WO2008026569A1 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
WO2008026569A1
WO2008026569A1 PCT/JP2007/066616 JP2007066616W WO2008026569A1 WO 2008026569 A1 WO2008026569 A1 WO 2008026569A1 JP 2007066616 W JP2007066616 W JP 2007066616W WO 2008026569 A1 WO2008026569 A1 WO 2008026569A1
Authority
WO
WIPO (PCT)
Prior art keywords
silencing space
space
silencing
refrigeration apparatus
refrigerant passage
Prior art date
Application number
PCT/JP2007/066616
Other languages
English (en)
French (fr)
Inventor
Satoshi Ishikawa
Masanori Masuda
Masahide Higuchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US12/377,464 priority Critical patent/US20100242522A1/en
Priority to EP07793060.0A priority patent/EP2058610B1/en
Priority to AU2007289779A priority patent/AU2007289779B2/en
Priority to CN2007800292296A priority patent/CN101501419B/zh
Priority to ES07793060T priority patent/ES2728955T3/es
Publication of WO2008026569A1 publication Critical patent/WO2008026569A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • F04B39/0061Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes using muffler volumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus in which a saddle muffler is employed as a silencer.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-10875
  • Patent Document 2 JP 2004-218934 A
  • Non-Patent Document 1 Sakae Yamada, Tsuyoshi Otani, “Pulsation Removal by Orifice and Saddle-type Pneumatic Suction”, Proceedings of the Japan Opportunity Society (Part 2), December 1968, Vol. 34, No. 268, p 2139— 2145
  • Non-Patent Document 2 Japan Association of Opportunities, “Fluid-related vibration learned from cases”, 1st edition, Gihodo Publishing Co., Ltd., September 20, 2003, p. 190-193
  • An object of the present invention is to sufficiently reduce the pressure pulsation of a refrigeration apparatus that employs carbon dioxide or the like as a refrigerant.
  • a refrigeration apparatus includes a first refrigerant passage, a vertical silencer, and a second refrigerant passage.
  • the ⁇ -type silencer has a first silencer space, a second silencer space, and a communication path.
  • the first silencing space communicates with the first refrigerant passage.
  • the second silencing space is arranged below the first silencing space.
  • the communication path extends from the lower end of the first silencing space toward the outside of the first silencing space. It communicates with the sound deadening space.
  • the second refrigerant passage extends from the lower end of the second silencing space.
  • the refrigerant may flow in the order of the first refrigerant passage ⁇ the ⁇ -type filter ⁇ the second refrigerant passage! Conversely, the second refrigerant passage ⁇ the ⁇ -type filter ⁇ the first refrigerant passage. You can flow! /
  • This refrigeration system incorporates a ⁇ -type silencer. For this reason, this refrigeration system can sufficiently reduce pressure pulsation even when carbon dioxide or the like is used as the cooling medium.
  • the second silencing space is disposed below the first silencing space, and the communication path extends from the lower end of the first silencing space toward the outside of the first silencing space and communicates with the second silencing space. . For this reason, this refrigeration system can prevent the refrigeration oil from accumulating in the first silencing space.
  • the second refrigerant path extends from the lower end of the second silencing space. For this reason, this refrigeration apparatus can prevent the refrigeration oil from accumulating in the second silencing space. Therefore, in this refrigeration apparatus, it is possible to prevent refrigeration oil from accumulating in the ⁇ -type silencer.
  • a refrigeration apparatus is the refrigeration apparatus according to the first aspect of the present invention, wherein the communication path extends to the inside of the second silencing space.
  • the communication path extends to the inside of the second silencing space. For this reason, in this refrigeration system, it is possible to extend the length of only the connection path without changing the overall size of the ⁇ -type silencer. In a ⁇ -type silencer, the longer the connection path, the greater the pressure pulsation reduction effect. That is, in this refrigeration apparatus, the pressure pulsation reduction effect can be increased without changing the overall size of the ⁇ -type silencer.
  • a refrigeration apparatus includes a first refrigerant passage, a ⁇ -type silencer, and a second refrigerant passage.
  • the ⁇ -type silencer has a first silencer space, a second silencer space, a communication path, and an oil return hole.
  • the first silencing space communicates with the first refrigerant passage.
  • the second silencing space is arranged below the first silencing space.
  • the communication path extends from the inside of the first silencing space through the lower end toward the outside of the first silencing space and communicates with the second silencing space.
  • the oil return hole is provided in the lower end portion of the communication path located in the first silencing space.
  • the second refrigerant passage extends from the lower end of the second silencing space.
  • the refrigerant may flow in the order of the first refrigerant passage ⁇ the ⁇ -type filter ⁇ the second refrigerant passage, or conversely, the refrigerant flows in the order of the second refrigerant passage ⁇ the ⁇ -type filter ⁇ the first refrigerant passage.
  • This refrigeration system incorporates a ⁇ -type silencer. For this reason, this refrigeration system can sufficiently reduce pressure pulsation even when carbon dioxide or the like is used as the cooling medium.
  • the second silencing space is disposed below the first silencing space, and the communication path extends from the inside of the first silencing space to the outside of the first silencing space through the lower end.
  • An oil return hole is provided at the lower end of the communication path that communicates with the space and is located within the first silencing space.
  • this refrigeration apparatus it is possible to increase the pressure pulsation reduction effect without changing the overall size of the ⁇ -type silencer and to prevent the refrigeration oil from accumulating in the first silencing space.
  • the second refrigerant passage extends from the lower end of the second silencing space. For this reason, this refrigeration apparatus can prevent refrigeration oil from accumulating in the second silencing space. Therefore, this refrigeration apparatus can prevent refrigerating machine oil from accumulating in the ⁇ -type silencer and increase the pressure pulsation reduction effect without changing the overall size of the ⁇ -type silencer.
  • a refrigeration apparatus is the refrigeration apparatus according to the third aspect of the present invention, wherein the communication path extends to the inside of the second silencing space.
  • the communication path extends to the inside of the second silencing space. For this reason, with this refrigeration system, it is possible to extend the length of the connecting path even longer without changing the overall size of the ⁇ -type silencer. Therefore, in this refrigeration system, the pressure pulsation reduction effect can be further increased without changing the overall size of the ⁇ -type silencer.
  • a refrigeration apparatus includes a first refrigerant passage, a ⁇ -type silencer, and a second refrigerant passage.
  • the ⁇ -type silencer has a first silencer space, a second silencer space, and a communication path.
  • the first silencing space communicates with the first refrigerant passage.
  • the second silencing space is arranged on the side of the first silencing space.
  • the communication path extends from the lower end of the first silencing space to the lower end of the second silencing space through the outside of the first silencing space and communicates with the second silencing space.
  • the second refrigerant passage communicates with the second silencing space.
  • the refrigerant may flow in the order of the first refrigerant passage ⁇ the ⁇ -type filter ⁇ the second refrigerant passage, or conversely, the second refrigerant passage ⁇ the ⁇ -type filter ⁇ the first refrigerant passage. May flow.
  • This refrigeration system incorporates a ⁇ -type silencer. For this reason, this refrigeration system can sufficiently reduce pressure pulsation even when carbon dioxide or the like is used as the cooling medium.
  • the second silencing space is arranged on the side of the first silencing space, and the communication path extends from the lower end of the first silencing space to the lower end of the second silencing space. Extends and communicates with the second silencing space. For this reason, with this refrigeration system, the total length of the ⁇ -type silencer can be shortened. Therefore, with this refrigeration system, the options for arranging the ⁇ -type silencer can be expanded.
  • a refrigeration apparatus is the refrigeration apparatus according to the fifth aspect of the present invention, wherein the first refrigerant passage is inserted by the upper end force of the first silencing space and extends to the inside of the first silencing space. ing.
  • the first refrigerant passage is inserted from the upper end of the first silencing space and extends to the inside of the first silencing space. For this reason, in this refrigeration system, when the refrigerant flows from the second silencing space toward the first silencing space, the refrigeration oil is prevented from collecting in the first silencing space.
  • a refrigeration apparatus is the refrigeration apparatus according to the fifth invention or the sixth invention, wherein the second refrigerant passage is inserted from the upper end of the second silencing space and is inside the second silencing space. It extends to.
  • the second refrigerant passage is inserted from the upper end of the second silencing space and extends to the inside of the second silencing space. For this reason, in this refrigeration apparatus, when the refrigerant flows from the first silencing space toward the second silencing space, the refrigeration oil is prevented from collecting in the second silencing space.
  • a refrigeration apparatus is the refrigeration apparatus according to the fifth invention, wherein the first refrigerant passage extends from the upper end of the first silencing space. Further, the second refrigerant passage extends from the upper end of the second silencing space.
  • a refrigeration apparatus is the refrigeration apparatus according to the fifth aspect, wherein the first refrigerant passage extends from the lower end of the first silencing space. Further, the second refrigerant passage extends from the lower end of the second silencing space.
  • the first refrigerant passage extends from the lower end of the first silencing space
  • the second refrigerant passage extends from the lower end of the second silencing space.
  • a refrigeration apparatus is the refrigeration apparatus according to any of the fifth to ninth aspects of the invention, wherein the communication path is filled with a mesh member.
  • the mesh member is filled in the communication path. For this reason, in this refrigeration apparatus, it is possible to prevent a reflected wave from being generated in the communication path.
  • a refrigeration apparatus includes a first refrigerant passage, a ⁇ -type silencer, and a second refrigerant passage.
  • the vertical silencer has a first silence space, a second silence space, and a communication path.
  • the first silencing space communicates with the first refrigerant passage.
  • the second silencing space is located on the side of the first silencing space.
  • the communication path extends from the lower end of the first silencing space to the upper end of the second silencing space through the outside of the first silencing space and communicates with the second silencing space.
  • the second refrigerant passage communicates with the second silencing space.
  • the refrigerant flows in the order of the first refrigerant passage, the ⁇ -type filter, and the second refrigerant passage.
  • This refrigeration system incorporates a ⁇ -type silencer. For this reason, this refrigeration system can sufficiently reduce pressure pulsation even when carbon dioxide or the like is used as the cooling medium.
  • the second silencing space is arranged on the side of the first silencing space, and the communication path extends from the lower end of the first silencing space to the upper end of the second silencing space through the outside of the first silencing space. It communicates with the second silencing space. For this reason, in this refrigeration apparatus, refrigerating machine oil can be prevented from accumulating in the first silencing space, the overall length of the ⁇ -type silencer can be shortened, and the connecting path can be lengthened.
  • a refrigeration apparatus is the refrigeration apparatus according to the first aspect of the present invention, wherein the second refrigerant passage extends from the lower end of the second silencing space.
  • the second refrigerant passage extends from the lower end of the second silencing space. For this reason, this refrigeration apparatus can prevent the refrigeration oil from accumulating in the second silencing space.
  • a refrigeration apparatus includes a first refrigerant passage, a ⁇ -type silencer, and a second refrigerant passage.
  • the vertical silencer has a first silence space, a second silence space, and a communication path.
  • the first silencing space communicates with the first refrigerant passage.
  • the second silencing space is located on the side of the first silencing space.
  • the communication path extends from the inside of the first silencing space through the upper end to the upper end of the second silencing space and communicates with the second silencing space.
  • the second refrigerant passage communicates with the second silencing space.
  • the refrigerant may flow in the order of the first refrigerant passage ⁇ the ⁇ -type filter ⁇ the second refrigerant passage, or conversely, the refrigerant flows in the order of the second refrigerant passage ⁇ the ⁇ -type filter ⁇ the first refrigerant passage. Also good.
  • This refrigeration system incorporates a ⁇ -type silencer. For this reason, this refrigeration system can sufficiently reduce pressure pulsation even when carbon dioxide or the like is used as the cooling medium.
  • the second silencing space is disposed on the side of the first silencing space, and the communication path extends from the inside of the first silencing space through the upper end to the upper end of the second silencing space. Communicate with. For this reason, in this refrigeration system, even when the refrigerant flows from the first silencing space toward the second silencing space, it is possible to prevent the refrigeration oil from accumulating in the first silencing space, and to connect the connection path. The ability to lengthen S.
  • this refrigeration apparatus can prevent the refrigeration oil from accumulating in the first silencing space, and can increase the pressure pulsation reduction effect without changing the overall size of the vertical silencer.
  • a refrigeration apparatus is the refrigeration apparatus according to the thirteenth invention, wherein the communication path extends from the upper end of the second silencing space to the inside of the second silencing space.
  • the communication path extends from the upper end of the second silencing space to the inside of the second silencing space. For this reason, in this refrigeration system, only the connecting path can be extended further without changing the overall size of the ⁇ -type silencer. Therefore, in this refrigeration system, the pressure pulsation reduction effect can be further increased without changing the overall size of the ⁇ -type silencer. it can.
  • a refrigeration apparatus is the refrigeration apparatus according to the thirteenth or fourteenth invention, wherein the second refrigerant passage extends from the lower end of the second silencing space.
  • the second refrigerant passage extends from the lower end of the second silencing space. For this reason, this refrigeration apparatus can prevent the refrigeration oil from accumulating in the second silencing space.
  • a refrigeration apparatus includes a first refrigerant passage, a ⁇ -type silencer, and a second refrigerant passage.
  • the vertical silencer has a first silence space, a second silence space, and a communication path.
  • the first silencing space communicates with the first refrigerant passage.
  • the second silencing space is located on the side of the first silencing space.
  • the communication path extends from the lower side surface of the first silencing space to the lower side surface of the second silencing space and communicates with the second silencing space.
  • the second refrigerant passage is connected to the lower side surface of the second silencing space and communicates with the second silencing space.
  • the refrigerant flows in the order of the first refrigerant passage ⁇ the ⁇ -type filter ⁇ the second refrigerant passage.
  • This refrigeration system incorporates a ⁇ -type silencer. For this reason, this refrigeration system can sufficiently reduce pressure pulsation even when carbon dioxide or the like is used as the cooling medium.
  • the second silencing space is disposed on the side of the first silencing space, and the communication path extends from the lower side surface of the first silencing space to the lower side surface of the second silencing space and communicates with the second silencing space.
  • the second refrigerant passage is connected to the lower side surface of the second silencing space and communicates with the second silencing space. For this reason, in this refrigeration apparatus, it is possible to prevent the refrigeration machine oil force S from accumulating in the first silencing space and the second silencing space S.
  • a refrigeration apparatus is the refrigeration apparatus according to the sixteenth aspect of the invention, wherein the communication path extends from the inside of the first silencing space through the first silencing space and the lower side surface of the second silencing space. It extends to the inside of the sound deadening space.
  • the communication path extends from the inside of the first silencing space to the inside of the second silencing space through the first silencing space and the lower side surface of the second silencing space. For this reason, in this refrigeration apparatus, only the connection path can be extended for a long time without changing the overall size of the ⁇ -type silencer. In the ⁇ -type silencer, the longer the connection path, the greater the effect of reducing pressure pulsation. That is, in this refrigeration apparatus, the pressure pulsation reduction effect can be increased without changing the overall size of the ⁇ -type silencer.
  • a refrigeration apparatus is the refrigeration apparatus according to the sixteenth aspect of the invention or the seventeenth aspect of the invention, wherein the first refrigerant passage is connected to the lower side surface of the first silencing space.
  • the first refrigerant passage is connected to the lower side surface of the first silencing space.
  • the refrigerant flows in the order of the second refrigerant path ⁇ the ⁇ -type filter ⁇ the first refrigerant path even when the refrigerant flows in the order of the first refrigerant path ⁇ the ⁇ -type filter ⁇ the second refrigerant path.
  • the force S prevents the refrigeration oil from accumulating in the first silencing space and the second silencing space.
  • a refrigeration apparatus includes a first refrigerant passage, a ⁇ -type silencer, a second refrigerant passage, a first oil drain passage, and a second oil drain passage.
  • the ⁇ -type silencer has a first silencer space, a second silencer space, and a communication path.
  • the first silencing space communicates with the first refrigerant passage.
  • the second silencing space is located on the side of the first silencing space.
  • the communication path extends from the side surface of the first silencing space to the side surface of the second silencing space and communicates with the second silencing space.
  • the second refrigerant passage communicates with the second silencing space.
  • the first oil drain passage extends from the lower end of the first silencing space.
  • the second oil drain passage extends from the lower end of the second silencing space.
  • the refrigerant flows in the order of the first refrigerant path ⁇ the ⁇ -type filter ⁇ the second refrigerant path, and conversely, the second refrigerant path ⁇ the ⁇ -type filter ⁇ the first refrigerant path. It ’s flowing.
  • This refrigeration system incorporates a ⁇ -type silencer. For this reason, this refrigeration system can sufficiently reduce pressure pulsation even when carbon dioxide or the like is used as the cooling medium.
  • the first oil drain passage extends from the lower end of the first silencing space
  • the second oil drain passage extends from the lower end of the second silencing space. For this reason, in this refrigeration apparatus, it is possible to prevent refrigeration oil from accumulating in the first silencing space and the second silencing space.
  • a refrigeration apparatus is the refrigeration apparatus according to the nineteenth aspect of the invention, wherein the second oil drain passage joins the first oil drain passage.
  • the second oil drain passage merges with the first oil drain passage. For this reason, in this refrigeration system, the refrigeration oils sent to the vertical silencer can be collectively returned to the compression mechanism or the like.
  • the refrigeration apparatus according to the first invention is a case where carbon dioxide or the like is employed as the refrigerant. Can sufficiently reduce the pressure pulsation. In addition, this refrigeration apparatus can prevent refrigerating machine oil from accumulating in the vertical silencer.
  • only the connecting path can be extended for a long time without changing the overall size of the vertical silencer.
  • the longer the connection path the greater the pressure pulsation reduction effect. That is, in this refrigeration apparatus, the pressure pulsation reduction effect can be increased without changing the overall size of the ⁇ -type silencer.
  • the pressure pulsation can be sufficiently reduced even when carbon dioxide or the like is employed as the refrigerant. Further, in this refrigeration apparatus, it is possible to prevent refrigeration oil from accumulating in the first silencing space, and to extend only the connection path without changing the overall size of the ⁇ -type silencer. In a ⁇ -type silencer, the longer the connection path, the greater the pressure pulsation reduction effect. In other words, this refrigeration apparatus can prevent refrigerating machine oil from accumulating in the first silencing space, and can increase the pressure pulsation reduction effect without changing the overall size of the ⁇ -type silencer. In addition, this refrigeration apparatus can prevent refrigeration oil from accumulating in the second silencing space. Therefore, this refrigeration apparatus can prevent refrigerating machine oil from accumulating in the ⁇ -type silencer and can increase the pressure pulsation reduction effect without changing the overall size of the vertical silencer.
  • the force S can be extended to extend only the connection path even further without changing the overall size of the ⁇ -type silencer. Therefore, in this refrigeration system, the pressure pulsation reduction effect can be further increased without changing the overall size of the ⁇ -type silencer.
  • the pressure pulsation can be sufficiently reduced even when carbon dioxide or the like is employed as the refrigerant. Also, with this refrigeration system, the overall length of the ⁇ -type silencer can be shortened. Therefore, with this refrigeration system, the options for arranging the ⁇ -type silencer can be expanded.
  • the refrigeration apparatus when the refrigerant flows from the second silencing space toward the first silencing space, the refrigeration oil can be prevented from collecting in the first silencing space.
  • the refrigerating machine oil when the refrigerant flows from the first silencing space toward the second silencing space, the refrigerating machine oil can be prevented from collecting in the second silencing space.
  • a simple ⁇ -type silencer can be used. Therefore, this refrigeration apparatus can be expected to reduce the manufacturing cost.
  • the refrigeration oil can be prevented from collecting in the first silencing space and the second silencing space.
  • the pressure pulsation can be sufficiently reduced even when carbon dioxide or the like is employed as the refrigerant.
  • the second silencing space is arranged on the side of the first silencing space, and the communication path extends from the lower end force of the first silencing space to the upper end of the second silencing space through the outside of the first silencing space. It communicates with the second silencing space. For this reason, in this refrigeration apparatus, refrigerating machine oil can be prevented from accumulating in the first silencing space, the overall length of the ⁇ -type silencer can be shortened, and the connection path can be lengthened.
  • this refrigeration system can prevent refrigerating machine oil from accumulating in the first silencing space, expand the options for the arrangement of the vertical silencer, and change the overall size of the ⁇ -type silencer.
  • the effect of reducing pressure pulsation can be increased without this.
  • pressure pulsation can be sufficiently reduced even when carbon dioxide or the like is employed as the refrigerant. Further, in this refrigeration apparatus, even when the refrigerant flows from the first silencing space toward the second silencing space, it is possible to prevent refrigeration oil from accumulating in the first silencing space and lengthen the connection path. be able to.
  • the longer the connection path the greater the pressure pulsation reduction effect.
  • this refrigeration system can prevent the refrigeration oil from accumulating in the first silencing space and can increase the pressure pulsation reduction effect without changing the overall size of the vertical silencer.
  • only the connecting path can be extended further without changing the overall size of the vertical silencer. Therefore, with this refrigeration system, the ⁇ -type silencer It is possible to further increase the pressure pulsation reducing effect without changing the overall size.
  • the pressure pulsation can be sufficiently reduced even when carbon dioxide or the like is employed as the refrigerant.
  • this refrigeration apparatus can prevent refrigerating machine oil from accumulating in the first silencing space and the second silencing space.
  • only the connecting path can be extended for a long time without changing the overall size of the saddle muffler.
  • the longer the connection path the greater the pressure pulsation reduction effect. That is, in this refrigeration apparatus, the pressure pulsation reduction effect can be increased without changing the overall size of the ⁇ -type silencer.
  • the refrigerant even when the refrigerant flows in the order of the first refrigerant path ⁇ the vertical filter ⁇ the second refrigerant path, the refrigerant is in the order of the second refrigerant path ⁇ the ⁇ -type filter ⁇ the first refrigerant path. Even if it flows, it is the force that prevents the refrigeration oil from accumulating in the first and second silencing spaces.
  • pressure pulsation can be sufficiently reduced even when carbon dioxide or the like is employed as the refrigerant.
  • this refrigeration apparatus can prevent refrigerating machine oil from accumulating in the first silencing space and the second silencing space.
  • the refrigerating machine oils sent to the vertical silencer can be collectively returned to the compressor mechanism or the like.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of a ⁇ -type silencer incorporated in the refrigerant circuit of the air conditioner according to the embodiment of the present invention.
  • FIG. 3 is a vertical cross-sectional view of a ⁇ -type silencer according to a modification ( ⁇ ).
  • FIG. 4 is a vertical cross-sectional view of a ⁇ -type silencer according to modification (ii).
  • FIG. 5 is a vertical cross-sectional view of a ⁇ -type silencer according to modification (ii).
  • FIG. 6 is a longitudinal sectional view of a ⁇ -type silencer according to a modification ( ⁇ ).
  • FIG. 7 is a vertical cross-sectional view of a ⁇ -type silencer according to modification (ii).
  • FIG. 8 is a longitudinal sectional view of a ⁇ -type silencer according to modification (C).
  • FIG. 9 is a longitudinal sectional view of a ⁇ -type silencer according to modification (D).
  • FIG. 10 is a longitudinal sectional view of a ⁇ -type silencer according to a modification ( ⁇ ).
  • FIG. 11 is a longitudinal sectional view of a ⁇ -type silencer according to modification (F).
  • FIG. 12 is a longitudinal sectional view of a ⁇ -type silencer according to modification (F).
  • FIG. 13 is a longitudinal sectional view of a ⁇ -type silencer according to modification (G).
  • Air conditioner (refrigeration equipment)
  • FIG. 1 shows a schematic refrigerant circuit 2 of an air conditioner 1 according to an embodiment of the present invention.
  • the air conditioner 1 is an air conditioner that can perform cooling and heating operations using carbon dioxide as a refrigerant.
  • the air conditioner 1 mainly includes a refrigerant circuit 2, blower fans 26 and 32, a control device 23, a high-pressure sensor 21, and a temperature sensor. 22 and intermediate pressure sensor 24 and the like.
  • the refrigerant circuit 2 mainly includes a compressor 11, a ⁇ -type silencer 20, a four-way switching valve 12, an outdoor heat exchanger 13, a first electric expansion valve 15, a liquid receiver 16, a second electric expansion valve 17, and Indoor heat exchanger 31 is deployed, and each device is connected via refrigerant piping as shown in Fig. 1.
  • the air conditioner 1 is a separation-type air conditioner, and includes an indoor unit 30 mainly including an indoor heat exchanger 31 and an indoor fan 32, and compressor 11, 71 type silencers. 20, four-way selector valve 12, outdoor heat exchanger 13, first electric expansion valve 15, receiver 16, second electric expansion valve 17, high pressure sensor 21, intermediate pressure sensor 24, temperature sensor 22, and control
  • the first communication pipe 41 connecting the outdoor unit 10 mainly having the device 23, the refrigerant liquid piping of the indoor unit 30 and the refrigerant liquid piping of the outdoor unit 10, and the refrigerant gas piping of the indoor unit 30 and the outdoor unit. It can be said that the second connecting pipe 42 is connected to 10 refrigerant gas pipes.
  • the refrigerant liquid piping of the outdoor unit 10 and the first communication pipe 41 are connected to the refrigerant gas piping of the outdoor unit 10 and the second communication pipe 42 via the first shut-off valve 18 of the outdoor unit 10. Each of them is connected via 10 second closing valves 19.
  • the indoor unit 30 mainly includes an indoor heat exchanger 31, an indoor fan 32, and the like.
  • the indoor heat exchanger 31 is a heat exchanger for exchanging heat between indoor air that is air in the air-conditioned room and the refrigerant.
  • the indoor fan 32 takes air in the air-conditioned room into the unit 30 and sends out conditioned air, which is air after heat exchange with the refrigerant via the indoor heat exchanger 31, to the air-conditioned room again.
  • conditioned air air after heat exchange with the refrigerant via the indoor heat exchanger 31
  • the indoor air taken in by the indoor fan 32 and the liquid refrigerant flowing through the indoor heat exchanger 31 are heat-exchanged to generate conditioned air (cold air)
  • conditioned air cold air
  • the outdoor unit 10 mainly includes a compressor 11, a ⁇ -type silencer 20, a four-way switching valve 12, an outdoor heat exchanger 13, a first electric expansion valve 15, a liquid receiver 16, a second electric expansion valve 17, It has an outdoor fan 26, a control device 23, a high pressure sensor 21, a temperature sensor 22, an intermediate pressure sensor 24, and the like.
  • the compressor 11 is a device for sucking low-pressure gas refrigerant flowing through the suction pipe, compressing it into a supercritical state, and discharging it to the discharge pipe.
  • the compressor 11 is an inverter type rotary compressor.
  • the ⁇ -type silencer 20 is arranged between the discharge side of the compressor 11 and the four-way switching valve 12.
  • the ⁇ -type silencer 20 includes a first silencing space 201, a second silencing space 202, and a communication path 203 that connects the first silencing space 201 and the second silencing space 202. Is done.
  • the first silencer space 201 is connected to the discharge path of the compressor 11 via the first refrigerant passage 204
  • the second silencer space 202 is connected to the second refrigerant.
  • the heat transfer path of the outdoor heat exchanger 13 or the indoor heat exchanger 31 is connected via the passage 205.
  • the first silencing space 201 is a substantially cylindrical space, and has a refrigerant passage 204 connected to the upper end in the axial direction and a communication passage 203 connected to the lower end in the axial direction.
  • the second silencing space 202 is a substantially cylindrical space, and the communication path 203 is connected to the upper end in the axial direction, and the refrigerant path 205 is connected to the lower end in the axial direction.
  • the communication passage 203 is a substantially cylindrical passage having a smaller radius than the first silencing space 201 and the second silencing space 202, and the first silencing space 201 and the second silencing space 202 are connected to both sides.
  • the axes of the first silencing space 201, the second silencing space 202, and the communication path 203 overlap.
  • the length of the communication path 203 is S / 2 (1 / V + 1 / V) (c
  • S is the cross-sectional area of the communication path 203 mm t 1
  • V is the volume of the first silencing space 201
  • V is the volume of the second silencing space 202
  • c is
  • F is the target reduction maximum frequency.
  • the ⁇ -type silencer 20 is accommodated in the outdoor unit 10 so that the first silencing space 201 and the second silencing space 202 are arranged vertically along the vertical direction.
  • the four-way switching valve 12 is a valve for switching the flow direction of the refrigerant corresponding to each operation.
  • the discharge side of the compressor 11 and the high temperature side of the outdoor heat exchanger 13 are connected.
  • the outdoor heat exchanger 13 can cool the high-pressure supercritical refrigerant discharged from the compressor 11 during the cooling operation using air outside the air conditioning room as a heat source, and the liquid returned from the indoor heat exchanger 31 during the heating operation. It is possible to evaporate the refrigerant.
  • the first electric expansion valve 15 is used to depressurize the supercritical refrigerant (cooling operation) flowing out from the low temperature side of the outdoor heat exchanger 13 or the liquid refrigerant flowing through the receiver 16 (heating operation). It is.
  • the liquid receiver 16 is for storing a surplus refrigerant according to the operation mode and the air conditioning load.
  • the second electric expansion valve 17 depressurizes the supercritical refrigerant (during heating operation) flowing out from the low-temperature side of the indoor heat exchanger 31 or the liquid refrigerant flowing through the receiver 16 (during cooling operation) or the indoor heat exchanger 31. It is for doing.
  • the outdoor fan 26 is a fan for exhausting air after taking outdoor air into the unit 10 and exchanging heat with the refrigerant via the outdoor heat exchanger 13.
  • the high pressure sensor 21 is provided on the discharge side of the compressor 11.
  • the temperature sensor 22 is provided on the outdoor heat exchanger side of the first electric expansion valve 15.
  • the intermediate pressure sensor 24 is provided between the first electric expansion valve 15 and the liquid receiver 16.
  • the control device 23 is communicatively connected to the high pressure sensor 21, the temperature sensor 22, the intermediate pressure sensor 24, the first electric expansion valve 15, the second electric expansion valve 17, and the like. 1st electric expansion valve 15 and 2nd electric motor based on temperature information sent from high pressure information sent from high pressure sensor 21 and intermediate pressure information sent from intermediate pressure sensor 24 The opening degree of the expansion valve 17 is controlled.
  • the operation of the air conditioner 1 will be described with reference to FIG.
  • the air conditioner 1 can perform a cooling operation and a heating operation as described above.
  • the four-way selector valve 12 is in the state indicated by the solid line in FIG.
  • the discharge side is connected to the high temperature side of the outdoor heat exchanger 13, and the suction side of the compressor 11 is connected to the second closing valve 19.
  • the first closing valve 18 and the second closing valve 19 are opened.
  • the cooled supercritical refrigerant is sent to the first electric expansion valve 15.
  • the supercritical refrigerant sent to the first electric expansion valve 15 is depressurized and saturated, and then sent to the second electric expansion valve 17 via the liquid receiver 16.
  • the saturated refrigerant sent to the second electric expansion valve 17 is reduced in pressure to become liquid refrigerant, and then supplied to the indoor heat exchanger 31 via the first closing valve 18 to cool the indoor air. It is evaporated to become a gas refrigerant.
  • the four-way switching valve 12 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 11 is connected to the second closing valve 19, and the suction side of the compressor 11 is the outdoor heat exchanger 1 3 is connected to the gas side.
  • the first closing valve 18 and the second closing valve 19 are opened.
  • the compressor 11 When the compressor 11 is started in the state of the refrigerant circuit 2, the gas refrigerant is sucked into the compressor 11 and compressed into a supercritical state, and then the four-way switching valve 113 and the second closing valve 19 are turned on. Then, the heat is supplied to the indoor heat exchanger 31. At this time, the pressure pulsation of the refrigerant is attenuated by the ⁇ -type silencer 20.
  • the supercritical refrigerant is cooled while heating the indoor air in the indoor heat exchanger 31.
  • the cooled supercritical refrigerant is sent to the second electric expansion valve 17 through the first closing valve.
  • the supercritical refrigerant sent to the second electric expansion valve 17 is reduced in pressure and saturated, and then sent to the first electric expansion valve 15 via the liquid receiver 16.
  • the saturated refrigerant sent to the first electric expansion valve 15 is reduced in pressure to become a liquid refrigerant, and then passes through the internal heat exchanger 14. Then, it is sent to the outdoor heat exchanger 13 and evaporated in the outdoor heat exchanger 13 to become a gas refrigerant. Then, this gas refrigerant is sucked into the compressor 11 again via the four-way switching valve 12. In this way, the heating operation is performed.
  • the ⁇ -type silencer 20 is connected to the discharge pipe of the compressor 11. For this reason, in this air conditioner 1, pressure pulsation can be sufficiently reduced.
  • the ⁇ -type silencer 20 is accommodated in the outdoor unit 10 so that the first silencing space 201 and the second silencing space 202 are arranged vertically along the vertical direction. Has been. For this reason, in this air conditioner 1, it is possible to prevent refrigeration oil from accumulating in the ⁇ -type silencer 20.
  • the length of the communication path is longer than S / 2 (1 / V + 1 / V) (c / ⁇ N) 2 and shorter than c / 2f, .
  • the cut-off frequency of the ⁇ -type silencer 20 can be reduced below the minimum rotation speed of the compression mechanism, and the frequency can be reduced below the target reduction maximum frequency f.
  • the lower end force of the first silencing space 201 also extends along the axial direction of the first silencing space 201 and is connected to the upper end of the second silencing space 202 via the communication path 203.
  • a ⁇ -type silencer 20 a as shown in FIG. 3 may be adopted.
  • a communication path 203a extending from the lower end of the first silencing space 201 along the axial direction of the first silencing space 201 passes through the upper end of the second silencing space 202 and passes through the second silencing space 202. It is purchased even inside.
  • ⁇ -type silencer 20a If such a ⁇ -type silencer 20a is employed, only the connecting path can be extended without changing the overall size of the ⁇ -type silencer.
  • the longer the connection the longer The effect of reducing pressure pulsation is increased. In other words, the pressure pulsation reduction effect can be increased without changing the overall size of the vertical silencer.
  • a ⁇ -type silencer 20b as shown in FIG. 4 may be employed.
  • the communication path 203b extends along the axis of the first silencer space 201 from the inside of the first silencer space 201 to the outside through the lower end of the first silencer space 201, and further in the second silencer space 202. It extends through the upper end to the inside of the second silencing space 202.
  • an oil return hole 206 is provided at the lower end portion of the communication path 203b in the first silencing space 201.
  • ⁇ -type silencer 20b By adopting such a ⁇ -type silencer 20b, it is possible to prevent refrigeration oil from accumulating in the ⁇ -type silencer and to extend the length of the connection path without changing the overall size of the ⁇ -type silencer. It is possible to increase the power S. In the ⁇ -type silencer, the longer the connection path, the greater the effect of reducing pressure pulsation. That is, refrigerating machine oil can be prevented from accumulating in the ⁇ -type silencer, and the pressure pulsation reduction effect can be increased without changing the overall size of the saddle-type silencer.
  • the first silencing space 201c and the second silencing space 202c are arranged close to each other, and the axes of the silencing spaces 201c and 202c are along the vertical direction. They do not overlap on a straight line.
  • the communication path 203c has a U-shape and extends from the lower end of the first silencing space 201c to the lower end of the second silencing space 202c. If such a ⁇ -type silencer 20b is employed, the overall length of the ⁇ -type silencer can be shortened. Therefore, the options for arranging the ⁇ -type silencer in the outdoor unit 10 can be expanded.
  • a ⁇ -type silencer 20d as shown in FIG. 6 may be employed.
  • the ⁇ -type silencer 20d is obtained by filling the communication path 203c of the ⁇ -type silencer 20c shown in FIG. 5 with a mesh member.
  • a ⁇ -type silencer 20e as shown in FIG. 7 may be employed. This ⁇ -type silencer 20e is obtained by inserting the first refrigerant passage 204e and the second refrigerant passage 205e into the first silencing space 201c and the second silencing space 202c of the ⁇ -type silencer 20c shown in FIG. is there.
  • a ⁇ -type silencer 20e it is possible to prevent refrigerating machine oil from collecting in the first silencer space 201c and the second silencer space 202c.
  • a ⁇ -type silencer 20f as shown in FIG. 8 may be adopted.
  • the first silencing space 201c and the second silencing space 202c are arranged close to each other, and the axes of the silencing spaces 201c and 202c are along the vertical direction. They do not overlap on a straight line.
  • the communication path 203c has a U shape, extends from the inside of the first silence space 201c to the upper end of the second silence space 202c, and extends to the upper end of the second silence space 202c. It penetrates the upper end of 202c and extends into the second silencing space 202c.
  • the options for the arrangement of the ⁇ -type silencer in the outdoor unit 10 can be expanded, and refrigerating machine oil can be prevented from collecting in the first silencing space 201c and the second silencing space 202c.
  • the pressure pulsation reduction effect can be increased without changing the overall size of the silencer.
  • the first silencing space 201c and the second silencing space 201c are arranged close to each other, and the axes of the silencing spaces 201c and 202c are along the vertical direction but are straight. There is no overlap on the line.
  • the communication path 203c has an S-shape and extends from the lower end of the first silencing space 201c to the upper end of the second silencing space 202c.
  • refrigerating machine oil can be prevented from accumulating in the ⁇ -type silencer, and the options for the arrangement of the ⁇ -type silencer in the outdoor unit 10 can be expanded, and the overall size of the ⁇ -type silencer can be increased.
  • the pressure pulsation reduction effect can be increased without changing.
  • the communication path 203g in which the lower end force of the first silencing space 201c also extends extends through the upper end of the second silencing space 202c to the inside of the second silencing space 202c! /, Or may be! /.
  • the axes of the first silencing space 201, the second silencing space 202, and the communication path 203 overlap in a straight line and face the vertical direction! /, ⁇ -type silencer Force in which 20 is adopted In place of the ⁇ -type silencer 20, a ⁇ -type silencer 20h as shown in FIG. 10 may be adopted.
  • the first silencing space 201c and the second silencing space 201c are arranged close to each other, and the axes of the silencing spaces 201c and 202c are along the vertical direction. Do not overlap on a straight line.
  • the first refrigerant passage 204h is connected to the lower end of the first silencing space 201c
  • the second refrigerant passage 205h is connected to the lower end of the second silencing space 202c.
  • the communication path 203c has a U shape, and extends from the lower end of the first silencing space 20lc to the lower end of the second silencing space 202c!
  • the ⁇ -type silencer 20i is accommodated in the outdoor unit 10 so that the axes of the first silencing space 201i and the second silencing space 202 overlap in a straight line and face the horizontal direction.
  • the first refrigerant passage 204 is connected to the lowermost part of the outer end of the first silencing space 201i, and the second refrigerant passage 205 is provided to the lowermost part of the outer end of 202i of the second silencing section 201i.
  • the communication path 203i connects the lowermost portion of the inner end of the first silencer space 201i and the lowermost portion of the inner end of the second silencer space 202i.
  • a ⁇ -type silencer 20j as shown in FIG. 12 may be employed.
  • the communication path 203 ⁇ 4 penetrates from the inside of the first silencing space 201i to the lowermost portion of the inner end of the first silencing space 201i and the lowermost portion of the inner end of the second silencing space 202i. It extends to the inside of the space 202i.
  • the longer the connection path the greater the pressure pulsation reduction effect. In other words, it can prevent the accumulation of refrigerating machine oil in the vertical silencer, and can increase the pressure pulsation reduction effect without changing the overall size of the ⁇ - type silencer.
  • the ⁇ -type silencer 20k is accommodated in the outdoor unit 10 so that the axes of the first silencing space 201i, the second silencing space 202, and the communication path 203k are aligned in a straight line and face the horizontal direction.
  • a first oil drain passage 206k extends from the lower end of the first silence space 201i, and a second oil drain passage 206k extends from the lower end of the second silence space 202i.
  • the first oil drain passage 206k and the second oil drain passage 207k join in the middle and are connected to the suction pipe of the compressor 11 via a capillary. ⁇ type like this If the silencer 20k is used, it is possible to prevent refrigeration oil from accumulating in the ⁇ -type silencer.
  • the communication path 203k passes from the inside of the first silencing space 201i to the center of the inner end of the first silencing space 201i and the center of the inner end of the second silencing space 202i to the inside of the second silencing space 202i. Extend! /, Even! / ...
  • the vertical silencer 20 is connected to the discharge pipe of the compressor 11.
  • the ⁇ -type silencer 20 is connected to the suction pipe of the compressor 11. You can do it.
  • the ⁇ -type silencer 20 may be connected to both the discharge pipe and the suction pipe of the compressor 11.
  • the refrigerant circuit 2 when a container such as an oil separator, a gas-liquid separator, or a liquid receiver is present in the refrigerant circuit 2, the inside thereof The space may be used as the first silencing space or the second silencing space. In this way, the refrigerant circuit 2 can be simplified.
  • a force that employs a ⁇ -type silencer 20 having two silencing spaces 201 and 202 is used.
  • ⁇ -type silencing with three or more silencing spaces A vessel may be employed. In this way, further pressure pulsation reduction effect can be expected.
  • the inverter type rotary compressor is adopted, but instead, a constant speed rotary type compressor may be adopted.
  • carbon dioxide is employed as the refrigerant.
  • a refrigerant such as R22 or R410A may be employed.
  • the pressure is 1.5 MPa
  • the density is 56.4 kg / m 3
  • the sound velocity is 169 m / sec.
  • the force S in which the shape of the first silencing space 201 is a cylindrical shape and in the present invention, the shape of the first silencing space 201 is not particularly limited, for example, a rectangular parallelepiped or It can be a cube.
  • the force S in which the shape of the second silencing space 202 is a cylindrical shape and in the present invention, the shape of the second silencing space 202 is not particularly limited, for example, a rectangular parallelepiped or It can be a cube.
  • the first silencing space 201 and the second silencing space 202 have the same shape and the same volume in the present invention. Are different in shape and volume! /
  • the shape of the communication path 203 is a cylindrical shape.
  • the shape of the second silencing space 202 is not particularly limited, and may be, for example, a rectangular parallelepiped. Good.
  • the refrigeration apparatus according to the present invention has a feature that pressure pulsation can be sufficiently reduced even when carbon dioxide or the like is employed as a refrigerant, the refrigeration apparatus employing carbon dioxide or the like as a refrigerant. It is suitable for.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

明 細 書
冷凍装置
技術分野
[0001] 本発明は、冷凍装置、特に、消音器として兀型消音器が採用される冷凍装置に関 する。
背景技術
[0002] 近年、冷媒として二酸化炭素を採用する冷凍装置が商品化されて!/、る。しかし、こ のように冷凍装置の冷媒として二酸化炭素を採用すると、冷媒の密度および音速が 大きくなり必然的に圧力脈動が大きくなるという問題が生じる。このような問題に対し、 近年、冷凍装置の圧力脈動を低減させる方法が種々提案されている(例えば、特許 文献 1 ,特許文献 2,非特許文献 1 ,および非特許文献 2参照)。
特許文献 1:特開平 6— 10875号公報
特許文献 2 :特開 2004— 218934号公報
非特許文献 1 :山田栄、大谷厳, 「オリフィスおよび兀型配列空気そうによる脈動除去 」, 日本機会学会論文集(第 2部),昭和 43年 12月,第 34巻,第 268号, p. 2139— 2145
非特許文献 2 :社団法人日本機会学会編, 「事例に学ぶ流体関連振動」,第 1版,技 報堂出版株式会社, 2003年 9月 20日, p. 190- 193
発明の開示
発明が解決しょうとする課題
[0003] 本発明の課題は、冷媒として二酸化炭素などを採用している冷凍装置の圧力脈動 を十分に低減することにある。
課題を解決するための手段
[0004] 第 1発明に係る冷凍装置は、第 1冷媒通路、 兀型消音器、および第 2冷媒通路を備 える。 π型消音器は、第 1消音空間、第 2消音空間、および連通路を有する。第 1消 音空間は、第 1冷媒通路と連通する。第 2消音空間は、第 1消音空間の下方に配置さ れる。連通路は、第 1消音空間の下端から第 1消音空間の外部に向かって延び第 2 消音空間に連通する。第 2冷媒通路は、第 2消音空間の下端から延びる。なお、この 冷凍装置において、冷媒は第 1冷媒通路→ π型フィルタ→第 2冷媒通路の順に流れ てもよ!/、し、逆に第 2冷媒通路→ π型フィルタ→第 1冷媒通路の順に流れてもよ!/、。
この冷凍装置には、 π型消音器が組み込まれる。このため、この冷凍装置では、冷 媒として二酸化炭素などを採用する場合であっても十分に圧力脈動を低減すること 力 Sできる。また、この冷凍装置では、第 2消音空間が第 1消音空間の下方に配置され 、連通路が第 1消音空間の下端から第 1消音空間の外部に向かって延び第 2消音空 間に連通する。このため、この冷凍装置では、第 1消音空間に冷凍機油が溜まるのを 防止すること力 Sできる。また、この冷凍装置では、第 2消音空間の下端から第 2冷媒通 路が延びる。このため、この冷凍装置では、第 2消音空間に冷凍機油が溜まるのを防 止すること力 Sできる。したがって、この冷凍装置では、 π型消音器内に冷凍機油が溜 まるのを防止することができる。
[0005] 第 2発明に係る冷凍装置は、第 1発明に係る冷凍装置であって、連通路は、第 2消 音空間の内部にまで延びる。
この冷凍装置では、第 2消音空間の内部にまで連通路が延びる。このため、この冷 凍装置では、 π型消音器の全体の大きさを変えることなく連結路のみを長く延ばすこ と力 Sできる。 π型消音器では、連結路は長ければ長いほど圧力脈動低減効果が大き くなる。つまり、この冷凍装置では、 π型消音器の全体の大きさを変えることなく圧力 脈動低減効果を大きくすることができる。
[0006] 第 3発明に係る冷凍装置は、第 1冷媒通路、 π型消音器、および第 2冷媒通路を備 える。 π型消音器は、第 1消音空間、第 2消音空間、連通路、および油戻し穴を有す る。第 1消音空間は、第 1冷媒通路と連通する。第 2消音空間は、第 1消音空間の下 方に配置される。連通路は、第 1消音空間の内部から下端を通って第 1消音空間の 外部に向かって延び第 2消音空間に連通する。油戻し穴は、第 1消音空間内に位置 する連通路の下端部に設けられる。第 2冷媒通路は、第 2消音空間の下端から延び る。なお、この冷凍装置において、冷媒は第 1冷媒通路→π型フィルタ→第 2冷媒通 路の順に流れてもよいし、逆に第 2冷媒通路→ π型フィルタ→第 1冷媒通路の順に 流れてもよい。 この冷凍装置には、 π型消音器が組み込まれる。このため、この冷凍装置では、冷 媒として二酸化炭素などを採用する場合であっても十分に圧力脈動を低減すること 力 Sできる。また、この冷凍装置では、第 2消音空間が第 1消音空間の下方に配置され 、連通路が第 1消音空間の内部から下端を通って第 1消音空間の外部に向かって延 び第 2消音空間に連通し、第 1消音空間内に位置する連通路の下端部に油戻し穴 が設けられる。このため、この冷凍装置では、第 1消音空間に冷凍機油が溜まるのを 防止すること力できると共に π型消音器の全体の大きさを変えることなく連結路のみ を長く延ばすこと力できる。 π型消音器では、連結路は長ければ長いほど圧力脈動 低減効果が大きくなる。つまり、この冷凍装置では、第 1消音空間に冷凍機油が溜ま るのを防止すること力 Sできると共に π型消音器の全体の大きさを変えることなく圧力脈 動低減効果を大きくすることができる。また、この冷凍装置では、第 2消音空間の下端 から第 2冷媒通路が延びる。このため、この冷凍装置では、第 2消音空間に冷凍機油 が溜まるのを防止することができる。したがって、この冷凍装置では、 π型消音器内 に冷凍機油が溜まるのを防止することができると共に π型消音器の全体の大きさを 変えることなく圧力脈動低減効果を大きくすることができる。
[0007] 第 4発明に係る冷凍装置は、第 3発明に係る冷凍装置であって、連通路は、第 2消 音空間の内部にまで延びる。
この冷凍装置では、第 2消音空間の内部にまで連通路が延びる。このため、この冷 凍装置では、 π型消音器の全体の大きさを変えることなく連結路のみをさらに長く延 ばすこと力 Sできる。したがって、この冷凍装置では、 π型消音器の全体の大きさを変 えることなく圧力脈動低減効果をさらに大きくすることができる。
[0008] 第 5発明に係る冷凍装置は、第 1冷媒通路、 π型消音器、および第 2冷媒通路を備 える。 π型消音器は、第 1消音空間、第 2消音空間、および連通路を有する。第 1消 音空間は、第 1冷媒通路と連通する。第 2消音空間は、第 1消音空間の側方に配置さ れる。連通路は、第 1消音空間の下端から第 1消音空間の外部を通って第 2消音空 間の下端まで延び第 2消音空間に連通する。第 2冷媒通路は、第 2消音空間に連通 する。なお、この冷凍装置において、冷媒は第 1冷媒通路→π型フィルタ→第 2冷媒 通路の順に流れてもよいし、逆に第 2冷媒通路→ π型フィルタ→第 1冷媒通路の順 に流れてもよい。
この冷凍装置には、 π型消音器が組み込まれる。このため、この冷凍装置では、冷 媒として二酸化炭素などを採用する場合であっても十分に圧力脈動を低減すること 力 Sできる。また、この冷凍装置では、第 2消音空間が第 1消音空間の側方に配置され 、連通路が第 1消音空間の下端から第 1消音空間の外部を通って第 2消音空間の下 端まで延び第 2消音空間に連通する。このため、この冷凍装置では、 π型消音器の 全長を短くすること力できる。したがって、この冷凍装置では、 π型消音器の配置の 選択肢を広げることができる。
[0009] 第 6発明に係る冷凍装置は、第 5発明に係る冷凍装置であって、第 1冷媒通路は、 第 1消音空間の上端力、ら揷入され第 1消音空間の内部にまで延びている。
この冷凍装置では、第 1冷媒通路が、第 1消音空間の上端から揷入され第 1消音空 間の内部にまで延びている。このため、この冷凍装置では、冷媒が第 2消音空間から 第 1消音空間に向かって流れる場合において第 1消音空間に冷凍機油が溜まらない ようにすることカでさる。
[0010] 第 7発明に係る冷凍装置は、第 5発明または第 6発明に係る冷凍装置であって、第 2冷媒通路は、第 2消音空間の上端から揷入され第 2消音空間の内部にまで延びて いる。
この冷凍装置では、第 2冷媒通路が、第 2消音空間の上端から揷入され第 2消音空 間の内部にまで延びている。このため、この冷凍装置では、冷媒が第 1消音空間から 第 2消音空間に向かって流れる場合において第 2消音空間に冷凍機油が溜まらない ようにすることカでさる。
[0011] 第 8発明に係る冷凍装置は、第 5発明に係る冷凍装置であって、第 1冷媒通路は、 第 1消音空間の上端から延びている。また、第 2冷媒通路は、第 2消音空間の上端か ら延びている。
この冷凍装置では、第 1冷媒通路が第 1消音空間の上端から延びており、第 2冷媒 通路が第 2消音空間の上端から延びている。このため、この冷凍装置では、シンプル な π型消音器を利用することができる。したがって、この冷凍装置は、製造コストの低 減を期待することができる。 [0012] 第 9発明に係る冷凍装置は、第 5発明に係る冷凍装置であって、第 1冷媒通路は、 第 1消音空間の下端から延びている。また、第 2冷媒通路は、第 2消音空間の下端か ら延びている。
この冷凍装置では、第 1冷媒通路が第 1消音空間の下端から延びており、第 2冷媒 通路が第 2消音空間の下端から延びている。このため、この冷凍装置では、第 1消音 空間および第 2消音空間に冷凍機油が溜まらないようにすることができる。
[0013] 第 10発明に係る冷凍装置は、第 5発明から第 9発明のいずれかに係る冷凍装置で あって、連通路には、メッシュ部材が充填される。
この冷凍装置では、連通路にメッシュ部材が充填される。このため、この冷凍装置 では、連通路内で反射波が生じるのを防止することができる。
[0014] 第 1 1発明に係る冷凍装置は、第 1冷媒通路、 π型消音器、および第 2冷媒通路を 備える。 兀型消音器は、第 1消音空間、第 2消音空間、および連通路を有する。第 1 消音空間は、第 1冷媒通路と連通する。第 2消音空間は、第 1消音空間の側方に配 置される。連通路は、第 1消音空間の下端から第 1消音空間の外部を通って第 2消音 空間の上端まで延び第 2消音空間に連通する。第 2冷媒通路は、第 2消音空間に連 通する。なお、この冷凍装置において、冷媒は第 1冷媒通路→π型フィルタ→第 2冷 媒通路の順に流れる。
この冷凍装置には、 π型消音器が組み込まれる。このため、この冷凍装置では、冷 媒として二酸化炭素などを採用する場合であっても十分に圧力脈動を低減すること 力 Sできる。また、この冷凍装置では、第 2消音空間が 1消音空間の側方に配置され、 連通路が第 1消音空間の下端から第 1消音空間の外部を通って第 2消音空間の上 端まで延び第 2消音空間に連通する。このため、この冷凍装置では、第 1消音空間に 冷凍機油が溜まることを防止することができ、 π型消音器の全長を短くすることができ 、連結路を長くすることができる。 π型消音器では、連結路は長ければ長いほど圧力 脈動低減効果が大きくなる。つまり、この冷凍装置では、第 1消音空間に冷凍機油が 溜まることを防止すること力 Sでき、 π型消音器の配置の選択肢を広げることができ、 π 型消音器の全体の大きさを変えることなく圧力脈動低減効果を大きくすることができ [0015] 第 12発明に係る冷凍装置は、第 1 1発明に係る冷凍装置であって、第 2冷媒通路 は、第 2消音空間の下端から延びる。
この冷凍装置では、第 2消音空間の下端から第 2冷媒通路が延びる。このため、こ の冷凍装置では、第 2消音空間に冷凍機油が溜まるのを防止することができる。
[0016] 第 13発明に係る冷凍装置は、第 1冷媒通路、 π型消音器、および第 2冷媒通路を 備える。 兀型消音器は、第 1消音空間、第 2消音空間、および連通路を有する。第 1 消音空間は、第 1冷媒通路と連通する。第 2消音空間は、第 1消音空間の側方に配 置される。連通路は、第 1消音空間の内部から上端を通って第 2消音空間の上端に まで延び第 2消音空間に連通する。第 2冷媒通路は、第 2消音空間に連通する。な お、この冷凍装置において、冷媒は第 1冷媒通路→π型フィルタ→第 2冷媒通路の 順に流れてもよいし、逆に第 2冷媒通路→ π型フィルタ→第 1冷媒通路の順に流れ てもよい。
この冷凍装置には、 π型消音器が組み込まれる。このため、この冷凍装置では、冷 媒として二酸化炭素などを採用する場合であっても十分に圧力脈動を低減すること 力 Sできる。また、この冷凍装置では、第 2消音空間が第 1消音空間の側方に配置され 、連通路が第 1消音空間の内部から上端を通って第 2消音空間の上端にまで延び第 2消音空間に連通する。このため、この冷凍装置では、冷媒が第 1消音空間から第 2 消音空間に向かって流れる場合であっても第 1消音空間に冷凍機油が溜まるのを防 止すること力 Sできると共に連結路を長くすること力 Sできる。 π型消音器では、連結路は 長ければ長いほど圧力脈動低減効果が大きくなる。つまり、この冷凍装置では、第 1 消音空間に冷凍機油が溜まることを防止することができると共に兀型消音器の全体 の大きさを変えることなく圧力脈動低減効果を大きくすることができる。
[0017] 第 14発明に係る冷凍装置は、第 13発明に係る冷凍装置であって、連通路は、第 2 消音空間の上端から第 2消音空間の内部にまで延びている。
この冷凍装置では、第 2消音空間の上端から第 2消音空間の内部にまで連通路が 延びている。このため、この冷凍装置では、 π型消音器の全体の大きさを変えること なく連結路のみをさらに長く延ばすことができる。したがって、この冷凍装置では、 π 型消音器の全体の大きさを変えることなく圧力脈動低減効果をさらに大きくすることが できる。
[0018] 第 15発明に係る冷凍装置は、第 13発明または第 14発明に係る冷凍装置であって 、第 2冷媒通路は、第 2消音空間の下端から延びる。
この冷凍装置では、第 2冷媒通路が、第 2消音空間の下端から延びる。このため、こ の冷凍装置では、第 2消音空間に冷凍機油が溜まるのを防止することができる。
[0019] 第 16発明に係る冷凍装置は、第 1冷媒通路、 π型消音器、および第 2冷媒通路を 備える。 兀型消音器は、第 1消音空間、第 2消音空間、および連通路を有する。第 1 消音空間は、第 1冷媒通路と連通する。第 2消音空間は、第 1消音空間の側方に配 置される。連通路は、第 1消音空間の下部側面から第 2消音空間の下部側面まで延 び第 2消音空間に連通する。第 2冷媒通路は、第 2消音空間の下部側面に接続され 、第 2消音空間に連通する。なお、この冷凍装置において、冷媒は第 1冷媒通路→ π型フィルタ→第 2冷媒通路の順に流れる。
この冷凍装置には、 π型消音器が組み込まれる。このため、この冷凍装置では、冷 媒として二酸化炭素などを採用する場合であっても十分に圧力脈動を低減すること 力 Sできる。また、この冷凍装置では、第 2消音空間が第 1消音空間の側方に配置され 、連通路が第 1消音空間の下部側面から第 2消音空間の下部側面まで延び第 2消音 空間に連通し、第 2冷媒通路が第 2消音空間の下部側面に接続され第 2消音空間に 連通する。このため、この冷凍装置では、第 1消音空間および第 2消音空間に冷凍機 油力 S溜まることを防止すること力 Sできる。
[0020] 第 17発明に係る冷凍装置は、第 16発明に係る冷凍装置であって、連通路は、第 1 消音空間の内部から 1消音空間および第 2消音空間の下部側面を通って第 2消音空 間の内部にまで延びる。
この冷凍装置では、連通路が第 1消音空間の内部から 1消音空間および第 2消音 空間の下部側面を通って第 2消音空間の内部にまで延びる。このため、この冷凍装 置では、 π型消音器の全体の大きさを変えることなく連結路のみを長く延ばすことが できる。 π型消音器では、連結路は長ければ長いほど圧力脈動低減効果が大きくな る。つまり、この冷凍装置では、 π型消音器の全体の大きさを変えることなく圧力脈動 低減効果を大きくすることができる。 [0021] 第 18発明に係る冷凍装置は、第 16発明または第 17発明に係る冷凍装置であって 、第 1冷媒通路は、第 1消音空間の下部側面に接続される。
この冷凍装置では、第 1消音空間の下部側面に第 1冷媒通路が接続される。このた め、この冷凍装置では、冷媒が第 1冷媒通路→π型フィルタ→第 2冷媒通路の順に 流れる場合であっても冷媒が第 2冷媒通路→ π型フィルタ→第 1冷媒通路の順に流 れる場合であっても第 1消音空間および第 2消音空間に冷凍機油が溜まることを防 止すること力 Sでさる。
[0022] 第 19発明に係る冷凍装置は、第 1冷媒通路、 π型消音器、第 2冷媒通路、第 1油 抜き通路、および第 2油抜き通路を備える。 π型消音器は、第 1消音空間、第 2消音 空間、および連通路を有する。第 1消音空間は、第 1冷媒通路と連通する。第 2消音 空間は、第 1消音空間の側方に配置される。連通路は、第 1消音空間の側面から第 2 消音空間の側面まで延び第 2消音空間に連通する。第 2冷媒通路は、第 2消音空間 に連通する。第 1油抜き通路は、第 1消音空間の下端から延びる。第 2油抜き通路は 、第 2消音空間の下端から延びる。なお、この冷凍装置において、冷媒は第 1冷媒通 路→ π型フィルタ→第 2冷媒通路の順に流れてもょレ、し、逆に第 2冷媒通路→ π型 フィルタ→第 1冷媒通路の順に流れてもょレ、。
この冷凍装置には、 π型消音器が組み込まれる。このため、この冷凍装置では、冷 媒として二酸化炭素などを採用する場合であっても十分に圧力脈動を低減すること 力 Sできる。また、この冷凍装置では、第 1消音空間の下端から第 1油抜き通路が延び 、第 2消音空間の下端から第 2油抜き通路が延びる。このため、この冷凍装置では、 第 1消音空間および第 2消音空間に冷凍機油が溜まるのを防止することができる。
[0023] 第 20発明に係る冷凍装置は、第 19発明に係る冷凍装置であって、第 2油抜き通路 は、第 1油抜き通路と合流する。
この冷凍装置では、第 2油抜き通路が第 1油抜き通路と合流する。このため、この冷 凍装置では、 兀型消音器に送られる冷凍機油をまとめて圧縮機構などに戻すことが できる。
発明の効果
[0024] 第 1発明に係る冷凍装置では、冷媒として二酸化炭素などを採用する場合であって も十分に圧力脈動を低減することができる。また、この冷凍装置では、 兀型消音器内 に冷凍機油が溜まるのを防止することができる。
第 2発明に係る冷凍装置では、 兀型消音器の全体の大きさを変えることなく連結路 のみを長く延ばすことができる。 π型消音器では、連結路は長ければ長いほど圧力 脈動低減効果が大きくなる。つまり、この冷凍装置では、 π型消音器の全体の大きさ を変えることなく圧力脈動低減効果を大きくすることができる。
第 3発明に係る冷凍装置では、冷媒として二酸化炭素などを採用する場合であって も十分に圧力脈動を低減することができる。また、この冷凍装置では、第 1消音空間 に冷凍機油が溜まるのを防止することができると共に π型消音器の全体の大きさを 変えることなく連結路のみを長く延ばすことができる。 π型消音器では、連結路は長 ければ長いほど圧力脈動低減効果が大きくなる。つまり、この冷凍装置では、第 1消 音空間に冷凍機油が溜まるのを防止することができると共に π型消音器の全体の大 きさを変えることなく圧力脈動低減効果を大きくすることができる。また、この冷凍装置 では、第 2消音空間に冷凍機油が溜まるのを防止することができる。したがって、この 冷凍装置では、 π型消音器内に冷凍機油が溜まるのを防止することができると共に 兀型消音器の全体の大きさを変えることなく圧力脈動低減効果を大きくすることがで きる。
第 4発明に係る冷凍装置では、 π型消音器の全体の大きさを変えることなく連結路 のみをさらに長く延ばすこと力 Sできる。したがって、この冷凍装置では、 π型消音器の 全体の大きさを変えることなく圧力脈動低減効果をさらに大きくすることができる。 第 5発明に係る冷凍装置では、冷媒として二酸化炭素などを採用する場合であって も十分に圧力脈動を低減することができる。また、この冷凍装置では、 π型消音器の 全長を短くすること力できる。したがって、この冷凍装置では、 π型消音器の配置の 選択肢を広げることができる。
第 6発明に係る冷凍装置では、冷媒が第 2消音空間から第 1消音空間に向かって 流れる場合において第 1消音空間に冷凍機油が溜まらないようにすることができる。 第 7発明に係る冷凍装置では、冷媒が第 1消音空間から第 2消音空間に向かって 流れる場合において第 2消音空間に冷凍機油が溜まらないようにすることができる。 [0026] 第 8発明に係る冷凍装置では、シンプルな π型消音器を利用することができる。し たがって、この冷凍装置は、製造コストの低減を期待することができる。
第 9発明に係る冷凍装置では、第 1消音空間および第 2消音空間に冷凍機油が溜 まらないようにすることができる。
第 10発明に係る冷凍装置では、連通路内で反射波が生じるのを防止することがで きる。
第 11発明に係る冷凍装置では、冷媒として二酸化炭素などを採用する場合であつ ても十分に圧力脈動を低減することができる。また、この冷凍装置では、第 2消音空 間が 1消音空間の側方に配置され、連通路が第 1消音空間の下端力 第 1消音空間 の外部を通って第 2消音空間の上端まで延び第 2消音空間に連通する。このため、こ の冷凍装置では、第 1消音空間に冷凍機油が溜まることを防止することができ、 π型 消音器の全長を短くすることができ、連結路を長くすることができる。 π型消音器では 、連結路は長ければ長いほど圧力脈動低減効果が大きくなる。つまり、この冷凍装置 では、第 1消音空間に冷凍機油が溜まることを防止することができ、 兀型消音器の配 置の選択肢を広げることができ、 π型消音器の全体の大きさを変えることなく圧力脈 動低減効果を大きくすることができる。
[0027] 第 12発明に係る冷凍装置では、第 2消音空間に冷凍機油が溜まるのを防止するこ と力 Sできる。
第 13発明に係る冷凍装置では、冷媒として二酸化炭素などを採用する場合であつ ても十分に圧力脈動を低減することができる。また、この冷凍装置では、冷媒が第 1 消音空間から第 2消音空間に向かって流れる場合であっても第 1消音空間に冷凍機 油が溜まるのを防止することができると共に連結路を長くすることができる。 π型消音 器では、連結路は長ければ長いほど圧力脈動低減効果が大きくなる。つまり、この冷 凍装置では、第 1消音空間に冷凍機油が溜まることを防止することができると共に兀 型消音器の全体の大きさを変えることなく圧力脈動低減効果を大きくすることができ 第 14発明に係る冷凍装置では、 兀型消音器の全体の大きさを変えることなく連結 路のみをさらに長く延ばすことができる。したがって、この冷凍装置では、 π型消音器 の全体の大きさを変えることなく圧力脈動低減効果をさらに大きくすることができる。
[0028] 第 15発明に係る冷凍装置では、第 2消音空間に冷凍機油が溜まるのを防止するこ と力 Sできる。
第 16発明に係る冷凍装置では、冷媒として二酸化炭素などを採用する場合であつ ても十分に圧力脈動を低減することができる。また、この冷凍装置では、第 1消音空 間および第 2消音空間に冷凍機油が溜まることを防止することができる。
第 17発明に係る冷凍装置では、 兀型消音器の全体の大きさを変えることなく連結 路のみを長く延ばすことができる。 π型消音器では、連結路は長ければ長いほど圧 力脈動低減効果が大きくなる。つまり、この冷凍装置では、 π型消音器の全体の大き さを変えることなく圧力脈動低減効果を大きくすることができる。
第 18発明に係る冷凍装置では、冷媒が第 1冷媒通路→兀型フィルタ→第 2冷媒通 路の順に流れる場合であっても冷媒が第 2冷媒通路→ π型フィルタ→第 1冷媒通路 の順に流れる場合であっても第 1消音空間および第 2消音空間に冷凍機油が溜まる ことを防止すること力でさる。
[0029] 第 19発明に係る冷凍装置では、冷媒として二酸化炭素などを採用する場合であつ ても十分に圧力脈動を低減することができる。また、この冷凍装置では、第 1消音空 間および第 2消音空間に冷凍機油が溜まるのを防止することができる。
第 20発明に係る冷凍装置では、 兀型消音器に送られる冷凍機油をまとめて圧縮機 構などに戻すことができる。
図面の簡単な説明
[0030] [図 1]本発明の実施の形態に係る空気調和装置の冷媒回路図である。
[図 2]本発明の実施の形態に係る空気調和装置の冷媒回路に組み込まれる π型消 音器の縦断面図である。
[図 3]変形例 (Α)に係る π型消音器の縦断面図である。
[図 4]変形例 (Α)に係る π型消音器の縦断面図である。
[図 5]変形例 (Β)に係る π型消音器の縦断面図である。
[図 6]変形例(Β)に係る π型消音器の縦断面図である。
[図 7]変形例 (Β)に係る π型消音器の縦断面図である。 [図 8]変形例(C)に係る π型消音器の縦断面図である。
[図 9]変形例(D)に係る π型消音器の縦断面図である。
[図 10]変形例(Ε)に係る π型消音器の縦断面図である。
[図 11]変形例(F)に係る π型消音器の縦断面図である。
[図 12]変形例(F)に係る π型消音器の縦断面図である。
[図 13]変形例 (G)に係る π型消音器の縦断面図である。
符号の説明
1 空気調和装置 (冷凍装置)
20, 20a, 20b, 20c, 20d, 20e, 20f, 20g, 20h, 20i, 20i, 20k π型消音
201, 201c, 201i 第 1消音空間
202, 202c, 202i 第 2消音空間
203, 203a, 203b, 203c, 203i, 203j, 203k 連通路
204, 204e, 204h, 203g, 203f 第 1冷媒通路
205, 205e, 205h 第 2冷媒通路
206 油戻し穴
206k 第 1油抜き通路
207k 第 2油抜き通路
発明を実施するための最良の形態
<空気調和装置の構成〉
本発明の実施の形態に係る空気調和装置 1の概略冷媒回路 2を図 1に示す。 この空気調和装置 1は、二酸化炭素を冷媒として冷房運転および暖房運転が可能 な空気調和装置であって、主に冷媒回路 2、送風ファン 26, 32、制御装置 23、高圧 圧力センサ 21、温度センサ 22、および中間圧圧力センサ 24等から構成されている。 冷媒回路 2には主に、圧縮機 11、 π型消音器 20、四路切換弁 12、室外熱交換器 13、第 1電動膨張弁 15、受液器 16、第 2電動膨張弁 17、および室内熱交換器 31が 配備されており、各装置は、図 1に示されるように、冷媒配管を介して接続されている そして、本実施の形態において、空気調和装置 1は、分離型の空気調和装置であ つて、室内熱交換器 31および室内ファン 32を主に有する室内ユニット 30と、圧縮機 11、 71型消音器 20、四路切換弁 12、室外熱交換器 13、第 1電動膨張弁 15、受液 器 16、第 2電動膨張弁 17、高圧圧力センサ 21、中間圧圧力センサ 24、温度センサ 22、および制御装置 23を主に有する室外ユニット 10と、室内ユニット 30の冷媒液等 配管と室外ユニット 10の冷媒液等配管とを接続する第 1連絡配管 41と、室内ユニット 30の冷媒ガス等配管と室外ユニット 10の冷媒ガス等配管とを接続する第 2連絡配管 42とから構成されているともいえる。なお、室外ユニット 10の冷媒液等配管と第 1連 絡配管 41とは室外ユニット 10の第 1閉鎖弁 18を介して、室外ユニット 10の冷媒ガス 等配管と第 2連絡配管 42とは室外ユニット 10の第 2閉鎖弁 19を介してそれぞれ接続 されている。
[0033] (1)室内ユニット
室内ユニット 30は、主に、室内熱交換器 31および室内ファン 32等を有している。 室内熱交換器 31は、空調室内の空気である室内空気と冷媒との間で熱交換をさ せるための熱交換器である。
室内ファン 32は、ユニット 30内に空調室内の空気を取り込み、室内熱交換器 31を 介して冷媒と熱交換した後の空気である調和空気を再び空調室内への送り出すため そして、この室内ユニット 30は、このような構成を採用することによって、冷房運転時 には室内ファン 32により内部に取り込んだ室内空気と室内熱交換器 31を流れる液 冷媒とを熱交換させて調和空気(冷気)を生成し、暖房運転時には室内ファン 32によ り内部に取り込んだ室内空気と室内熱交換器 31を流れる超臨界冷媒とを熱交換さ せて調和空気(暖気)を生成することが可能となって!/、る。
[0034] (2)室外ユニット
室外ユニット 10は、主に、圧縮機 11、 π型消音器 20、四路切換弁 12、室外熱交 換器 13、第 1電動膨張弁 15、受液器 16、第 2電動膨張弁 17、室外ファン 26、制御 装置 23、高圧圧力センサ 21、温度センサ 22、および中間圧圧力センサ 24等を有し ている。 圧縮機 11は、吸入管を流れる低圧のガス冷媒を吸入し、圧縮して超臨界状態とし た後、吐出管に吐出するための装置である。なお、本実施の形態では、この圧縮機 1 1は、インバータ式の回転型圧縮機である。
π型消音器 20は、図 1に示されるように、圧縮機 11の吐出側と四路切換弁 12との 間に配置されている。この π型消音器 20は、図 2に示されるように、第 1消音空間 20 1、第 2消音空間 202、および第 1消音空間 201と第 2消音空間 202とを連通させる 連通路 203から構成される。なお、本実施の形態に係る空気調和装置 1では、第 1消 音空間 201には第 1冷媒通路 204を介して圧縮機 11の吐出路が接続され、第 2消音 空間 202には第 2冷媒通路 205を介して室外熱交換器 13または室内熱交換器 31の 伝熱路が接続される。つまり、冷媒は、常に、第 1消音空間 201→連結路 203→第 2 消音空間 202の順に流れる。第 1消音空間 201は、略円柱形の空間であって、軸方 向の上端に冷媒通路 204が接続され、軸方向の下端に連通路 203が接続される。 第 2消音空間 202は、略円柱形の空間であって、軸方向の上端に連通路 203が接 続され、軸方向の下端に冷媒通路 205が接続される。連通路 203は、第 1消音空間 201および第 2消音空間 202よりも半径が小さな略円柱形の通路であって、両側に は第 1消音空間 201と第 2消音空間 202が接続されている。なお、本実施の形態に 係る π型消音器 20では、第 1消音空間 201、第 2消音空間 202、および連通路 203 の軸は重なっている。そして、この連通路 203の長さは、 S /2 (1/V + 1/V ) (c
1 1 2
/ π Ν ) 2よりも長く c/2fよりも短い。なお、ここで、 Sは連通路 203の断面積であ mm t 1
り、 Vは第 1消音空間 201の体積であり、 Vは第 2消音空間 202の体積であり、 cは
1 2
二酸化炭素中の音速であり(圧力力 OMPaのときその密度は 221. 6kg/m3となり 音速は 252m/secとなる)、 πは円周率であり、 Ν は圧縮機 11の最小回転数であ
min
り、 f は目標低減最高周波数である。なお、本実施の形態に係る空気調和装置 1で t
は、この π型消音器 20は、第 1消音空間 201と第 2消音空間 202とが鉛直方向に沿 つて上下に並ぶように室外ユニット 10に収容されている。
四路切換弁 12は、各運転に対応して、冷媒の流れ方向を切り換えるための弁であ り、冷房運転時には圧縮機 11の吐出側と室外熱交換器 13の高温側とを接続すると ともに圧縮機 11の吸入側と室内熱交換器 31のガス側とを接続し、暖房運転時には 圧縮機 11の吐出側と第 2閉鎖弁 19とを接続するとともに圧縮機 11の吸入側と室外 熱交換器 13のガス側とを接続することが可能である。
室外熱交換器 13は、冷房運転時において圧縮機 11から吐出された高圧の超臨界 冷媒を空調室外の空気を熱源として冷却させることが可能であり、暖房運転時には 室内熱交換器 31から戻る液冷媒を蒸発させることが可能である。
第 1電動膨張弁 15は、室外熱交換器 13の低温側から流出する超臨界冷媒 (冷房 運転時)あるいは受液器 16を通って流入する液冷媒 (暖房運転時)を減圧するため のものである。
[0036] 受液器 16は、運転モードや空調負荷に応じて余剰となる冷媒を貯蔵しておくため のものである。
第 2電動膨張弁 17は、受液器 16を通って流入してくる液冷媒 (冷房運転時)あるい は室内熱交換器 31の低温側から流出する超臨界冷媒 (暖房運転時)を減圧するた めのものである。
室外ファン 26は、ユニット 10内に室外の空気を取り込み、室外熱交換器 13を介し て冷媒と熱交換した後の空気を排気するためファンである。
高圧圧力センサ 21は、圧縮機 11の吐出側に設けられている。
温度センサ 22は、第 1電動膨張弁 15の室外熱交換器側に設けられている。
中間圧圧力センサ 24は、第 1電動膨張弁 15と受液器 16との間に設けられている。
[0037] 制御装置 23は、高圧圧力センサ 21、温度センサ 22、中間圧圧力センサ 24、第 1 電動膨張弁 15、および第 2電動膨張弁 17等に通信接続されており、温度センサ 22 力、ら送られてくる温度情報や、高圧圧力センサ 21から送られてくる高圧圧力情報、中 間圧圧力センサ 24から送られてくる中間圧圧力情報に基づいて第 1電動膨張弁 15 および第 2電動膨張弁 17の開度を制御する。
<空気調和装置の動作〉
空気調和装置 1の運転動作について、図 1を用いて説明する。この空気調和装置 1 は、上述したように冷房運転および暖房運転を行うことが可能である。
(1)冷房運転
冷房運転時は、四路切換弁 12が図 1の実線で示される状態、すなわち、圧縮機 11 の吐出側が室外熱交換器 13の高温側に接続され、かつ、圧縮機 11の吸入側が第 2 閉鎖弁 19に接続された状態となる。また、このとき、第 1閉鎖弁 18および第 2閉鎖弁 19は開状態とされる。
[0038] この冷媒回路 2の状態で、圧縮機 11を起動すると、ガス冷媒が、圧縮機 11に吸入 され、圧縮されて超臨界状態となった後、四路切換弁 12を経由して室外熱交換器 1 3に送られ、室外熱交換器 13において冷却される。なお、このとき、冷媒の圧力脈動 は π型消音器 20によって減衰される。
そして、この冷却された超臨界冷媒は、第 1電動膨張弁 15に送られる。そして、第 1 電動膨張弁 15に送られた超臨界冷媒は、減圧されて飽和状態とされた後に受液器 16を経由して第 2電動膨張弁 17に送られる。第 2電動膨張弁 17に送られた飽和状 態の冷媒は、減圧されて液冷媒となった後に第 1閉鎖弁 18を経由して室内熱交換器 31に供給され、室内空気を冷却するとともに蒸発されてガス冷媒となる。
そして、そのガス冷媒は、第 2閉鎖弁 19、内部熱交換器 14、および四路切換弁 12 を経由して、再び、圧縮機 11に吸入される。このようにして、冷房運転が行われる。
[0039] (2)暖房運転
暖房運転時は、四路切換弁 12が図 1の破線で示される状態、すなわち、圧縮機 11 の吐出側が第 2閉鎖弁 19に接続され、かつ、圧縮機 11の吸入側が室外熱交換器 1 3のガス側に接続された状態となっている。また、このとき、第 1閉鎖弁 18および第 2 閉鎖弁 19は開状態とされる。
この冷媒回路 2の状態で、圧縮機 11を起動すると、ガス冷媒が、圧縮機 11に吸入 され、圧縮されて超臨界状態となった後、四路切換弁 113、および第 2閉鎖弁 19を 経由して室内熱交換器 31に供給される。なお、このとき、冷媒の圧力脈動は π型消 音器 20によって減衰される。
そして、その超臨界冷媒は、室内熱交換器 31において室内空気を加熱するととも に冷却される。冷却された超臨界冷媒は、第 1閉鎖弁を通って第 2電動膨張弁 17に 送られる。第 2電動膨張弁 17に送られた超臨界冷媒は、減圧されて飽和状態とされ た後に受液器 16を経由して第 1電動膨張弁 15に送られる。第 1電動膨張弁 15に送 られた飽和状態の冷媒は、減圧されて液冷媒となった後に内熱交換器 14を経由し て室外熱交換器 13に送られて、室外熱交換器 13において蒸発されてガス冷媒とな る。そして、このガス冷媒は、四路切換弁 12を経由して、再び、圧縮機 11に吸入され る。このようにして、暖房運転が行われる。
[0040] <空気調和装置の特徴〉
(1)
本実施の形態に係る空気調和装置 1では、圧縮機 11の吐出管に π型消音器 20が 接続される。このため、この空気調和装置 1では、十分に圧力脈動を低減することが できる。
(2)
本実施の形態に係る空気調和装置 1では、この π型消音器 20が、第 1消音空間 2 01と第 2消音空間 202とが鉛直方向に沿って上下に並ぶように室外ユニット 10に収 容されている。このため、この空気調和装置 1では、 π型消音器 20に冷凍機油が溜 まるのを防止することができる。
(3)
本実施の形態に係る π型消音器 20では、この連通路の長さが S /2 (1/V + 1 /V ) (c/ π N ) 2よりも長く c/2fよりも短レ、。このため、この空気調和装置 1では、
2 mm t
π型消音器 20のカットオフ周波数を圧縮機構の最小回転数以下にすることができる と共に目標低減最高周波数 fよりも小さ!/、周波数を低減することができる。
t
[0041] <変形例〉
(A)
先の実施の形態に係る空気調和装置 1では、第 1消音空間 201の下端力も第 1消 音空間 201の軸方向に沿って延び第 2消音空間 202の上端に接続される連通路 20 3を有する π型消音器 20が採用された力 このような π型消音器 20に代えて図 3に 示されるような π型消音器 20aを採用してもよい。この π型消音器 20aでは、第 1消 音空間 201の下端から第 1消音空間 201の軸方向に沿って延びる連通路 203aが第 2消音空間 202の上端を貫通して第 2消音空間 202の内部にまで揷入されている。こ のような π型消音器 20aを採用すれば、 π型消音器の全体の大きさを変えることなく 連結路のみを長く延ばすことができる。 π型消音器では、連結路は長ければ長いほ ど圧力脈動低減効果が大きくなる。つまり、 兀型消音器の全体の大きさを変えること なく圧力脈動低減効果を大きくすることができる。
[0042] また、図 4に示されるような π型消音器 20bを採用してもよい。この π型消音器 20b では、連通路 203bが第 1消音空間 201の軸に沿って第 1消音空間 201の内部から 第 1消音空間 201の下端を通って外部に延び更に第 2消音空間 202の上端を貫通 して第 2消音空間 202の内部まで延びている。そして、この π型消音器 20bでは、第 1消音空間 201内の連通路 203bの下端部に油戻し穴 206が設けられている。このよ うな π型消音器 20bを採用すれば、 π型消音器に冷凍機油が溜まるのを防止するこ とができると共に π型消音器の全体の大きさを変えることなく連結路のみを長く延ば すこと力 Sできる。 π型消音器では、連結路は長ければ長いほど圧力脈動低減効果が 大きくなる。つまり、 π型消音器に冷凍機油が溜まるのを防止することができると共に 兀型消音器の全体の大きさを変えることなく圧力脈動低減効果を大きくすることがで きる。
[0043] (Β)
先の実施の形態に係る空気調和装置 1では、第 1消音空間 201、第 2消音空間 20 2、および連通路 203の軸が一直線上に重なり鉛直方向を向いて!/、る π型消音器 2 0が採用された力 このような π型消音器 20に代えて図 5に示されるような π型消音 器 20cを採用してもよい。この π型消音器 20cでは、第 1消音空間 201cおよび第 2消 音空間 202cは互いの側方に近接して配置されており、両消音空間 201c, 202cの 軸は鉛直方向に沿っているが一直線上には重なっていない。そして、この π型消音 器 20cでは、連通路 203cが、 U字形状を呈しており、第 1消音空間 201cの下端から 第 2消音空間 202cの下端まで延びている。このような π型消音器 20bを採用すれば 、 π型消音器の全長を短くすることができる。したがって、室外ユニット 10における π 型消音器の配置の選択肢を広げることができる。
[0044] また、図 6に示されるような π型消音器 20dを採用してもよい。この π型消音器 20d は、図 5に示される π型消音器 20cの連通路 203cにメッシュ部材を充填したもので ある。このような π型消音器 20dを採用すれば、さらに、連通路 203c内で反射波が 生じるのを防止すること力 Sできる。 また、図 7に示されるような π型消音器 20eを採用してもよい。この π型消音器 20e は、図 5に示される π型消音器 20cの第 1消音空間 201cおよび第 2消音空間 202c の内部にまで第 1冷媒通路 204eおよび第 2冷媒通路 205eを挿入したものである。こ のような π型消音器 20eを採用すれば、さらに、第 1消音空間 201cおよび第 2消音 空間 202cに冷凍機油が溜まらないようにすることができる。
(C)
先の実施の形態に係る空気調和装置 1では、第 1消音空間 201、第 2消音空間 20 2、および連通路 203の軸が一直線上に重なり鉛直方向を向いて!/、る π型消音器 2 0が採用された力 このような π型消音器 20に代えて図 8に示されるような π型消音 器 20fを採用してもよい。この π型消音器 20fでは、第 1消音空間 201cおよび第 2消 音空間 202cは互いの側方に近接して配置されており、両消音空間 201c, 202cの 軸は鉛直方向に沿っているが一直線上には重なっていない。そして、この π型消音 器 20fでは、連通路 203cが、 U字形状を呈しており、第 1消音空間 201cの内部から 上端を貫通して第 2消音空間 202cの上端まで延びさらに第 2消音空間 202c上端を 貫通して第 2消音空間 202cの内部にまで延びている。このような π型消音器 20fを 採用すれば、 兀型消音器の全長を短くすることができ、第 1消音空間 201cおよび第 2消音空間 202cに冷凍機油が溜まるのを防止することができ、 π型消音器の全体の 大きさを変えることなく連結路のみを長く延ばすことができる。したがって、室外ュニッ ト 10における π型消音器の配置の選択肢を広げることができ、第 1消音空間 201cお よび第 2消音空間 202cに冷凍機油が溜まるのを防止することができ、さらに、 π型消 音器の全体の大きさを変えることなく圧力脈動低減効果を大きくすることができる。
(D)
先の実施の形態に係る空気調和装置 1では、第 1消音空間 201、第 2消音空間 20 2、および連通路 203の軸が一直線上に重なり鉛直方向を向いて!/、る π型消音器 2 0が採用された力 このような π型消音器 20に代えて図 9に示されるような π型消音 器 20gを採用してもよい。この π型消音器 20gでは、第 1消音空間 201cおよび第 2 消音空間 202cは互いの側方に近接して配置されており、両消音空間 201c, 202c の軸は鉛直方向に沿っているが一直線上には重なっていない。そして、この π型消 音器 20gでは、連通路 203cが、 S字形状を呈しており、第 1消音空間 201 cの下端か ら第 2消音空間 202cの上端まで延びてレ、る。このような π型消音器 20gを採用すれ ば、 兀型消音器に冷凍機油が溜まることを防止することができ、 兀型消音器の全長を 短くすること力 Sでき、 兀型消音器の全体の大きさを変えることなく連結路を長くするこ と力 Sできる。 π型消音器では、連結路は長ければ長いほど圧力脈動低減効果が大き くなる。つまり、 π型消音器に冷凍機油が溜まることを防止することができ、室外ュニ ット 10における π型消音器の配置の選択肢を広げることができ、 π型消音器の全体 の大きさを変えることなく圧力脈動低減効果を大きくすることができる。なお、第 1消音 空間 201 cの下端力も延びる連通路 203gは、第 2消音空間 202cの上端を貫通して 第 2消音空間 202cの内部にまで延びて!/、てもよ!/、。
[0046] (E)
先の実施の形態に係る空気調和装置 1では、第 1消音空間 201、第 2消音空間 20 2、および連通路 203の軸が一直線上に重なり鉛直方向を向いて!/、る π型消音器 2 0が採用された力 このような π型消音器 20に代えて図 10に示されるような π型消音 器 20hを採用してもよい。この π型消音器 20hでは、第 1消音空間 201 cおよび第 2 消音空間 202cは互いの側方に近接して配置されており、両消音空間 201 c , 202c の軸は鉛直方向に沿っているが一直線上には重なっていない。そして、この π型消 音器 20hでは、第 1冷媒通路 204hが第 1消音空間 201 cの下端に接続されており、 第 2冷媒通路 205hが第 2消音空間 202cの下端に接続されている。そして、さらに、 この π型消音器 20hでは、連通路 203cが、 U字形状を呈しており、第 1消音空間 20 l cの下端から第 2消音空間 202cの下端まで延びて!/、る。このような π型消音器 20h を採用すれば、 兀型消音器に冷凍機油が溜まることを防止することができると共に兀 型消音器の全長を短くすることができる。したがって、 兀型消音器に冷凍機油が溜ま ることを防止することができると共に室外ユニット 10における π型消音器の配置の選 択肢を広げること力 Sできる。
[0047] (F)
先の実施の形態に係る空気調和装置 1では、第 1消音空間 201、第 2消音空間 20 2、および連通路 203の軸が一直線上に重なり鉛直方向を向いて!/、る π型消音器 2 0が採用された力 S、このような π型消音器 20に代えて図 11に示されるような π型消音 器 20iを採用してもよい。この π型消音器 20iは、第 1消音空間 201iおよび第 2消音 空間 202の軸が一直線上に重なり水平方向を向くように室外ユニット 10に収容され る。そして、この π型消音器 20iでは、第 1消音空間 201iの外端の最下部に第 1冷媒 通路 204が接続され、第 2消音区間の 202iの外端の最下部に第 2冷媒通路 205が 接続される。そして、さらに、この π型消音器 20iでは、連通路 203iが、第 1消音空間 201iの内端の最下部と第 2消音空間 202iの内端の最下部とを接続している。このよ うな π型消音器 20iを採用すれば、 π型消音器に冷凍機油が溜まることを防止するこ と力 Sできる。
また、図 12に示されるような π型消音器 20jを採用してもよい。この π型消音器 20j は、連通路 20¾が第 1消音空間 201iの内部から第 1消音空間 201iの内端の最下部 および第 2消音空間 202iの内端の最下部を貫通して第 2消音空間 202iの内部にま で延びている。このような π型消音器 20jを採用すれば、 π型消音器に冷凍機油が 溜まることを防止すること力 Sできると共に π型消音器の全体の大きさを変えることなく 連結路を長くすることができる。 π型消音器では、連結路は長ければ長いほど圧力 脈動低減効果が大きくなる。つまり、 兀型消音器に冷凍機油が溜まることを防止する こと力 Sできると共に π型消音器の全体の大きさを変えることなく圧力脈動低減効果を 大さくすること力でさる。
(G)
先の実施の形態に係る空気調和装置 1では、第 1消音空間 201、第 2消音空間 20 2、および連通路 203の軸が一直線上に重なり鉛直方向を向いて!/、る π型消音器 2 0が採用された力 このような π型消音器 20に代えて図 13に示されるような π型消音 器 20kを採用してもよい。この π型消音器 20kは、第 1消音空間 201i、第 2消音空間 202、および連通路 203kの軸が一直線上に重なり水平方向を向くように室外ュニッ ト 10に収容される。そして、この π型消音器 20kでは、第 1消音空間 201iの下端から 第 1油抜き通路 206kが延びており、第 2消音空間 202iの下端から第 2油抜き通路 2 07kが延びている。なお、第 1油抜き通路 206kおよび第 2油抜き通路 207kは、途中 で合流しキヤピラリーを介して圧縮機 11の吸入管に接続されている。このような π型 消音器 20kを採用すれば、 π型消音器に冷凍機油が溜まることを防止することがで きる。なお、連通路 203kは、第 1消音空間 201iの内部から第 1消音空間 201iの内 端の中心および第 2消音空間 202iの内端の中心を貫通して第 2消音空間 202iの内 部にまで延びて!/、てもよ!/、。
[0049] (H)
先の実施の形態に係る空気調和装置 1では、 兀型消音器 20が圧縮機 11の吐出管 に接続されたが、これに代えて、 π型消音器 20を圧縮機 11の吸入管に接続してもよ い。また、圧縮機 11の吐出管と吸入管の両方に π型消音器 20を接続するようにして あよい。
(I)
先の実施の形態に係る空気調和装置 1では、特に言及しなかったが、冷媒回路 2 に油分離器や、気液分離器、受液器などの容器が存在する場合には、それらの内部 空間を第 1消音空間または第 2消音空間として利用してもよい。このようにすれば、冷 媒回路 2を簡素化することができる。
ω
先の実施の形態に係る空気調和装置 1では、消音空間 201 , 202が 2つ存在する π型消音器 20が採用された力 これに代えて、消音空間が 3つ以上存在する π型消 音器を採用してもよい。このようにすれば、さらなる圧力脈動低減効果を期待できる。
[0050] (Κ)
先の実施の形態に係る空気調和装置 1では、インバータ式の回転型圧縮機が採用 されたが、これに代えて、定速回転式の圧縮機を採用してもよい。
(L)
先の実施の形態に係る空気調和装置 1では、冷媒として二酸化炭素が採用された 1S これに代えて、 R22や R410Aなどの冷媒を採用してもよい。ちなみに、圧力が 1 . 5MPaのときその密度は 56. 4kg/m3となりその音速は 169m/secとなる。また、 圧力が 2· 4MPaのときその密度は 83· 3kg/m3となりその音速は 174m/secとな
(M) 先の実施の形態に係る兀型消音器 20では、第 1消音空間 201の形状が円柱形状 であった力 S、本発明において第 1消音空間 201の形状は特に限定されず例えば直 方体や立方体などであってもよレ、。
[0051] (N)
先の実施の形態に係る兀型消音器 20では、第 2消音空間 202の形状が円柱形状 であった力 S、本発明において第 2消音空間 202の形状は特に限定されず例えば直 方体や立方体などであってもよレ、。
(O)
先の実施の形態に係る π型消音器 20では、第 1消音空間 201および第 2消音空 間 202が同形状および同体積とされた力 本発明において第 1消音空間 201および 第 2消音空間 202は形状および体積が異なって!/、てもかまわな!/、。
(Ρ)
先の実施の形態に係る π型消音器 20では、連通路 203の形状が円柱形状であつ たが、本発明において第 2消音空間 202の形状は特に限定されず例えば直方体な どであってもよい。
産業上の利用可能性
[0052] 本発明に係る冷凍装置は、冷媒として二酸化炭素などを採用する場合であっても 十分に圧力脈動を低減することができるという特徴を有するため、二酸化炭素などを 冷媒として採用した冷凍装置に好適である。

Claims

請求の範囲
[1] 第 1冷媒通路 (204)と、
前記第 1冷媒通路と連通する第 1消音空間(201)と、前記第 1消音空間の下方に 配置される第 2消音空間(202)と、前記第 1消音空間の下端力 前記第 1消音空間 の外部に向かって延び前記第 2消音空間に連通する連通路(203, 203a)とを有す る π型消音器(20, 20a)と、
前記第 2消音空間の下端力 延びる第 2冷媒通路(205)と、
を備える、冷凍装置(1)。
[2] 前記連通路(203a)は、前記第 2消音空間の内部にまで延びる、
請求項 1に記載の冷凍装置。
[3] 第 1冷媒通路(204)と、
前記第 1冷媒通路と連通する第 1消音空間(201)と、前記第 1消音空間の下方に 配置される第 2消音空間(202)と、前記第 1消音空間の内部から下端を通って前記 第 1消音空間の外部に向かって延び前記第 2消音空間に連通する連通路(203b)と 、前記第 1消音空間内に位置する前記連通路の下端部に設けられる油戻し穴(206 )とを有する兀型消音器 (20b)と、
前記第 2消音空間の下端力 延びる第 2冷媒通路(205)と、
を備える、冷凍装置。
[4] 前記連通路は、前記第 2消音空間の内部にまで延びる、
請求項 3に記載の冷凍装置。
[5] 第 1冷媒通路(204, 204e, 204h)と、
前記第 1冷媒通路と連通する第 1消音空間(201c)と、前記第 1消音空間の側方に 配置される第 2消音空間(202c)と、前記第 1消音空間の下端から前記第 1消音空間 の外部を通って前記第 2消音空間の下端まで延び前記第 2消音空間に連通する連 通路(203c)とを有する π型消音器(20c, 20d, 20e, 20h)と、
前記第 2消音空間に連通する第 2冷媒通路(205, 205e, 205h)と、
を備える、冷凍装置。
[6] 前記第 1冷媒通路(204e)は、前記第 1消音空間の上端から揷入され前記第 1消音 空間の内部にまで延びている、
請求項 5に記載の冷凍装置。
[7] 前記第 2冷媒通路(204e)は、前記第 2消音空間の上端から揷入され前記第 2消音 空間の内部にまで延びている、
請求項 5または 6に記載の冷凍装置。
[8] 前記第 1冷媒通路(204)は、前記第 1消音空間の上端から延びており、
前記第 2冷媒通路(205)は、前記第 2消音空間の上端から延びている、 請求項 5に記載の冷凍装置。
[9] 前記第 1冷媒通路(204h)は、前記第 1消音空間の下端から延びており、
前記第 2冷媒通路(205h)は、前記第 2消音空間の下端から延びている、 請求項 5に記載の冷凍装置。
[10] 前記連通路には、メッシュ部材(207)が充填される、
請求項 5から 9の!/、ずれかに記載の冷凍装置。
[11] 第 1冷媒通路(204)と、
前記第 1冷媒通路と連通する第 1消音空間(201c)と、前記第 1消音空間の側方に 配置される第 2消音空間(202c)と、前記第 1消音空間の下端から前記第 1消音空間 の外部を通って前記第 2消音空間の上端まで延び前記第 2消音空間に連通する連 通路(203g)とを有する π型消音器(20g)と、
前記第 2消音空間に連通する第 2冷媒通路(205)と、
を備える、冷凍装置。
[12] 前記第 2冷媒通路は、前記第 2消音空間の下端から延びる、
請求項 1 1に記載の冷凍装置。
[13] 第 1冷媒通路(204)と、
前記第 1冷媒通路と連通する第 1消音空間(201c)と、前記第 1消音空間の側方に 配置される第 2消音空間(202c)と、前記第 1消音空間の内部から上端を通って前記 第 2消音空間の上端にまで延び前記第 2消音空間に連通する連通路(203f)とを有 する π型消音器(20f)と、
前記第 2消音空間に連通する第 2冷媒通路(205)と、 を備える、冷凍装置。
[14] 前記連通路は、前記第 2消音空間の上端から前記第 2消音空間の内部にまで延び ている、
請求項 13に記載の冷凍装置。
[15] 前記第 2冷媒通路は、前記第 2消音空間の下端から延びる、
請求項 13または 14に記載の冷凍装置。
[16] 第 1冷媒通路(204)と、
前記第 1冷媒通路と連通する第 1消音空間(201i)と、前記第 1消音空間の側方に 配置される第 2消音空間(202i)と、前記第 1消音空間の下部側面から前記第 2消音 空間の下部側面まで延び前記第 2消音空間に連通する連通路(203i, 203j)とを有 する π型消音器(20i, 20j)と、
前記第 2消音空間の下部側面に接続され前記第 2消音空間に連通する第 2冷媒通 路(205)と、
を備える、冷凍装置。
[17] 前記連通路(20¾)は、前記第 1消音空間の内部から前記 1消音空間および前記 第 2消音空間の下部側面を通って前記第 2消音空間の内部にまで延びる、 請求項 16に記載の冷凍装置。
[18] 前記第 1冷媒通路は、前記第 1消音空間の下部側面に接続される、
請求項 16または 17に記載の冷凍装置。
[19] 第 1冷媒通路(204)と、
前記第 1冷媒通路と連通する第 1消音空間(201i)と、前記第 1消音空間の側方に 配置される第 2消音空間(202i)と、前記第 1消音空間の側面から第 2消音空間の側 面まで延び前記第 2消音空間に連通する連通路(203k)とを有する π型消音器(20 k)と、
前記第 2消音空間に連通する第 2冷媒通路(205)と、
前記第 1消音空間の下端から延びる第 1油抜き通路(206k)と、
前記第 2消音空間の下端から延びる第 2油抜き通路(207k)と、
を備える、冷凍装置。 前記第 2油抜き通路は、前記第 1油抜き通路と合流する、 請求項 19に記載の冷凍装置。
PCT/JP2007/066616 2006-08-30 2007-08-28 Refrigeration system WO2008026569A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/377,464 US20100242522A1 (en) 2006-08-30 2007-08-28 Refrigeration system
EP07793060.0A EP2058610B1 (en) 2006-08-30 2007-08-28 Refrigeration system
AU2007289779A AU2007289779B2 (en) 2006-08-30 2007-08-28 Refrigeration system
CN2007800292296A CN101501419B (zh) 2006-08-30 2007-08-28 冷冻装置
ES07793060T ES2728955T3 (es) 2006-08-30 2007-08-28 Sistema de refrigeración

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006233674A JP4983158B2 (ja) 2006-08-30 2006-08-30 冷凍装置
JP2006-233674 2006-08-30

Publications (1)

Publication Number Publication Date
WO2008026569A1 true WO2008026569A1 (en) 2008-03-06

Family

ID=39135852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066616 WO2008026569A1 (en) 2006-08-30 2007-08-28 Refrigeration system

Country Status (9)

Country Link
US (1) US20100242522A1 (ja)
EP (1) EP2058610B1 (ja)
JP (1) JP4983158B2 (ja)
KR (1) KR20090047505A (ja)
CN (1) CN101501419B (ja)
AU (1) AU2007289779B2 (ja)
ES (1) ES2728955T3 (ja)
TR (1) TR201907699T4 (ja)
WO (1) WO2008026569A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072599B (zh) * 2011-01-24 2013-03-27 合肥美的荣事达电冰箱有限公司 制冷设备及其过渡管
CN103542650B (zh) * 2013-11-07 2016-01-20 芜湖汉峰科技有限公司 一种储液器及其生产方法
JP2019095118A (ja) * 2017-11-21 2019-06-20 三菱重工サーマルシステムズ株式会社 冷凍機
CN109780361B (zh) * 2019-01-28 2020-10-09 大连大学 一种管路宽频流体压力脉动消减器
KR102286976B1 (ko) 2019-07-08 2021-08-05 엘지전자 주식회사 공기조화기
EP3828413B1 (en) * 2019-11-28 2023-03-22 Daikin Europe N.V. Heat pump comprising a muffler
CN111472958B (zh) * 2020-03-16 2021-09-21 珠海格力节能环保制冷技术研究中心有限公司 消音器结构、压缩机以及具有其的冰箱

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044959U (ja) * 1973-08-24 1975-05-07
JPS5514021U (ja) * 1978-07-12 1980-01-29
JPS5857672U (ja) * 1981-10-15 1983-04-19 三菱電機株式会社 冷凍装置
JPS5883067U (ja) * 1981-11-30 1983-06-04 カルソニックカンセイ株式会社 自動車用空気調和装置の消音器
JPH0610875A (ja) 1992-06-24 1994-01-21 Matsushita Refrig Co Ltd 圧縮機の消音器
JPH06123525A (ja) * 1992-10-13 1994-05-06 Matsushita Refrig Co Ltd 圧縮機の消音器
JPH06273002A (ja) * 1993-03-18 1994-09-30 Toshiba Corp 冷凍サイクル
JPH06280553A (ja) * 1993-03-31 1994-10-04 Honda Motor Co Ltd 消音器
JP2000192808A (ja) * 1998-12-25 2000-07-11 Honda Motor Co Ltd 車両用排気消音装置
JP2004218934A (ja) 2003-01-15 2004-08-05 Mitsubishi Electric Corp 膨張形マフラー及びそれを用いた冷凍サイクル回路、並びにその製造方法
JP2005098663A (ja) * 2003-09-02 2005-04-14 Sanyo Electric Co Ltd 遷臨界冷媒サイクル装置
JP2005180829A (ja) * 2003-12-19 2005-07-07 Toshiba Kyaria Kk 冷凍サイクル装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2153695A (en) * 1933-11-14 1939-04-11 Nash Kelvinator Corp Air conditioning system
JPS6039051Y2 (ja) * 1979-04-12 1985-11-22 株式会社東芝 ストレ−ナマフラ
JPH07133965A (ja) * 1993-11-10 1995-05-23 Sanyo Electric Co Ltd 冷凍装置
JP3449816B2 (ja) * 1995-01-19 2003-09-22 イビデン株式会社 消音器
JPH09318197A (ja) * 1996-05-30 1997-12-12 Hitachi Ltd 冷蔵庫の冷凍サイクル
JPH11325655A (ja) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd 消音器および空気調和機
US6524080B2 (en) * 2000-04-11 2003-02-25 R. K. Dewan & Co. Hermetically sealed compressors
JP2001295764A (ja) * 2000-04-14 2001-10-26 Daikin Ind Ltd 冷凍機用圧縮機
KR20020045741A (ko) * 2000-12-11 2002-06-20 윤종용 토출머플러를 갖춘 압축기
KR20060081922A (ko) * 2005-01-11 2006-07-14 삼성전자주식회사 냉장고

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044959U (ja) * 1973-08-24 1975-05-07
JPS5514021U (ja) * 1978-07-12 1980-01-29
JPS5857672U (ja) * 1981-10-15 1983-04-19 三菱電機株式会社 冷凍装置
JPS5883067U (ja) * 1981-11-30 1983-06-04 カルソニックカンセイ株式会社 自動車用空気調和装置の消音器
JPH0610875A (ja) 1992-06-24 1994-01-21 Matsushita Refrig Co Ltd 圧縮機の消音器
JPH06123525A (ja) * 1992-10-13 1994-05-06 Matsushita Refrig Co Ltd 圧縮機の消音器
JPH06273002A (ja) * 1993-03-18 1994-09-30 Toshiba Corp 冷凍サイクル
JPH06280553A (ja) * 1993-03-31 1994-10-04 Honda Motor Co Ltd 消音器
JP2000192808A (ja) * 1998-12-25 2000-07-11 Honda Motor Co Ltd 車両用排気消音装置
JP2004218934A (ja) 2003-01-15 2004-08-05 Mitsubishi Electric Corp 膨張形マフラー及びそれを用いた冷凍サイクル回路、並びにその製造方法
JP2005098663A (ja) * 2003-09-02 2005-04-14 Sanyo Electric Co Ltd 遷臨界冷媒サイクル装置
JP2005180829A (ja) * 2003-12-19 2005-07-07 Toshiba Kyaria Kk 冷凍サイクル装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The Japan Society of Mechanical Engineers", 20 September 2003, GIHODO SHUPPAN CO., LTD., pages: 190 - 193
SAKAE YAMADA; IWAO OTANI: "Orifisu oyobi ¤Ç-gata hairetsu kukiso ni yoru myakud6 jokyo", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, vol. 34, no. 268, December 1968 (1968-12-01), pages 2139 - 2145

Also Published As

Publication number Publication date
JP4983158B2 (ja) 2012-07-25
EP2058610A1 (en) 2009-05-13
CN101501419A (zh) 2009-08-05
JP2008057829A (ja) 2008-03-13
KR20090047505A (ko) 2009-05-12
US20100242522A1 (en) 2010-09-30
EP2058610A4 (en) 2014-09-03
TR201907699T4 (tr) 2019-06-21
EP2058610B1 (en) 2019-03-06
CN101501419B (zh) 2012-06-06
AU2007289779B2 (en) 2010-11-11
ES2728955T3 (es) 2019-10-29
AU2007289779A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4940832B2 (ja) 冷凍装置
WO2008026569A1 (en) Refrigeration system
JP3982545B2 (ja) 空気調和装置
US6148631A (en) Silencer and air conditioner
CN208845368U (zh) 脉动和振动控制装置
JP2005241236A (ja) 空調機の室外機の配管構造
JP2002243374A (ja) インタークーラ及びco2冷媒車両用空調装置
EP2048457B1 (en) Refrigeration device
JP2010078288A (ja) 冷凍装置
JP5217945B2 (ja) 冷凍サイクル装置
JP3961188B2 (ja) 自動車用空気調和装置
JP2018189312A (ja) 冷凍装置
CN110056982A (zh) 空调室外机及其配管组件
KR20100128515A (ko) 차량용 에어컨의 냉방시스템
JP2007093167A (ja) 空気調和機用液ガス熱交換器
KR20140001437A (ko) 차량용 공조장치의 소음기
CN115143554B (zh) 空气调节装置
CN217464935U (zh) 复叠式制冷系统和冰箱
JP2008032344A (ja) 冷凍装置
JP2008196843A (ja) 冷凍装置
JP2006078065A (ja) 冷蔵庫

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029229.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07793060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12377464

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097004425

Country of ref document: KR

Ref document number: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007289779

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007793060

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: 2007289779

Country of ref document: AU

Date of ref document: 20070828

Kind code of ref document: A