WO2008019593A1 - Procédé de synthèse d'un tamis moléculaire sapo-34 enrichi avec une structure de coordination si(4al) dans le cadre - Google Patents

Procédé de synthèse d'un tamis moléculaire sapo-34 enrichi avec une structure de coordination si(4al) dans le cadre Download PDF

Info

Publication number
WO2008019593A1
WO2008019593A1 PCT/CN2007/002376 CN2007002376W WO2008019593A1 WO 2008019593 A1 WO2008019593 A1 WO 2008019593A1 CN 2007002376 W CN2007002376 W CN 2007002376W WO 2008019593 A1 WO2008019593 A1 WO 2008019593A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
sapo
rich
coordination
framework
Prior art date
Application number
PCT/CN2007/002376
Other languages
English (en)
French (fr)
Inventor
Lei Xu
Zhongmin Liu
Peng Tian
Aiping Du
Lixin Yang
Cuiyu Yuan
Original Assignee
Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences filed Critical Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences
Publication of WO2008019593A1 publication Critical patent/WO2008019593A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the invention relates to a preparation method of a SAPO-34 molecular sieve rich in Si(4Al) coordination structure.
  • the Si coordination environment in the molecular sieve skeleton prepared by the method is mainly a Si (4A1) structure, and the relative content thereof is 70-100. %. Background technique
  • SAPO-n silica-alumina molecular sieves
  • the acidity of the SAPO type molecular sieve can be regarded as caused by the substitution of Si into the framework of the aluminum phosphate molecular sieve by substitution.
  • the aluminum phosphate molecular sieve ⁇ 1 ⁇ 0 4 - ⁇ is composed of ⁇ 10 2 ⁇ tetrahedron and ⁇ 0 2 + tetrahedron in strict accordance with the ratio of 1:1.
  • the whole skeleton is electrically neutral, has no obvious tannic acid center, and the overall acidity is very weak.
  • the skeleton is formed by three tetrahedrons of A10 2 -, P0 2 + and Si0 2 , and the skeleton generates a net negative charge, so that the molecular sieve has protonic acidity.
  • the Si-O-Al structure has various forms in the skeleton.
  • the Si atoms can be connected to 0 to 4 aluminum atoms through oxygen to form various Si coordination structures, which can be represented separately. It is Si (0A1), Si (1A1), Si (2A1), Si (3A1), Si (4A1). Theoretically, the acid center strength formed by different silicon-aluminum structures is sequentially enhanced in the order of Si (0A1), Si (4A1), Si (3A1), Si (2A1), Si (1A1), and thus the strength of the acid center in the molecular sieve skeleton. The number and number are closely related to the structure and number of the skeleton silicon atoms (J. Phys.
  • the SAPO-34 molecular sieve catalyst the strength of the acid center in the molecular sieve framework and The number directly affects the MTO catalytic performance of SAPO-34 molecular sieve.
  • the acidic acid center is more favorable for the formation of terpene hydrocarbon molecules, and the weaker acidic center may make methanol not completely converted.
  • the medium-strength acid center can limit alkanes and aromatics. The formation is beneficial to increase the selectivity of low-carbon olefins such as ethylene and propylene.
  • fluoride ions can react with silicon atoms to form SiF 4 , and fluoride can be used to modify SAPO-34 molecular sieves.
  • the deionization can be achieved by the reaction of fluoride ions and silicon atoms in the molecular sieve framework, and fluoride ions can be preferentially
  • the silicon atoms in the silicon-rich region are removed, and the coordination environment and relative content of the molecular sieve skeleton Si are changed to realize the modulation of the acid strength and acid center distribution of the SAPO-34 molecular sieve. Summary of the invention
  • the object of the present invention is to aim at the important influence of the strength and number of surface acid center of SAPO-34 molecular sieve on the MTO reaction process, and provide a method for selectively removing Si on the synthesized SAPO-34 molecular sieve framework by using fluoride to prepare a rich A method of using a Si(4Al) coordination structure of SAPO-34 molecular sieve to modulate the acid center strength and number on the surface of the molecular sieve.
  • the present invention provides a preparation method of a SAPO-34 molecular sieve rich in Si (4Al) coordination structure, wherein the Si coordination environment in the molecular sieve skeleton prepared by the method is mainly a Si (4A1 ) structure, and the relative content thereof. It is 70-100%; its post-modification technology uses a desiliconization reagent to selectively remove Si from the synthesized SAPO-34 molecular sieve framework, so that the coordination environment in the molecular sieve framework is Si (0A1), Si ( The content of 1A1), Si(2A1), Si(3A1) is reduced or eliminated, so that the relative coordination content of Si (4A1) is improved.
  • the desiliconizing agent is an aqueous solution containing an F 1 ionic compound.
  • the F 1 -containing compound is a mixture of one or both of HF and NH 4 F.
  • the relative content percentage of the Si coordination environment is: Si (4A1) is 70 ⁇ 100; Si (3A1) is 30 ⁇ 0; Si(2A1) is 20 ⁇ 0; Si(1A1) is 10 ⁇ 0; Si(0A1) is 5 ⁇ 0.
  • the method of the present invention for preparing a SAPO-34 molecular sieve rich in Si(4Al) coordination structure comprises the following steps:
  • step b) hydrolyzing the initial gel mixture obtained in step a) in an autoclave at 200 ° C for 24 hours, filtering the solid product to obtain a SAPO-34 molecular sieve filter cake, or drying the filter cake at 100-120 ° C Dry, get SAPO-34 Molecular sieve raw powder;
  • step c) treating the SAPO-34 molecular sieve cake obtained in step b) or the dried raw powder with an aqueous fluoride solution, and then separating the solid and drying in air to obtain SAPO-rich in Si (4A1) structure.
  • the SAPO-34 molecular sieve obtained in the step c) is calcined in air at 400-600 ° C to obtain a SAPO-34 molecular sieve catalyst rich in Si (4A1) structure.
  • the concentration of the aqueous fluoride solution in the step c) is 0.01 to 1.00 md/L, and the modification temperature is room temperature to 200 °C.
  • the concentration of the aqueous fluoride solution in the step c) is 0.05 to 0.50 mol/L, and the modification temperature is room temperature to 100 Torr.
  • the treatment time of the SAPO-34 molecular sieve with the aqueous fluoride solution in the step c) is 2 to 48 hours.
  • the treatment time of the SAPO-34 molecular sieve with the aqueous fluoride solution in the step c) is 8 to 12 hours.
  • the SAPO-34 molecular sieve catalyst obtained by the above method can improve the selectivity of ethylene and propylene when it is used for the reaction of methanol or dimethyl ether to olefin.
  • the invention is characterized in that the fluoride ion can react with the skeleton silicon atom of the molecular sieve to form SiF 4 or other substances which can be dissolved in water, and the fluoride is used to modify and modify the SAPO-34 molecular sieve, and the fluorine atom and the silicon atom in the molecular sieve skeleton are passed through.
  • the reaction reaches the purpose of desiliconization, which in turn changes the coordination environment of the skeleton Si.
  • the fluoride can selectively remove Si in the silicalite molecular sieve framework, that is, preferentially remove the coordination environment of Si (OAl), Si (1A1), Si (2A1), Si (3A1).
  • Si OAl
  • Si (1A1) Si (1A1)
  • Si (2A1) Si 3A1
  • SAPO-34 molecular sieve The selective removal of Si on the surface of SAPO-34 molecular sieve can improve the relative content of the Si (4A1) coordination structure of the molecular sieve framework and adjust the acid center strength and number of SAPO-34 molecular sieve.
  • SAPO-34 molecular sieve catalyst rich in Si (4A1) structure is used in the reaction of methanol or dimethyl ether to olefins, which can improve the selectivity of ethylene and propylene, and can greatly improve the life of the catalyst.
  • Figure 1 XRD pattern of modified products of different HF concentrations at 120 Torr and 150 °C in Example 1 of the present invention.
  • Figure 2 XRD spectrum of the modified product of Example 3 of the present invention at different room temperature conditions under different HF content ratios.
  • Fig. 3 is an XRD chart of a modified product of different NH 4 F concentrations at 120 ° C and 150 Torr in Example 5 of the present invention.
  • Figure 4 XRD spectrum of the modified product of Example 7 of the present invention at different room temperature conditions under different NH 4 F content ratios. detailed description
  • the SiO (4A1)-rich SAPO-34 molecular sieve catalyst obtained in Example 1 was used for methanol to olefin catalytic reaction.
  • a sample of 0.6 g of a 20-40 mesh particulate catalyst was placed in a reactor, activated by a nitrogen gas at 550 ° C for 1 hour, and then cooled to 450 ° C to carry out a reaction.
  • Nitrogen was used as the diluent gas to carry the raw material methanol, the nitrogen flow rate was 40 ml/min, and the methanol weight space velocity S.Oh ⁇ reaction product composition was analyzed by on-line gas chromatography. The results are shown in Table 1 and Table 2. Table 1
  • the SiO (4A1)-rich SAPO-34 molecular sieve catalyst obtained in Example 3 was used for methanol to olefin catalytic reaction.
  • a sample of 0.6 g of a 20-40 mesh particulate catalyst was taken, charged into a reactor, activated by nitrogen at 550 ° C for 1 hour, and then cooled to 450 ° C to carry out a reaction.
  • the raw material methanol was carried with nitrogen as a diluent gas, the nitrogen flow rate was 40 ml/min, and the methanol weight space velocity was 2.0.
  • the composition of the reaction product was analyzed by on-line gas chromatography, and the results are shown in Table 4. Table 4
  • the SiO (4A1)-rich SAPO-34 molecular sieve catalyst obtained in Example 5 was used for methanol to olefin catalytic reaction.
  • a sample of 0.6 g of a 20-40 mesh particulate catalyst was charged into a reactor, activated by nitrogen at 550 Torr for 1 hour, and then cooled to 450 ° C to carry out a reaction.
  • the raw material methanol was carried with nitrogen as a diluent gas, the nitrogen flow rate was 40 ml/min, and the methanol weight space velocity S.Oh ⁇ reaction product composition was analyzed by on-line gas chromatography, and the results are shown in Table 5 and Table 6.
  • * refers to the cumulative time of feed when the methanol conversion is 100%.
  • the SiO (4A1)-rich SAPO-34 molecular sieve catalyst obtained in Example 7 was used for methanol to olefin catalytic reaction.
  • a sample of 0.6 g of a 20-40 mesh particulate catalyst was charged into a reactor, activated by a nitrogen gas at 550 ° C for 1 hour, and then cooled to 450 ° C.
  • the raw material methanol was carried with nitrogen as a diluent gas, the nitrogen flow rate was 40 ml/min, and the methanol weight space velocity S.
  • Olf reaction product composition was analyzed by on-line gas chromatography, and the results are shown in Table 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

富含 Si Al)配位结构的 SAPO-34分子筛的制备方法
技术领域
本发明涉及一种富含 Si(4Al)配位结构的 SAPO-34分子筛的制备方法, 采用该方 法制备的分子筛骨架中 Si配位环境主要为 Si (4A1) 结构, 其相对含量为 70-100%。 背景技术
1984 年, 美国联合碳化物公司 (UCC ) 开发了一系列新型磷酸硅铝分子筛 (SAPO-n) (USP 4,440,871), 磷硅铝 SAPO分子筛是一种由磷、硅、 铝和氧组成的具 有类菱沸石结构的分子筛。其结构单元由 P02+ 、 Si02和 Α102·四面体构成, 无水化学 组成可表示为: mR. ( Six-Aly-Pz) 02, 上式中 R为存在于分子筛晶体微孔中的模板剂, m为 R的摩尔数, x、 y、 z分别为 Si、 Al、 P的摩尔分数, 并满足 x+y+z= l。 随着 磷酸硅铝系列分子筛的问世, 人们开始将这种小孔的酸性适中的分子筛用于甲醇制低 碳烯烃 (MTO)反应, 如 SAPO-17, SAPO-18, SAPO-34, SAPO-44分子筛, 它们的 孔径大约为 0.43nm, 是一类较好的择形催化剂。 其中 SAPO-34分子筛由于具有适宜 的酸性和孔道结构在 MTO反应中呈现出优异的催化性能。
SAPO类分子筛的酸性可以看作是由 Si通过取代方式进入磷酸铝分子筛骨架引 起的。 磷酸铝分子筛 Α1Ρ04-η由 Α102·四面体和 Ρ02+四面体严格按照 1:1的比例连接 而成, 整个骨架呈电中性, 没有明显的 Β酸中心, 且总体酸性非常弱。 当磷酸铝骨架 中引进 Si原子形成 SAPO-n分子筛后, 骨架由 A102-, P02 +和 Si02三种四面体连接而 成, 骨架产生净的负电荷, 使分子筛具备质子酸性。 与硅铝分子筛相似, 在 SAPO分 子筛中同样只存在两种 Si的成键方式,一种是以 Si-0-Al形式存在,另一种是以 Si-0-Si 形式存在。 从分子筛的形成原理和骨架结构分析, Si-O-Al 结构在骨架中有多种存在 形式, Si原子可以通过氧与 0至 4个铝原子相连, 形成多样的 Si配位结构, 可以分别 表示为 Si (0A1), Si ( 1A1), Si (2A1), Si (3A1), Si (4A1)。 理论上, 不同硅铝结构 形成的酸中心强度按 Si (0A1), Si (4A1), Si (3A1), Si (2A1), Si ( 1A1) 的顺序依 次增强, 因此分子筛骨架中酸中心的强度和数目与骨架硅原子的结构和数目密切相关 (J. Phys. Chem, 1997, 101, 5249-5262), 即 SAPO分子筛的骨架硅含量及配位环境对 其酸性具有强烈影响。对于 SAPO-34分子筛催化剂,分子筛骨架中酸性中心的强度和 数目直接影响 SAPO-34分子筛的 MTO催化性能,酸性较强的酸性中心利于垸烃分子 的生成, 酸性较弱的酸性中心则有可能使甲醇不能完全转化, 中等强度的酸性中心可 以限制烷烃和芳烃的生成, 有利于提高乙烯和丙烯等低碳烯烃的选择性。
研究证实, 氟离子可以和硅原子作用生成 SiF4, 使用氟化物对 SAPO-34分子筛 进行改性修饰, 可以通过氟离子和分子筛骨架中硅原子的反应达到脱硅的目的, 而且 氟离子可以优先脱除富硅区的硅原子, 进而改变分子筛骨架 Si 的配位环境和相对含 量, 实现对 SAPO-34分子筛酸强度和酸性中心分布的调变。 发明内容
本发明的目的是针对 SAPO-34分子筛表面酸中心强度和数目对 MTO反应过程 的重要影响, 提供了一种使用氟化物将合成的 SAPO-34分子筛骨架上的 Si进行选择 性脱除, 制备富含 Si(4Al)配位结构的 SAPO-34分子筛的方法, 从而调变分子筛表面 酸中心强度和数目。
为达到上述目的,本发明提供一种富含 Si(4Al)配位结构的 SAPO-34分子筛的制 备方法, 该方法制备的分子筛骨架中 Si配位环境主要为 Si (4A1 ) 结构, 其相对含量 为 70-100 % ; 其釆用后改性技术, 使用脱硅试剂将合成的 SAPO-34分子筛骨架上的 Si进行选择性脱除, 使得分子筛骨架中配位环境为 Si ( 0A1 ) , Si ( 1A1 ) , Si (2A1), Si ( 3A1 ) 的含量降低或消除, 从而提髙配位环境为 Si (4A1) 的相对含量。
在上述方法中, 所述脱硅试剂为含有 F1离子化合物的水溶液。
在上述方法中, 所述含有 F1离子化合物为 HF和 NH4F中的一种或两种的混合 物。
在上述方法中, 在制得的富含 Si(4Al)配位结构的 SAPO-34分子筛的 Si配位环 境中, 以 Si配位环境相对含量百分数计: Si (4A1) 为 70〜100; Si ( 3A1 ) 为 30〜0; Si (2A1 ) 为 20〜0; Si ( 1A1 ) 为 10〜0; Si (0A1) 为 5〜0。
具体而言,本发明的制备富含 Si(4Al)配位结构的 SAPO-34分子筛的方法包括如 下步骤:
a) 以摩尔比例为 2.0-5.0R: 0.1-2.0SiO2: 0.5-2.0Ρ2Ο5 : 0.5-2.0Α12Ο3 : 50H2O制备 初始凝胶混合物, 其中 R为模板剂;
b)将步骤 a)中得到初始凝胶混合物在高压釜中 200°C水热晶化 24小时,将固体 产物过滤洗涤得到 SAPO-34分子筛滤饼, 或将滤饼在 100-120°C烘干, 得 SAPO-34 分子筛原粉;
c)将步骤 b)中得到的 SAPO-34分子筛滤饼或烘干后的原粉用氟化物水溶液进行 处理, 然后将固体分离并在空气中干燥, 得到富含 Si (4A1)结构的 SAPO-34分子筛; d)将步骤 c) 中得到的 SAPO-34分子筛在 400-600°C空气中焙烧, 得到富含 Si (4A1) 结构的 SAPO-34分子筛催化剂。 '
在上述方法中, 步骤 c) 中氟化物水溶液浓度为 0.01〜1.00md/L, 改性温度为 室温〜 200°C。
在上述方法中, 步骤 c) 中氟化物水溶液浓度为 0.05〜0.50 mol/L, 改性温度为 室温〜 100Ό。
在上述方法中, 步骤 c) 中将 SAPO-34分子筛用氟化物水溶液进行处理的处理 时间为 2〜48小时。
在上述方法中, 步骤 c) 中将 SAPO-34分子筛用氟化物水溶液进行处理的处理 时间为 8〜12小时。
由上述方法得到的 SAPO-34分子筛催化剂应用于甲醇或二甲醚制烯烃反应时, 能够提高乙烯和丙烯的选择性。
本发明特点在于利用氟离子可以和分子筛的骨架硅原子作用生成 SiF4或其它可 以溶解于水的物质,使用氟化物对 SAPO-34分子筛进行改性修饰,通过氟离子和分子 筛骨架中硅原子的反应达到脱硅的目的, 进而改变骨架 Si的配位环境。
本发明另一特点在于氟化物可以将硅磷铝分子筛骨架中 Si进行选择性脱除, 即 优先脱除 Si (OAl), Si ( 1A1), Si (2A1), Si (3A1) 的配位环境中的硅原子, 从而达 到提高 Si (4A1)配位环境相对含量的目的。
本发明对 SAPO-34分子筛表面 Si进行选择性脱除后, 可以提高分子筛骨架 Si (4A1)配位结构的相对含量, 调节 SAPO-34分子筛表面酸中心强度和数目。 富含 Si (4A1) 结构的 SAPO-34分子筛催化剂应用于甲醇或二甲醚制烯烃反应, 能够提高乙 烯和丙烯选择性, 并能大大提髙催化剂的寿命。 附图说明
图 1: 本发明实施例 1在 120Ό和 150°C条件下不同 HF浓度改性产物的 XRD谱 图。
图 2: 本发明实施例 3在室温条件下不同 HF含量配比下改性产物的 XRD谱图。 图 3 : 本发明实施例 5在 120°C和 150Ό条件下不同 NH4F浓度改性产物的 XRD 谱图。
图 4: 本发明实施例 7在室温条件下不同 NH4F含量配比下改性产物的 XRD谱 图。 具体实施方式
下面通过实施例详述本发明。
实施例 1
以摩尔计, 将初始凝胶比例为 3.0TEA: 0.6SiO2: P205: A1203: 50¾O (TEA为 模板剂)的计量原料混合, 充分搅拌成凝胶, 装入 10L 的不锈钢高压釜中, 密闭加热 到 200°C, 在自生压力下, 恒温晶化 24小时。 待晶化完全后, 固体产物经离心分离, 过滤, 用去离子水洗涤至中性, 得到滤饼, 然后将部分滤饼在 120Ό空气中干燥后, XRD分析如图 1所示, 得到的是 SAPO-34分子筛原粉 (编号为 34-10L)。
将 10g编号为 34-10L的样品分别在 0.05mol/l, 0.10mol/l, 0.15mol/l和 0.20mol/l 四个摩尔浓度的 lOOmlHF水溶液中和温度分别为 120°C, 150'C条件下处理 12个小时 (编号为 120-1 , 120-2, 120-3, 120-4; 150-1 , 150-2, 150-3, 150-4), 用去离子水洗 涤至中性, 在 120°C空气中干燥后, 在 550Ό空气中焙烧 3-5小时, X D分析如图 1 所示, 得到富含 Si (4A1) 结构的 SAPO-34分子筛催化剂。 实施例 2
将实施例 1得到的富含 Si (4A1)结构的 SAPO-34分子筛催化剂用于甲醇制烯烃 催化反应。取 0.6克 20-40目的颗粒催化剂样品, 装入反应器中, 在 550°C下通氮气活 化 1小时, 然后降温至 450'C进行反应。 以氮气为稀释气携带原料甲醇, 氮气流速为 40ml/min, 甲醇重量空速 S.Oh^ 反应产物组成采用在线气相色谱分析, 结果如表 1 和表 2所示。 表 1
编号 34-10L 120-1 120-2 120-3 120-4
HF含量 (mol/1) ― 0.05 0.10 0.15 0.20 进料时间 (min) 100 120 140 120 120 甲醇转化率 (%) 100 100 100 100 100 产物分布 (wt% )
CH4 1.42 1.32 1.09 1.20 1.13
M
C2H 43.49 48.10 48.67 49.12 49.93
II
C2H6 II 1.99 1.14 0.90 0.89 0.80
C3H6 36.81 37.75 37.92 38.07 38.24
C3¾ 4.50 2.23 2.29 2.1 1.58
C4H8 8.25 7.57 7.34 6.31 6.14
C4Hio 3.54 1.89 1.79 2.31 2.18
∑C2 =-C3 = 80.30 85.85 86.59 87.19 88.17 寿命 * (min) 100-120 120-140 140-160 120-140 120-140
*指甲醇转化率为 100%时的进料累计时间。
表 2
编号 34-10L 150-1 150-2 150-3 150-4
HF含量 (mol/1) 0.05 0.10 0.15 0.20 进料时间 (min) 100 140 120 120 120 甲醇转化率 (%) 100 100 100 100 100 产物分布 (wt% )
CH4 1.42 1.29 1.37 1.18 1.07
C2H4 43.49 48.94 50.15 49.27 49.71
C2H6 1.99 1.10 0.94 0.84 0.70
C3H6 36.81 37.68 36.78 37.55 38.04
C3H8 4.50 3.1 3.26 3.14 2.43
C4+ 8.25 5.86 4.96 5.59 5.44
C5+ 3.54 2.03 2.54 2.43 2.61
80.30 86.62 86.93 86.82 87.75 寿命 * (min) 100-120 140-160 120-140 120-140 120-140
*指甲醇转化率为 100%时的进料累计时间。 实施例 3
将 lOg编号为 34-10L的样品分别在 0.10mol/l, 0.30mol/l, 0.50mol/l三个摩尔浓 度的 HF水溶液中于室温下搅拌 12个小时 (编号为 RT-1, RT-2, RT-3), 用去离子水洗 涤至中性, 在 120°C空气中干燥后, 在 550°C空气中焙烧 3-5小时, XRD分析如图 2 所示, 得到富含 Si (4A1)结构的 SAPO-34分子筛催化剂; 分子筛表面 Si配位环境分 析釆用 29Si固体核磁进行表征, 各种 Si配位结构的相对含量如表 3所示。 表 3
HF浓度
样品 硅配位结构 相对含量 (%)
(mol/1)
Si(4Al) 64.9
34-10L Si(3Al) 11.1
Si(OAl) 24.0
Si(4Al) 77.8
RT-1 0.10 Si(3Al) 6.7
Si(OAl) 15.6
Si(4Al) 98.2
RT-2 0.30
Si(3Al) 1.8
Si(4Al) 100
RT-3 0.50
Si(3Al) 0 实施例 4
将实施例 3得到的富含 Si (4A1)结构的 SAPO-34分子筛催化剂用于甲醇制烯烃 催化反应。取 0.6克 20-40目的颗粒催化剂样品,装入反应器中, 在 550'C下通氮气活 化 1小时, 然后降温至 450°C进行反应。 以氮气为稀释气携带原料甲醇, 氮气流速为 40ml/min, 甲醇重量空速 2.0 。 反应产物组成采用在线气相色谱分析, 结果如表 4 所示。 表 4
编号 34-10L RT-1 RT-2 RT-3
HF浓度 (mol/l) 0.10 0.30 0.50
进料时间 (min) 100 2 2 2
甲醇转化率 (%) 100 100 100 100
产物分布 (wt% )
CH4 1.42 1.18 1.06 1.24
C2H4 43.49 48.88 49.46 52.12
C2H6 1.99 0.99 0.67' 0.65
C3H6 36.81 37.64 38.67 38.64
C3H8 4.50 2.35 2.08 1.39
C4 + 8.25 6.06 5.69 4.22
c5 + 3.54 2.9 2.37 1.74
∑C2 =-C3 = 80.30 86.52 88.13 90.76 寿命 * (min) 100-120 160-180 120-140 120-140
*指甲醇转化率为 100%时的进料累计时间。 实施例 5
将 10g实施例 1中编号为 34-10L的样品分别在 0.05mol/l, 0.10mol/l, 0.15mol/l 和 0.20mol/l四个摩尔浓度的 100mlNH4F水溶液中和温度分别为 120°C, 150°C条件下 处理 12个小时 (编号为 120-a, 120-b, 120-c, 120-d; 150-a, 150-b, 150-c, 150-d), 用去离子水洗涤至中性, 在 120Ό空气中干燥后, 在 550Ό空气中焙烧 3-5小时, XRD 分析如图 3所示, 得到富含 Si (4A1) 结构的 SAPO-34分子筛催化剂。 实施例 6
将实施例 5得到的富含 Si (4A1)结构的 SAPO-34分子筛催化剂用于甲醇制烯烃 催化反应。取 0.6克 20-40目的颗粒催化剂样品, 装入反应器中, 在 550Ό下通氮气活 化 1小时, 然后降温至 450°C进行反应。 以氮气为稀释气携带原料甲醇, 氮气流速为 40ml/min, 甲醇重量空速 S.Oh^ 反应产物组成用在线气相色谱分析, 结果如表 5和 表 6所示。 编号 34-10L 120-a 120-b 120-c 120-d
HF含量 (mol/1) 0.05 0.10 0.15 0.20 进料时间 (min) 100 120 120 140 120 甲醇转化率 (%) 100 100 100 100 100 产物分布 (wt% )
CH4 1.42 1.33 1.23 1.25 1.15
C2H4 43.49 48.33 49.06 51.36 50.71
C2H6 1.99 1.22 1.12 1.00 0.90
C3H6 36.81 37.76 37.37 37.12 37.51 c3¾ 4.50 2.42 2.35 1.58 2.01
C4+ 8.25 6.25 6.11 5.95 5.78
C5 + 3.54 2.69 2.76 1.74 1.94
∑C2 =-C3 = 80.30 86.09 86.43 88.48 88.22 寿命 * (min) 100-120 120-140 120-140 140-160 120-140
*指甲醇转化率为 100%时的进料累计时间。
表 6
编号 34-10L 150-a 150-b 150-c 150-d
HF含量 (mol/1) ― 0.05 0.10 0.15 0.20 进料时间 (min) 100 100 120 120 100 甲醇转化率 (%) 100 100 100 100 100 产物分布 (wt% )
CH4 1.42 1.38 1.30 1.48 ' 1.25
C2H4 43.49 48.64 49.90 50.00 49.66
C2H6 1.99 1.30 1.14 1.10 0.94
C3H6 36.81 37.27 37.35 36.64 37.21
C3H8 4.50 2.87 2.15 2.25 2.91
C4+ 8.25 6.16 5.66 5.98 5.32
C5+ 3.54 2.38 2.5 2.55 2.71
∑C2=-C3= 80.30 85.91 87.25 86.64 86.87 寿命 * (min) 100-120 100-120 120-140 120-140 100-120
*指甲醇转化率为 100%时的进料累计时间。 实施例 7
将 10g编号为 34-10L的样品分别在 0.10mol/l, 0.30mol/l, 0.50mol/l三个摩尔浓 度的 NH4F水溶液中室温下搅拌 12个小时 (编号为 RT-a, RT-b, RT-c), 用去离子水洗 涤至中性, 在 120°C空气中干燥后, 在 550Ό空气中焙烧 3-5小时, XRD分析如图 4 所示, 得到富含 Si (4Al)结构的 SAPO-34分子筛催化剂; 分子筛表面 Si配位环境分 析釆用 29Si固体核磁进行表征, 各种 Si配位结构的相对含量如表 7所示。
表 7
HF浓度
样品 硅配位结构 相对含量 (%)
(mol/1)
Si(4Al) 65.8
34-10L Si(3Al) 11.2
Si(OAl) 23.0
Si(4Al) 79.1
RT-1 0.10 Si(3Al) 9.9
Si(OAl) 11.0
Si(4Al) 90.5
RT-2 0.30
Si(3Al) 9.5
Si(4Al) 92.4
RT-3 0.50
Si(3Al) 7.6 实施例 8
将实施例 7得到的富含 Si (4A1)结构的 SAPO-34分子筛催化剂用于甲醇制烯烃 催化反应。取 0.6克 20-40目的颗粒催化剂样品, 装入反应器中, 在 550°C下通氮气活 化 1小时, 然后降温至 450Ό时进的行反应。 以氮气为稀释气携带原料甲醇, 氮气流 速为 40ml/min, 甲醇重量空速 S.Olf 反应产物组成用在线气相色谱分析, 结果如表 8所示。
表 8
编号 34-lOL RT-a RT-b RT-c
N F浓度 (mol/1) ― 0.1 0.3 0.5 进料时间 (min) 100 120 140 140 甲醇转化率 (%) 100 100 100 100 产物分布 (wt% )
CH4 1.42 1.24 1.15 1.3
C2H4 43.49 48.61 49.80 50.92
C2H6 1.99 1.20 1.03 0.84
C3H6 36.81 37.72 37.68 37.21
C3H8 4.50 2.93 2.3 2.12
C4 + 8.25 6.15 5.88 5.31
C5 + 3.54 2.15 2.16 2.30
∑C2 -C3 80.30 86.33 87.48 88.13 寿命 * (min) 100-120 120-140 140-160 140-160
*指甲醇转化率为 100%时的进料累计时间。

Claims

权 利 要 求
1.一种富含 Si(4Al)配位结构的 SAPO-34分子筛的制备方法,该方法制备的分子 筛骨架中 Si (4A1) 结构的相对含量占 Si配位环境的 70-100% ; 其特征在于, 采用后 改性技术, 使用脱硅试剂将 SAPO-34分子筛骨架上的 Si进行选择性脱除, 使得分子 筛骨架中配位环境为 Si (0A1), Si ( 1A1), Si (2A1), Si (3A1) 的含量降低或消除, 从而提高配位环境为 Si (4A1) 的相对含量。
2.按照权利要求 1所述的方法, 其特征在于, 所述脱硅试剂为含有 F1离子化合 物的水溶液。
3.按照权利要求 2所述的方法, 其特征在于, 所述含有 F'1离子化合物为 HF和 NH4F中的一种或两种的混合物。
4.按照权利要求 1所述的方法, 其特征在于, 在制备的富含 Si(4Al)配位结构的 SAPO-34分子筛的 Si配位环境中,以 Si配位环境相对含量百分数计: Si(4Al)为 70〜 100; Si (3A1)为 30〜0; Si (2A1) 为 20〜0; Si ( 1A1)为 10〜0; Si (0A1)为 5〜0。
5.按照权利要求 1所述的方法, 其特征在于, 操作步骤为:
a) 以摩尔比例为 2.0-5.0R: 0.1-2.0SiO2: 0.5-2.0Ρ2Ο5: 0.5-2.0Α12Ο3: 50H2O 制备初始凝胶混合物, 其中 R为模板剂;
b) 将步骤 a ) 中得到初始凝胶混合物晶化, 将固体产物过滤洗涤得到 SAPO-34分子筛滤饼, 或将滤饼在 100-120°C烘干, 得 SAPO-34分子筛 原粉;
c) 将步骤 b) 中得到的 SAPO-34分子筛滤饼或烘干后的原粉用氟化物水溶 液进行处理, 然后将固体分离并在空气中干燥, 得到富含 Si (4A1)结构 的 SAPO-34分子筛;
d)将步骤 c)中得到的 SAPO-34分子筛在 400-600°C空气中焙烧, 得到富含
Si (4A1) 结构的 SAPO-34分子筛催化剂。
6. 按照权利要求 5所述的方法, 其特征在于, 步骤 a)中的模板剂为三乙胺和二 乙胺中的一种或二者的混合物。
7.按照权利要求 5所述的方法,其特征在于,步骤 b)中的晶化温度为 180-220°C, 晶化时间为 24小时。
8.按照权利要求 5所述的方法, 其特征在于, 步骤 c) 中氟化物水溶液浓度为 0.01〜1.00mol/L, 改性温度为室温〜 200°C。
9. 按照权利要求 5所述的方法, 其特征在于, 步骤 c) 中氟化物水溶液浓度为 0.05〜0.50 mol/L, 改性温度为室温〜 100°C。
10. 按照权利要求 5所述的方法, 其特征在于, 步骤 c) 中用氟化物水溶液进行 处理的处理时间为 2〜48小时。
11.按照权利要求 5所述的方法, 其特征在于,步骤 c)中用氟化物水溶液进行处 理的处理时间为 8〜12小时。
12. 按照权利要求 1-11 任何一项所述的方法制得的富含 Si(4Al)配位结构的 SAPO-34分子筛。
13.权利要求 12的富含 Si(4Al)配位结构的 SAPO-34分子筛在甲醇或二甲醚制烯 烃反应中的应用。
PCT/CN2007/002376 2006-08-08 2007-08-08 Procédé de synthèse d'un tamis moléculaire sapo-34 enrichi avec une structure de coordination si(4al) dans le cadre WO2008019593A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200610089176 2006-08-08
CN200610089176.4 2006-08-08
CN2006101278700A CN101121527B (zh) 2006-08-08 2006-09-22 富含Si(4Al)配位结构的SAPO分子筛的制备方法
CN200610127870.0 2006-09-22

Publications (1)

Publication Number Publication Date
WO2008019593A1 true WO2008019593A1 (fr) 2008-02-21

Family

ID=39081937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002376 WO2008019593A1 (fr) 2006-08-08 2007-08-08 Procédé de synthèse d'un tamis moléculaire sapo-34 enrichi avec une structure de coordination si(4al) dans le cadre

Country Status (2)

Country Link
CN (1) CN101121527B (zh)
WO (1) WO2008019593A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105728032A (zh) * 2014-12-10 2016-07-06 神华集团有限责任公司 复合分子筛的制备方法和制得的复合分子筛及其应用
US9492818B2 (en) 2009-06-12 2016-11-15 Albemarle Europe Sprl SAPO molecular sieve catalysts and their preparation and uses
CN113952968A (zh) * 2021-11-19 2022-01-21 浙江工业大学 以含PO4四面体的多孔材料前驱体制备的抗烧结纳米AlFx催化剂及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633509B (zh) * 2008-07-24 2012-02-29 中国石油化工股份有限公司 一种磷酸硅铝分子筛的改性方法
CN109796027B (zh) * 2017-11-16 2020-08-25 神华集团有限责任公司 Sapo-34分子筛聚集体及其制备方法和甲醇制烯烃的方法
WO2019113948A1 (zh) * 2017-12-15 2019-06-20 中国科学院大连化学物理研究所 Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂
CN110902693B (zh) * 2018-09-17 2021-11-23 中国科学院大连化学物理研究所 一种金属改性sapo-34分子筛的制备方法
CN112079363A (zh) * 2019-06-14 2020-12-15 中国石油化工股份有限公司 Afn结构硅磷铝分子筛及其合成方法和应用
CN112479223A (zh) * 2020-11-26 2021-03-12 厦门大学 一种低硅纳米片状sapo-34分子筛及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2159410A1 (en) * 1994-11-14 1996-05-15 Pei-Shing Eugene Dai Catalyst for multistage etherification with high conversion of t-butanol

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DU A.: "Adjusting of Si Environment and Performance of SAPO-34 Molecular Sieve in Methanol to Olefin Reaction", CHEMICAL PHYSICS COMMUNICATION, vol. 5, no. 9, September 2004 (2004-09-01), pages 41 *
LIU H. ET AL.: "Synthesis of SAPO-34 Molecular Sieve Using hydrogen Fluoride and Triethylamine as Composite Template", CHINESE JOURNAL OF CATALYSIS, vol. 24, no. 4, April 2003 (2003-04-01), pages 279 - 283 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492818B2 (en) 2009-06-12 2016-11-15 Albemarle Europe Sprl SAPO molecular sieve catalysts and their preparation and uses
CN105728032A (zh) * 2014-12-10 2016-07-06 神华集团有限责任公司 复合分子筛的制备方法和制得的复合分子筛及其应用
CN105728032B (zh) * 2014-12-10 2019-06-18 国家能源投资集团有限责任公司 复合分子筛的制备方法和制得的复合分子筛及其应用
CN113952968A (zh) * 2021-11-19 2022-01-21 浙江工业大学 以含PO4四面体的多孔材料前驱体制备的抗烧结纳米AlFx催化剂及其制备方法和应用
CN113952968B (zh) * 2021-11-19 2024-02-09 浙江工业大学 以含PO4四面体的多孔材料前驱体制备的抗烧结纳米AlFx催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN101121527A (zh) 2008-02-13
CN101121527B (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2008019593A1 (fr) Procédé de synthèse d'un tamis moléculaire sapo-34 enrichi avec une structure de coordination si(4al) dans le cadre
JP6698555B2 (ja) Cha型ゼオライト材料、並びに、シクロアルキル−及びテトラアルキルアンモニウム化合物を使用するそれらの製造方法
TWI745283B (zh) 一種用於合成fer/mor類型之複合分子篩的方法
WO2008022532A1 (fr) Procédé destiné à synthétiser rapidement un tamis moléculaire de silicoaluminophosphate sapo-34
DK2902107T3 (en) SAPO-34 MOLECULES AND METHOD OF SYNTHESIS THEREOF
CN109701619B (zh) Ssz-13/ssz-39复合结构分子筛及其合成方法
CN104114277B (zh) 磷改性沸石催化剂
WO2012088854A1 (zh) Sapo分子筛的溶剂热合成方法及由其制备的催化剂
JP6649882B2 (ja) シリコアルミノリン酸塩−34モレキュラーシーブの合成方法
CN108128786B (zh) 一种超声辅助制备多级孔sapo-11分子筛的方法
CN103553073B (zh) 一种具有多级孔径的富含Si(4Al)的SAPO-44分子筛和其分子筛催化剂以及它们的制备方法
US20080108857A1 (en) Synthesis of SAPO-34 with essentially pure CHA framework
NZ271459A (en) Microporous silico-alumino-phosphate, preparation and use as a sorbent or catalyst
EP1838440A2 (en) Synthesis of silicoaluminophosphate molecular sieves
CN109678178B (zh) 具有cha结构的sapo-34型分子筛的合成方法及所得mto催化剂
WO2008019583A1 (fr) Procédé de synthèse d'un tamis moléculaires sapo-34 enrichi par une structure si (4ai) dans le squelette
WO2016129555A1 (ja) ベータ型ゼオライトの製造方法
CN105312082A (zh) Sapo-34/zsm-5复合分子筛,其制备方法,及其应用
WO2008019584A1 (fr) Procédé de synthèse d'un tamis moléculaire sapo-34 enrichi avec une structure si(4ai) dans le squelette
Wang et al. Tuning SAPO-34 with a tailor-designed zwitterionic amino acid for improved MTO performance
CN105413743B (zh) 一种直链烷烃异构化催化剂及其制备方法
WO2012071891A1 (zh) 一种小晶粒sapo-34分子筛的合成方法
CN112520756A (zh) 一种制备sapo-17分子筛的方法
RU2154021C2 (ru) Кристаллические металлофосфаты и способ их получения
JP2017530927A (ja) モノイソプロパノールアミンを用いたシリコアルミノホスフェート−34モレキュラーシーブの合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07785286

Country of ref document: EP

Kind code of ref document: A1