WO2008025889A1 - Puce microelectronique nue munie d'un evidement formant un logement pour un element filaire constituant un support mecanique souple, procede de fabrication et microstructure - Google Patents

Puce microelectronique nue munie d'un evidement formant un logement pour un element filaire constituant un support mecanique souple, procede de fabrication et microstructure Download PDF

Info

Publication number
WO2008025889A1
WO2008025889A1 PCT/FR2007/001034 FR2007001034W WO2008025889A1 WO 2008025889 A1 WO2008025889 A1 WO 2008025889A1 FR 2007001034 W FR2007001034 W FR 2007001034W WO 2008025889 A1 WO2008025889 A1 WO 2008025889A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
groove
wire element
chips
grooves
Prior art date
Application number
PCT/FR2007/001034
Other languages
English (en)
Inventor
Dominique Vicard
Bruno Mourey
Jean Brun
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to JP2009526145A priority Critical patent/JP5059110B2/ja
Priority to US12/310,246 priority patent/US8093617B2/en
Priority to CN2007800383632A priority patent/CN101523605B/zh
Priority to EP07803768.6A priority patent/EP2057687B1/fr
Priority to ES07803768.6T priority patent/ES2539640T3/es
Publication of WO2008025889A1 publication Critical patent/WO2008025889A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/02Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the selection of materials, e.g. to avoid wear during transport through the machine
    • G06K19/027Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the selection of materials, e.g. to avoid wear during transport through the machine the material being suitable for use as a textile, e.g. woven-based RFID-like labels designed for attachment to laundry items
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/4569Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06527Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06551Conductive connections on the side of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the invention relates to a microelectronic chip comprising two parallel main faces and side faces.
  • the invention also relates to a method for manufacturing such a microelectronic chip and to a microstructure comprising at least two chips connected by a wire element.
  • thermoelectric tissues generate energy from a temperature gradient
  • the piezoelectric tissues are capable of supplying electronics with energy recovery. This energy then feeds an electronic circuit integral with the fabric.
  • the electronic functions are obtained by adding electronic circuits to the textiles.
  • the electronic functions are performed by a microelectronic chip conventionally connected to other chips or to a power supply via pins connected to mechanical elements weldable by means of connecting wires, a housing protecting the circuit and the studs.
  • Functions Achievable electronics can be complex, but the mechanical stability of the electronic chip embedded in the textile is very bad. Such integration is long and requires complex special machines.
  • the connector has a significant footprint before that of the active part of the chip.
  • the object of the invention is to provide a microelectronic chip whose integration into a fabric or knit is improved.
  • At least one of the faces of the chip comprises a recess provided with at least one electrical connection element and forming a housing for a wired element, which simultaneously constitutes an electrical connection between the chip and the outside through said connecting element and a flexible mechanical support for said chip.
  • the subject of the invention is also a process for manufacturing a microelectronic chip in which the recess consists of a groove located on at least one lateral face.
  • a development of the invention is a microstructure comprising a wire element electrically and mechanically connecting at least two chips according to the invention.
  • FIG. 1 is a sectional view of FIG. a first exemplary embodiment of a microelectronic chip according to the invention
  • FIG. 2 is a sectional view of a second exemplary embodiment of a microelectronic chip according to the invention
  • FIGS. 3 to 5 illustrate the different FIG. 6 shows a sectional view of an embodiment variant of a chip according to FIG. 2
  • FIGS. 7 and 8 illustrate two other embodiments of a chip manufacturing process according to FIG.
  • FIG. 9 and 10 illustrate a method for producing another embodiment of a chip according to the invention
  • FIGS. 11 to 13 illustrate another method of producing a chip according to the invention.
  • a first example of a microelectronic chip 1 comprises a plane substrate 2 provided, in a conventional manner, with at least one component microelectronics 3.
  • the microelectronic chip 1 thus has two main faces 4 and 5 parallel to each other, connected by side faces forming the edge of the chip 1. Only two lateral faces 6, 7 are shown, but their number may vary and depends on the shape of the outline of the main faces 4, 5.
  • each side face 6, 7 is gutter-shaped parallel to the main faces 4 and 5 and constitutes a groove, respectively marked 8 and 9 for the side faces 6, 7 and for housing a wire element .
  • the housing grooves 8, 9 each have a concave section.
  • the width of the grooves 8, 9 is equal to the height of the lateral faces 6, 7 and its section is in an arc of a circle, that is to say in a C-shape
  • the C shape can be exact or approximated with line segments.
  • the grooves 8 and 9 can be made by any suitable technique, for example by dry or wet etching, laser ablation, laser assisted chemical etching, mechanical machining ...
  • the microelectronic chip 1 can thus be easily integrated into a textile fabric because two adjacent threads 10, 11, for example weft, constituting this textile can automatically be inserted into the housing grooves 8, 9, whether with a method weaving or knitting process.
  • the housing grooves 8, 9 provide mechanical stability of the microelectronic chip 1 with respect to the textile. It is clear that we will try to adapt the radius of curvature of the housing grooves 8, 9 to the diameter of the son 10, 11. Similar grooves may be envisaged for the warp son. Alternatively, the grooves 8, 9 may be coated by an electrically conductive layer, respectively 12, 13. This arrangement allows to use son 10, 11 of weft or warp that are electrically conductive and to ensure electrical contact with these wires 10, 11.
  • the wires can then be used for the power supply of the microelectronic component 3 and, possibly, for the data transfer with power / data multiplexing.
  • the wires can also constitute antenna radiating elements (transmission or reception).
  • the electrically conductive layers 12, 13 may be electrically connected, in a conventional manner, to the microelectronic component 3 via a via via 14 perpendicular to the main faces 4, 5 or of a conductive track 15 deposited on the face of the substrate. 2 provided with the component 3 for connecting the layer 13 to a contact of the component 3.
  • each groove 8, 9 may have a V-shaped or V-truncated section.
  • each groove 8, 9 comprises two convergent walls interconnected by a flat bottom.
  • the microelectronic chip 1 consists of two elementary chips 16a and 16b of substantially trapezoidal cross-section, each comprising a small base 17a or 17b and a large base 18a or 18b connected to each other. by flat lateral inclined faces 19a or 19b.
  • the inclined plane lateral faces, 19a or 19b form an acute angle with the corresponding large base, 18a or 18b and are convergent.
  • a microelectronic component 23a, 23b is located at the level of the small base
  • the elementary chips 16a, 16b are secured by their small bases
  • housing grooves 20 and 21 are shown. Housing grooves 20, 21 therefore have a V-shaped section (more particularly V-shaped truncated in Figure 2) and constitute the side faces 6 and 7 of the microelectronic chip 1.
  • the large bases 18a, 18b are parallel and constitute the main faces 5, 6 of the microelectronic chip 1 of Figure 2.
  • the housing grooves 20, 21 can receive the son 10 and 11 in a similar manner to the microelectronic chip 1 of Figure 1.
  • the elementary chips 16a and 16b are, for example, assembled to one another by gluing, an adhesive layer 22 then being interposed between the small bases 17a, 17b.
  • the glue can be a resin, insulating, conductive or electroactive.
  • the assembly of the elementary chips 16a, 16b can also be achieved by molecular bonding. In the latter case, the adhesive layer 22 is absent.
  • the housing grooves 20, 21 are coated with an electrically conductive layer 24, 25 respectively, deposited on the inclined plane lateral faces 19a, 19b.
  • This arrangement makes it possible to use weirs 10, 11 of wefts or warps that are electrically conductive and to provide electrical contact with these wires 10, 11.
  • the electrically conductive layers 24, 25 are electrically connected, in a conventional manner, to microelectronic components 23a, 23b, for example, via conductive tracks 26.
  • the tracks 26 may be made of the same material as the layers 24, 25, possibly during the deposition of the layers 24, 25.
  • the layers 24, 25 can be deleted. Otherwise, the son 10, 11 can be assigned to different electronic functions of the power supply and the layers 24, 25 are assigned to other functions than the power supply.
  • the microelectronic components 23a, 23b may be formed at the large bases 18a, 18b. Such a component may then be electrically connected to an electrically conductive layer 24, 25 via a via via (not shown in Figure 2).
  • the microelectronic chip 1 of FIG. 2 can be obtained by the manufacturing method illustrated in FIGS. 3 to 5.
  • a first step (FIG. 3) a plurality of separate elementary chips 16a are produced simultaneously on the same first plate 27. by V-shaped grooves 28 each comprising two convergent walls 29a, 29b.
  • Each groove 28 is formed in the face of the wafer 27 in which are formed the small bases 17.
  • the walls 29a, 29b of the grooves 28 are connected by a flat bottom 30, parallel to the face of the wafer 27 in which are formed the small bases 17.
  • Two networks of parallel grooves 28 are made. The grooves 28 of the two networks are orthogonal to each other.
  • a pair of adjacent grooves 28 of one of the networks delimits, in combination with a pair of adjacent grooves 28 of the other network, a small base 17, of rectangular or square shape.
  • the elementary chips 16a are distributed in rows and columns in the plane of the wafer 27.
  • a microelectronic component is formed at each of the small bases 17.
  • FIG. 3 illustrates, in section, two adjacent elementary chips 16a, separated by a groove 28.
  • a second analogous plate 33 (shown in FIG. 5) comprises a plurality of elementary chips 16b.
  • an electrically conductive material is deposited on the face of the wafer 27 in which the small bases 17, so as to form, in each elementary chip 16a, a first contact 31 disposed between the microelectronic component 3 and the wall 29a of an adjacent groove 28, and a second contact 32 disposed between the component 3 and the wall 29b of the adjacent groove 28 parallel.
  • Such contacts can also be made for the walls of the grooves 28 of the perpendicular network.
  • the wafer 27 comprising the elementary chips 16a is glued to the wafer 33 comprising the elementary chips 16b.
  • the plates 27 and 33 are bonded by their faces having the grooves 28, so that the grooves 28 are superimposed.
  • the assembly thus produced comprises a plurality of microelectronic chips 1 according to FIG. 2. These microelectronic chips 1 are distributed in rows and columns, separated from each other by the flat bottoms 30 of the grooves 28 of the plates 27 and 33.
  • the material used for the bonding is, for each microelectronic chip 1, the adhesive layer 22 of Figure 2.
  • the assembly of the plates 27 and 33 can also be achieved by molecular bonding. In the latter case, the adhesive layers 22 are absent.
  • a planing of the rear faces (opposite the faces where the grooves 28 are formed) of the plates 27, 33 can be made to thin the microelectronic chips 1 thus formed.
  • the plates 27, 33, glued to one another are cut at the grooves 28 so as to separate the microelectronic chips 1 from each other.
  • This cutting can be performed by any suitable technique, for example, by sawing with a diamond circular saw, by dry or wet etching, by laser ablation, laser assisted chemical etching ...
  • FIG. 6 illustrates a variant of the chip 1 according to FIG. 2.
  • the microelectronic components 23a, 23b of the chips elementals 16a, 16b are formed at the level of the large bases 18a, 18b.
  • the small base 17a, 17b of each of the elementary chips 16a 16b has an additional groove 34a, 34b parallel to the V-shaped housing grooves 20, 21.
  • the additional grooves 34a, 34b are superimposed to form an additional housing for a wire element , such as a wire 35 interposed between the son 10 and 11.
  • the additional grooves 34a, 34b are coated by an electrically conductive layer, respectively 36a, 36b, connected to the electronic component, 23a or 23b, associated via a via via, 37a or 37b.
  • the latter can, as previously, be connected to the electrically conductive layers 24, 25 via a via via 38a, 38b or by a conductive track 39a, 39b.
  • the wire 35 may be intended to provide a direct interconnection between two microelectronic chips 1 or may constitute a radiating wire antenna.
  • the wire 35 may also be a piezoelectric fiber, so as to constitute the power supply.
  • the wire element can be fixed by any other means, for example, by welding by adding material, plasma, electrolysis, ultrasound, etc.
  • the microelectronic chip 1 comprises at least one recess 8, 9, that is to say a groove or hole, in one of its main faces 4, 5. This allows its integration, for example in a textile, in a so-called parallel mode, that is to say that the axis of the wire element 10, 11 in the immediate vicinity of its attachment to the chip is substantially parallel to the main faces 4, 5 of the microelectronic chip 1.
  • a microelectronic chip 1 comprising a flat substrate 2, for example made of silicon, is provided with at least one microelectronic component 3.
  • the chip 1 comprises at least one recess 8, 9 for example a trench or a non-opening hole, made either on a front face 5, that is to say on the face comprising the microelectronic components 3, or on a rear face 4, substantially parallel to the front face.
  • These recesses 8, 9 are intended to ensure a mechanical connection between the chip 1 and the wire element 10, 11 to which the chip 1 will be fixed.
  • the shape and the dimensions of the recess 8, 9 are a function of the mechanical and dimensional characteristics of the wire element 10,
  • a groove having a concave section for example a square or circular section, truncated V or V may be used.
  • a compound fixing for example, a glue
  • Fixing by embedding at least one wire element 10, 11 in the recesses 8, 9 of the chip 1 ensures a rigid mechanical connection between the chip and the wire element at the chip.
  • An element wire then constitutes a flexible mechanical connection between two chips which are attached thereto.
  • the chip has, preferably, within 8, 9 a conductive surface constituting an electrical connection element.
  • microelectronic components 3 of the chip 1, electrically connected to the wire element 10, 11, are then able to be electrically powered and / or to communicate with other chips 1 also connected mechanically and electrically to the wired element
  • the wire element 10, 11 can be used by the chip 1 as a communication antenna (transmission and / or reception).
  • a plurality of microelectronic chips 1 are produced simultaneously on a substrate 2.
  • the recesses 8, 9, for example in the form of grooves may be made by chemical etching, for example by means of a KOH solution, or by plasma etching or sawing.
  • the choice of the dimensions of the groove 8, 9 is chosen according to the characteristics of the wire element 10, 11 to be integrated in the groove 8, 9 to ensure the best possible mechanical strength.
  • the depth and the width of the groove can typically vary between 20 ⁇ m and 100 ⁇ m for integration in the groove of a wire element of the order of 20 .mu.m to 100 .mu.m in diameter.
  • the flanks of the grooves can be thinned so as to give them flexibility allowing the wire element to fit into force. Thinning is achieved by for example, by means of two notches formed on either side of the recess and illustrated in FIG. 15 in another embodiment.
  • the depth of the groove 8, 9 can be - either less than or equal to the diameter of the wire element so as to leave it flush with the surface, is greater than or equal to obtain greater flank flexibility for embedding .
  • the grooves 8, 9 are formed on the front face 5, they are formed within the microelectronic components 3 or in the vicinity ( Figure 7). In the latter case, the recesses 8, 9 are electrically connected to the microelectronic component 3 of the chip to ensure the electrical communication of the chip 1 with the outside.
  • the electrical connection between the microelectronic component 3 and a recess 8, 9 is carried out in a conventional manner by any appropriate means, for example by producing a metal track by inkjet, screen printing or use of a conductive adhesive.
  • the wire element 10, 11 must provide electrical communication with the chip 1 microelectronics, any contact conductive material of the wire element 10, 11 with undesired areas of the microelectronic chip 1 should be avoided.
  • the latter may advantageously be coated with an insulating material 40 (FIG. 7).
  • the wire element 10, 11 is of conductive material and does not comprise a coating with an insulating material
  • electrical insulation of the bottom of the recess 8, 9 can be made in a known manner.
  • layer of insulating material 40 encapsulating the wire element 10, 11 is made of thermosetting polymer, a hot insertion is then preferentially chosen to facilitate the embedding and bonding of the wire element 10, 11 inside the groove 8, 9 and therefore its insertion within, for example, a fabric.
  • the coating of the wire element 10, 11 is partially eliminated after insertion of the wire element into the corresponding groove, in order to allow an electrical connection between the wire element and the microelectronic component 3 of the chip 1.
  • the removal of the layer of insulating material 40 is carried out by any known means, for example, by scraping with a blade or by hot creep during or after embedding.
  • the connection with the component 3 is then made by forming a metal track 44 covering the stripped portion of the wire element and connecting it to a connection pad (not shown) of the component 3.
  • a track can conventionally be obtained by inkjet, screen printing or depositing a conductive glue.
  • the integration of the grooves 8, 9 is carried out in the rear face 4.
  • the surface of the front face 5, called the "active" face is preserved and greater integration density can then be obtained by distributing on the main faces 4, 5 the different features of the chip 1.
  • the wire element 10, 11 disposed in a recess 8, 9 located on the rear face 4 is advantageously made of conductive material and preferably without encapsulation in insulating material.
  • An electrical contact is made within the microelectronic chip 1 to allow the connection of the wire element 10, 11 of conductive material located on the rear face 4 and the microelectronic component 3 located on the front face 5.
  • the recess 8, 9 forms a housing for a wire element which simultaneously constitutes an electrical connection between the chip and the outside while providing a flexible mechanical support for the chip 1.
  • a layer of an insulating material 41 is first deposited on the substrate, then structured to electrically isolate from the substrate 2 at least the recesses 8, 9 and future conductor connecting tracks to the component 3.
  • the insulating material 41 is, for example, silicon nitride or silicon oxide whose thickness is typically of the order of 100 to 500 nm.
  • a conductive material 42 is deposited on the layer 41 to provide an electrical connection between the microelectronic component and the inside of the groove.
  • the conductive material 42 is, for example, constituted by a stack of 30 nm of titanium coated with 300 nm of copper. Classically, this conductive material is also structured in order to avoid any short circuit.
  • the wire elements 10, 11 can then be inserted into the recesses 8, 9 in order to integrate the microelectronic chip 1 for example within a fabric.
  • a reinforcing metal 43 may be deposited, for example by electrolysis after insertion of the wire elements 10, 11.
  • the reinforcing metal 43 is preferably constituted by a layer of nickel or copper, the thickness of which is typically between 2 and 30 ⁇ m. This step not only improves the connection between components 3 of the front face 5 and the wire elements 10, 11 of the rear face 4 but also to lock or weld the wire element 10, 11 in its housing.
  • FIGS. 11 to 13 Another method of producing a chip in which the grooves are formed at the rear face is illustrated in FIGS. 11 to 13.
  • a cavity advantageously a hole, is etched in the microelectronic chip 1, starting from the front face 5, and sinks into the substrate.
  • the depth of the hole is preferably between 100 and 200 microns.
  • the hole has a typical diameter of the order of 100 microns and may advantageously be terminated by a pointed shape.
  • the hole thus produced is then coated, by any suitable technique, with an insulating material 41, for example a silicon oxide PECVD, the thickness of which is, for example, between 100 and 300 nm.
  • a conductive material 42 preferably hard, for example, nickel or tungsten, fills the cavity thus covered.
  • the conductive material 42 thus formed is connected to the microelectronic component 3.
  • a recess 8 for example a groove, from the rear face 4 is then etched opposite the hole.
  • the groove 8 is advantageously wider than the hole.
  • the depth of the groove 8 is advantageously defined so that the conductive material 42 coming from the front face protrudes at the bottom of the groove 8, preferably from a height of the order of 10 to 20 ⁇ m and forms so a tip.
  • the groove 8 is made by any suitable technique, for example by selective etching of the dielectric material of the substrate 2 with respect to the insulating material 41.
  • the layer of insulating material 41, projecting into the bottom of the groove 8, is then removed by any known method, for example by plasma etching or by wet etching.
  • a wire element 10 for example made of conductive material, advantageously coated with a layer of insulating material 40, is then inserted into the groove 8 in order to integrate the microelectronic chip 1 into a structure flexible.
  • the insulating film 40 coating the conductive material may be, for example, a varnish or a thermoplastic polymer.
  • the protruding portion of the conductive material 42 in the form of a point, coming from the front face 5, perforates the insulating film 40 encapsulating the wire element 10 and thus makes the contact of the latter with the microelectronic component 3.
  • the wire is preferably inserted hot to facilitate the indentation of the conductive material tip 42 in the wire element and stick it to the wire element. inside the groove 8.
  • the recess is a non-through hole 8 made on one of the main faces 4, 5 so as to embed a wire element 10 therein.
  • the axis of the wire element 10 is perpendicular to the main faces 4, 5 of the microelectronic chip 1 when embedding the chip in the flexible structure as a fabric.
  • At least one through recess 8, 9 ' is made in a microelectronic chip 1, preferably at the periphery of the chip.
  • This hole 8, 9 ' can be obtained by any known means, for example, by plasma etching or by laser.
  • the hollow portion of the chip 1 may be example of square shape, V-shaped or C or then present (hole 9 ') a structure to mechanically lock ("grip wire") a wired element 10.
  • the inner walls of the hole 9' are not smooth but present sharp tips, for example the lateral faces of the grooves comprise claws, intended to cut the insulating sheath of the wire element during the introduction thereof into the hole 9 'and to maintain the wire element.
  • the recess 9 has in proximity two notches located on either side of the recess so as to give it the flexibility necessary to withstand the stresses during the insertion of the recess. wired element 10 and / or variations in thermal expansion between the wire element 10 and the chip 1.
  • the electrical insulation of the inside of the holes 8, 9 is made, for example by deposition by PECVD, of an insulating material 41, for example silicon oxide or silicon nitride, with a typical thickness of the order of 1 to 3 ⁇ m.
  • the layer of insulating material 41 is then structured, in a manner known to allow access to contact pads connected to the component 3 of the microelectronic chip 1.
  • a conductive material 42 is then performed, for example 30 nm of titanium topped with 300 nm of copper or a titanium / nickel bilayer.
  • the conductive material 42 is then structured so that the inner surface of the holes is electrically connected to the component 3.
  • electrolytic deposition of a reinforcing metal 43 may advantageously be carried out.
  • the reinforcing metal will then cover the wire element 10 and the areas of contact with the chip and thus ensure better mechanical strength.
  • the thickness of the metal layer 43 is typically in the range 1-30 ⁇ m, for example of the order of 5 ⁇ m. Compared to other techniques, electrolysis has the advantage of being cold-formed and not subsequently constituting a thermal limitation.
  • At least two chips 1 may be integrated on at least one wire element 10 so as to form a microstructure or an assembly.
  • This assembly comprises chips each fixed to the wire element 10, the chips 1 being connected together by the wire element which constitutes a flexible mechanical support.
  • the recesses 8, 9 provide in this assembly, the mechanical maintenance of the microelectronic chip 1, on the wire elements that serve for its electrical communication with the outside and its power supply.
  • the assembly may comprise a plurality of chips 1 organized in the form of a matrix, wire elements 10, 11 ensuring, according to the two main directions of the matrix, the flexible mechanical connection of the various chips and, advantageously, the electrical connection lice or fleas.
  • the chips 1 within the assembly can be powered and / or communicate with each other or with the outside by means of, for example, at least one wire element made of conductive material or use optical communication or electromagnetic waves.
  • the latter can be at least partially encapsulated by any suitable technique, to protect it from attacks of the external environment and / or to ensure superior mechanical strength. It may, for example, be encapsulated, for example, within a sheath that can be wound and / or unrolled.
  • microelectronic chips in particular according to FIGS. 1 and 2, can be integrated into a textile by holding between the same two wires adjacent conductors, so as to constitute a train of chips where each one of them is associated with a particular function (source of energy, energy recovery, digital data processing ...) -
  • the power supply can be realized by the intermediate of a metallized chip on its large faces connected to an external generator for example by a clamp system and in contact with the textile supply son.
  • the chips can also, in this case, provide the same function (for example pressure sensor or temperature).
  • a thermoelectric power supply is also possible.
  • Microelectronic chips according to Figure 5 can be used for making a scintillating fabric.
  • one of the elementary chips is a micro-battery
  • the other elementary chip is a charge control device for this battery and a device that lights a diode as soon as an energy threshold is reached.
  • piezoelectric fibers provide energy recovery during movements of the fabric so as to recharge the battery.
  • the microelectronic chips are inserted during weaving, and the fabric starts to flicker when it has sufficient movements.
  • a thermoelectric power supply is also possible.
  • the chip may, for example, be a radio frequency identification device (RFID) and the wires then constitute both antennas and the power supply.
  • RFID radio frequency identification device
  • These chips can, for example, be used for inventory management.
  • Microelectronic chips according to the invention can in particular be used to produce a screen fabric.
  • one of the chips elementary is composed of a sapphire substrate on which is implanted a small matrix of multicolored diodes (eg 16 by 16).
  • the other elementary chip contains storage and multiplexing logic that retrieves the pixels to be displayed through a serial link.
  • a holographic film is placed on the fabric so as to diffuse the light produced by the tissue.
  • the microelectronic component of the chips according to the invention can also be an actuator (for example an explosive gas generator or not).
  • an actuator for example an explosive gas generator or not.
  • the addressing of such chips when they are mounted in chains is performed by one of the conductive threads of the textile. It is thus possible, for example, to maintain at constant pressure an inflatable object (tire, balloon, boat).
  • the actuation may also consist of micro actuators.
  • the invention can be used for this purpose by vertically assembling chips to form compact blocks but where can be arranged inter-chip spaces (thanks to the wire elements that keep the chips spaced) to improve their cooling during operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Micromachines (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Pressure Sensors (AREA)
  • Dicing (AREA)
  • Wire Bonding (AREA)

Abstract

Une puce microélectronique (1) comporte deux faces principales parallèles (4, 5) et des faces latérales (6, 7). Au moins l'une des faces (4, 5, 6, 7) comporte un évidement muni d'au moins un élément de connexion électrique et formant un logement pour un élément filaire (10, 11). L'élément filaire (10, 11) constitue simultanément une connexion électrique entre la puce (1) et l'extérieur par l'intermédiaire dudit élément de connexion et un support mécanique souple pour ladite puce.

Description

PUCE MICROELECTRONIQUE NUE MUNIE D'UN EVIDEMENT FORMANT UN LOGEMENT
POUR UN ELEMENT FILAIRE CONSTITUANT UN SUPPORT MECANIQUE SOUPLE,
PROCEDE DE FABRICATION ET MICROSTRUCTURE
Domaine technique de l'invention
L'invention est relative à une puce microélectronique comportant deux faces principales parallèles et des faces latérales.
L'invention porte également sur un procédé de fabrication d'une telle puce microélectronique et sur une microstructure comportant au moins deux puces connectées par un élément filaire.
État de la technique
Actuellement, de nombreuses applications réclament la confection de tissus ou de tricots apportant des fonctions électroniques, appelés textiles actifs. Par exemple les tissus thermoélectriques génèrent de l'énergie à partir d'un gradient de température, les tissus piézoélectriques sont capables d'alimenter une électronique par récupération d'énergie de mouvement. Cette énergie alimente alors un circuit électronique solidaire du tissu.
Deux techniques de fabrication de tels textiles sont actuellement pratiquées. Dans l'une d'elles, les fonctions électroniques sont obtenues par adjonction de circuits électroniques aux textiles. Par exemple, les fonctions électroniques sont réalisées par une puce microélectronique classiquement reliée à d'autres puces ou à une alimentation en énergie par l'intermédiaire de plots reliés à des éléments mécaniques soudables au moyen de fils de liaison, un boîtier protégeant le circuit et les plots. Les fonctions électroniques réalisables peuvent être complexes, mais la stabilité mécanique de la puce électronique intégrée dans le textile est très mauvaise. Une telle intégration est longue et nécessite des machines spéciales complexes. D'autre part, la connectique présente un encombrement non négligeable devant celui de la partie active de la puce.
Dans l'autre technique de fabrication, encore expérimentale, l'électronique est imprimée sur le textile, ce dernier jouant le rôle de support. Généralement ces textiles supports sont obtenus par tissage classique. Mais la complexité des fonctions électroniques réalisables par ces techniques est très limitée et bien inférieure à celle que l'on peut atteindre avec des puces microélectroniques.
Objet de l'invention
L'objet de l'invention consiste à réaliser une puce microélectronique dont l'intégration dans un tissu ou un tricot est améliorée.
Selon l'invention, ce but est atteint par les revendications annexées et plus particulièrement par le fait qu'au moins l'une des faces de la puce comporte un évidement muni d'au moins un élément de connexion électrique et formant un logement pour un élément filaire, qui constitue simultanément une connexion électrique entre la puce et l'extérieur par l'intermédiaire dudit élément de connexion et un support mécanique souple pour ladite puce.
L'invention a également pour objet un procédé de fabrication d'une puce microélectronique dans laquelle l'évidement est constitué par une rainure située sur au moins une face latérale. Un développement de l'invention est une microstructure comportant un élément filaire connectant électriquement et mécaniquement au moins deux puces selon l'invention.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels : la figure 1 est une vue en coupe d'un premier exemple de réalisation d'une puce microélectronique selon l'invention, la figure 2 est une vue en coupe d'un deuxième exemple de réalisation d'une puce microélectronique selon l'invention, - les figures 3 à 5 illustrent les différentes étapes d'un procédé de fabrication de la puce selon la figure 2, la figure 6 représente une vue en coupe d'une variante de réalisation d'une puce selon la figure 2, les figures 7 et 8 illustrent deux autres modes de réalisation d'une puce selon l'invention, les figures 9 et 10 illustrent un procédé de réalisation d'un autre mode de réalisation d'une puce selon l'invention, les figures 11 à 13 illustrent un autre procédé de réalisation d'une puce selon l'invention, - les figures 14 à 16 illustrent une puce selon l'invention, dans lequel l'élément filaire est perpendiculaire aux faces principales de la puce.
Description de modes préférentiels de l'invention
Sur la figure 1 , un premier exemple de puce microélectronique 1 comporte un substrat 2 plan muni, de manière classique, d'au moins un composant microélectronique 3. La puce microélectronique 1 possède ainsi deux faces principales 4 et 5 parallèles entre elles, reliées par des faces latérales constituant la tranche de la puce 1. Seules deux faces latérales 6, 7 sont représentées, mais leur nombre peut varier et dépend de la forme du contour des faces principales 4, 5.
Comme l'illustre la figure 1 , chaque face latérale 6, 7 est en forme de gouttière parallèle aux faces principales 4 et 5 et constitue une rainure, repérée respectivement 8 et 9 pour les faces latérales 6, 7 et permettant de loger un élément filaire. Les rainures de logement 8, 9 présentent chacune une section concave. Dans le mode de réalisation particulier illustré à la figure 1 , la largeur des rainures 8, 9 est égale à la hauteur des faces latérales 6, 7 et sa section est en arc de cercle, c'est-à-dire en forme de C. La forme en C peut être exacte ou approximée avec des segments de droites.
Les rainures 8 et 9 peuvent être réalisées par toute technique adaptée, comme par exemple par gravure sèche ou humide, ablation laser, gravure chimique assistée par laser, usinage mécanique...
La puce microélectronique 1 peut ainsi être facilement intégrée dans un textile car deux fils 10 ,11 adjacents, par exemple de trame, constitutifs de ce textile peuvent venir automatiquement s'insérer dans les rainures de logement 8, 9, que ce soit avec un procédé de tissage ou un procédé de tricotage. Les rainures de logement 8, 9 assurent une stabilité mécanique de la puce microélectronique 1 par rapport au textile. Il est clair qu'on tentera d'adapter le rayon de courbure des rainures de logement 8, 9 au diamètre des fils 10, 11. Des rainures analogues peuvent être envisagées pour les fils de chaîne. En variante, les rainures 8, 9 peuvent être revêtues par une couche électriquement conductrice, respectivement 12, 13. Cette disposition permet d'utiliser des fils 10, 11 de trame ou de chaîne qui sont conducteurs électriquement et d'assurer un contact électrique avec ces fils 10, 11. Les fils peuvent alors être utilisés pour l'alimentation électrique du composant microélectronique 3 et, éventuellement, pour le transfert de données avec un multiplexage alimentation/données. Les fils peuvent aussi constituer des éléments rayonnants d'antenne (émission ou réception). Les couches électriquement conductrices 12, 13 peuvent être reliées électriquement, de manière classique, au composant microélectronique 3 par l'intermédiaire d'un via traversant 14 perpendiculaire aux faces principales 4, 5 ou d'une piste conductrice 15 déposée sur la face du substrat 2 munie du composant 3 pour raccorder la couche 13 à un contact du composant 3.
Dans une variante, les rainures de logement 8, 9 peuvent avoir une section en forme de V ou de V tronqué. Dans ce dernier cas, chaque rainure 8, 9 comporte deux parois convergentes reliées entre elles par un fond plan.
Dans l'exemple de réalisation, illustré à la figure 2, la puce microélectronique 1 est constituée de deux puces élémentaires 16a et 16b, de section sensiblement trapézoïdale, comprenant chacune une petite base, 17a ou 17b et une grande base, 18a ou 18b reliées par des faces latérales planes inclinées 19a ou 19b. Pour chacune des puces élémentaires 16a, 16b, les faces latérales planes inclinées, 19a ou 19b, forment un angle aigu avec la grande base, 18a ou 18b correspondante et sont convergentes. Un composant microélectronique 23a, 23b est situé au niveau de la petite base
17 (respectivement T7a, 17b) de chacune des puces élémentaires 16a, 16b.
Les puces élémentaires 16a, 16b sont solidarisées par leurs petites bases
17a, 17b de telle manière que leurs faces latérales inclinées 19a, 19b constituent au moins une rainure de logement. Sur la figure 2, deux rainures de logement 20 et 21 sont représentés. Les rainures de logement 20, 21 présentent donc une section en forme de V (plus particulièrement en forme de V tronqué sur la figure 2) et constituent les faces latérales 6 et 7 de la puce microélectronique 1. Les grandes bases 18a, 18b sont parallèles et constituent les faces principales 5, 6 de la puce microélectronique 1 de la figure 2. Les rainures de logement 20, 21 peuvent recevoir les fils 10 et 11 de manière analogue à la puce microélectronique 1 de la figure 1.
Les puces élémentaires 16a et 16b sont, par exemple, assemblées l'une à l'autre par collage, une couche de colle 22 étant alors intercalée entre les petites bases 17a, 17b. La colle peut être une résine, isolante, conductrice ou électroactive. Lors de cet assemblage, en déposant les résines sélectivement, il est possible de réaliser des liaisons électriques entre les composants microélectroniques 23a, 23b et/ou des fonctions de capteur de pression ou de génération d'énergie (piézoélectricité) grâce à des insertions en résine électroactive. L'assemblage des puces élémentaires 16a, 16b peut aussi être réalisé par collage moléculaire. Dans ce dernier cas, la couche de colle 22 est absente.
Les rainures de logement 20, 21 sont revêtues par une couche électriquement conductrice, respectivement 24, 25, déposée sur les faces latérales planes inclinées 19a, 19b. Cette disposition permet d'utiliser des fils 10, 11 de trame ou de chaîne qui sont conducteurs électriquement et d'assurer un contact électrique avec ces fils 10, 11. Les couches électriquement conductrices 24, 25 sont reliées électriquement, de manière classique, aux composants microélectroniques 23a, 23b, par exemple, par l'intermédiaire de pistes conductrices 26. Les pistes 26 peuvent être réalisées dans le même matériau que les couches 24, 25, éventuellement pendant le dépôt des couches 24, 25.
Dans le cas où le collage est réalisé par une résine polymère électroactive (qui permet de constituer une source locale d'énergie), les couches 24, 25 peuvent être supprimées. Sinon, les fils 10, 11 peuvent être affectés à des fonctions électroniques différentes de l'alimentation en énergie et les couches 24, 25 sont affectées à d'autres fonctions que l'alimentation.
En variante, les composants microélectroniques 23a, 23b peuvent être formés au niveau des grandes bases 18a, 18b. Un tel composant pourra alors être relié électriquement avec une couche électriquement conductrice 24, 25 par l'intermédiaire d'un via traversant (non représenté sur la figure 2).
La puce microélectronique 1 de la figure 2 peut être obtenue par le procédé de fabrication illustré aux figures 3 à 5. Dans une première étape (figure 3), on fabrique simultanément, sur une même première plaquette 27, une pluralité de puces élémentaires 16a séparées par des rainures 28 en forme de V comprenant chacune deux parois 29a, 29b convergentes. Chaque rainure 28 est formée dans la face de la plaquette 27 dans laquelle sont constituées les petites bases 17. Les parois 29a, 29b des rainures 28 sont reliées par un fond plat 30, parallèle à la face de la plaquette 27 dans laquelle sont constituées les petites bases 17. Deux réseaux de rainures 28 parallèles sont réalisés. Les rainures 28 des deux réseaux sont orthogonales entre elles. Ainsi, une paire de rainures 28 adjacentes de l'un des réseaux délimite, en combinaison avec paire de rainures 28 adjacentes de l'autre réseau, une petite base 17, de forme rectangulaire ou carrée. Les puces élémentaires 16a sont réparties en lignes et colonnes dans le plan de la plaquette 27. Un composant microélectronique est formé au niveau de chacune des petites bases 17. La figure 3 illustre, en coupe, deux puces élémentaires 16a adjacentes, séparées par une rainure 28. Une deuxième plaquette 33 analogue (représentée figure 5) comporte une pluralité de puces élémentaires 16b.
Dans une étape suivante (figure 4), un matériau électriquement conducteur est déposé sur la face de la plaquette 27 dans laquelle sont constituées les petites bases 17, de manière à former, dans chaque puce élémentaire 16a, un premier contact 31 disposé entre le composant microélectronique 3 et la paroi 29a d'une rainure 28 adjacente, ainsi qu'un deuxième contact 32 disposé entre le composant 3 et la paroi 29b de la rainure 28 adjacente parallèle. De tels contacts (non représentés) peuvent également être réalisés pour les parois des rainures 28 du réseau perpendiculaire.
Dans une étape ultérieure (figure 5), la plaquette 27 comportant les puces élémentaires 16a est collée à la plaquette 33 comportant les puces élémentaires 16b. Les plaquettes 27 et 33 sont collées par leurs faces comportant les rainures 28, de manière à ce que les rainures 28 soient superposées. L'ensemble ainsi réalisé comporte une pluralité de puces microélectroniques 1 selon la figure 2. Ces puces microélectroniques 1 sont réparties en lignes et en colonnes, séparées entre elles par les fonds plats 30 des rainures 28 des plaquettes 27 et 33. Le matériau utilisé pour le collage constitue, pour chaque puce microélectronique 1 , la couche de colle 22 de la figure 2. L'assemblage des plaquettes 27 et 33 peut aussi être réalisé par collage moléculaire. Dans ce dernier cas, les couches de colle 22 sont absentes. De manière facultative, un rabotage des faces arrières (opposées aux faces où sont formées les rainures 28) des plaquettes 27, 33, peut-être réalisé afin d'amincir les puces microélectroniques 1 ainsi formées.
Dans une dernière étape, les plaquettes 27, 33, collées l'une à l'autre, sont découpées au niveau des rainures 28 de manière à séparer les puces microélectroniques 1 les unes des autres. Ce découpage peut être réalisé par toute technique adaptée, par exemple, par sciage à l'aide d'un scie circulaire diamant, par gravure sèche ou humide, par ablation laser, par gravure chimique assistée par laser...
La figure 6 illustre une variante de la puce 1 selon la figure 2. Dans cette variante, les composants microélectroniques 23a, 23b des puces élémentaires 16a, 16b sont formés au niveau des grandes bases 18a, 18b. La petite base 17a, 17b de chacune des puces élémentaires 16a 16b comporte une rainure additionnelle 34a, 34b parallèle aux rainures de logement 20, 21 en forme de V. Les rainures additionnelles 34a, 34b sont superposées pour constituer un logement additionnel pour un élément filaire, tel qu'un fil 35 intercalé entre les fils 10 et 11. Les rainures additionnelles 34a, 34b sont revêtues par une couche électriquement conductrice, respectivement 36a, 36b, reliée au composant électronique, 23a ou 23b, associé par l'intermédiaire d'un via traversant, 37a ou 37b.
Compte tenu de la disposition des composants microélectroniques 23a, 23b, ces derniers peuvent, comme précédemment, être reliés aux couches électriquement conductrices 24, 25 par un via traversant 38a, 38b ou par une piste conductrice 39a, 39b.
Le fil 35 peut être destiné à assurer une interconnexion directe entre deux puces microélectroniques 1 ou bien peut constituer une antenne par fil métallique rayonnant. Le fil 35 peut également être une fibre piézoélectrique, de manière à constituer l'alimentation en énergie.
Dans toutes les variantes qui viennent d'être décrites ci-dessus, il est possible d'améliorer le contact entre les fils 10, 11 , 35 et les rainures de logement 8, 9, 20, 21 et les rainures additionnelles 34a, 34b en ayant recours à une colle conductrice par exemple à deux composants, qui réticule ou polymérise lorsque les deux composants sont en contact. Les fils 10, 11 , 35 sont alors enrobés avec l'un des composants tandis que l'autre composant est déposé dans les rainures 8, 9, 20, 21 , 34a, 34b.
L'élément filaire peut être fixé par tout autre moyen, par exemple, par soudure par apport de matériau, par plasma, par électrolyse, ultrason... Dans un autre mode de réalisation de l'invention, la puce microélectronique 1 comporte au moins un évidement 8, 9, c'est-à-dire une rainure ou un trou, dans une de ses faces principales 4, 5. Ceci permet son intégration, par exemple dans un textile, dans un mode dit parallèle, c'est-à-dire que l'axe de l'élément filaire 10, 11 aux abords immédiats de sa fixation à la puce est sensiblement parallèle aux faces principales 4, 5 de la puce microélectronique 1.
Comme illustré sur la figure 7, une puce microélectronique 1 comportant un substrat 2 plan, par exemple en silicium, est munie d'au moins un composant microélectronique 3. La puce 1 comporte au moins un évidement 8, 9 par exemple une tranchée ou un trou non débouchant, réalisé soit sur une face avant 5, c'est-à-dire sur la face comprenant les composants microélectroniques 3, soit sur une face arrière 4, sensiblement parallèle à la face avant. Ces évidements 8, 9 ont pour but d'assurer une liaison mécanique entre la puce 1 et l'élément filaire 10, 11 auquel la puce 1 va être fixée. La forme ainsi que les dimensions de l'évidement 8, 9, sont fonction des caractéristiques mécaniques et dimensionnelles de l'élément filaire 10,
11. A titre d'exemple, une rainure présentant une section concave, par exemple une section carrée ou circulaire, en V ou V tronquée peut être utilisée.
Dans un mode de réalisation préférentiel, afin d'assurer une bonne fixation de la puce 1 avec les éléments filaires 10, 11 appartenant, par exemple, à un tissu sur lequel la puce doit être intégrée, un composé fixant, par exemple, une colle, peut être utilisé.
La fixation par encastrement d'au moins un élément filaire 10, 11 dans les évidements 8, 9 de la puce 1 permet d'assurer une connexion mécanique rigide entre la puce et l'élément filaire au niveau de la puce. Un élément filaire constitue alors une connexion mécanique souple entre deux puces qui y sont rattachées.
La puce présente, de préférence, au sein de révidement 8, 9 une surface conductrice constituant un élément de connexion électrique. L'élément filaire
10, 11 , constituant un support mécanique souple pour la puce 1, constitue alors simultanément une connexion électrique entre la puce 1 et l'extérieur.
Ainsi, les composants microélectroniques 3 de la puce 1 , connectés électriquement à l'élément filaire 10, 11 , sont alors en mesure d'être électriquement alimentés et/ou de communiquer avec d'autres puces 1 également connectées mécaniquement et électriquement à l'élément filaire
10, 11.
En variante, l'élément filaire 10, 11 peut être utilisé par la puce 1 en tant qu'antenne de communication (émission et/ou réception).
De manière conventionnelle, une pluralité de puces microélectroniques 1 sont réalisées simultanément sur un substrat 2. Sur chaque puce 1 , au moins un évidement 8, 9 est réalisé afin de pouvoir y encastrer un élément filaire 10, 11.
Les évidements 8, 9, par exemple sous forme de rainures peuvent être réalisés par gravure chimique, par exemple au moyen d'une solution de KOH, ou par gravure plasma ou par sciage. Le choix des dimensions de la rainure 8, 9 est choisi en fonction des caractéristiques de l'élément filaire 10, 11 à intégrer dans la rainure 8, 9 afin d'assurer la meilleure tenue mécanique possible. La profondeur et la largeur de la rainure peuvent typiquement varier entre 20 μm et 100 μm pour l'intégration dans la rainure d'un élément filaire de l'ordre de 20μm à 100 μm de diamètre. De plus, les flancs des rainures peuvent être amincis de façon à leur conférer une souplesse permettant à l'élément filaire de s'encastrer en force. L'amincissement est réalisé, par exemple, au moyen de deux entailles formées de part et d'autre de l'évidement et illustré à la figure 15 dans un autre mode de réalisation.
La profondeur de la rainure 8, 9 peut être - soit inférieure ou égale au diamètre de l'élément filaire de façon à la laisser affleurer à la surface, soit supérieure ou égale de façon à obtenir une plus grande souplesse des flancs pour l'encastrement.
Dans le cas où les rainures 8, 9 sont formées sur la face avant 5, elles sont réalisées au sein des composants microélectroniques 3 ou à proximité (figure 7). Dans ce dernier cas de figure, les évidements 8, 9 sont connectés électriquement au composant microélectronique 3 de la puce pour assurer la communication électrique de la puce 1 avec l'extérieur. La connexion électrique entre le composant microélectronique 3 et un évidement 8, 9 est effectuée de manière classique par tout moyen approprié, par exemple par la réalisation d'une piste métallique par jet d'encre, sérigraphie ou utilisation d'une colle conductrice.
Un élément filaire 10, 11 , appartenant par exemple à un tissu, est ensuite encastré, préférentiellement de force, dans la rainure 8, 9. Lorsque l'élément filaire 10, 11 doit assurer la communication électrique avec la puce 1 microélectronique, tout contact du matériau conducteur de l'élément filaire 10, 11 avec des zones non désirées de la puce microélectronique 1 doit être évité. Dans le cas d'une utilisation d'un élément filaire en matériau conducteur, ce dernier peut être avantageusement enrobé par un matériau isolant 40 (figure 7).
Dans le cas où l'élément filaire 10, 11 est en matériau conducteur et ne comporte pas d'enrobage par un matériau isolant, une isolation électrique du fond de l'évidement 8, 9 peut être réalisée de façon connue. Par ailleurs, si la couche en matériau isolant 40 enrobant l'élément filaire 10, 11 est en polymère thermodurcissable, une insertion à chaud est alors préférentiellement choisie pour permettre de faciliter l'encastrement et le collage de l'élément filaire 10, 11 à l'intérieur de la rainure 8, 9 et donc son insertion au sein, par exemple, d'un tissu.
Dans la variante illustrée à la figure 8, l'enrobage de l'élément filaire 10, 11 est partiellement éliminé après l'insertion de l'élément filaire dans la rainure correspondante, afin d'autoriser une connexion électrique entre l'élément filaire et le composant microélectronique 3 de la puce 1. Le retrait, de la couche en matériau isolant 40 est réalisé par tout moyen connu, par exemple, par grattage avec une lame ou bien par fluage à chaud pendant ou après l'encastrement. La connexion avec le composant 3 est ensuite réalisée par formation d'une piste métallique 44 recouvrant la partie dénudée de l'élément filaire et la connectant à un plot de connexion (non représenté) du composant 3. Une telle piste peut classiquement être obtenue par jet d'encre, sérigraphie ou dépôt d'une colle conductrice.
Dans une autre variante de réalisation illustrée aux figures 9 et 10, l'intégration des rainures 8, 9 est réalisée dans la face arrière 4. De cette façon, la surface de la face avant 5, dite face « active » est préservée et une plus grande densité d'intégration peut être alors obtenue en répartissant sur les faces principales 4, 5 les différentes fonctionnalités de la puce 1. Si l'on souhaite utiliser une pluralité d'éléments filaires 10, 11 comme conducteurs électriques, il est avantageux d'utiliser une intégration sur la face arrière 4. En effet, il est alors possible d'intégrer un plus grand nombre d'éléments filaires en utilisant la face arrière, par exemple, 9 ou 10 fils par mm avec des fils parallèles espacés de 80 μm.
L'élément filaire 10, 11 disposé dans un évidement 8, 9 situé sur la face arrière 4, est avantageusement en matériau conducteur et préférentiellement dépourvu d'enrobage en matériau isolant. Un contact électrique est réalisé au sein de la puce microélectronique 1 afin de permettre la connexion de l'élément filaire 10, 11 en matériau conducteur situé sur la face arrière 4 et du composant microélectronique 3 situé sur la face avant 5. Ainsi, l'évidement 8, 9 forme un logement pour un élément filaire qui constitue simultanément une connexion électrique entre la puce et l'extérieur tout en assurant un support mécanique souple pour la puce 1.
Dans le mode de réalisation illustré sur la figure 9, après la réalisation au sein de la face arrière 4 d'au moins un évidement 8, 9, une couche d'un matériau isolant 41 est tout d'abord déposée sur le substrat, puis structurée pour isoler électriquement du substrat 2 au moins les évidements 8, 9 et de futures pistes conductrices de connexion au composant 3. Le matériau isolant 41 est, par exemple, du nitrure de silicium ou de l'oxyde de silicium dont l'épaisseur est typiquement de l'ordre de 100 à 500 nm.
Puis (figure 10), un matériau conducteur 42 est déposé sur la couche 41 pour réaliser une connexion électrique entre le composant microélectronique et l'intérieur de la rainure. Le matériau conducteur 42 est, par exemple, constitué par un empilement de 30 nm de Titane recouvert de 300 nm de Cuivre. Classiquement, ce matériau conducteur est également structuré afin d'éviter tout court-circuit.
Les éléments filaires 10, 11 peuvent ensuite être insérés dans les évidements 8, 9 afin d'intégrer la puce microélectronique 1 par exemple au sein d'un tissu. Avantageusement, un métal 43 de renfort peut être déposé, par exemple par électrolyse après insertion des éléments filaires 10, 11. Le métal 43 de renfort est de préférence constitué par une couche de nickel ou de cuivre, dont l'épaisseur est typiquement comprise entre 2 et 30 μm. Cette étape permet non seulement d'améliorer la connexion entre les composants 3 de la face avant 5 et les éléments filaires 10, 11 de la face arrière 4 mais aussi de bloquer ou souder l'élément filaire 10, 11 dans son logement.
Un autre procédé de réalisation d'une puce dans laquelle les rainures sont formées au niveau de la face arrière est illustré sur les figures 11 à 13.
Comme illustré sur la figure 11 , une cavité, avantageusement un trou, est gravée au sein de la puce microélectronique 1 , à partir de la face avant 5, et s'enfonce dans le substrat. La profondeur du trou est de préférence comprise entre 100 et 200 μm. Le trou a un diamètre typique de l'ordre de 100 μm et peut avantageusement être terminé par une forme pointue. Le trou ainsi réalisé est ensuite revêtu, par toute technique adaptée, par un matériau isolant 41 , par exemple un oxyde de silicium PECVD, dont l'épaisseur est comprise, par exemple, entre 100 et 300 nm. Puis, un matériau conducteur 42, de préférence dur, par exemple, du nickel ou du tungstène, remplit la cavité ainsi recouverte. Le matériau conducteur 42 ainsi formé est connecté au composant microélectronique 3.
Comme illustré sur la figure 12, un évidement 8, par exemple une rainure, partant de la face arrière 4 est ensuite gravé en regard du trou. La rainure 8 est avantageusement plus large que le trou. La profondeur de la rainure 8 est avantageusement définie de manière à ce que le matériau conducteur 42 provenant de la face avant fasse saillie au fond de la rainure 8, de préférence, d'une hauteur de l'ordre de 10 à 20 μm et forme ainsi une pointe. La rainure 8 est réalisée par toute technique adaptée, par exemple par gravure sélective du matériau diélectrique du substrat 2 par rapport au matériau isolant 41.
La couche de matériau isolant 41 , en saillie dans le fond de la rainure 8, est ensuite retirée par tout procédé connu, par exemple, par gravure plasma ou par gravure humide. Comme illustré sur la figure 13, un élément filaire 10, par exemple en matériau conducteur, avantageusement enrobé d'une couche de matériau isolant 40, est ensuite inséré dans la rainure 8 afin d'intégrer la puce microélectronique 1 au sein d'une structure souple. Le film isolant 40 enrobant le matériau conducteur peut être, par exemple, un vernis ou un polymère thermoplastique. Lorsque l'élément filaire 10 est inséré dans la rainure 8, la partie en saillie de matériau conducteur 42, en forme de pointe, provenant de la face avant 5, perfore le film isolant 40 enrobant l'élément filaire 10 et réalise ainsi le contact électrique de ce dernier avec le composant microélectronique 3.
Si l'isolant 40 enrobant l'élément filaire 10 est un polymère thermodurcissable, le fil est, de préférence, inséré à chaud pour faciliter l'indentation de la pointe de matériau conducteur 42 dans l'élément filaire et coller ce dernier à l'intérieur de la rainure 8.
Dans une variante de réalisation, illustrée sur la figure 14, l'évidement est un trou 8, non traversant, réalisé sur une des faces principales 4, 5 afin d'y encastrer un élément filaire 10.
Dans un autre mode de réalisation, dit perpendiculaire, l'axe de l'élément filaire 10 est perpendiculaire aux faces principales 4, 5 de la puce microélectronique 1 lors de l'encastrement de la puce dans la structure souple comme un tissu.
Dans ce mode de réalisation, illustré en vue de dessus sur la figure 15, au moins un évidement traversant 8, 9', par exemple un trou, est réalisé dans une puce microélectronique 1 , de préférence, en périphérie de la puce. Ce trou 8, 9' peut être obtenu par tout moyen connu, par exemple, par une gravure plasma ou par laser. La partie évidée de la puce 1 peut être par exemple de forme carrée, en forme de V ou de C ou alors présenter (trou 9') une structure visant à bloquer mécaniquement (« grip fil ») un élément filaire 10. Les parois internes du trou 9' ne sont pas lisses mais présentent des pointes acérées, par exemple les faces latérales des rainures comportent des griffes, destinées à entailler la gaine isolante de l'élément filaire lors de l'introduction de celui-ci dans le trou 9' et à maintenir l'élément filaire.
Dans la variante de réalisation illustrée à la figure 15, l'évidement 9' comporte à proximité, deux entailles situées de part et d'autre de l'évidement afin de lui donner la souplesse nécessaire pour supporter les sollicitations durant l'insertion de l'élément filaire 10 et/ou les variations de dilatation thermique entre l'élément filaire 10 et la puce 1.
Comme illustré en coupe sur les figures 16 et 17, dans le cas d'une utilisation d'un élément filaire 10 conducteur, l'isolation électrique de l'intérieur des trous 8, 9 est réalisée, par dépôt par exemple par PECVD, d'un matériau isolant 41 , par exemple de l'oxyde de silicium ou du nitrure de silicium, d'une épaisseur typique de l'ordre de 1 à 3 μm. La couche de matériau isolant 41 est ensuite structurée, de façon connue pour permettre l'accès à des plots de contact connectés au composant 3 de la puce microélectronique 1.
Le dépôt d'un matériau conducteur 42 est ensuite réalisé, par exemple 30 nm de titane surmonté de 300 nm de cuivre ou alors une bicouche titane/nickel. Le matériau conducteur 42 est ensuite structuré pour que la surface intérieure des trous soit connectée électriquement au composant 3.
Comme précédemment, un dépôt par électrolyse d'un métal 43 de renfort peut être avantageusement réalisé. Le métal de renfort va alors recouvrir l'élément filaire 10 et les zones de contact avec la puce et assurer ainsi une meilleure tenue mécanique. L'épaisseur de la couche de métal 43 est typiquement dans Ia gamme 1-30 μm, par exemple de l'ordre de 5 μm. Comparée aux autres techniques, l'électrolyse présente l'avantage d'être réalisée à froid et de ne pas constituer ultérieurement une limitation thermique.
Au moins deux puces 1 peuvent être intégrées sur au moins un élément filaire 10 de manière à former une microstructure ou un assemblage. Cet assemblage comporte des puces fixées chacune sur l'élément filaire 10, les puces 1 étant connectées entre elles par l'élément filaire qui constitue un support mécanique souple. Les évidements 8, 9 assurent dans cet assemblage, le maintien mécanique de la puce microélectronique 1 , sur les éléments filaires qui servent à sa communication électrique avec l'extérieur ainsi qu'à son alimentation.
L'assemblage peut comporter une pluralité de puces 1 organisées sous la forme d'une matrice, des éléments filaires 10, 11 assurant, suivant les deux directions principales de la matrice, Ia connexion mécanique souple des différentes puces et, avantageusement, la connexion électrique des puces.
Les puces 1 au sein de l'assemblage peuvent être alimentées et/ou communiquer entre elles ou avec l'extérieur au moyen, par exemple, d'au moins un élément filaire en matériau conducteur ou utiliser une communication optique ou par ondes électromagnétiques.
Une fois l'assemblage réalisé, ce dernier peut être au moins partiellement encapsulé par toute technique adaptée, afin de le protéger des agressions de l'environnement extérieur et/ou pour assurer une tenue mécanique supérieure. Il peut, par exemple, être encapsulé, par exemple, au sein d'une gaine pouvant être enroulée et/ou déroulée.
Plusieurs puces microélectroniques 1 , notamment selon les figures 1 et 2, peuvent être intégrées dans un textile par maintien entre deux mêmes fils conducteurs adjacents, de manière à constituer un train de puces où chacune d'elles est associée à une fonction particulière (source d'énergie, récupération d'énergie, traitement numérique de données...)- L'alimentation peut être réalisée par l'intermédiaire d'une puce métallisée sur ses grandes faces reliées à un générateur extérieur par exemple par un système de pinces et en contact avec les fils d'alimentation du textile. Les puces peuvent également, dans ce cas, assurer la même fonction (par exemple de capteur de pression ou de température). Dans ce cas, il est possible d'interposer une puce selon la figure 6 entre deux trains de puces selon les figures 1 et 2, de manière à relier les trains de puces entre eux par un bus série constitué par le fil 35. Les fils 10 et 11 peuvent alors servir à l'alimentation en énergie. Une alimentation thermoélectrique est également envisageable.
Des puces microélectroniques selon la figure 5 peuvent être utilisées pour la confection d'un tissu scintillant. Dans ce cas, l'une des puces élémentaires est une micro-batterie, l'autre puce élémentaire est un dispositif de contrôle de charge de cette batterie et un dispositif qui allume une diode dès qu'un seuil d'énergie est atteint. Entre les puces élémentaires, des fibres piézoélectriques assurent une récupération d'énergie lors des mouvements du tissu de manière à recharger la batterie. Les puces microélectroniques sont insérées lors du tissage, et le tissu se met à scintiller lorsqu'il présente des mouvements suffisants. Une alimentation thermoélectrique est également envisageable.
La puce peut, par exemple, être un composant RFID (radio frequency identification device) et les fils constituent alors à la fois des antennes et l'alimentation. Ces puces peuvent, par exemple, servir à la gestion d'inventaires.
Des puces microélectroniques selon l'invention peuvent notamment être utilisées pour réaliser un tissu écran. Dans ce cas, l'une des puces élémentaires est composée d'un substrat en saphir sur lequel est implantée une petite matrice de diodes multicolores (par exemple 16 par 16). L'autre puce élémentaire contient une logique de mémorisation et de multiplexage qui récupère les pixels à afficher grâce à une liaison série. Un film holographique est placé sur le tissu de manière à diffuser la lumière produite par le tissu.
Le composant microélectronique des puces selon l'invention peut également être un actionneur (par exemple un générateur de gaz explosif ou non). L'adressage de telles puces lorsqu'elles sont montées en chaînes est réalisé par l'un des fils conducteurs du textile. Il est ainsi, par exemple, possible de maintenir à pression constante un objet gonflable (pneu, ballon, bateau). L'actionnement peut également être constitué de micro actuateurs.
II est en outre possible de réaliser une tapisserie constituant une interface homme/machine, ou former des antennes de télé alimentation de capteurs placés dans un milieu solide (béton).
Dans tous les domaines utilisant de la microélectronique, il est nécessaire de rendre les dispositifs les plus compacts possible. L'invention peut être utilisée dans ce but en assemblant verticalement des puces afin de constituer des blocs compacts mais où cependant peuvent être aménagés des espaces interpuces (grâce aux éléments filaires qui maintiennent les puces espacées) afin d'améliorer leur refroidissement lors du fonctionnement.

Claims

Revendications
1. Puce microélectronique (1) comportant deux faces principales parallèles avant et arrière (4, 5) et des faces latérales (6, 7), caractérisée en ce qu'au moins l'une des faces (4, 5, 6, 7) comporte un évidement muni d'au moins un élément de connexion électrique et formant un logement pour un élément filaire (10, 11 ), qui constitue simultanément une connexion électrique entre la puce et l'extérieur, par l'intermédiaire dudit élément de connexion électrique et un support mécanique souple pour ladite puce.
2. Puce selon la revendication 1 , caractérisée en ce qu'une couche électriquement conductrice (12, 13, 24, 25) revêt au moins en partie l'évidement (8, 9, 20, 21).
3. Puce selon l'une des revendications 1 et 2, caractérisée en ce que l'évidement est une rainure.
4. Puce selon la revendication 3, caractérisée en ce que ladite rainure est située sur au moins une face latérale (6, 7).
5. Puce selon la revendication 3, caractérisée en ce que ladite rainure est située sur au moins une face principale (4, 5).
6. Puce selon l'une des revendications 4 et 5, caractérisée en ce que ladite rainure (8, 9) comporte une section concave, carrée ou circulaire.
7. Puce selon l'une des revendications 4 et 5, caractérisée en ce que ladite rainure (20, 21) comporte une section en forme de V ou de V tronqué.
8. Puce selon la revendication 4, caractérisée en ce qu'elle comporte une première et une deuxième puces élémentaires (16a, 16b) comprenant chacune une petite base (17a, 17b) et une grande base (18a, 18b) parallèles reliées par au moins une face latérale plane inclinée (19a, 19b) formant un angle aigu avec la grande base (18a, 18b), les première et deuxième puces élémentaires (16a, 16b) étant solidarisées par leurs petites bases (17a, 17b) de manière que leurs faces latérales planes inclinées (19a, 19b) constituent ladite rainure (20, 21) en forme de V ou de V tronqué.
9. Puce selon la revendication 4, caractérisée en ce que la petite base (17a, 17b) des première et deuxième puces élémentaires (16a, 16b) comporte une rainure additionnelle (34a, 34b) parallèle à la rainure en forme de V (20 ,21), les rainures additionnelles (34a, 34b) des première et deuxième puces élémentaires (16a, 16b) étant superposées pour constituer un logement additionnel pour un élément filaire (35).
10. Puce selon la revendication 5, caractérisée en ce que ladite rainure étant située sur la face principale arrière, un contact électrique traverse la puce depuis la face avant jusqu'audit évidement.
11. Puce selon la revendication 5, caractérisée en ce que ladite rainure étant située sur une face principale (4,5), elle traverse la puce (1).
12. Puce selon la revendication 4, caractérisée en ce que l'axe de ladite rainure est perpendiculaire aux faces principales.
13. Puce selon l'une des revendications 4 et 12, caractérisée en ce que les faces latérales des rainures sont structurées en forme de griffes.
14. Puce selon la revendication 1 , caractérisée en ce que l'évidement est un trou non traversant situé sur une des faces principales.
15. Puce selon la revendication 14, caractérisée en ce que le trou étant situé sur la face principale arrière, le contact électrique avec la face avant traverse la puce.
16. Procédé de fabrication d'une puce microélectronique (1 ) selon la revendication 4, caractérisé en ce qu'il comporte : la fabrication simultanée, sur une même plaquette (27, 33), d'une pluralité de puces élémentaires (16a, 16b), séparées par des rainures en forme de V (28) comprenant chacune deux parois convergentes (29a,
29b), le dépôt d'un matériau électriquement conducteur formant, dans chaque puce élémentaire (16a, 16b), au moins un contact (31 , 32) disposé entre un composant microélectronique (23a, 23b) intégré dans ladite puce élémentaire (16a, 16b) et une paroi (29a, 29b) d'une rainure (28) adjacente, l'assemblage de deux plaquettes (27, 33) par leurs faces comportant les rainures (28), de manière à ce que les rainures (28) se superposent, la découpe des plaquettes (27, 33) assemblées au niveau des rainures (28).
17. Microstructure comportant au moins un élément filaire connectant au moins deux puces selon l'une quelconque des revendications 1 à 15, caractérisée en ce que l'élément filaire assure simultanément la connexion électrique et une connexion mécanique souple entre les deux puces.
18. Microstructure selon la revendication 17, caractérisée en ce que l'élément filaire est collé dans les évidements.
19. Microstructure selon la revendication 17, caractérisée en ce que l'élément filaire est soudé dans les évidements.
20. Microstructure selon la revendication 17, caractérisée en ce que l'élément filaire est encastré dans les évidements.
PCT/FR2007/001034 2006-08-29 2007-06-21 Puce microelectronique nue munie d'un evidement formant un logement pour un element filaire constituant un support mecanique souple, procede de fabrication et microstructure WO2008025889A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009526145A JP5059110B2 (ja) 2006-08-29 2007-06-21 柔軟性機械的サポートを構成するワイヤ要素用ハウジングを形成する凹部を具備するベアマイクロエレクトロニクスチップ、製造プロセスおよび微細構造
US12/310,246 US8093617B2 (en) 2006-08-29 2007-06-21 Bare microelectronic chip provided with a recess forming a housing for a wire element constituting a flexible mechanical support, fabrication process and microstructure
CN2007800383632A CN101523605B (zh) 2006-08-29 2007-06-21 设置有形成构成柔性机械支撑的布线元件的壳体的凹形的裸微电子芯片、制造工艺和微结构
EP07803768.6A EP2057687B1 (fr) 2006-08-29 2007-06-21 Puce microelectronique nue munie d'une rainure formant un logement pour un element filaire constituant un support mecanique souple, procede de fabrication et microstructure
ES07803768.6T ES2539640T3 (es) 2006-08-29 2007-06-21 Chip microelectrónico desnudo provisto de una ranura que forma un alojamiento para un elemento filar que constituye un soporte mecánico flexible, procedimiento de fabricación y microestructura

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0607588A FR2905518B1 (fr) 2006-08-29 2006-08-29 Puce microelectronique a faces laterales munies de rainures et procede de fabrication
FR0607588 2006-08-29

Publications (1)

Publication Number Publication Date
WO2008025889A1 true WO2008025889A1 (fr) 2008-03-06

Family

ID=37882559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/001034 WO2008025889A1 (fr) 2006-08-29 2007-06-21 Puce microelectronique nue munie d'un evidement formant un logement pour un element filaire constituant un support mecanique souple, procede de fabrication et microstructure

Country Status (7)

Country Link
US (1) US8093617B2 (fr)
EP (1) EP2057687B1 (fr)
JP (1) JP5059110B2 (fr)
CN (1) CN101523605B (fr)
ES (1) ES2539640T3 (fr)
FR (1) FR2905518B1 (fr)
WO (1) WO2008025889A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009112644A1 (fr) * 2008-03-06 2009-09-17 Commissariat A L'energie Atomique Assemblage d'un élément filaire avec une puce microélectronique à rainure comportant au moins un plot de maintien de l'élément filaire
FR2937464A1 (fr) * 2008-10-21 2010-04-23 Commissariat Energie Atomique Assemblage d'une puce microelectronique a rainure avec un element filaire sous forme de toron et procede d'assemblage
WO2010125320A1 (fr) 2009-04-30 2010-11-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fixation d'un composant électronique sur un produit
FR2954588A1 (fr) * 2009-12-23 2011-06-24 Commissariat Energie Atomique Procede d'assemblage d'au moins une puce avec un element filaire, puce electronique a element de liaison deformable, procede de fabrication d'une pluralite de puces, et assemblage d'au moins une puce avec un element filaire
FR2955972A1 (fr) * 2010-02-03 2011-08-05 Commissariat Energie Atomique Procede d'assemblage d'au moins une puce avec un tissu incluant un dispositif a puce
WO2013013843A1 (fr) 2011-07-28 2013-01-31 Commissariat à l'Energie Atomique et aux Energies Alternatives Procede d'assemblage d'un dispositif a puce micro - electronique dans un tissu, dispositif a puce, et tissu incorporant un dispositif a puce serti
WO2018134547A1 (fr) 2017-01-23 2018-07-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d'un dispositif electronique et dispositif electronique
WO2020007960A1 (fr) 2018-07-04 2020-01-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif electronique et son procede de realisation
US11755874B2 (en) 2021-03-03 2023-09-12 Sensormatic Electronics, LLC Methods and systems for heat applied sensor tag
US11769026B2 (en) 2019-11-27 2023-09-26 Sensormatic Electronics, LLC Flexible water-resistant sensor tag
US11861440B2 (en) 2019-09-18 2024-01-02 Sensormatic Electronics, LLC Systems and methods for providing tags adapted to be incorporated with or in items
US11869324B2 (en) 2021-12-23 2024-01-09 Sensormatic Electronics, LLC Securing a security tag into an article
US11928538B2 (en) 2019-09-18 2024-03-12 Sensormatic Electronics, LLC Systems and methods for laser tuning and attaching RFID tags to products

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640892B2 (ja) * 2011-05-23 2014-12-17 三菱電機株式会社 半導体装置
FR2986372B1 (fr) * 2012-01-31 2014-02-28 Commissariat Energie Atomique Procede d'assemblage d'un element a puce micro-electronique sur un element filaire, installation permettant de realiser l'assemblage
WO2016053626A1 (fr) * 2014-09-30 2016-04-07 Arimtax Technologies Llc Tissu comprenant des composants électriques intégrés
JP2018514071A (ja) * 2015-01-27 2018-05-31 ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー 繊維層アセンブリ用の可撓性デバイスモジュールおよび作製方法
CN104881694A (zh) * 2015-05-30 2015-09-02 宁波慧豪信息产业有限公司 一种基于rfid双协议的数据读写方法、终端及系统
US9936595B2 (en) 2015-11-23 2018-04-03 Thomson Licensing Wire retention cover for printed circuit boards in an electronic device
US10485103B1 (en) 2016-02-22 2019-11-19 Apple Inc. Electrical components attached to fabric
FR3062515B1 (fr) 2017-01-30 2019-11-01 Primo1D Procede d'insertion d'un fil dans une rainure d'une puce de semi-conducteur, et equipement pour la mise en œuvre d’un tel procede.
FR3065578B1 (fr) * 2017-04-19 2019-05-03 Primo1D Procede d'assemblage d'une puce microelectronique sur un element filaire
FR3065579B1 (fr) 2017-04-19 2019-05-03 Primo1D Dispositif d'emission reception radiofrequence
DE102017108580A1 (de) * 2017-04-21 2018-10-25 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauteil und Gewebe
CN107148188B (zh) * 2017-06-16 2020-08-07 Oppo广东移动通信有限公司 壳体组件的制备方法、壳体组件和移动终端
WO2018228031A1 (fr) * 2017-06-16 2018-12-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Boîtier, procédé de fabrication associé, et terminal mobile
FR3076071B1 (fr) 2017-12-21 2019-11-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d’une puce a circuit integre et puce a circuit integre
FR3078980B1 (fr) 2018-03-14 2021-06-11 Primo1D Fil guipe compose d’une ame principale et d’au moins un fils de couverture et comprenant au moins un element filaire conducteur relie electriquement a au moins une puce electronique
US11913143B2 (en) * 2019-03-08 2024-02-27 Apple Inc. Fabric with electrical components
FR3103630B1 (fr) 2019-11-22 2022-06-03 Primo1D Puce fonctionnelle adaptee pour etre assemblee a des elements filaires, et procede de fabrication d’une telle puce
US20230008099A1 (en) * 2021-07-12 2023-01-12 Apple Inc. Fabric Seam with Electrical Components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086762A (ja) * 2001-07-04 2003-03-20 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US20030082851A1 (en) * 2001-10-31 2003-05-01 Van Hoff Jay F. Back-side through-hole interconnection of a die to a substrate
JP2003163313A (ja) * 2001-09-13 2003-06-06 Texas Instr Japan Ltd 半導体装置及びその製造方法
US6646336B1 (en) * 2002-06-28 2003-11-11 Koninkl Philips Electronics Nv Wearable silicon chip
US20030211797A1 (en) * 2002-05-10 2003-11-13 Hill Ian Gregory Plural layer woven electronic textile, article and method
US20050277307A1 (en) * 2004-06-14 2005-12-15 Motorola, Inc. Method and apparatus for solder-less attachment of an electronic device to a textile circuit
US20060175697A1 (en) * 2005-02-02 2006-08-10 Tetsuya Kurosawa Semiconductor device having semiconductor chips stacked and mounted thereon and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211604B2 (ja) * 1995-02-03 2001-09-25 株式会社日立製作所 半導体装置
JPH10214919A (ja) * 1997-01-29 1998-08-11 New Japan Radio Co Ltd マルチチップモジュールの製造方法
JP2002343933A (ja) * 2001-05-18 2002-11-29 Mitsubishi Electric Corp 半導体記憶装置
US7485489B2 (en) * 2002-06-19 2009-02-03 Bjoersell Sten Electronics circuit manufacture
JP2004288680A (ja) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp 圧接型半導体装置
US7716823B2 (en) * 2004-04-08 2010-05-18 Hewlett-Packard Development Company, L.P. Bonding an interconnect to a circuit device and related devices
US20060278997A1 (en) * 2004-12-01 2006-12-14 Tessera, Inc. Soldered assemblies and methods of making the same
US20080029879A1 (en) * 2006-03-01 2008-02-07 Tessera, Inc. Structure and method of making lidded chips

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086762A (ja) * 2001-07-04 2003-03-20 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2003163313A (ja) * 2001-09-13 2003-06-06 Texas Instr Japan Ltd 半導体装置及びその製造方法
US20030082851A1 (en) * 2001-10-31 2003-05-01 Van Hoff Jay F. Back-side through-hole interconnection of a die to a substrate
US20030211797A1 (en) * 2002-05-10 2003-11-13 Hill Ian Gregory Plural layer woven electronic textile, article and method
US6646336B1 (en) * 2002-06-28 2003-11-11 Koninkl Philips Electronics Nv Wearable silicon chip
US20050277307A1 (en) * 2004-06-14 2005-12-15 Motorola, Inc. Method and apparatus for solder-less attachment of an electronic device to a textile circuit
US20060175697A1 (en) * 2005-02-02 2006-08-10 Tetsuya Kurosawa Semiconductor device having semiconductor chips stacked and mounted thereon and manufacturing method thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012795B2 (en) 2008-03-06 2011-09-06 Commissariat à l'Energie Atomique Method and device for fabricating an assembly of at least two microelectronic chips
US8723312B2 (en) 2008-03-06 2014-05-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Assembly of a wire element with a microelectronic chip with a groove comprising at least one bump securing the wire element
WO2009112644A1 (fr) * 2008-03-06 2009-09-17 Commissariat A L'energie Atomique Assemblage d'un élément filaire avec une puce microélectronique à rainure comportant au moins un plot de maintien de l'élément filaire
FR2937464A1 (fr) * 2008-10-21 2010-04-23 Commissariat Energie Atomique Assemblage d'une puce microelectronique a rainure avec un element filaire sous forme de toron et procede d'assemblage
WO2010046563A1 (fr) * 2008-10-21 2010-04-29 Commissariat à l'Energie Atomique Assemblage d'une puce microélectronique à rainure avec un élément filaire sous forme de toron et procédé d'assemblage
US8611101B2 (en) 2008-10-21 2013-12-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Assembly of a microelectronic chip having a groove with a wire element in the form of a strand, and method for assembly
JP2012506631A (ja) * 2008-10-21 2012-03-15 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ 溝を有する超小型電子チップとストランドの形をしたワイヤ要素との組立体及び組立方法
WO2010125320A1 (fr) 2009-04-30 2010-11-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fixation d'un composant électronique sur un produit
JP2012525619A (ja) * 2009-04-30 2012-10-22 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ 電子部品を製品に取り付ける方法
JP2011135083A (ja) * 2009-12-23 2011-07-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives 少なくとも1つのチップとワイヤ要素をアセンブルする方法、変形する接続要素を有する電子チップ、複数のチップを製造する方法、及び、少なくとも1つのチップとワイヤ要素のアセンブリ
EP2339618A3 (fr) * 2009-12-23 2012-10-17 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Procédé d'assemblage d'au moins une puce avec un élément filaire, puce électronique à élément de liaison déformable, procédé de fabrication d'une pluralité de puces, et assemblage d'au moins une puce avec un élément filaire
EP2339618A2 (fr) 2009-12-23 2011-06-29 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Procédé d'assemblage d'au moins une puce avec un élément filaire, puce électronique à élément de liaison déformable, procédé de fabrication d'une pluralité de puces, et assemblage d'au moins une puce avec un élément filaire
US8654540B2 (en) 2009-12-23 2014-02-18 Commisariat A L'energie Atomique Et Aux Energies Alternatives Method for assembling at least one chip with a wire element, electronic chip with a deformable link element, fabrication method of a plurality of chips, and assembly of at least one chip with a wire element
FR2954588A1 (fr) * 2009-12-23 2011-06-24 Commissariat Energie Atomique Procede d'assemblage d'au moins une puce avec un element filaire, puce electronique a element de liaison deformable, procede de fabrication d'une pluralite de puces, et assemblage d'au moins une puce avec un element filaire
FR2955972A1 (fr) * 2010-02-03 2011-08-05 Commissariat Energie Atomique Procede d'assemblage d'au moins une puce avec un tissu incluant un dispositif a puce
US9093289B2 (en) 2010-02-03 2015-07-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for assembling at least one chip using a fabric, and fabric including a chip device
WO2011095708A1 (fr) 2010-02-03 2011-08-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'assemblage d'au moins une puce avec un tissu et tissu incluant un dispositif a puce
US10264682B2 (en) 2011-07-28 2019-04-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for assembling a microelectronic chip device in a fabric, chip device, and fabric incorporating a crimped chip device
WO2013013843A1 (fr) 2011-07-28 2013-01-31 Commissariat à l'Energie Atomique et aux Energies Alternatives Procede d'assemblage d'un dispositif a puce micro - electronique dans un tissu, dispositif a puce, et tissu incorporant un dispositif a puce serti
WO2018134547A1 (fr) 2017-01-23 2018-07-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d'un dispositif electronique et dispositif electronique
WO2020007960A1 (fr) 2018-07-04 2020-01-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif electronique et son procede de realisation
FR3083643A1 (fr) 2018-07-04 2020-01-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de realisation d'un dispositif electronique
US11861440B2 (en) 2019-09-18 2024-01-02 Sensormatic Electronics, LLC Systems and methods for providing tags adapted to be incorporated with or in items
US11928538B2 (en) 2019-09-18 2024-03-12 Sensormatic Electronics, LLC Systems and methods for laser tuning and attaching RFID tags to products
US11769026B2 (en) 2019-11-27 2023-09-26 Sensormatic Electronics, LLC Flexible water-resistant sensor tag
US11755874B2 (en) 2021-03-03 2023-09-12 Sensormatic Electronics, LLC Methods and systems for heat applied sensor tag
US11869324B2 (en) 2021-12-23 2024-01-09 Sensormatic Electronics, LLC Securing a security tag into an article

Also Published As

Publication number Publication date
JP2010502030A (ja) 2010-01-21
US8093617B2 (en) 2012-01-10
EP2057687B1 (fr) 2015-04-22
JP5059110B2 (ja) 2012-10-24
CN101523605B (zh) 2012-07-11
EP2057687A1 (fr) 2009-05-13
FR2905518B1 (fr) 2008-12-26
FR2905518A1 (fr) 2008-03-07
ES2539640T3 (es) 2015-07-02
CN101523605A (zh) 2009-09-02
US20090200066A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
EP2057687B1 (fr) Puce microelectronique nue munie d'une rainure formant un logement pour un element filaire constituant un support mecanique souple, procede de fabrication et microstructure
EP2158605B1 (fr) Procédé de fabrication d'un assemblage de puces reliées mécaniquement au moyen d'une connexion souple
EP1966825B1 (fr) Procede de fabrication collective de modules electroniques 3d
EP3613074B1 (fr) Procédé d'assemblage d'une puce microélectronique sur un élement filaire
EP1774613B1 (fr) Microbatterie comportant des connexions traversantes et procede de realisation d'une telle microbatterie
EP2339618B1 (fr) Procédé d'assemblage d'au moins une puce avec un élément filaire, puce électronique à élément de liaison déformable, procédé de fabrication d'une pluralité de puces, et assemblage d'au moins une puce avec un élément filaire
EP2591498A1 (fr) Procédé d'assemblage d'une puce dans un substrat souple
EP2936565A1 (fr) Dispositif d'interconnexion de cellules photovoltaiques a contacts en face arriere, et module comprenant un tel dispositif
EP0254640A1 (fr) Procédé de réalisation d'une carte à mémoire électronique et carte telle qu'obtenue par ce procédé
EP3579286B1 (fr) Puce photonique traversée par un via
FR2995721A1 (fr) Capot pour dispositif a rainure et a puce, dispositif equipe du capot, assemblage du dispositif avec un element filaire et procede de fabrication
FR2963849A1 (fr) Procede de fabrication d'un circuit electrique et circuit obtenu
FR2947392A1 (fr) Procede de raccordement electrique de deux organes entre eux
EP1192593B1 (fr) Dispositif et procede de fabrication de dispositifs comprenant au moins une puce montee sur un support
WO2000077729A1 (fr) Dispositif et procede de fabrication de dispositifs electroniques comportant au moins une puce fixee sur un support
EP3171395B1 (fr) Realisation d'interconnexions par recourbement d'elements conducteurs sous un dispositif microelectronique tel qu'une puce
EP2772936B1 (fr) Procédé d'interconnexion par fils paralleles ainsi qu'un procédé d'adaptation des formes de ceux-ci, et les outillages relatifs
EP4082064A1 (fr) Procédé de fabrication de batteries à ions de lithium, notamment à forte puissance, et batterie obtenue par ce procédé
WO2000077730A1 (fr) Dispositif electronique comportant au moins une puce fixee sur un support et procede de fabrication d'un tel dispositif

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780038363.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07803768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12310246

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007803768

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009526145

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU