望月優他: "硫酸イオンを捕捉したカプセル分子の合成と対イオン交換による水溶液中からの過塩素酸イオンの除去", 錯体化学会第61回討論会要旨集, JPN6013046330, 1 September 2011 (2011-09-01), JP, pages 212 * |
望月優他: "金属錯体カプセルを用いた水溶液中からの過塩素酸イオンの除去", 第60回錯体化学討論会・第60回記念錯体化学OSAKA国際会議講演要旨集, JPN6013046328, 16 September 2010 (2010-09-16), JP, pages 85 * |
Also Published As
Publication number | Publication date |
---|---|
WO2014017653A1 (ja) | 2014-01-30 |
JP6188029B2 (ja) | 2017-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5190995B2 (ja) | 複素環置換芳香族化合物、配位化合物、過塩素酸イオン捕捉剤、過塩素酸イオン捕捉方法、及び、過塩素酸イオン除去方法 | |
Nockemann et al. | Polynuclear metal complexes obtained from the task-specific ionic liquid betainium bistriflimide | |
Petrova et al. | Simple synthesis and chelation capacity of N-(2-sulfoethyl) chitosan, a taurine derivative | |
Hirayama | Chelate extraction of metals into ionic liquids | |
Nayak et al. | Syntheses and crystal structures of dinuclear, trinuclear [2× 1+ 1× 1] and tetranuclear [2× 1+ 1× 2] copper (ii)–d 10 complexes (d 10⇒ Zn II, Cd II, Hg II and Ag I) derived from N, N′-ethylenebis (3-ethoxysalicylaldimine) | |
Silva Filho et al. | Surface cellulose modification with 2-aminomethylpyridine for copper, cobalt, nickel and zinc removal from aqueous solution | |
Hazra et al. | Syntheses and crystal structures of CuIIBiIII, CuIIBaIICuII,[CuIIPbII] 2 and cocrystallized (U VI O 2) 2. 4Cu II complexes: structural diversity of the coordination compounds derived from N, N′-ethylenebis (3-ethoxysalicylaldiimine) | |
JP2010022886A (ja) | テトラフルオロホウ酸イオンの除去方法 | |
JP2013521235A (ja) | 漂泊触媒の調製 | |
JP6188029B2 (ja) | カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法 | |
Yolcu et al. | Novel Cd (II) methacrylate monomer complex with 1-vinylimidazole: Synthesis, characterization and ion imprinted polymer applications | |
JP2010042403A (ja) | 水の浄化方法 | |
JP5954829B2 (ja) | カプセル型化合物、陰イオン除去剤、及び陰イオン除去方法 | |
JP5448195B2 (ja) | 水の浄化方法、水の浄化装置、及び水の浄化セット | |
WO2016043122A1 (ja) | 配位高分子化合物、多孔質材料、陰イオン除去剤、及び陰イオン除去方法 | |
CN105348304A (zh) | 单核吡唑-3-甲酸铜配合物及其制备方法 | |
Fairley et al. | Synthesis and characterization of homo-and heteronuclear molecular Al 3+ and Th 4+ species chelated by the ethylenediaminetetraacetate (edta) ligand | |
CN111375071B (zh) | 一种制备造影剂方法 | |
CN101012244A (zh) | 一种含银量极低的奈达铂的制备方法 | |
CN106574320A (zh) | 金属回收方法和金属回收剂 | |
Dittrich et al. | Long tailed cage amines: Synthesis, metal complexation, and structure | |
WO2010058774A1 (ja) | 固体状重金属処理剤及び製造方法並びにその用途 | |
JP2012026981A (ja) | テトラフルオロホウ酸イオン検出剤、テトラフルオロホウ酸イオン検出キット、及びテトラフルオロホウ酸イオン検出方法 | |
WO2009150448A1 (en) | Improvements in platinum compounds preparation by use of tetrabutylammounium amminetrichloroplatinate as intermediate | |
JP2022130321A (ja) | ホスト分子の包接能の変更方法、包接体の製造方法、包接体、単結晶、複合体、及び標的分子捕捉用キット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141117 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A527 Effective date: 20141117 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170629 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170726 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6188029 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |