WO2008026544A1 - Unité hydraulique et procédé permettant de commander la vitesse du moteur dans une unité hydraulique - Google Patents

Unité hydraulique et procédé permettant de commander la vitesse du moteur dans une unité hydraulique Download PDF

Info

Publication number
WO2008026544A1
WO2008026544A1 PCT/JP2007/066559 JP2007066559W WO2008026544A1 WO 2008026544 A1 WO2008026544 A1 WO 2008026544A1 JP 2007066559 W JP2007066559 W JP 2007066559W WO 2008026544 A1 WO2008026544 A1 WO 2008026544A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
hydraulic
command value
hydraulic unit
load
Prior art date
Application number
PCT/JP2007/066559
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
Tetsuo Nakata
Junichi Miyagi
Yasuto Yanagida
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP07806100A priority Critical patent/EP1965083B1/en
Priority to CN2007800015363A priority patent/CN101360917B/zh
Priority to AT07806100T priority patent/ATE528512T1/de
Priority to US12/160,003 priority patent/US20090097986A1/en
Publication of WO2008026544A1 publication Critical patent/WO2008026544A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0423Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling pump output or bypass, other than to maintain constant speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1202Torque on the axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/255Flow control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6656Closed loop control, i.e. control using feedback

Definitions

  • the present invention relates to a hydraulic unit that drives a hydraulic pump by a motor.
  • a speed control (PI control) calculation is executed by comparing the motor speed command value with the current rotational speed.
  • the current command value is calculated, and current control based on the current command value is realized by the inverter.
  • the pressure oil is discharged from the hydraulic pump by driving a motor controlled by an inverter.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-162860
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of improving the followability of the rotational speed of the motor with respect to changes in the load of the hydraulic pump.
  • a first aspect of the hydraulic unit according to the present invention is a hydraulic unit that drives a hydraulic pump (16A) by a motor (15) and supplies oil to an actuator.
  • An inverter (14) for supplying electric power, a load sensor (17) for detecting a load of the hydraulic pump (16A), a rotation sensor (21) for detecting a rotation speed of the motor (15), and the motor Current command value calculating means (12) for calculating a current command value so that the deviation between the speed command value representing the target rotation speed in (15) and the rotation speed of the motor (15) converges to zero; Correction means (18A; ⁇ ; 18D) for correcting the current command value based on the pump load, and control for outputting a control signal to the inverter (14) based on the corrected current command value And a signal generation means (13).
  • a second aspect of the hydraulic unit is the first aspect, wherein the correction means (18A
  • a third aspect of the hydraulic unit is the first or second aspect thereof, wherein the correction means (18A; ⁇ ; 18D) includes a load of the hydraulic pump (16A). The current command value is increased with the increase.
  • the fourth aspect of the hydraulic unit is any one of the first to third aspects, wherein the correction means (18A) performs correction using a preset correction coefficient (Kf). A value (If) is acquired, and the correction value (If) is added to the current command value.
  • a fifth aspect of the hydraulic unit is any one of the first to third aspects, wherein the correction means (18B; 18C; 18D) uses a data table DT acquired in advance. Then, a correction value (If) is obtained, and the correction value (If) is added to the current command value.
  • a sixth aspect of the hydraulic unit is any one of the first to fifth aspects, wherein the load sensor (17) is provided in a discharge line (19) of the hydraulic pump (16A). It is a pressure sensor (17) that detects the oil pressure.
  • a method for controlling the speed of the motor (15) comprising: a) detecting the load of the hydraulic pump (16A), b) detecting the rotational speed of the motor (15), and c) the motor (15). ) Calculating the current command value so that the deviation between the speed command value representing the target rotation speed and the rotation speed of the motor (15) converges on the opening; d) the load of the hydraulic pump (16A) And a step of: e) outputting a control signal to the inverter (14) based on the corrected current command value based on the current command value.
  • the current command value is corrected based on the load of the hydraulic pump, so that the load of the hydraulic pump (load hydraulic pressure) varies. It is possible to improve the followability of the rotational speed of the motor with respect to the motor.
  • the current command value is corrected so as to increase the rotational speed of the motor as the load of the hydraulic pump increases. It is possible to prevent a decrease in the rotation speed of the motor due to an increase in the motor.
  • FIG. 1 is a schematic view showing a configuration of a hydraulic unit according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of a hydraulic unit that does not have a correction unit.
  • FIG. 3 is a diagram showing an operation state when a stepped speed command is given in the hydraulic unit according to the embodiment.
  • FIG. 4 is a diagram showing an operation state when a stepped speed command is given to a hydraulic unit without a correction unit!
  • FIG. 5 is a schematic diagram showing a hydraulic unit having a correction unit capable of acquiring a correction value using a data table.
  • FIG. 6 is a schematic diagram showing a hydraulic unit that drives two hydraulic pumps with one motor.
  • FIG. 7 is a schematic diagram showing a hydraulic unit in which two hydraulic pumps are connected in series.
  • FIG. 1 is a schematic diagram showing the configuration of a hydraulic unit 10A according to an embodiment of the present invention.
  • the hydraulic unit 10A is connected to, for example, a molding machine and supplies oil as a working fluid to an actuator (not shown) that uses hydraulic pressure as a power source.
  • the hydraulic unit 10 A includes a controller 20, an inverter unit 14, a motor 15, a hydraulic pump 16 A, a pressure sensor 17, and a pulse generator 21.
  • the hydraulic unit 10A having such a configuration, oil is sucked from a tank (not shown) by a hydraulic pump 16A driven by a motor 15, and the oil is discharged.
  • the discharged oil passes through a discharge line 19 and is supplied to an actuator such as a hydraulic cylinder or a hydraulic motor.
  • the pressure sensor 17 functions as a load sensor for detecting the load of the hydraulic pump.
  • the pressure sensor 17 detects the oil pressure (also referred to as “current pressure” or “load oil pressure”) in the discharge line 19 of the hydraulic pump.
  • the pulse generator 21 functions as a rotation sensor that outputs a noise signal for detecting the rotation speed of the motor to the controller 20 (speed detection unit 22).
  • the inverter unit 14 controls the number of rotations of the motor 15 by performing switching based on a control signal from the controller 20.
  • the controller 20 includes a P-Q control unit 11, a current command value calculation unit 12, a correction unit 18A, and a control signal. A signal generation unit 13 and a speed detection unit 22 are included. Then, the controller 20 outputs a control signal for driving the inverter.
  • the P—Q control unit 11 generates a discharge pressure-discharge flow rate characteristic (P—Q characteristic) based on a set pressure and a set flow rate from a host system such as a molding machine. Then, the PQ controller 11 outputs the speed command value with the current pressure from the pressure sensor 17 as an input.
  • P—Q characteristic discharge pressure-discharge flow rate characteristic
  • a current command value calculation unit (also referred to as “PI control unit") 12 performs proportional integration (PI) control with the speed command value and the current speed as inputs, and outputs a current command value. More specifically, the PI control unit 12 calculates the current command value so that the deviation between the speed command value indicating the target rotation speed of the motor 15 and the rotation speed of the motor 15 converges to zero.
  • PI control unit proportional integration
  • the correction unit 18A corrects the current command value based on the current pressure from the pressure sensor 17.
  • the control signal generation unit 13 generates a control signal for controlling the inverter unit 14 based on the corrected current command value.
  • FIG. 2 is a schematic diagram showing a configuration of a general hydraulic unit 10B.
  • the hydraulic unit 10B has the same configuration as the hydraulic unit 10A, except that the correction unit 18A is not provided.
  • the molding machine to which the hydraulic unit 10B is connected is required to have high responsiveness from the viewpoint of mass production. For this reason, in the hydraulic unit 10B that drives the molding machine, stepped speed commands are given in a short cycle.
  • a correction unit 18A that corrects the current command value based on the load hydraulic pressure is provided.
  • the correction value (current correction value) If is acquired using the current pressure (pressure detection value) Pd detected by the pressure sensor 17 and the correction coefficient Kf acquired in advance. Then, the correction value If is added (added) to the current command value output from the current command value calculation unit 12.
  • the current command value is corrected based on the load of the hydraulic pump 16A, that is, the oil pressure (load oil pressure) in the discharge line 19. Therefore, it is possible to improve (improve) the follow-up performance of the rotational speed of the motor 15 with respect to fluctuations in the load (load hydraulic pressure) of the hydraulic pump 16A.
  • the correction coefficient Kf a coefficient acquired in advance by a test is used. Specifically, the correction coefficient Kf is set so that the correction unit 18A can acquire a current command value required to prevent a decrease in the rotational speed of the motor 15 and follow the speed command. In addition, the correction coefficient Kf is expressed to be set so that the shortage of the current command value required to prevent the motor 15 from rotating and follow the speed command can be acquired as a correction value. I'll do it with power.
  • the rotation speed of the motor 15 is given by the speed command value.
  • the rotation speed can be controlled.
  • the correction value If acquired using the correction coefficient Kf increases as the load hydraulic pressure increases.
  • the correction unit 18A can correct the current command value so as to increase the rotation speed of the motor 15 as the load hydraulic pressure increases, and the rotation speed of the motor 15 decreases as the load hydraulic pressure increases. Is prevented.
  • FIG. 3 is a diagram showing the behavior of the hydraulic unit 10A according to the present embodiment when a step speed command SC is given.
  • the correction unit 18A obtains a correction value If that increases the value as the load hydraulic pressure Pdl increases. Then, the correction value If is added to the output from the current command value calculation unit 12, and the corrected current command value Icl is acquired (see FIG. 3B). In this way, the current command value Icl increases with the increase in the load hydraulic pressure Pdl, so that a decrease in the rotational speed Rsl of the motor 15 due to an increase in the load torque is prevented. Then, the rotational speed Rsl of the motor 15 can be made to follow the rotational speed given by the speed command SC.
  • FIG. 4 is a diagram showing the behavior of the hydraulic unit 10B when the stepped speed command SC is given.
  • a correction value If that increases as the load hydraulic pressure Pd increases is acquired using the load hydraulic pressure Pd detected by the pressure sensor 17 in the correction unit 18A and the correction coefficient Kf acquired in advance. Is done. Then, the correction value If is added to the current command value output from the current command value calculation unit 12.
  • FIG. 5 is a schematic diagram showing a hydraulic unit 10C having a correction unit 18B that can acquire the correction value If using the data table DT.
  • the correction unit 18B performs correction using the data table DT indicating the relationship between the load oil pressure (pressure detection value) Pd acquired in advance and the correction value If.
  • the value If may be obtained (calculated).
  • FIG. 6 is a schematic diagram showing a hydraulic unit 10D that drives two hydraulic pumps 16A and 16B with one motor.
  • any hydraulic pump is driven from the PQ control unit 11 in accordance with the pump switching.
  • (Pump drive information) indicating whether or not the correction is performed is output to the correction unit 18C.
  • the data table for acquiring the correction value If is switched according to the pump drive information, and the correction value If corresponding to the pump being driven is acquired.
  • a data table showing the relationship between the load hydraulic pressure (pressure detection value) Pd and the correction value If when 16A and 16B are driven simultaneously is used to obtain the correction value If.
  • FIG. 7 is a schematic diagram showing a hydraulic unit in which two hydraulic pumps are connected in series. As shown in FIG. 7, when two hydraulic pumps are connected in series so that oil discharged from one hydraulic pump 16B is sucked into the other hydraulic pump 16A, the downstream hydraulic pump 1 The pressure of oil discharged from 6A is detected by the pressure sensor (17). The current command value is corrected based on the hydraulic pressure discharged from the downstream hydraulic pump 16A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
PCT/JP2007/066559 2006-08-30 2007-08-27 Unité hydraulique et procédé permettant de commander la vitesse du moteur dans une unité hydraulique WO2008026544A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07806100A EP1965083B1 (en) 2006-08-30 2007-08-27 Hydraulic unit and method of controlling speed of motor in hydraulic unit
CN2007800015363A CN101360917B (zh) 2006-08-30 2007-08-27 液压单元和液压单元中的电动机的速度控制方法
AT07806100T ATE528512T1 (de) 2006-08-30 2007-08-27 Hydraulische einheit und verfahren zur steuerung der drehzahl eines motors in der hydraulischen einheit
US12/160,003 US20090097986A1 (en) 2006-08-30 2007-08-27 Oil pressure unit and speed control method of motor in oil pressure unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006233529A JP4425253B2 (ja) 2006-08-30 2006-08-30 油圧ユニットおよび油圧ユニットにおけるモータの速度制御方法
JP2006-233529 2006-08-30

Publications (1)

Publication Number Publication Date
WO2008026544A1 true WO2008026544A1 (fr) 2008-03-06

Family

ID=39135827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066559 WO2008026544A1 (fr) 2006-08-30 2007-08-27 Unité hydraulique et procédé permettant de commander la vitesse du moteur dans une unité hydraulique

Country Status (7)

Country Link
US (1) US20090097986A1 (ko)
EP (1) EP1965083B1 (ko)
JP (1) JP4425253B2 (ko)
KR (1) KR100954697B1 (ko)
CN (1) CN101360917B (ko)
AT (1) ATE528512T1 (ko)
WO (1) WO2008026544A1 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737379B (zh) * 2008-11-21 2012-08-29 鸿富锦精密工业(深圳)有限公司 油压式设备的速度-压力控制装置
KR101379970B1 (ko) * 2009-06-25 2014-04-01 히다찌 겐끼 가부시키가이샤 작업 기계의 선회 제어 장치
DE102009059025A1 (de) * 2009-12-18 2011-06-22 Robert Bosch GmbH, 70469 Verfahren zum Betrieb einer hydraulischen Arbeitsmaschine
KR101095983B1 (ko) 2011-04-19 2011-12-19 주식회사 하이드텍 유압 전동 시스템 및 그의 제어 방법
WO2013089299A1 (ko) * 2011-12-16 2013-06-20 볼보 컨스트럭션 이큅먼트 에이비 전자 유압 액츄에이터 시스템을 이용한 운전자 자가 튜닝 방법
JP5884481B2 (ja) * 2011-12-28 2016-03-15 株式会社ジェイテクト モータ制御装置および電動ポンプユニット
DE102012009136A1 (de) 2012-05-05 2013-11-07 Robert Bosch Gmbh Verfahren zum Betreiben einer Fluidpumpe
EP2664968A1 (de) * 2012-05-16 2013-11-20 Siemens Aktiengesellschaft Regeleinrichtung für eine Hydraulikzylindereinheit mit Einzelventilsteuerung
US9611931B2 (en) 2012-05-24 2017-04-04 GM Global Technology Operations LLC Method to detect loss of fluid or blockage in a hydraulic circuit using exponentially weighted moving average filter
JP6050081B2 (ja) * 2012-10-05 2016-12-21 株式会社荏原製作所 ドライ真空ポンプ装置
FR3005703B1 (fr) * 2013-05-14 2016-08-19 Machine Smart Systeme hydraulique a controle electronique de pression et de debit
JP5673768B1 (ja) * 2013-09-27 2015-02-18 ダイキン工業株式会社 油圧装置
JP6290602B2 (ja) * 2013-11-15 2018-03-07 オークマ株式会社 油圧制御装置
CN104179736B (zh) * 2014-08-15 2016-08-24 徐工集团工程机械股份有限公司科技分公司 一种工程机械定量泵调速液压系统
JP6396733B2 (ja) 2014-09-22 2018-09-26 オークマ株式会社 油圧制御装置
DE102016106483B4 (de) * 2016-04-08 2019-02-07 Jenaer Antriebstechnik Gmbh Verfahren zur Kompensation von zyklischen Störungen beim Betrieb einer Pumpe sowie Regelungseinheit
DE102017117595A1 (de) * 2017-08-03 2019-02-07 Voith Patent Gmbh Verfahren zur regelung des ausgangsdrucks eines hydraulikantriebsystems, verwendung des verfahrens und hydraulikantriebsystem
CN110785562B (zh) * 2017-08-28 2021-10-22 爱信艾达株式会社 控制装置
DE102020107127A1 (de) 2019-03-20 2020-09-24 Fanuc Corporation Bearbeitungsmaschine und druckeinstellverfahren
JP7010906B2 (ja) * 2019-03-20 2022-01-26 ファナック株式会社 加工機および圧力調整方法
JP7346886B2 (ja) * 2019-04-12 2023-09-20 マックス株式会社 空気圧縮機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248566A (ja) * 2000-03-02 2001-09-14 Tokimec Inc ポンプ回転速度制御システム
JP2004162860A (ja) * 2002-11-15 2004-06-10 Daikin Ind Ltd 自律型インバータ駆動油圧ユニットの昇温制御方法およびその装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588319B1 (fr) * 1985-10-04 1987-12-04 Milton Roy Dosapro Procede pour etablir de maniere precise le debit d'une pompe doseuse et pompe doseuse faisant application
US4733152A (en) * 1986-03-10 1988-03-22 Isco, Inc. Feedback system
US5019757A (en) * 1990-03-19 1991-05-28 General Electric Company Method and apparatus for controlling a blower motor in an air handling system to provide constant pressure
JP2900286B2 (ja) * 1990-10-31 1999-06-02 富士重工業株式会社 無段変速機の制御装置
US5141402A (en) * 1991-01-29 1992-08-25 Vickers, Incorporated Power transmission
PL174818B1 (pl) * 1993-09-27 1998-09-30 Diversey Corp Sposób i układ sterowania pompowaniem cieczy z pomiarem przepływu
JPH07177775A (ja) * 1993-12-20 1995-07-14 Toshiba Corp 電力変換装置の制御装置
JP3345311B2 (ja) 1997-08-15 2002-11-18 川崎製鉄株式会社 圧延機駆動用電動機の速度制御装置
US6468042B2 (en) * 1999-07-12 2002-10-22 Danfoss Drives A/S Method for regulating a delivery variable of a pump
DE19931961A1 (de) * 1999-07-12 2001-02-01 Danfoss As Verfahren zur Regelung einer Fördergröße einer Pumpe
WO2001006126A1 (fr) * 1999-07-14 2001-01-25 Yuken Kogyo Kabushiki Kaisha Systeme a puissance hydraulique
US6353299B1 (en) * 1999-10-19 2002-03-05 Fasco Industries, Inc. Control algorithm for brushless DC motor/blower system
DE10162773A1 (de) * 2001-12-20 2003-07-10 Knf Flodos Ag Sursee Dosierpumpe
US6979181B1 (en) * 2002-11-27 2005-12-27 Aspen Motion Technologies, Inc. Method for controlling the motor of a pump involving the determination and synchronization of the point of maximum torque with a table of values used to efficiently drive the motor
US7080508B2 (en) * 2004-05-13 2006-07-25 Itt Manufacturing Enterprises, Inc. Torque controlled pump protection with mechanical loss compensation
US7089733B1 (en) * 2005-02-28 2006-08-15 Husco International, Inc. Hydraulic control valve system with electronic load sense control
DE102005013773A1 (de) * 2005-03-22 2006-09-28 Diehl Ako Stiftung & Co. Kg Verfahren zur Regelung einer Pumpe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248566A (ja) * 2000-03-02 2001-09-14 Tokimec Inc ポンプ回転速度制御システム
JP2004162860A (ja) * 2002-11-15 2004-06-10 Daikin Ind Ltd 自律型インバータ駆動油圧ユニットの昇温制御方法およびその装置

Also Published As

Publication number Publication date
CN101360917B (zh) 2011-12-07
KR20080087084A (ko) 2008-09-30
US20090097986A1 (en) 2009-04-16
JP2008057611A (ja) 2008-03-13
EP1965083B1 (en) 2011-10-12
ATE528512T1 (de) 2011-10-15
JP4425253B2 (ja) 2010-03-03
EP1965083A1 (en) 2008-09-03
EP1965083A4 (en) 2009-11-11
KR100954697B1 (ko) 2010-04-26
CN101360917A (zh) 2009-02-04

Similar Documents

Publication Publication Date Title
WO2008026544A1 (fr) Unité hydraulique et procédé permettant de commander la vitesse du moteur dans une unité hydraulique
KR101300154B1 (ko) 유압 구동팬의 제어 장치
EP2799714B1 (en) Motor control device and electric pump unit
KR101875241B1 (ko) 하이브리드 건설 기계
US7170243B2 (en) Drive method for brushless motor and drive control apparatus therefor
CN103329428B (zh) 电动泵设备
US20160340871A1 (en) Engine and Pump Control Device and Working Machine
JP6798426B2 (ja) 真空ポンプ用モータの回転速度制御装置、真空ポンプ
KR20050094344A (ko) 팬회전수 제어방법
JP5291325B2 (ja) 圧縮機に接続されたモータの制御装置
JP5884481B2 (ja) モータ制御装置および電動ポンプユニット
US9085870B2 (en) Swing control apparatus and swing control method for construction machinery
JP6136140B2 (ja) モータ制御装置および電動ポンプユニット
JP2008232445A (ja) 油圧ユニットおよび油圧ユニットにおけるモータの速度制御方法
JP2012140912A (ja) 電動ポンプ装置
CN107250463B (zh) 用于建筑机械的液压泵的控制方法
JP6079032B2 (ja) モータ制御装置および電動ポンプユニット
US10337171B2 (en) Hybrid construction machine
US20220182000A1 (en) Motor control device, motor drive system, hydraulic pressure generator, motor control method, and storage medium
CN116892502A (zh) 用于运行转速可变的泵的方法
JP5962008B2 (ja) モータ制御装置および電動ポンプユニット
JP5817520B2 (ja) モータ制御装置および電動ポンプユニット
JP2014084722A (ja) ハイブリッド式作業機械

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001536.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087013286

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007806100

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12160003

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU