WO2008026544A1 - Hydraulic unit and method of controlling speed of motor in hydraulic unit - Google Patents

Hydraulic unit and method of controlling speed of motor in hydraulic unit Download PDF

Info

Publication number
WO2008026544A1
WO2008026544A1 PCT/JP2007/066559 JP2007066559W WO2008026544A1 WO 2008026544 A1 WO2008026544 A1 WO 2008026544A1 JP 2007066559 W JP2007066559 W JP 2007066559W WO 2008026544 A1 WO2008026544 A1 WO 2008026544A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
hydraulic
command value
hydraulic unit
load
Prior art date
Application number
PCT/JP2007/066559
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Nakata
Junichi Miyagi
Yasuto Yanagida
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AT07806100T priority Critical patent/ATE528512T1/en
Priority to US12/160,003 priority patent/US20090097986A1/en
Priority to CN2007800015363A priority patent/CN101360917B/en
Priority to EP07806100A priority patent/EP1965083B1/en
Publication of WO2008026544A1 publication Critical patent/WO2008026544A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0423Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling pump output or bypass, other than to maintain constant speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1202Torque on the axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/255Flow control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6656Closed loop control, i.e. control using feedback

Definitions

  • the present invention relates to a hydraulic unit that drives a hydraulic pump by a motor.
  • a speed control (PI control) calculation is executed by comparing the motor speed command value with the current rotational speed.
  • the current command value is calculated, and current control based on the current command value is realized by the inverter.
  • the pressure oil is discharged from the hydraulic pump by driving a motor controlled by an inverter.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-162860
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of improving the followability of the rotational speed of the motor with respect to changes in the load of the hydraulic pump.
  • a first aspect of the hydraulic unit according to the present invention is a hydraulic unit that drives a hydraulic pump (16A) by a motor (15) and supplies oil to an actuator.
  • An inverter (14) for supplying electric power, a load sensor (17) for detecting a load of the hydraulic pump (16A), a rotation sensor (21) for detecting a rotation speed of the motor (15), and the motor Current command value calculating means (12) for calculating a current command value so that the deviation between the speed command value representing the target rotation speed in (15) and the rotation speed of the motor (15) converges to zero; Correction means (18A; ⁇ ; 18D) for correcting the current command value based on the pump load, and control for outputting a control signal to the inverter (14) based on the corrected current command value And a signal generation means (13).
  • a second aspect of the hydraulic unit is the first aspect, wherein the correction means (18A
  • a third aspect of the hydraulic unit is the first or second aspect thereof, wherein the correction means (18A; ⁇ ; 18D) includes a load of the hydraulic pump (16A). The current command value is increased with the increase.
  • the fourth aspect of the hydraulic unit is any one of the first to third aspects, wherein the correction means (18A) performs correction using a preset correction coefficient (Kf). A value (If) is acquired, and the correction value (If) is added to the current command value.
  • a fifth aspect of the hydraulic unit is any one of the first to third aspects, wherein the correction means (18B; 18C; 18D) uses a data table DT acquired in advance. Then, a correction value (If) is obtained, and the correction value (If) is added to the current command value.
  • a sixth aspect of the hydraulic unit is any one of the first to fifth aspects, wherein the load sensor (17) is provided in a discharge line (19) of the hydraulic pump (16A). It is a pressure sensor (17) that detects the oil pressure.
  • a method for controlling the speed of the motor (15) comprising: a) detecting the load of the hydraulic pump (16A), b) detecting the rotational speed of the motor (15), and c) the motor (15). ) Calculating the current command value so that the deviation between the speed command value representing the target rotation speed and the rotation speed of the motor (15) converges on the opening; d) the load of the hydraulic pump (16A) And a step of: e) outputting a control signal to the inverter (14) based on the corrected current command value based on the current command value.
  • the current command value is corrected based on the load of the hydraulic pump, so that the load of the hydraulic pump (load hydraulic pressure) varies. It is possible to improve the followability of the rotational speed of the motor with respect to the motor.
  • the current command value is corrected so as to increase the rotational speed of the motor as the load of the hydraulic pump increases. It is possible to prevent a decrease in the rotation speed of the motor due to an increase in the motor.
  • FIG. 1 is a schematic view showing a configuration of a hydraulic unit according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of a hydraulic unit that does not have a correction unit.
  • FIG. 3 is a diagram showing an operation state when a stepped speed command is given in the hydraulic unit according to the embodiment.
  • FIG. 4 is a diagram showing an operation state when a stepped speed command is given to a hydraulic unit without a correction unit!
  • FIG. 5 is a schematic diagram showing a hydraulic unit having a correction unit capable of acquiring a correction value using a data table.
  • FIG. 6 is a schematic diagram showing a hydraulic unit that drives two hydraulic pumps with one motor.
  • FIG. 7 is a schematic diagram showing a hydraulic unit in which two hydraulic pumps are connected in series.
  • FIG. 1 is a schematic diagram showing the configuration of a hydraulic unit 10A according to an embodiment of the present invention.
  • the hydraulic unit 10A is connected to, for example, a molding machine and supplies oil as a working fluid to an actuator (not shown) that uses hydraulic pressure as a power source.
  • the hydraulic unit 10 A includes a controller 20, an inverter unit 14, a motor 15, a hydraulic pump 16 A, a pressure sensor 17, and a pulse generator 21.
  • the hydraulic unit 10A having such a configuration, oil is sucked from a tank (not shown) by a hydraulic pump 16A driven by a motor 15, and the oil is discharged.
  • the discharged oil passes through a discharge line 19 and is supplied to an actuator such as a hydraulic cylinder or a hydraulic motor.
  • the pressure sensor 17 functions as a load sensor for detecting the load of the hydraulic pump.
  • the pressure sensor 17 detects the oil pressure (also referred to as “current pressure” or “load oil pressure”) in the discharge line 19 of the hydraulic pump.
  • the pulse generator 21 functions as a rotation sensor that outputs a noise signal for detecting the rotation speed of the motor to the controller 20 (speed detection unit 22).
  • the inverter unit 14 controls the number of rotations of the motor 15 by performing switching based on a control signal from the controller 20.
  • the controller 20 includes a P-Q control unit 11, a current command value calculation unit 12, a correction unit 18A, and a control signal. A signal generation unit 13 and a speed detection unit 22 are included. Then, the controller 20 outputs a control signal for driving the inverter.
  • the P—Q control unit 11 generates a discharge pressure-discharge flow rate characteristic (P—Q characteristic) based on a set pressure and a set flow rate from a host system such as a molding machine. Then, the PQ controller 11 outputs the speed command value with the current pressure from the pressure sensor 17 as an input.
  • P—Q characteristic discharge pressure-discharge flow rate characteristic
  • a current command value calculation unit (also referred to as “PI control unit") 12 performs proportional integration (PI) control with the speed command value and the current speed as inputs, and outputs a current command value. More specifically, the PI control unit 12 calculates the current command value so that the deviation between the speed command value indicating the target rotation speed of the motor 15 and the rotation speed of the motor 15 converges to zero.
  • PI control unit proportional integration
  • the correction unit 18A corrects the current command value based on the current pressure from the pressure sensor 17.
  • the control signal generation unit 13 generates a control signal for controlling the inverter unit 14 based on the corrected current command value.
  • FIG. 2 is a schematic diagram showing a configuration of a general hydraulic unit 10B.
  • the hydraulic unit 10B has the same configuration as the hydraulic unit 10A, except that the correction unit 18A is not provided.
  • the molding machine to which the hydraulic unit 10B is connected is required to have high responsiveness from the viewpoint of mass production. For this reason, in the hydraulic unit 10B that drives the molding machine, stepped speed commands are given in a short cycle.
  • a correction unit 18A that corrects the current command value based on the load hydraulic pressure is provided.
  • the correction value (current correction value) If is acquired using the current pressure (pressure detection value) Pd detected by the pressure sensor 17 and the correction coefficient Kf acquired in advance. Then, the correction value If is added (added) to the current command value output from the current command value calculation unit 12.
  • the current command value is corrected based on the load of the hydraulic pump 16A, that is, the oil pressure (load oil pressure) in the discharge line 19. Therefore, it is possible to improve (improve) the follow-up performance of the rotational speed of the motor 15 with respect to fluctuations in the load (load hydraulic pressure) of the hydraulic pump 16A.
  • the correction coefficient Kf a coefficient acquired in advance by a test is used. Specifically, the correction coefficient Kf is set so that the correction unit 18A can acquire a current command value required to prevent a decrease in the rotational speed of the motor 15 and follow the speed command. In addition, the correction coefficient Kf is expressed to be set so that the shortage of the current command value required to prevent the motor 15 from rotating and follow the speed command can be acquired as a correction value. I'll do it with power.
  • the rotation speed of the motor 15 is given by the speed command value.
  • the rotation speed can be controlled.
  • the correction value If acquired using the correction coefficient Kf increases as the load hydraulic pressure increases.
  • the correction unit 18A can correct the current command value so as to increase the rotation speed of the motor 15 as the load hydraulic pressure increases, and the rotation speed of the motor 15 decreases as the load hydraulic pressure increases. Is prevented.
  • FIG. 3 is a diagram showing the behavior of the hydraulic unit 10A according to the present embodiment when a step speed command SC is given.
  • the correction unit 18A obtains a correction value If that increases the value as the load hydraulic pressure Pdl increases. Then, the correction value If is added to the output from the current command value calculation unit 12, and the corrected current command value Icl is acquired (see FIG. 3B). In this way, the current command value Icl increases with the increase in the load hydraulic pressure Pdl, so that a decrease in the rotational speed Rsl of the motor 15 due to an increase in the load torque is prevented. Then, the rotational speed Rsl of the motor 15 can be made to follow the rotational speed given by the speed command SC.
  • FIG. 4 is a diagram showing the behavior of the hydraulic unit 10B when the stepped speed command SC is given.
  • a correction value If that increases as the load hydraulic pressure Pd increases is acquired using the load hydraulic pressure Pd detected by the pressure sensor 17 in the correction unit 18A and the correction coefficient Kf acquired in advance. Is done. Then, the correction value If is added to the current command value output from the current command value calculation unit 12.
  • FIG. 5 is a schematic diagram showing a hydraulic unit 10C having a correction unit 18B that can acquire the correction value If using the data table DT.
  • the correction unit 18B performs correction using the data table DT indicating the relationship between the load oil pressure (pressure detection value) Pd acquired in advance and the correction value If.
  • the value If may be obtained (calculated).
  • FIG. 6 is a schematic diagram showing a hydraulic unit 10D that drives two hydraulic pumps 16A and 16B with one motor.
  • any hydraulic pump is driven from the PQ control unit 11 in accordance with the pump switching.
  • (Pump drive information) indicating whether or not the correction is performed is output to the correction unit 18C.
  • the data table for acquiring the correction value If is switched according to the pump drive information, and the correction value If corresponding to the pump being driven is acquired.
  • a data table showing the relationship between the load hydraulic pressure (pressure detection value) Pd and the correction value If when 16A and 16B are driven simultaneously is used to obtain the correction value If.
  • FIG. 7 is a schematic diagram showing a hydraulic unit in which two hydraulic pumps are connected in series. As shown in FIG. 7, when two hydraulic pumps are connected in series so that oil discharged from one hydraulic pump 16B is sucked into the other hydraulic pump 16A, the downstream hydraulic pump 1 The pressure of oil discharged from 6A is detected by the pressure sensor (17). The current command value is corrected based on the hydraulic pressure discharged from the downstream hydraulic pump 16A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

A hydraulic unit having an inverter (14) for supplying electric power to a motor (15), a load sensor (17) for sensing a load on a hydraulic pump (16A), a rotation sensor (19) for sensing the rotation speed of the motor (15), a current-command-value calculation means (12) for calculating an electric-current command value so that the difference between a speed command value representing a target rotation speed of the motor (15) and the rotation speed of the motor (15) is converged to zero, correction means (18A) for correcting the electric-current command value based on the load on the hydraulic pump (16A), and control signal creation means for outputting a control signal to the inverter (14) based on the corrected electric-current command value.

Description

明 細 書  Specification
油圧ユニットおよび油圧ユニットにおけるモータの速度制御方法 技術分野  Hydraulic unit and motor speed control method in hydraulic unit
[0001] 本発明は、モータにより油圧ポンプを駆動する油圧ユニットに関する。  The present invention relates to a hydraulic unit that drives a hydraulic pump by a motor.
背景技術  Background art
[0002] 従来、モータに直結された油圧ポンプを駆動源とする油圧ユニットにおいては、モ ータの速度指令値と現在の回転速度との比較により、速度制御(PI制御)演算が実 行され電流指令値が算出され、電流指令値に基づいた電流制御がインバータによつ て実現されている。そして、インバータにより制御されるモータを駆動することによって 圧力油を油圧ポンプから吐出させている。 (例えば、特許文献 1)。  Conventionally, in a hydraulic unit using a hydraulic pump directly connected to a motor as a drive source, a speed control (PI control) calculation is executed by comparing the motor speed command value with the current rotational speed. The current command value is calculated, and current control based on the current command value is realized by the inverter. And the pressure oil is discharged from the hydraulic pump by driving a motor controlled by an inverter. (For example, Patent Document 1).
[0003] 特許文献 1 :特開 2004— 162860号公報 [0003] Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-162860
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] このような油圧ユニットにおいては、油圧ポンプの駆動により油圧ポンプから吐出さ れた油の総油量が増えると、当該油の圧力(油圧)が大きくなる。この油圧の増大は、 吐出の際の油圧ポンプの負荷の増大を招き、モータの負荷トルクを大きくさせる。  In such a hydraulic unit, when the total amount of oil discharged from the hydraulic pump by driving the hydraulic pump increases, the pressure (hydraulic pressure) of the oil increases. This increase in hydraulic pressure increases the load on the hydraulic pump at the time of discharge, and increases the load torque of the motor.
[0005] このため、当該油圧ユニットにおいて、例えば、ステップ状の速度指令値が与えら れた場合、速度指令値に応答してモータの回転速度が急激に上昇すると、油圧ボン プの負荷が急激に増大し、ひいては、モータの負荷トルクが急激に大きくなる。そし て、モータの負荷トルクが急激に大きくなると、 PI制御で構成された速度制御が追従 できず、モータの回転速度が低下する場合がある。  [0005] For this reason, in the hydraulic unit, for example, when a stepped speed command value is given, the load on the hydraulic pump suddenly increases when the rotational speed of the motor suddenly increases in response to the speed command value. As a result, the load torque of the motor suddenly increases. If the load torque of the motor suddenly increases, the speed control configured with PI control cannot follow, and the rotational speed of the motor may decrease.
[0006] モータの回転速度の低下を防止する手法としては、例えば、 PI制御を行うマイクロ コンピュータの処理速度を向上させて PI制御の制御周期を短くし、制御の応答性を 向上させる手法が考えられる。し力、し、当該手法を採用すると、マイクロコンピュータ のコストアップが生じる。また、マイクロコンピュータの処理速度の向上にも物理的な 限界があるため、当該手法では、モータの回転速度の低下を有効に防止することが できない。 [0007] また、他の手法としては、モータの回転速度を微分して得られる加速度情報から負 荷トルクを推定し、負荷トルクを速度制御に利用する手法が考えられる。しかし、回転 速度は、離散的な情報であるため、微分によりノイズ成分が増大する。このため、負 荷トルクを用いて速度制御を実行すると動作が不安定になる可能性がある。 [0006] As a technique for preventing a decrease in the rotational speed of the motor, for example, a technique of improving the processing speed of a microcomputer that performs PI control, shortening the control cycle of PI control, and improving control responsiveness is considered. It is done. If this method is used, the cost of the microcomputer will increase. In addition, since there is a physical limit in improving the processing speed of the microcomputer, this method cannot effectively prevent a reduction in the rotational speed of the motor. [0007] As another method, a method of estimating the load torque from acceleration information obtained by differentiating the rotation speed of the motor and using the load torque for speed control is conceivable. However, since the rotation speed is discrete information, the noise component increases due to differentiation. For this reason, if speed control is performed using load torque, the operation may become unstable.
[0008] また、負荷変動に対する応答性を向上させるために速度制御のゲインを上げると、 ステップ状の速度指令値が与えられた際に、発振してしまう可能性がある。  [0008] Further, if the gain of speed control is increased in order to improve the responsiveness to load fluctuations, oscillation may occur when a step-like speed command value is given.
[0009] そこで、本発明は、上記課題に鑑みてなされたものであり、油圧ポンプの負荷の変 動に対するモータの回転速度の追従性を向上させることが可能な技術を提供するこ とを目的とする。  Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of improving the followability of the rotational speed of the motor with respect to changes in the load of the hydraulic pump. And
課題を解決するための手段  Means for solving the problem
[0010] この発明に係る油圧ユニットの第 1の態様は、モータ(15)により油圧ポンプ(16A) を駆動し、ァクチユエ一タに油を供給する油圧ユニットであって、前記モータ(15)に 電力を供給するインバータ(14)と、前記油圧ポンプ(16A)の負荷を検出する負荷セ ンサ(17)と、前記モータ(15)の回転速度を検出する回転センサ(21)と、前記モー タ(15)の目標回転速度を表す速度指令値と前記モータ(15)の回転速度との偏差を ゼロに収束させるように、電流指令値を演算する電流指令値演算手段(12)と、前記 油圧ポンプの負荷に基づいて、前記電流指令値を補正する補正手段(18A; · · ·; 1 8D)と、補正後の電流指令値に基づいて、前記インバータ(14)に制御信号を出力 する制御信号生成手段(13)とを備えることを特徴とする。  [0010] A first aspect of the hydraulic unit according to the present invention is a hydraulic unit that drives a hydraulic pump (16A) by a motor (15) and supplies oil to an actuator. An inverter (14) for supplying electric power, a load sensor (17) for detecting a load of the hydraulic pump (16A), a rotation sensor (21) for detecting a rotation speed of the motor (15), and the motor Current command value calculating means (12) for calculating a current command value so that the deviation between the speed command value representing the target rotation speed in (15) and the rotation speed of the motor (15) converges to zero; Correction means (18A; ···; 18D) for correcting the current command value based on the pump load, and control for outputting a control signal to the inverter (14) based on the corrected current command value And a signal generation means (13).
[0011] また、油圧ユニットの第 2の態様は、その第 1の態様であって、前記補正手段(18A  [0011] A second aspect of the hydraulic unit is the first aspect, wherein the correction means (18A
; · · · ; 18Ό)は、前記油圧ポンプ(16A)の負荷の上昇とともに、前記モータ(15)の 回転速度を上昇させるように前記電流指令値を補正することを特徴とする。  18Ό) is characterized in that the current command value is corrected so as to increase the rotational speed of the motor (15) as the load of the hydraulic pump (16A) increases.
[0012] また、油圧ユニットの第 3の態様は、その第 1または第 2の態様であって、前記補正 手段( 18 A; · · ·; 18D)は、前記油圧ポンプ( 16A)の負荷の上昇とともに、前記電流 指令値を増加させることを特徴とする。  [0012] Further, a third aspect of the hydraulic unit is the first or second aspect thereof, wherein the correction means (18A; ··; 18D) includes a load of the hydraulic pump (16A). The current command value is increased with the increase.
[0013] また、油圧ユニットの第 4の態様は、その第 1から第 3の態様のいずれかであって、 前記補正手段(18A)は、予め設定された補正係数 (Kf)を用いて補正値 (If)を取得 し、前記補正値 (If)を前記電流指令値に加えることを特徴とする。 [0014] また、油圧ユニットの第 5の態様は、その第 1から第 3の態様のいずれかであって、 前記補正手段(18B ; 18C ; 18D)は、予め取得されたデータテーブル DTを用いて 補正値 (If)を取得し、前記補正値 (If)を前記電流指令値に加えることを特徴とする。 [0013] Further, the fourth aspect of the hydraulic unit is any one of the first to third aspects, wherein the correction means (18A) performs correction using a preset correction coefficient (Kf). A value (If) is acquired, and the correction value (If) is added to the current command value. [0014] Further, a fifth aspect of the hydraulic unit is any one of the first to third aspects, wherein the correction means (18B; 18C; 18D) uses a data table DT acquired in advance. Then, a correction value (If) is obtained, and the correction value (If) is added to the current command value.
[0015] また、油圧ユニットの第 6の態様は、その第 1から第 5の態様のいずれかであって、 前記負荷センサ(17)は、前記油圧ポンプ(16A)の吐出ライン(19)における油の圧 力を検出する圧力センサ(17)であることを特徴とする。  [0015] Further, a sixth aspect of the hydraulic unit is any one of the first to fifth aspects, wherein the load sensor (17) is provided in a discharge line (19) of the hydraulic pump (16A). It is a pressure sensor (17) that detects the oil pressure.
[0016] また、油圧ユニットの第 7の態様は、インバータ(14)によって制御されるモータ(15 )により油圧ポンプ(16A)を駆動し、ァクチユエ一タに油を供給する油圧ユニットにお ける前記モータ(15)の速度制御方法であって、 a)前記油圧ポンプ(16A)の負荷を 検出する工程と、 b)前記モータ(15)の回転速度を検出する工程と、 c)前記モータ( 15)の目標回転速度を表す速度指令値と前記モータ(15)の回転速度との偏差をゼ 口に収束させるように、電流指令値を演算する工程と、 d)前記油圧ポンプ(16A)の 負荷に基づいて、前記電流指令値を補正する工程と、 e)補正後の電流指令値に基 づいて、前記インバータ(14)に制御信号を出力する工程とを備えることを特徴とする [0016] Further, according to a seventh aspect of the hydraulic unit, in the hydraulic unit that supplies the oil to the actuator by driving the hydraulic pump (16A) by the motor (15) controlled by the inverter (14). A method for controlling the speed of the motor (15), comprising: a) detecting the load of the hydraulic pump (16A), b) detecting the rotational speed of the motor (15), and c) the motor (15). ) Calculating the current command value so that the deviation between the speed command value representing the target rotation speed and the rotation speed of the motor (15) converges on the opening; d) the load of the hydraulic pump (16A) And a step of: e) outputting a control signal to the inverter (14) based on the corrected current command value based on the current command value.
Yes
発明の効果  The invention's effect
[0017] この発明に係る油圧ユニットの第 1の態様から第 7の態様によれば、油圧ポンプの 負荷に基づいて、電流指令値を補正するので、油圧ポンプの負荷 (負荷油圧)の変 動に対するモータの回転速度の追従性を向上させることが可能となる。  [0017] According to the first to seventh aspects of the hydraulic unit according to the present invention, the current command value is corrected based on the load of the hydraulic pump, so that the load of the hydraulic pump (load hydraulic pressure) varies. It is possible to improve the followability of the rotational speed of the motor with respect to the motor.
[0018] また特に、この発明に係る油圧ユニットの第 2の態様によれば、油圧ポンプの負荷 の上昇とともに、モータの回転速度を上昇させるように電流指令値を補正するので、 油圧ポンプの負荷の上昇にともなうモータの回転速度の低下を防止することが可能と なる。  In particular, according to the second aspect of the hydraulic unit according to the present invention, the current command value is corrected so as to increase the rotational speed of the motor as the load of the hydraulic pump increases. It is possible to prevent a decrease in the rotation speed of the motor due to an increase in the motor.
[0019] この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによ つて、より明白となる。  The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]実施形態に係る油圧ユニットの構成を示す概略図である。  FIG. 1 is a schematic view showing a configuration of a hydraulic unit according to an embodiment.
[図 2]補正部を有しない油圧ユニットの構成を示す概略図である。 [図 3]実施形態に係る油圧ユニットにおいて、ステップ状の速度指令が与えられた場 合の動作の様子を示す図である。 FIG. 2 is a schematic diagram showing the configuration of a hydraulic unit that does not have a correction unit. FIG. 3 is a diagram showing an operation state when a stepped speed command is given in the hydraulic unit according to the embodiment.
[図 4]補正部を有しな!/、油圧ユニット油圧ユニットにおレ、て、ステップ状の速度指令が 与えられた場合の動作の様子を示す図である。  FIG. 4 is a diagram showing an operation state when a stepped speed command is given to a hydraulic unit without a correction unit!
[図 5]データテーブルを用いて、補正値を取得することが可能な補正部を有する油圧 ユニットを示す概略図である。  FIG. 5 is a schematic diagram showing a hydraulic unit having a correction unit capable of acquiring a correction value using a data table.
[図 6]1つのモータで 2つの油圧ポンプを駆動する油圧ユニットを示す概略図である。  FIG. 6 is a schematic diagram showing a hydraulic unit that drives two hydraulic pumps with one motor.
[図 7]2つの油圧ポンプが直列に接続された油圧ユニットを示す概略図である。 発明を実施するための最良の形態  FIG. 7 is a schematic diagram showing a hydraulic unit in which two hydraulic pumps are connected in series. BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022] <構成〉 [0022] <Configuration>
図 1は、本発明の実施形態に係る油圧ユニット 10Aの構成を示す概略図である。こ の油圧ユニット 10Aは、例えば成型機等に接続され、油圧を動力源とするァクチユエ ータ(不図示)に作動流体として油を供給するものである。  FIG. 1 is a schematic diagram showing the configuration of a hydraulic unit 10A according to an embodiment of the present invention. The hydraulic unit 10A is connected to, for example, a molding machine and supplies oil as a working fluid to an actuator (not shown) that uses hydraulic pressure as a power source.
[0023] 図 1に示すように、油圧ユニット 10Aは、コントローラ 20とインバータ部 14とモータ 1 5と油圧ポンプ 16Aと圧力センサ 17とパルスジェネレータ 21とを有している。このよう な構成を有する油圧ユニット 10Aにおいては、モータ 15により駆動される油圧ポンプ 16Aによって、タンク(不図示)から油が吸引され、当該油が吐出される。吐出された 油は、吐出ライン 19を通って油圧シリンダ或いは油圧モータ等のァクチユエ一タに供 糸 m る。 As shown in FIG. 1, the hydraulic unit 10 A includes a controller 20, an inverter unit 14, a motor 15, a hydraulic pump 16 A, a pressure sensor 17, and a pulse generator 21. In the hydraulic unit 10A having such a configuration, oil is sucked from a tank (not shown) by a hydraulic pump 16A driven by a motor 15, and the oil is discharged. The discharged oil passes through a discharge line 19 and is supplied to an actuator such as a hydraulic cylinder or a hydraulic motor.
[0024] 圧力センサ 17は、油圧ポンプの負荷を検出する負荷センサとして機能する。そして [0024] The pressure sensor 17 functions as a load sensor for detecting the load of the hydraulic pump. And
、圧力センサ 17は、油圧ポンプの吐出ライン 19における油の圧力(「現在圧力」また は「負荷油圧」とも称する)を検出する。 The pressure sensor 17 detects the oil pressure (also referred to as “current pressure” or “load oil pressure”) in the discharge line 19 of the hydraulic pump.
[0025] パルスジェネレータ 21は、コントローラ 20 (速度検出部 22)に対してモータの回転 速度を検出するためのノ ルス信号を出力する回転センサとして機能する。 [0025] The pulse generator 21 functions as a rotation sensor that outputs a noise signal for detecting the rotation speed of the motor to the controller 20 (speed detection unit 22).
[0026] インバータ部 14は、コントローラ 20からの制御信号に基づいてスイッチングを行うこ とによって、モータ 15の回転数を制御する。 The inverter unit 14 controls the number of rotations of the motor 15 by performing switching based on a control signal from the controller 20.
[0027] コントローラ 20は、 P - Q制御部 11と電流指令値演算部 12と補正部 18Aと制御信 号生成部 13と速度検出部 22とを有している。そして、コントローラ 20は、インバータ を駆動するための制御信号を出力する。 [0027] The controller 20 includes a P-Q control unit 11, a current command value calculation unit 12, a correction unit 18A, and a control signal. A signal generation unit 13 and a speed detection unit 22 are included. Then, the controller 20 outputs a control signal for driving the inverter.
[0028] P— Q制御部 11は、成型機等の上位システムからの設定圧力および設定流量に基 づいて吐出圧力一吐出流量特性 (P— Q特性)を生成する。そして、 P— Q制御部 11 は、圧力センサ 17からの現在圧力を入力として速度指令値を出力する。 [0028] The P—Q control unit 11 generates a discharge pressure-discharge flow rate characteristic (P—Q characteristic) based on a set pressure and a set flow rate from a host system such as a molding machine. Then, the PQ controller 11 outputs the speed command value with the current pressure from the pressure sensor 17 as an input.
[0029] 電流指令値演算部(「PI制御部」とも称する) 12は、速度指令値および現在速度を 入力として比例積分 (PI)制御を行い、電流指令値を出力する。より詳細には、 PI制 御部 12は、モータ 15の目標回転速度を表す速度指令値とモータ 15の回転速度との 偏差をゼロに収束させるように、電流指令値を演算する。 [0029] A current command value calculation unit (also referred to as "PI control unit") 12 performs proportional integration (PI) control with the speed command value and the current speed as inputs, and outputs a current command value. More specifically, the PI control unit 12 calculates the current command value so that the deviation between the speed command value indicating the target rotation speed of the motor 15 and the rotation speed of the motor 15 converges to zero.
[0030] 補正部 18Aは、圧力センサ 17からの現在圧力に基づいて電流指令値を補正するThe correction unit 18A corrects the current command value based on the current pressure from the pressure sensor 17.
。詳細は、後述する。 . Details will be described later.
[0031] 制御信号生成部 13は、補正後の電流指令値に基づいてインバータ部 14を制御す る制御信号を生成する。  [0031] The control signal generation unit 13 generates a control signal for controlling the inverter unit 14 based on the corrected current command value.
[0032] <補正部〉 [0032] <Correction unit>
次に、補正部 18Aについて詳述する。  Next, the correction unit 18A will be described in detail.
[0033] 図 2は、一般的な油圧ユニット 10Bの構成を示す概略図である。油圧ユニット 10B は、補正部 18Aを有しない点を除いては、油圧ユニット 10Aと同様の構成を有してい [0033] FIG. 2 is a schematic diagram showing a configuration of a general hydraulic unit 10B. The hydraulic unit 10B has the same configuration as the hydraulic unit 10A, except that the correction unit 18A is not provided.
[0034] 油圧ユニット 10Bが接続される成型機には、大量生産の観点から高い応答性が要 求される。このため、当該成型機を駆動する油圧ユニット 10Bにおいては、ステップ 状の速度指令が短レ、周期で与えられる。 [0034] The molding machine to which the hydraulic unit 10B is connected is required to have high responsiveness from the viewpoint of mass production. For this reason, in the hydraulic unit 10B that drives the molding machine, stepped speed commands are given in a short cycle.
[0035] また、油圧ポンプ 16Aから吐出された油の総油量が増えると、油圧ポンプ 16Aの吐 出ライン 19における油圧 (負荷油圧)が大きくなる。そして、負荷油圧が大きくなると、 吐出の際の油圧ポンプ 16Aの負荷が増大する。すなわち、負荷油圧とモータ 15の 負荷トルクとはおおむね比例関係にあり、負荷油圧が大きくなると、モータ 15の負荷 トルクが大きくなる。  [0035] When the total amount of oil discharged from the hydraulic pump 16A increases, the hydraulic pressure (load hydraulic pressure) in the discharge line 19 of the hydraulic pump 16A increases. When the load hydraulic pressure increases, the load on the hydraulic pump 16A during discharge increases. That is, the load hydraulic pressure and the load torque of the motor 15 are generally in a proportional relationship, and as the load hydraulic pressure increases, the load torque of the motor 15 increases.
[0036] したがって、油圧ユニット 10Bにおいて、ステップ状の速度指令が与えられると、速 度指令値に応答してモータ 15の回転速度が急激に上昇する。モータ 15の回転速度 の上昇により、負荷油圧が急激に増大する。そして、負荷油圧の増大にともなって負 荷トルクが急激に大きくなる。これにより、 PI制御による速度制御が追従できなくなり、 モータ 15の回転速度が低下する。 [0036] Therefore, when a stepped speed command is given in hydraulic unit 10B, the rotational speed of motor 15 increases rapidly in response to the speed command value. Rotation speed of motor 15 As the pressure increases, the load hydraulic pressure increases rapidly. As the load hydraulic pressure increases, the load torque increases rapidly. As a result, the speed control by PI control cannot follow, and the rotational speed of the motor 15 decreases.
[0037] このような負荷トルクの増大によるモータ 15の回転速度の低下を防止するためには 、負荷トルクの増大とともにモータ 15の発生トルクが大きくなればよい。ここで、モータ 15の発生トルクとモータ電流とは、比例関係にあるため、モータ 15の発生トルクが大 きくなるためには、モータ電流すなわち電流指令値が大きくなればよいことになる。  [0037] In order to prevent such a decrease in the rotational speed of the motor 15 due to an increase in the load torque, it is sufficient that the generated torque of the motor 15 increases as the load torque increases. Here, since the generated torque of the motor 15 and the motor current are in a proportional relationship, in order to increase the generated torque of the motor 15, the motor current, that is, the current command value only needs to be increased.
[0038] つまり、端的に言えば、負荷油圧の変動とともに電流指令値を変化させれば、負荷 油圧の変動に対するモータ 15の回転速度の追従性を高めることが可能になる。また 、負荷油圧の上昇とともに電流指令値を増加させれば、モータ 15の回転速度の低下 を防止することが可能となる。  That is, in short, if the current command value is changed along with the fluctuation of the load hydraulic pressure, the followability of the rotation speed of the motor 15 with respect to the fluctuation of the load hydraulic pressure can be improved. Further, if the current command value is increased as the load hydraulic pressure is increased, it is possible to prevent a decrease in the rotational speed of the motor 15.
[0039] そこで、本実施形態に係る油圧ユニット 10Aでは、負荷油圧に基づいて電流指令 値を補正する補正部 18Aが設けられている。当該補正部 18Aでは、圧力センサ 17 によって検出された現在圧力(圧力検出値) Pdと予め取得された補正係数 Kfとを用 いて補正値 (電流補正値) Ifが取得される。そして、当該補正値 Ifが電流指令値演算 部 12から出力された電流指令値に付加(加算)される。  Therefore, in the hydraulic unit 10A according to the present embodiment, a correction unit 18A that corrects the current command value based on the load hydraulic pressure is provided. In the correction unit 18A, the correction value (current correction value) If is acquired using the current pressure (pressure detection value) Pd detected by the pressure sensor 17 and the correction coefficient Kf acquired in advance. Then, the correction value If is added (added) to the current command value output from the current command value calculation unit 12.
[0040] 上記補正部 18Aによれば、油圧ポンプ 16Aの負荷すなわち吐出ライン 19における 油の圧力(負荷油圧)に基づいて電流指令値が補正される。したがって、油圧ポンプ 16Aの負荷 (負荷油圧)の変動に対するモータ 15の回転速度の追従性を向上させる (改善する)ことが可能となる。  [0040] According to the correction unit 18A, the current command value is corrected based on the load of the hydraulic pump 16A, that is, the oil pressure (load oil pressure) in the discharge line 19. Therefore, it is possible to improve (improve) the follow-up performance of the rotational speed of the motor 15 with respect to fluctuations in the load (load hydraulic pressure) of the hydraulic pump 16A.
[0041] 補正係数 Kfとしては、予め試験によって取得された係数が用いられる。具体的に は、補正係数 Kfは、補正部 18Aにおいて、モータ 15の回転速度の低下を防止し速 度指令に追従させるために必要とされる電流指令値を取得可能なように設定される。 また、補正係数 Kfは、モータ 15の回転速度の低下を防止し速度指令に追従させる ために必要とされる電流指令値の不足分を補正値として取得可能なように設定され るとあ表現すること力でさる。  [0041] As the correction coefficient Kf, a coefficient acquired in advance by a test is used. Specifically, the correction coefficient Kf is set so that the correction unit 18A can acquire a current command value required to prevent a decrease in the rotational speed of the motor 15 and follow the speed command. In addition, the correction coefficient Kf is expressed to be set so that the shortage of the current command value required to prevent the motor 15 from rotating and follow the speed command can be acquired as a correction value. I'll do it with power.
[0042] このように、電流指令値の不足分を補正値として取得可能なように設定される補正 係数 Kfを用いることによれば、モータ 15の回転速度を速度指令値によって与えられ る回転速度に制御することが可能となる。 As described above, by using the correction coefficient Kf set so that the shortage of the current command value can be acquired as the correction value, the rotation speed of the motor 15 is given by the speed command value. The rotation speed can be controlled.
[0043] また、補正係数 Kfを用いて取得される補正値 Ifは、負荷油圧の上昇とともに大きく なる。このため、補正部 18Aにおいては、負荷油圧の上昇とともに、モータ 15の回転 速度を上昇させるように電流指令値を補正することが可能となり、負荷油圧の上昇に ともなうモータ 15の回転速度の低下が防止される。  [0043] Further, the correction value If acquired using the correction coefficient Kf increases as the load hydraulic pressure increases. For this reason, the correction unit 18A can correct the current command value so as to increase the rotation speed of the motor 15 as the load hydraulic pressure increases, and the rotation speed of the motor 15 decreases as the load hydraulic pressure increases. Is prevented.
[0044] 次に、油圧ユニット 10Aにおいてステップ状の速度指令 SCが与えられた場合の動 作を具体的に説明する。図 3は、本実施形態に係る油圧ユニット 10Aにおいて、ステ ップ状の速度指令 SCが与えられた場合の動作の様子を示す図である。  Next, the operation when the stepped speed command SC is given in the hydraulic unit 10A will be specifically described. FIG. 3 is a diagram showing the behavior of the hydraulic unit 10A according to the present embodiment when a step speed command SC is given.
[0045] 図 3 (a)に示されるように、油圧ユニット 10Aにおいてステップ状の速度指令 SCが 与えられると、当該速度指令 SCに応答してモータ 15の回転速度 Rslが急激に上昇 する。そして、油圧ポンプ 16Aから吐出された油の圧力 Pdlが急激に増大しモータ 1 5の負荷トルクが大きくなる。  [0045] As shown in Fig. 3 (a), when the stepped speed command SC is given in the hydraulic unit 10A, the rotational speed Rsl of the motor 15 rapidly increases in response to the speed command SC. Then, the pressure Pdl of the oil discharged from the hydraulic pump 16A increases rapidly, and the load torque of the motor 15 increases.
[0046] し力、し、油圧ユニット 10Aでは、補正部 18Aにおいて、負荷油圧 Pdlの増大ととも にその値を大きくする補正値 Ifが取得される。そして、当該補正値 Ifが、電流指令値 演算部 12からの出力に加えられ、補正後の電流指令値 Iclが取得される(図 3 (b)参 照)。このように、電流指令値 Iclは、負荷油圧 Pdlの増大に追従して大きくなるので 、負荷トルクの増大によるモータ 15の回転速度 Rslの低下が防止される。そして、モ ータ 15の回転速度 Rslを、速度指令 SCによって与えられる回転速度に追従させるこ とが可能となる。  In the hydraulic unit 10A, the correction unit 18A obtains a correction value If that increases the value as the load hydraulic pressure Pdl increases. Then, the correction value If is added to the output from the current command value calculation unit 12, and the corrected current command value Icl is acquired (see FIG. 3B). In this way, the current command value Icl increases with the increase in the load hydraulic pressure Pdl, so that a decrease in the rotational speed Rsl of the motor 15 due to an increase in the load torque is prevented. Then, the rotational speed Rsl of the motor 15 can be made to follow the rotational speed given by the speed command SC.
[0047] ここで、ステップ状の速度指令 SCが、油圧ユニット 10Aにおいて与えられた場合の 動作と補正部 18Aを有しない油圧ユニット 10Bにおいて与えられた場合の動作とを 対比する。図 4は、油圧ユニット 10Bにおいて、ステップ状の速度指令 SCが与えられ た場合の動作の様子を示す図である。  [0047] Here, the operation when the stepped speed command SC is given in the hydraulic unit 10A is compared with the operation when given in the hydraulic unit 10B not having the correction unit 18A. FIG. 4 is a diagram showing the behavior of the hydraulic unit 10B when the stepped speed command SC is given.
[0048] 図 4 (a)に示されるように、油圧ユニット 10Bにおいてステップ状の速度指令 SCが 与えられると、モータ 15の回転速度 Rs2の急激な上昇による負荷油圧 Pd2の増大の 影響により、モータ 15の回転速度 Rs2が低下している。  [0048] As shown in FIG. 4 (a), when the stepped speed command SC is given in the hydraulic unit 10B, the motor 15 is affected by the increase in the load hydraulic pressure Pd2 due to the rapid increase in the rotational speed Rs2 of the motor 15. The rotational speed Rs2 of 15 has decreased.
[0049] また、図 3 (b)と図 4 (b)とを比較すると、区間 BTにおいて、電流指令値の大きさが 相違している。電流指令値の大きさの相違は、油圧ユニット 10Bでは、モータ 15の回 転速度を速度指令 scに追従させるために必要とされる適切な電流指令値が取得( 演算)されて!/、な!/、ことを示して!/、る(図 4 (b) )。 [0049] Further, when FIG. 3 (b) is compared with FIG. 4 (b), the magnitude of the current command value is different in the section BT. The difference in the magnitude of the current command value is that the motor 15 The appropriate current command value required to make the rotation speed follow the speed command sc is obtained (calculated)! /, N! /, Indicating that it is! / (Fig. 4 (b)).
[0050] このように、 PI制御で構成された速度制御のみでは、ステップ状の速度指令 SCの ような急激な速度指令が与えられた場合、モータ 15の回転速度を当該速度指令に 追従させることができな!/、ことがわかる。 [0050] In this way, with only speed control configured by PI control, when a rapid speed command such as a stepped speed command SC is given, the rotational speed of the motor 15 follows the speed command. I can't!
[0051] 本実施形態では、補正部 18Aにおいて圧力センサ 17によって検出された負荷油 圧 Pdと予め取得された補正係数 Kfとを用いて、負荷油圧 Pdの増大とともに大きくな る補正値 Ifが取得される。そして、当該補正値 Ifが電流指令値演算部 12から出力さ れた電流指令値に付加される。 In the present embodiment, a correction value If that increases as the load hydraulic pressure Pd increases is acquired using the load hydraulic pressure Pd detected by the pressure sensor 17 in the correction unit 18A and the correction coefficient Kf acquired in advance. Is done. Then, the correction value If is added to the current command value output from the current command value calculation unit 12.
[0052] 以上のように、負荷油圧 Pdlに基づいて取得された補正値 Ifをフィードフォワード的 に電流指令値演算部 12から出力された電流指令値に加えることによれば、電流指 令値 Iclを負荷油圧 Pdlの増大に追従して大きくすることが可能となる。そして、負荷 トルクの増大によるモータ 15の回転速度 Rslの低下を防止することが可能となる。 [0052] As described above, by adding the correction value If acquired based on the load hydraulic pressure Pdl to the current command value output from the current command value calculation unit 12 in a feedforward manner, the current command value Icl Can be increased following the increase in the load hydraulic pressure Pdl. Then, it is possible to prevent a decrease in the rotational speed Rsl of the motor 15 due to an increase in load torque.
[0053] <変形例〉 <Modification>
以上、この発明の実施の形態について説明したが、この発明は、上記に説明した 内容に限定されるものではない。  Although the embodiments of the present invention have been described above, the present invention is not limited to the contents described above.
[0054] 例えば、上記実施形態では、補正部 18Aにお!/、て予め取得された補正係数 Kfを 用いて補正値 Ifを取得していた力 S、これに限定されない。図 5は、データテーブル DT を用いて、補正値 Ifを取得することが可能な補正部 18Bを有する油圧ユニット 10Cを 示す概略図である。 [0054] For example, in the above embodiment, the force S that has acquired the correction value If using the correction coefficient Kf acquired in advance by the correction unit 18A is not limited to this. FIG. 5 is a schematic diagram showing a hydraulic unit 10C having a correction unit 18B that can acquire the correction value If using the data table DT.
[0055] 具体的には、図 5に示されるように、補正部 18Bにおいて、予め取得された負荷油 圧 (圧力検出値) Pdと補正値 Ifとの関係を示すデータテーブル DTを用いて補正値 If が取得 (演算)されてもよい。  Specifically, as shown in FIG. 5, the correction unit 18B performs correction using the data table DT indicating the relationship between the load oil pressure (pressure detection value) Pd acquired in advance and the correction value If. The value If may be obtained (calculated).
[0056] これによれば、負荷圧力と速度指令に追従させるために必要とされる補正値とが比 例関係にない場合にも、圧力センサ 17からの負荷圧力 Pdに対して適切な補正値 If を取得することが可能となる。 [0056] According to this, even when the load pressure and the correction value required to follow the speed command are not proportional, an appropriate correction value for the load pressure Pd from the pressure sensor 17 is obtained. It is possible to get If.
[0057] また、上記実施形態においては、 1台の油圧ポンプ 16Aを用いて油圧ユニット 10A を駆動していた力 S、これに限定されない。 [0058] 具体的には、複数の油圧ポンプを用いて油圧ユニットを駆動するようにしてもよい。 図 6は、 1つのモータで 2つの油圧ポンプ 16A, 16Bを駆動する油圧ユニット 10Dを 示す概略図である。 In the above embodiment, the force S that drives the hydraulic unit 10A using one hydraulic pump 16A is not limited to this. [0058] Specifically, the hydraulic unit may be driven using a plurality of hydraulic pumps. FIG. 6 is a schematic diagram showing a hydraulic unit 10D that drives two hydraulic pumps 16A and 16B with one motor.
[0059] 例えば、図 6に示されるように、 2つの油圧ポンプ 16A, 16Bで油圧ユニット 10Dを 構成した場合は、ポンプの切り替えに応じて P— Q制御部 11からいずれの油圧ポン プが駆動されているのかを示す情報 (ポンプ駆動情報)が補正部 18Cに出力される。 そして、補正部 18Cにおいては、ポンプ駆動情報に応じて、補正値 Ifを取得するた めのデータテーブルが切り替えられ、駆動しているポンプに応じた補正値 Ifが取得さ れる。  [0059] For example, as shown in FIG. 6, when the hydraulic unit 10D is configured by two hydraulic pumps 16A and 16B, any hydraulic pump is driven from the PQ control unit 11 in accordance with the pump switching. (Pump drive information) indicating whether or not the correction is performed is output to the correction unit 18C. Then, in the correction unit 18C, the data table for acquiring the correction value If is switched according to the pump drive information, and the correction value If corresponding to the pump being driven is acquired.
[0060] なお、 2つの油圧ポンプ 16A, 16Bを同時に駆動する場合には、 2つの油圧ポンプ  [0060] When the two hydraulic pumps 16A and 16B are driven simultaneously, the two hydraulic pumps
16A, 16Bを同時に駆動した場合における、負荷油圧 (圧力検出値) Pdと補正値 Ifと の関係を示すデータテーブルが補正値 Ifの取得に用いられる。  A data table showing the relationship between the load hydraulic pressure (pressure detection value) Pd and the correction value If when 16A and 16B are driven simultaneously is used to obtain the correction value If.
[0061] また、 2つの油圧ポンプ 16A, 16Bは並列に接続されていなくてもよい。図 7は、 2 つの油圧ポンプが直列に接続された油圧ユニットを示す概略図である。図 7に示され るように、一方の油圧ポンプ 16Bより吐出される油が他方の油圧ポンプ 16Aに吸引さ れるように 2つの油圧ポンプが直列に接続されている場合は、下流側の油圧ポンプ 1 6Aより吐出される油の圧力が圧力センサ(17)によって検出される。そして、下流側 の油圧ポンプ 16Aより吐出された油圧に基づいて電流指令値が補正される。  [0061] Also, the two hydraulic pumps 16A, 16B may not be connected in parallel. FIG. 7 is a schematic diagram showing a hydraulic unit in which two hydraulic pumps are connected in series. As shown in FIG. 7, when two hydraulic pumps are connected in series so that oil discharged from one hydraulic pump 16B is sucked into the other hydraulic pump 16A, the downstream hydraulic pump 1 The pressure of oil discharged from 6A is detected by the pressure sensor (17). The current command value is corrected based on the hydraulic pressure discharged from the downstream hydraulic pump 16A.
[0062] この発明は詳細に説明された力 上記した説明は、すべての局面において、例示 であって、この発明がそれに限定されるものではない。例示されていない無数の変形 例力 S、この発明の範囲から外れることなく想定され得るものと解される。  The present invention has been described in detail. The above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that the myriad variations S that are not illustrated can be assumed without departing from the scope of the present invention.

Claims

請求の範囲 The scope of the claims
モータ(15)により油圧ポンプ(16A)を駆動し、ァクチユエ一タに油を供給する油圧 ユニットであって、  A hydraulic unit that drives a hydraulic pump (16A) by a motor (15) and supplies oil to an actuator,
前記モータ(15)に電力を供給するインバータ(14)と、  An inverter (14) for supplying power to the motor (15);
前記油圧ポンプ(16A)の負荷を検出する負荷センサ(17)と、  A load sensor (17) for detecting a load of the hydraulic pump (16A);
前記モータ(15)の回転速度を検出する回転センサ(21)と、  A rotation sensor (21) for detecting the rotation speed of the motor (15);
前記モータ(15)の目標回転速度を表す速度指令値と前記モータ(15)の回転速 度との偏差をゼロに収束させるように、電流指令値を演算する電流指令値演算手段( 12)と、  Current command value calculation means (12) for calculating a current command value so that the deviation between the speed command value representing the target rotation speed of the motor (15) and the rotation speed of the motor (15) converges to zero; ,
前記油圧ポンプの負荷に基づいて、前記電流指令値を補正する補正手段(18A ; •••; 18D)と、  Correction means (18A; •••; 18D) for correcting the current command value based on the load of the hydraulic pump;
補正後の電流指令 に基づいて、前記インバータ(14)に制御信号を出力する制 御信号生成手段(13)と、  Control signal generating means (13) for outputting a control signal to the inverter (14) based on the corrected current command;
を備えることを特徴とする油圧ユニット。 A hydraulic unit comprising:
請求項 1に記載の油圧ユニットにおレ、て、  The hydraulic unit according to claim 1,
前記補正手段(18A; · · ·; 18D)は、前記油圧ポンプ(16A)の負荷の上昇とともに 、前記モータ(15)の回転速度を上昇させるように前記電流指令値を補正することを 特徴とする油圧ユニット。  The correction means (18A;... 18D) corrects the current command value so as to increase the rotational speed of the motor (15) as the load of the hydraulic pump (16A) increases. Hydraulic unit to do.
請求項 1または請求項 2に記載の油圧ユニットにおいて、  In the hydraulic unit according to claim 1 or claim 2,
前記補正手段(18A; · · ·; 18D)は、前記油圧ポンプ(16A)の負荷の上昇とともに The correction means (18A; ···; 18D) increases with the load of the hydraulic pump (16A).
、前記電流指令値を増加させることを特徴とする油圧ユニット。 A hydraulic unit that increases the current command value.
請求項 1または請求項 2に記載の油圧ユニットにおいて、  In the hydraulic unit according to claim 1 or claim 2,
前記補正手段(18A)は、予め設定された補正係数 (Kf)を用いて補正値 (If)を取 得し、前記補正値 (If)を前記電流指令値に加えることを特徴とする油圧ユニット。 請求項 3に記載の油圧ユニットにおいて、  The correction unit (18A) obtains a correction value (If) using a preset correction coefficient (Kf), and adds the correction value (If) to the current command value. . The hydraulic unit according to claim 3,
前記補正手段(18A)は、予め設定された補正係数 (Kf)を用いて補正値 (If)を取 得し、前記補正値 (If)を前記電流指令値に加えることを特徴とする油圧ユニット。 請求項 1または請求項 2に記載の油圧ユニットにおいて、 前記補正手段(18B ; 18C ; 18D)は、予め取得されたデータテーブル DTを用いて 補正値 (If)を取得し、前記補正値 (If)を前記電流指令値に加えることを特徴とする 油圧ユニット。 The correction unit (18A) obtains a correction value (If) using a preset correction coefficient (Kf), and adds the correction value (If) to the current command value. . In the hydraulic unit according to claim 1 or claim 2, The correction means (18B; 18C; 18D) acquires a correction value (If) using a data table DT acquired in advance, and adds the correction value (If) to the current command value. unit.
[7] 請求項 3に記載の油圧ユニットにおいて、 [7] In the hydraulic unit according to claim 3,
前記補正手段(18B ; 18C ; 18D)は、予め取得されたデータテーブル DTを用いて 補正値 (If)を取得し、前記補正値 (If)を前記電流指令値に加えることを特徴とする 油圧ユニット。  The correction means (18B; 18C; 18D) acquires a correction value (If) using a data table DT acquired in advance, and adds the correction value (If) to the current command value. unit.
[8] 請求項 1または請求項 2に記載の油圧ユニットにおいて、  [8] In the hydraulic unit according to claim 1 or claim 2,
前記負荷センサ(17)は、前記油圧ポンプ(16A)の吐出ライン(19)における油の 圧力を検出する圧力センサ(17)であることを特徴とする油圧ユニット。  The hydraulic unit, wherein the load sensor (17) is a pressure sensor (17) for detecting oil pressure in a discharge line (19) of the hydraulic pump (16A).
[9] 請求項 3に記載の油圧ユニットにおいて、 [9] The hydraulic unit according to claim 3,
前記負荷センサ(17)は、前記油圧ポンプ(16A)の吐出ライン(19)における油の 圧力を検出する圧力センサ(17)であることを特徴とする油圧ユニット。  The hydraulic unit, wherein the load sensor (17) is a pressure sensor (17) for detecting oil pressure in a discharge line (19) of the hydraulic pump (16A).
[10] 請求項 4に記載の油圧ユニットにおいて、 [10] In the hydraulic unit according to claim 4,
前記負荷センサ(17)は、前記油圧ポンプ(16A)の吐出ライン(19)における油の 圧力を検出する圧力センサ(17)であることを特徴とする油圧ユニット。  The hydraulic unit, wherein the load sensor (17) is a pressure sensor (17) for detecting oil pressure in a discharge line (19) of the hydraulic pump (16A).
[11] 請求項 5または請求項 7に記載の油圧ユニットにおいて、 [11] In the hydraulic unit according to claim 5 or claim 7,
前記負荷センサ(17)は、前記油圧ポンプ(16A)の吐出ライン(19)における油の 圧力を検出する圧力センサ(17)であることを特徴とする油圧ユニット。  The hydraulic unit, wherein the load sensor (17) is a pressure sensor (17) for detecting oil pressure in a discharge line (19) of the hydraulic pump (16A).
[12] 請求項 6に記載の油圧ユニットにおいて、 [12] The hydraulic unit according to claim 6,
前記負荷センサ(17)は、前記油圧ポンプ(16A)の吐出ライン(19)における油の 圧力を検出する圧力センサ(17)であることを特徴とする油圧ユニット。  The hydraulic unit, wherein the load sensor (17) is a pressure sensor (17) for detecting oil pressure in a discharge line (19) of the hydraulic pump (16A).
[13] インバータ(14)によって制御されるモータ(15)により油圧ポンプ(16A)を駆動し、 ァクチユエ一タに油を供給する油圧ユニットにおける前記モータ(15)の速度制御方 法であって、 [13] A method for controlling the speed of the motor (15) in a hydraulic unit that drives a hydraulic pump (16A) by a motor (15) controlled by an inverter (14) and supplies oil to an actuator,
a)前記油圧ポンプ(16A)の負荷を検出する工程と、  a) detecting the load of the hydraulic pump (16A);
b)前記モータ(15)の回転速度を検出する工程と、  b) detecting the rotational speed of the motor (15);
c)前記モータ(15)の目標回転速度を表す速度指令値と前記モータ(15)の回転 速度との偏差をゼロに収束させるように、電流指令値を演算する工程と、 c) Speed command value indicating the target rotational speed of the motor (15) and the rotation of the motor (15) Calculating the current command value so that the deviation from the speed converges to zero;
d)前記油圧ポンプ(16A)の負荷に基づいて、前記電流指令値を補正する工程と、 e)補正後の電流指令値に基づいて、前記インバータ(14)に制御信号を出力する 工程と、  d) correcting the current command value based on the load of the hydraulic pump (16A); e) outputting a control signal to the inverter (14) based on the corrected current command value;
を備えることを特徴とするモータ(15)の速度制御方法。 A speed control method for a motor (15), comprising:
PCT/JP2007/066559 2006-08-30 2007-08-27 Hydraulic unit and method of controlling speed of motor in hydraulic unit WO2008026544A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT07806100T ATE528512T1 (en) 2006-08-30 2007-08-27 HYDRAULIC UNIT AND METHOD FOR CONTROLLING THE SPEED OF AN ENGINE IN THE HYDRAULIC UNIT
US12/160,003 US20090097986A1 (en) 2006-08-30 2007-08-27 Oil pressure unit and speed control method of motor in oil pressure unit
CN2007800015363A CN101360917B (en) 2006-08-30 2007-08-27 Hydraulic unit and method of controlling speed of motor in hydraulic unit
EP07806100A EP1965083B1 (en) 2006-08-30 2007-08-27 Hydraulic unit and method of controlling speed of motor in hydraulic unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006233529A JP4425253B2 (en) 2006-08-30 2006-08-30 Hydraulic unit and motor speed control method in hydraulic unit
JP2006-233529 2006-08-30

Publications (1)

Publication Number Publication Date
WO2008026544A1 true WO2008026544A1 (en) 2008-03-06

Family

ID=39135827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066559 WO2008026544A1 (en) 2006-08-30 2007-08-27 Hydraulic unit and method of controlling speed of motor in hydraulic unit

Country Status (7)

Country Link
US (1) US20090097986A1 (en)
EP (1) EP1965083B1 (en)
JP (1) JP4425253B2 (en)
KR (1) KR100954697B1 (en)
CN (1) CN101360917B (en)
AT (1) ATE528512T1 (en)
WO (1) WO2008026544A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737379B (en) * 2008-11-21 2012-08-29 鸿富锦精密工业(深圳)有限公司 Speed-pressure control device of oil pressure type equipment
US8818649B2 (en) * 2009-06-25 2014-08-26 Hitachi Construction Machinery Co., Ltd. Rotation control device for working machine
DE102009059025A1 (en) * 2009-12-18 2011-06-22 Robert Bosch GmbH, 70469 Method for operating a hydraulic working machine
KR101095983B1 (en) 2011-04-19 2011-12-19 주식회사 하이드텍 Hydraulic transmission system and method for controlling thereof
CN103999006B (en) * 2011-12-16 2016-07-13 沃尔沃建造设备有限公司 Utilize operator's self-regulating method of electro-hydraulic actuator system
JP5884481B2 (en) * 2011-12-28 2016-03-15 株式会社ジェイテクト Motor control device and electric pump unit
DE102012009136A1 (en) 2012-05-05 2013-11-07 Robert Bosch Gmbh Method for operating a fluid pump
EP2664968A1 (en) * 2012-05-16 2013-11-20 Siemens Aktiengesellschaft Control device for a hydraulic cylinder unit with single valve control
US9611931B2 (en) 2012-05-24 2017-04-04 GM Global Technology Operations LLC Method to detect loss of fluid or blockage in a hydraulic circuit using exponentially weighted moving average filter
JP6050081B2 (en) * 2012-10-05 2016-12-21 株式会社荏原製作所 Dry vacuum pump device
FR3005703B1 (en) * 2013-05-14 2016-08-19 Machine Smart HYDRAULIC SYSTEM WITH ELECTRONIC CONTROL OF PRESSURE AND FLOW
JP5673768B1 (en) * 2013-09-27 2015-02-18 ダイキン工業株式会社 Hydraulic device
JP6290602B2 (en) * 2013-11-15 2018-03-07 オークマ株式会社 Hydraulic control device
CN104179736B (en) * 2014-08-15 2016-08-24 徐工集团工程机械股份有限公司科技分公司 A kind of engineering machinery constant displacement pump speed-regulating hydraulic system
JP6396733B2 (en) * 2014-09-22 2018-09-26 オークマ株式会社 Hydraulic control device
DE102016106483B4 (en) * 2016-04-08 2019-02-07 Jenaer Antriebstechnik Gmbh Method for compensation of cyclical disturbances during operation of a pump and control unit
DE102017117595A1 (en) * 2017-08-03 2019-02-07 Voith Patent Gmbh METHOD FOR CONTROLLING THE OUTPUT PRESSURE OF A HYDRAULIC DRIVE SYSTEM, USE OF THE METHOD AND HYDRAULIC DRIVE SYSTEM
JP6849078B2 (en) * 2017-08-28 2021-03-24 アイシン・エィ・ダブリュ株式会社 Control device
US11566666B2 (en) 2019-03-20 2023-01-31 Fanuc Corporation Processing machine and pressure adjustment method
JP7010906B2 (en) * 2019-03-20 2022-01-26 ファナック株式会社 Processing machine and pressure adjustment method
JP7346886B2 (en) * 2019-04-12 2023-09-20 マックス株式会社 air compressor
JP7360301B2 (en) * 2019-11-08 2023-10-12 Kyb株式会社 Working fluid supply system
JP7500406B2 (en) 2020-12-03 2024-06-17 株式会社ミツバ MOTOR CONTROL DEVICE, MOTOR DRIVE SYSTEM, HYDRAULIC GENERATOR, AND MOTOR CONTROL METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248566A (en) * 2000-03-02 2001-09-14 Tokimec Inc Pump rotation speed control system
JP2004162860A (en) * 2002-11-15 2004-06-10 Daikin Ind Ltd Temperature rise control method for autonomous inverter driven hydraulic unit and its device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588319B1 (en) * 1985-10-04 1987-12-04 Milton Roy Dosapro PROCESS FOR PRECISELY ESTABLISHING THE FLOW RATE OF A METERING PUMP AND METERING PUMP USING THE SAME
US4733152A (en) * 1986-03-10 1988-03-22 Isco, Inc. Feedback system
US5019757A (en) * 1990-03-19 1991-05-28 General Electric Company Method and apparatus for controlling a blower motor in an air handling system to provide constant pressure
JP2900286B2 (en) * 1990-10-31 1999-06-02 富士重工業株式会社 Control device for continuously variable transmission
US5141402A (en) * 1991-01-29 1992-08-25 Vickers, Incorporated Power transmission
ES2117801T3 (en) * 1993-09-27 1998-08-16 Unilever Nv PUMPING SYSTEM WITH FLOW METER AND LOAD COMPENSATION AND PROCEDURE FOR THE SAME.
JPH07177775A (en) * 1993-12-20 1995-07-14 Toshiba Corp Power conversion apparatus controller
JP3345311B2 (en) 1997-08-15 2002-11-18 川崎製鉄株式会社 Speed control device of electric motor for rolling mill drive
DE19931961A1 (en) * 1999-07-12 2001-02-01 Danfoss As Method for controlling a delivery quantity of a pump
US6468042B2 (en) * 1999-07-12 2002-10-22 Danfoss Drives A/S Method for regulating a delivery variable of a pump
JP4582981B2 (en) * 1999-07-14 2010-11-17 油研工業株式会社 Hydraulic power supply system
US6353299B1 (en) * 1999-10-19 2002-03-05 Fasco Industries, Inc. Control algorithm for brushless DC motor/blower system
DE10162773A1 (en) * 2001-12-20 2003-07-10 Knf Flodos Ag Sursee metering
US6979181B1 (en) * 2002-11-27 2005-12-27 Aspen Motion Technologies, Inc. Method for controlling the motor of a pump involving the determination and synchronization of the point of maximum torque with a table of values used to efficiently drive the motor
US7080508B2 (en) * 2004-05-13 2006-07-25 Itt Manufacturing Enterprises, Inc. Torque controlled pump protection with mechanical loss compensation
US7089733B1 (en) * 2005-02-28 2006-08-15 Husco International, Inc. Hydraulic control valve system with electronic load sense control
DE102005013773A1 (en) * 2005-03-22 2006-09-28 Diehl Ako Stiftung & Co. Kg Electronic motor regulation for pump used in e.g. dishwasher, involves detecting and estimating rotor phase position and rotor speed of motor and determining fluctuations in rotor phase position and rotor speed to control pump operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248566A (en) * 2000-03-02 2001-09-14 Tokimec Inc Pump rotation speed control system
JP2004162860A (en) * 2002-11-15 2004-06-10 Daikin Ind Ltd Temperature rise control method for autonomous inverter driven hydraulic unit and its device

Also Published As

Publication number Publication date
CN101360917B (en) 2011-12-07
KR20080087084A (en) 2008-09-30
KR100954697B1 (en) 2010-04-26
CN101360917A (en) 2009-02-04
EP1965083A4 (en) 2009-11-11
JP4425253B2 (en) 2010-03-03
ATE528512T1 (en) 2011-10-15
JP2008057611A (en) 2008-03-13
EP1965083A1 (en) 2008-09-03
US20090097986A1 (en) 2009-04-16
EP1965083B1 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
WO2008026544A1 (en) Hydraulic unit and method of controlling speed of motor in hydraulic unit
KR101300154B1 (en) Controller of hydraulically driven fan
EP2799714B1 (en) Motor control device and electric pump unit
KR101875241B1 (en) Hybrid construction machine
US7170243B2 (en) Drive method for brushless motor and drive control apparatus therefor
US20160340871A1 (en) Engine and Pump Control Device and Working Machine
CN103329428B (en) Electric pump device
JP6798426B2 (en) Rotation speed control device for vacuum pump motor, vacuum pump
JP5291325B2 (en) Control device for motor connected to compressor
JP5884481B2 (en) Motor control device and electric pump unit
US9085870B2 (en) Swing control apparatus and swing control method for construction machinery
JP6136140B2 (en) Motor control device and electric pump unit
JP2008232445A (en) Hydraulic unit, and speed control method of motor of hydraulic unit
CN107250463B (en) Method for controlling hydraulic pump of construction machine
JP6079032B2 (en) Motor control device and electric pump unit
JP7500406B2 (en) MOTOR CONTROL DEVICE, MOTOR DRIVE SYSTEM, HYDRAULIC GENERATOR, AND MOTOR CONTROL METHOD
JP5803874B2 (en) Hybrid work machine
EP3112640B1 (en) Hybrid construction machine
CN116892502A (en) Method for operating a pump with variable rotational speed
JP5962008B2 (en) Motor control device and electric pump unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001536.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087013286

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007806100

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12160003

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU