WO2008014844A1 - Polyetheramin-makromonomere mit zwei benachbarten hydroxylgruppen und ihre verwendung zur herstellung von polyurethanen - Google Patents

Polyetheramin-makromonomere mit zwei benachbarten hydroxylgruppen und ihre verwendung zur herstellung von polyurethanen Download PDF

Info

Publication number
WO2008014844A1
WO2008014844A1 PCT/EP2007/005207 EP2007005207W WO2008014844A1 WO 2008014844 A1 WO2008014844 A1 WO 2008014844A1 EP 2007005207 W EP2007005207 W EP 2007005207W WO 2008014844 A1 WO2008014844 A1 WO 2008014844A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polyurethane
compounds
aliphatic
cycloaliphatic
Prior art date
Application number
PCT/EP2007/005207
Other languages
English (en)
French (fr)
Inventor
Klaus Pöllmann
Jürgen MÜNTER
Original Assignee
Clariant Finance (Bvi) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Finance (Bvi) Limited filed Critical Clariant Finance (Bvi) Limited
Priority to DE502007007012T priority Critical patent/DE502007007012D1/de
Priority to BRPI0714779-1A priority patent/BRPI0714779A2/pt
Priority to EP07764637A priority patent/EP2049581B1/de
Priority to JP2009522112A priority patent/JP5213856B2/ja
Priority to US12/376,273 priority patent/US8546616B2/en
Priority to MX2009001193A priority patent/MX2009001193A/es
Publication of WO2008014844A1 publication Critical patent/WO2008014844A1/de
Priority to US14/011,475 priority patent/US8889814B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/16Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/325Polyamines containing secondary or tertiary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/722Combination of two or more aliphatic and/or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate

Definitions

  • the present invention relates to ⁇ - (alkoxy) - ⁇ -N, N-dihydroxyalkylamino-polyalkylene glycols, and their use for the preparation of water-dispersible polyurethanes.
  • polyurethane systems Due to their high resistance and ease of application, polyurethane systems have opened up a broad field of application in the paint, coating, coating and textile industries. For environmental and occupational safety reasons, solvent-free, water-dispersed polyurethane systems have been developed in the recent past.
  • Aqueous polyurethane dispersions consist of polyurethane polymers or polyurethane-polyurea polymers which contain both urethane groups and urea groups and are accessible by polyaddition reactions of polyols, polyisocyanates and polyamines. From the polyols and the polyisocyanates polyurethane prepolymers are first prepared, which are then dispersed in the aqueous phase and chain extended with polyamines to form the polyurethane-polyurea polymers.
  • the polyurethane polymers must also contain a sufficient amount of hydrophilic groups, which ensure the stabilization in the aqueous phase. These hydrophilic groups are anionic, cationic or nonionic groups or a combination of the groups just mentioned.
  • the dispersion is stabilized in this case after neutralization of the carboxylic acid side groups by electrostatic repulsion of the carboxylate groups incorporated in the prepolymer.
  • aqueous polyurethane dispersions are also prepared by nonionic, hydrophilic, sterically stabilizing groups.
  • nonionic, hydrophilic, sterically stabilizing groups To achieve this steric stabilization of polyurethane dispersions, therefore, long, hydrophilic, non-isocyanate-reactive side chains are required, which, like DMPA, can be incorporated into the polyurethane prepolymer via two hydroxyl groups (DE-A-25 51 094).
  • Polyethers are particularly suitable
  • Step 1 Preparation of a hydroxymethyl-1,3-dioxolane from the trifunctional alcohol
  • Step 2 Reaction of the alkaline hydroxymethyl-1, 3-dioxolane with a
  • Step 3 Reaction of the ⁇ -hydroxy- ⁇ - (1,3-dioxolano) -polyalkylene glycol with an alkyl halide or an alkyl monoisocyanate
  • Step 4 Acid-catalyzed cleavage of the 1,3-dioxolane ring to the diol.
  • a disadvantage of this process is that large amounts of alkali metal halides are obtained as by-products in the etherification in stage 3, which interfere with the further conversion to polyurethane prepolymers and are difficult to remove.
  • trihydroxy-functional polyalkylene glycols may be formed as by-products which may cause crosslinking and thus insolubility in the polyurethane prepolymer dispersion during the copolymerization into the polyurethane prepolymer dispersion (EP-A-0 43 966).
  • Object of the present invention was therefore to find a simple and inexpensive to produce ⁇ - (alkoxy) - ⁇ -dihydroxyalkyl-polyalkylene glycol, which does not have the above-mentioned disadvantages in the preparation and application.
  • the ⁇ - (alkoxy) - ⁇ -dihydroxyalkyl-polyalkylene glycol should be suitably incorporated into polyurethane prepolymer dispersions and ensure the stability of the aqueous prepolymer dispersions.
  • the invention thus relates to compounds of the formula 2
  • R 1 is H, methyl or ethyl
  • R 2 is C 1 - to C 4 -alkyl
  • A is a C 2 - to C 4 -alkylene group, m is a number from 1 to 400 n is 1, 2, 3, 4, or 5.
  • Another object of the invention is a process for the preparation of polyurethane prepolymers by reacting compounds of formula 2 with a polyisocyanate and optionally with other polyols or polyamines.
  • Another object of the invention is a process for the preparation of polyurethane polymers by reacting a) a compound of formula 2 with a polyisocyanate and optionally with other polyols or polyamines to a polyurethane prepolymer, and b) the resulting polyurethane prepolymer in aqueous Milieu reacted with a polyamine to a polyurethane polymer.
  • Another object of the invention are polyurethane prepolymers obtainable by the reaction of a compound of formula 2 with an isocyanate of the formula X (NCO) P , wherein p is a number from 2 to 4 and X is an aliphatic, cycloaliphatic, aromatic or araliphatic carbon hydrogen rest is.
  • Another object of the invention are polyurethane polymers obtainable by the reaction of a compound of formula 2 with an isocyanate of the formula
  • X (NCO) P in which p is a number from 2 to 4 and X is an aliphatic, cycloaliphatic, aromatic or araliphatic hydrocarbon radical, and the subsequent reaction of the resulting polyurethane prepolymer in an aqueous medium with a polyamine of the formula Y (NH 2 ) q , wherein Y is an aliphatic, cycloaliphatic, aromatic or araliphatic hydrocarbon radical, and q is a number from 2 to 4.
  • Another object of the invention is the use of the compounds of formula 2 for the preparation of polyurethane prepolymers by the compound of formula 2 with an isocyanate of the formula X (NCO) P , wherein p is a number from 2 to 4 and X is an aliphatic, cycloaliphatic, aromatic or araliphatic hydrocarbon radical is reacted.
  • Another object of the invention is the use of the compounds of formula 2 for the preparation of polyurethane polymers by the compound of formula 2 with an isocyanate of the formula X (NCO) P , wherein p is a number from 2 to 4 and X is an aliphatic, cycloaliphatic, is aromatic or araliphatic hydrocarbon radical, is reacted, and the resulting polyurethane prepolymer in an aqueous medium with a polyamine of the formula Y (NH 2 ) q , wherein Y is an aliphatic, cycloaliphatic, aromatic or araliphatic hydrocarbon radical, and q is a number from 2 to 4 is, is implemented.
  • X is an aliphatic, cycloaliphatic, is aromatic or araliphatic hydrocarbon radical
  • the total number of oxalkylene units is preferably between 3 and 250, more preferably between 5 and 200.
  • the oxalkylene chain may be a homopolymer or block copolymer chain having alternating blocks of various oxalkylene units. It can also be a chain with a statistical sequence of the oxalkylene units or a chain with random and block-like chain sections.
  • the oxalkylene units are preferably either only oxyethylene units, or a mixture of oxyethylene and oxypropylene units, wherein preferably at least 50 mol% of the radicals (AO) are oxyethylene radicals.
  • - (AO) m -R 2 is an oxalkylene chain of the formula
  • a is a number from 0 to 300, preferably 1 to 50 b, a number from 3 to 300, preferably 5 to 200 and R 2 has the meaning given above.
  • R 1 is hydrogen
  • R 2 is methyl.
  • R 1 is hydrogen and R 2 is methyl.
  • n 2, 3 or 4.
  • the compounds of the formula 2 are also referred to below as ⁇ -alkoxy polyetheramine diols.
  • the ⁇ -alkoxy-polyether-amine diols can be prepared from commercially available ⁇ -amino- ⁇ -alkoxypolyalkylene glycols (DE-A-16 43 426) or ⁇ -amino- ⁇ - ⁇ derivatives prepared especially for this purpose are used.
  • Alkoxypolyalkylenglykolen which are prepared from ⁇ -hydroxy- ⁇ -Alkoxypolyalkylenglykolen according to the process described in DE-A-16 43 426, by exchanging the ⁇ -hydroxy group in a Aminolysere forcing by a primary amino group. This primary amino group is then reacted without addition of an alkoxylation catalyst with exactly 2 moles of alkylene oxide to Dihydroxyalkylaminosky.
  • the degree of water solubility defined by the cloud point in accordance with DIN EN 1890, the ⁇ -alkoxy-Polyetheramindiole, and the degree of their hydrophilizing and dispersing effect can be adjusted by the ratio and number of oxalkylene units (AO) m , preferably from ethylene oxide to propylene oxide ,
  • the isocyanates of the formula X (NCO) P are preferably those in which X is an aliphatic hydrocarbon radical having 4 to 12 carbon atoms, a cycloaliphatic or aromatic hydrocarbon radical having 6 to 15 carbon atoms or an araliphatic hydrocarbon radical having 7 to 15 carbon atoms.
  • diisocyanates examples include tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 1-diisocyanatocyclohexane, 1-isocyanato-3,5,5-trimethyl-5-isocyanatomethylcyclohexane (IPDI), 2,2-bis (4-isocyanatocyclohexyl) -propane, Trimethylhexandiisocyanat, 1, 4-diisocyanatobenzene, 2,4-diisocyanatotoluene, 2,6-diisocyanatotoluene, 4,4'-diisocyanato-diphenylmethane, 2,4'-diisocyanato-diphenylmethane, p-xylylene diisocyanate, tetramethylxylylene diisocyanate (TMXDI), the isomers of Bis- (4-isocyanato
  • mixtures of these isocyanates are the mixtures of the respective structural isomers of diisocyanate toluene and diisocyanato-diphenylmethane; in particular, the mixture of 80 mol% 2,4-diisocyanatotoluene and 20 mol% 2,6-diisocyanatotoluene is suitable.
  • mixtures of aromatic isocyanates such as 2,4-diisocyanatotoluene and / or 2,6-diisocyanatotoluene with aliphatic or cycloaliphatic isocyanates such as hexamethylene diisocyanate or IPDI are particularly advantageous, wherein the preferred mixing ratio of aliphatic to aromatic isocyanates 4: 1 to 1: 4.
  • polyurethanes can be used as compounds in addition to the aforementioned also isocyanates, in addition to the free isocyanate groups further blocked isocyanate groups, e.g. Wear uretdione groups.
  • the polyamines used for the reaction of the polyurethane prepolymers to the polyurethane polymers are those in which Y is an aliphatic hydrocarbon radical having 4 to 12 carbon atoms, a cycloaliphatic or aromatic hydrocarbon radical having 6 to 15 carbon atoms or an araliphatic hydrocarbon radical with 7 to 15 carbon atoms.
  • Preferred amines are polyfunctional amines of the molecular weight range from 32 to 500 g / mol, preferably from 60 to 300 g / mol, which contain at least two amino groups selected from the group of the primary and secondary amino groups.
  • diamines such as diaminoethane, diaminopropanes, diaminobutanes, diaminohexanes, piperazine, 2,5-dimethylpiperazine, amino-3-aminomethyl-3,5,5-trimethylcyclohexane (isophoronediamine, IPDA), 4,4'-diaminodicyclohexylmethane, 1,4 -Diaminocyclohexan, aminoethylethanolamine, hydrazine, hydrazine hydrate or triamines such as diethylenetriamine or 1, 8-diamino-4-aminomethyloctan.
  • diamines such as diaminoethane, diaminopropanes, diaminobutanes, diaminohexanes, piperazine, 2,5-dimethylpiperazine, amino-3-aminomethyl-3,5,5-trimethylcyclohexane (isophoronediamine, IPDA), 4,4
  • the amines may also be in blocked form, e.g. in the form of the corresponding ketimines (see, e.g., CA-A-1 129 128), ketazines (e.g., U.S. 4,269,748) or amine salts (see U.S. 4,292,226).
  • Oxazolidines as used for example in US Pat. No. 4,192,937, are also blocked polyamines which can be used for the preparation of the polyurethanes according to the invention for chain extension of the prepolymers. Preference is given to using mixtures of di- and triamines, particularly preferably mixtures of isophoronediamine (IPDA) and diethylenetriamine (DETA).
  • the described polyamines are also suitable for use in the reaction of the compound of formula 2 with a polyisocyanate.
  • diols are used in the reaction of the compounds of the formula 2 with polyisocyanates to give the polyurethane prepolymer, and in the preparation of the polyurethane polymers.
  • the diols are, in particular, polyester polyols which are known, for example, from Ulimann's Encyklopadie der ischen Chemie, 4th Edition, Volume 19, pages 62 to 65. Preference is given to using polyesterpolyols which are obtained by reacting dihydric alcohols with dibasic carboxylic acids. Instead of the free polycarboxylic acids, it is also possible to use the corresponding polycarboxylic acid anhydrides or corresponding polycarboxylic acid esters of lower alcohols or mixtures thereof to prepare the polyesterpolyols.
  • the polycarboxylic acids may be aliphatic, cycloaliphatic, araliphatic, aromatic or heterocyclic and optionally, for example by Halogen atoms, substituted and / or unsaturated. Examples include:
  • dicarboxylic acids of the general formula HOOC- (CH 2 ) y -COOH, where y is a number from 1 to 20, preferably an even number from 2 to 20, for example succinic acid, adipic acid, sebacic acid and dodecanedicarboxylic acid.
  • polyhydric alcohols e.g. Ethylene glycol, propane-1, 2-diol, propane-1, 3-diol, butane-1,3-diol, butene-1, 4-diol, butyne-1, 4-diol, pentane-1, 5-diol, Neopentyl glycol, bis (hydroxymethyl) cyclohexanes such as 1, 4-bis (hydroxymethyl) cyclohexane, 2-methyl-propane-1, 3-diol, Methylpentand iole, further diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, dibutylene glycol and polybutylene glycols.
  • Ethylene glycol propane-1, 2-diol, propane-1, 3-diol, butane-1,3-diol, butene-1, 4-diol, butyne-1, 4-
  • Alcohols of the general formula HO- (CH 2 ) X -OH are preferred, where x is a number from 1 to 20, preferably an even number from 2 to 20.
  • examples of these are ethylene glycol, butane-1, 4-diol, hexane-1, 6-diol, octane-1, 8-diol and dodecane-1,12-diol.
  • Further preferred is neopentyl glycol.
  • polycarbonate diols as can be obtained, for example, by reacting phosgene with an excess of the low molecular weight alcohols mentioned as synthesis components for the polyesterpolyols.
  • lactone-based polyesterdiols which are homopolymers or copolymers of lactones, preferably terminal hydroxyl-containing addition products of lactones onto suitable difunctional starter molecules.
  • Suitable lactones are preferably those which are derived from compounds of the general formula HO- (CH 2 ) Z -COOH, where z is a number from 1 to 20 and an H atom of a methylene unit may also be substituted by a C 1 to C 4 alkyl radical. Examples are e-caprolactone, ß-propiolactone, ⁇ -Buty ⁇ olacton and / or methyl-e-caprolactone and mixtures thereof.
  • Suitable starter components are, for example, the low molecular weight dihydric alcohols mentioned above as the synthesis component for the polyesterpolyols.
  • the corresponding polymers of e-caprolactone are particularly preferred.
  • Lower polyester diols or polyether diols can also be used as starters for the preparation of the lactone polymers.
  • the polymers of lactones it is also possible to use the corresponding, chemically equivalent polycondensates of the hydroxycarboxylic acids corresponding to the lactones.
  • suitable monomers are polyether diols. They are in particular by polymerization of ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin with itself, for example in the presence of BF 3 or by addition of these compounds, optionally in admixture or sequentially, to starting components with reactive hydrogen atoms, such as alcohols or amines, For example, water, ethylene glycol, propane-1, 2-diol, propane-1, 3-diol, 1, 2-bis (4-hydroxy-diphenyl) propane or aniline available. Particularly preferred is polytetrahydrofuran having a molecular weight of 240 to 5000, and especially 500 to 4500.
  • polyhydroxyolefins preferably those having 2 terminal hydroxyl groups, e.g. ⁇ .- ⁇ -Dihydroxypolybutadien, ⁇ x, - ⁇ -Dihydroxypoly- methacrylic ester or ⁇ , - ⁇ -Dihydroxypolyacrylester as monomers.
  • Such compounds are known, for example, from EP-A-0 622 378.
  • Further suitable polyols are polyacetals, polysiloxanes and alkyd resins.
  • the OH number was 24 mgKOH / g, corresponding to a molecular weight of 2330 g / mol.
  • the distribution of the oxyethylene, oxypropylene chain fractions and the methoxy (CH 3 O-), primary (-CH 2 OH) and secondary (-CHCH 3 OH) end groups can be derived from the NMR spectrum:
  • Step 2 730 g of the ⁇ -hydroxy- ⁇ -methoxy-polyoxyalkylene-polyoxypropylene block copolymer from step 1 having a molecular weight of 2330 g / mol and a molar ratio of oxypropylene to oxyethylene units of 19 to 81 were mixed with ammonia and hydrogen in Presence of a Ni-containing catalyst converted to the corresponding amine.
  • the resulting primary amine had a total nitrogen content of 0.60 wt%.
  • the amine from step 2 was reacted after removal of the catalyst with 2 molar equivalents of ethylene oxide (34 g) at 190 0 C and a pressure of 4 bar to the corresponding ⁇ -dihydroxyethylamino- ⁇ -methoxy-polyalkylene glycol.
  • the total nitrogen content after the reaction was 0.57 wt .-%, corresponding to a molecular weight of 2456 g / mol.
  • the proportion of tertiary amine was 98.2 wt .-%.
  • the product was characterized by 1 H-NMR. functional CH 3 -O-OCH 2 CH 2 OCH 2 CHCH 3 O -CH 2 N (CH 2 CH 2 OH) 2 -CH 2 OH
  • the OH number was 75 mgKOH / g, corresponding to a molecular weight of 748 g / mol.
  • the distribution of the oxyethylene, oxypropylene chain fractions and the methoxy (CH 3 O-), primary (-CH 2 OH) and secondary (-CHCH 3 OH) end groups can be derived from the NMR spectrum:
  • 3rd step The amine from step 2 was reacted after removal of the catalyst with 2 molar equivalents of ethylene oxide (81 g) at 19O 0 C and a pressure of 4 bar to the corresponding ⁇ -dihydroxyethylamino- ⁇ -methoxy-polyalkylene glycol.
  • the total nitrogen content after the reaction was 1.6 wt .-%, corresponding to a molecular weight of 875 g / mol.
  • the proportion of tertiary amine was 99 wt .-%.
  • the product was characterized by 1 H-NMR.
  • the NCO residual content measured in the experiment was 2.18% by weight.
  • 150 g of acetone were added to the prepolymer, neutralized with 1 g of triethylamine, cooled to room temperature and dispersed with 650 g of water.
  • the Chain extension of the aqueous dispersed prepolymer was carried out with 6.7 g of ethylenediamine dissolved in 50 g of water. Subsequent distillation in vacuo removed the acetone.
  • the result was a milky white, low-viscosity and storage-stable polyurethane dispersion having a solids content of 30% by weight, a pH of 8.0 and an average particle diameter of 200 nm (measured by Particle Size Analyzer 90 Plus, Brookhaven Instruments).
  • the chain extension of the aqueous dispersed prepolymer was carried out with 7.1 g of ethylenediamine dissolved in 50 g of water.
  • the result was an orange translucent, low-viscosity and storage-stable polyurethane dispersion having a solids content of 30% by weight, a pH of 8.5 and an average particle diameter of 40 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyethers (AREA)

Abstract

Gegenstand der Erfindung sind Verbindungen der Formel (2) worin R<SUP>1</SUP> H, Methyl oder Ethyl, R<SUP>2</SUP> C<SUB>1</SUB>- bis C<SUB>4</SUB>-Alkyl, A eine C<SUB>2</SUB>- bis C<SUB>4</SUB>-Alkylengruppe, m eine Zahl von 1 bis 400 n 1, 2, 3, 4, oder 5 bedeuten, ein Verfahren zu ihrer Herstellung und ihre Verwendung in der Herstellung von Polyurethan-Prepolymeren.

Description

Beschreibung
Polyetheramin-Makromonomere mit zwei benachbarten Hydroxylgruppen und ihre Verwendung zur Herstellung von Polyurethanen
Die vorliegende Erfindung betrifft Ω-(Alkoxy)-α-N, N-Dihydroxyalkylamino- Polyalkylenglykole, und ihre Verwendung zur Herstellung von wasserdispergierbaren Polyurethanen.
Polyurethansysteme haben sich durch ihre hohe Beständigkeit und einfache Applikation ein weites Anwendungsfeld im Bereich Farben-, Lack-, Coating- und Textilindustrie erschlossen. Aus Gründen des Umwelt- und Arbeitsschutzes wurden in der jüngeren Vergangenheit vor allem lösungsmittelfreie, wasserdispergierte Polyurethansysteme entwickelt.
Die Herstellung von wässrigen Polyurethan-Dispersionen ist seit vielen Jahren bekannt und wird in einer großen Zahl von Veröffentlichungen im Detail beschrieben (z.B. Houben-Weyl, Methoden der Organischen Chemie, Band E20, Teil I1 S. 1659-1681 ; D. Dieterich, Prog. Org. Coat. 1981 , 9, 281-330; J.W. Rosthauser, K. Nachtkamp, Journal of Coated Fabrics 1986, 16, 39-79; R. Amoldus, Surf. Coat. 1990, 3 (Waterborne Coat.), 179-198).
Wässrige Polyurethan-Dispersionen bestehen aus Polyurethan-Polymeren bzw. Polyurethan-Polyharnstoff-Polymeren, die sowohl Urethan-Gruppen als auch Harnstoff-Gruppen beinhalten und durch Polyadditions-Reaktionen von Polyolen, Polyisocyanaten und Polyaminen zugänglich sind. Aus den Polyolen und den Polyisocyanaten werden zunächst Polyurethan-Prepolymere hergestellt, die dann in der wässrigen Phase dispergiert und mit Polyaminen unter Aufbau der Polyurethan-Polyharnstoff-Polymere kettenverlängert werden. Die Polyurethan- Polymere müssen zudem eine ausreichende Menge an hydrophilen Gruppen enthalten, welche die Stabilisierung in der wässrigen Phase gewährleisten. Bei diesen hydrophilen Gruppen handelt es sich um anionische, kationische oder nicht-ionische Gruppen oder eine Kombination der eben genannten Gruppen. Um auf die Verwendung externer Emulgatoren verzichten zu können, ist die Herstellung stabiler wässriger Polyurethandispersionen nur mit Hilfe geeigneter Comonomere möglich, die durch ihre Hydrophilie eine stabile wässrige Dispersion von Polyurethanprepolymeren ermöglichen. (S. Dedrichs, European Coating Journal S. 565,5, 2002, NoII, DE-A-25 51 094). Um einen vollständigen Einbau der hydrophilen Comonomere in das hydrophobe Polyurethanprepolymer zu erreichen, setzt man hierzu Diole mit hydrophilen Resten wie z.B. Dimethylolpropansäure (DMPA) ein. Die Stabilisierung der Dispersion erfolgt in diesem Fall nach Neutralisation der Carbonsäureseitengruppen durch elektrostatische Abstoßung der ins Prepolymer eingebauten Carboxylatgruppen. (H. Kager, Dissertation, Uni Hamburg 2002, Jung-Eun Yang, Journal of Applied Polymer Science 86, 9 , S.2375).
Neben der elektrostatischen Stabilisierung durch Carboxylatgruppen werden wässrige Polyurethandispersionen auch durch nichtionische, hydrophile, sterisch stabilisierend wirkende Gruppen hergestellt. Zur Erreichung dieser sterischen Stabilisierung von Polyurethandispersionen benötigt man daher lange, hydrophile, nicht mit Isocyanaten reagierende Seitenketten, die wie DMPA über zwei Hydroxylgruppen in das Polyurethanprepolymer eingebaut werden können (DE-A-25 51 094). Als besonders geeignet haben sich dabei Polyether
(Polyalkylenglykole) mit zwei freien nahe benachbarten Hydroxylgruppen am gleichen Molekülende und einer langen mit einem Alkoxyende versehenen Polyalkylenseitenkette gemäß folgender Formel 1 erwiesen. (S. Dedrichs, European Coating Journal S. 565,5, 2002, DE 30 49 746 A1).
(D
Figure imgf000004_0001
Hierin bedeuten m = k = 1; n > = 20 und R = Alkyl oder Alkyl-N-C=O
Die Herstellung derartiger Systeme ist jedoch sehr aufwändig und teuer, und verläuft über 4 Stufen ausgehend von trifunktionellen Alkoholen wie Glycerin oder Trimethylolpropan (DE-A-3049 746, EP-A-O 043 966):
Stufe 1 : Herstellung eines Hydroxymethyl-1 ,3-Dioxolans aus dem trifunktionellen Alkohol
Stufe 2: Umsetzung des alkalischen Hydroxymethyl-1 ,3-Dioxolans mit einem
Alkylenoxid Stufe 3: Umsetzung des Ω-Hydroxy-α-(1 ,3-Dioxolano)-Polyalkylenglykols mit einem Alkylhalogenid oder einem Alkylmonoisocyanat Stufe 4: Säurekatalysierte Spaltung des 1 ,3-Dioxolanrings zum Diol.
Nachteilig bei diesem Verfahren ist, dass große Mengen Alkalihalogenide bei der Veretherung in Stufe 3 als Nebenprodukt anfallen, die die weitere Umsetzung zu Polyurethanprepolymeren stören und schwierig zu entfernen sind. Darüber hinaus können im Falle einer unvollständigen Umsetzung in Stufe 3 neben den Ziel-Diolen, trihydroxy-funktionelle Polyalkylenglykole als Nebenprodukte entstehen, die bei der Einpolymerisation in die Polyurethanprepolymerdispersion Vernetzung und damit Unlöslichkeiten verursachen können (EP-A-OO 43 966). Bei der in DE-A-25 14 513 beschriebenen Herstellung von Diisocyanaten mit Polyalkylenglykolseitenketten durch Umsetzung von Triisocyanaten mit einem Monohydroxy-funktionellen Polyalkylenglykol ergibt sich das Problem des Entstehens von vernetzend wirkenden Triisocyanaten bzw. des Vorhandenseins von Monohydroxy- oder Monoisocyanat-funktionellen Komponenten je nach gewählter Stöchiometrie. Auch hier verursachen Triisocyanat-funktionelle Komponenten potentiell Vernetzung, Monohydroxy- oder Monoisocyanat-funktionellen Komponenten verursachen jedoch Kettenabbruch der linearen PU-Polymere.
Aufgabe der vorliegenden Erfindung war es deshalb, ein einfach und kostengünstig herzustellendes Ω-(Alkoxy)-α-Dihydroxyalkyl-Polyalkylenglykol zu finden, das die oben genannten Nachteile bei der Herstellung und Anwendung nicht aufweist.
Das Ω-(Alkoxy)-α-Dihydroxyalkyl-Polyalkylenglykol sollte in geeigneter Weise in Polyurethanprepolymerdispersionen eingebaut werden können und die Stabilität der wässrigen Prepolymerdispersionen gewährleisten.
Gegenstand der Erfindung sind somit Verbindungen der Formel 2
Figure imgf000005_0001
worin
R1 H, Methyl oder Ethyl,
R2 C1- bis C4 -Alkyl,
A eine C2- bis C4-Alkylengruppe, m eine Zahl von 1 bis 400 n 1 , 2, 3, 4, oder 5 bedeuten. Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Polyurethan-Prepolymeren, indem man Verbindungen der Formel 2 mit einem Polyisocyanat und gegebenenfalls mit weiteren Polyolen oder Polyaminen umsetzt.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Polyurethanpolymeren, indem man a) eine Verbindung der Formel 2 mit einem Polyisocyanat und gegebenenfalls mit weiteren Polyolen oder Polyaminen zu einem Polyurethan-Prepolymer umsetzt, und b) das so erhaltene Polyurethan-Prepolymer in wässrigem Milieu mit einem Polyamin zu einem Polyurethanpolymer umsetzt.
Ein weiterer Gegenstand der Erfindung sind Polyurethan-Prepolymere, erhältlich durch die Reaktion einer Verbindung der Formel 2 mit einem Isocyanat der Formel X(NCO)P, worin p eine Zahl von 2 bis 4 und X ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlen Wasserstoff rest ist.
Ein weiterer Gegenstand der Erfindung sind Polyurethanpolymere, erhältlich durch die Reaktion einer Verbindung der Formel 2 mit einem Isocyanat der Formel
X(NCO)P, worin p eine Zahl von 2 bis 4 und X ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlenwasserstoffrest ist, und die anschließende Umsetzung des so erhaltenen Polyurethanprepolymers in wässrigem Milieu mit einem Polyamin der Formel Y(NH2)q, worin Y ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlenwasserstoff rest, und q eine Zahl von 2 bis 4 ist.
Ein weiterer Gegenstand der Erfindung ist die Verwendung der Verbindungen der Formel 2 zur Herstellung von Polyurethan-Prepolymeren, indem die Verbindung der Formel 2 mit einem Isocyanat der Formel X(NCO)P, worin p eine Zahl von 2 bis 4 und X ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlenwasserstoff rest ist, zur Reaktion gebracht wird. Ein weiterer Gegenstand der Erfindung ist die Verwendung der Verbindungen der Formel 2 zur Herstellung von Polyurethanpolymeren, indem die Verbindung der Formel 2 mit einem Isocyanat der Formel X(NCO)P, worin p eine Zahl von 2 bis 4 und X ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlenwasserstoffrest ist, zur Reaktion gebracht wird, und das so erhaltene Polyurethanprepolymer in wässrigem Milieu mit einem Polyamin der Formel Y(NH2)q, worin Y ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlenwasserstoffrest, und q eine Zahl von 2 bis 4 ist, umgesetzt wird.
In der durch (A-O)m wiedergegebenen Oxalkylengruppe liegt die Gesamtzahl von Oxalkyleneinheiten vorzugsweise zwischen 3 und 250, insbesondere zwischen 5 und 200. Bei der Oxalkylenkette kann es sich um eine Homopolymer- oder Blockcopolymerkette handeln, die alternierende Blöcke verschiedener Oxalkyleneinheiten aufweist. Es kann sich dabei auch um eine Kette mit statistischer Abfolge der Oxalkyleneinheiten handeln oder um eine Kette mit statistischen und blockartigen Kettenabschnitten. Die Oxalkyleneinheiten sind vorzugsweise entweder nur Oxethyleneinheiten, oder eine Mischung aus Oxethylen- und Oxpropyleneinheiten, wobei vorzugsweise mindestens 50 mol-% der Reste (A-O) Oxethylen reste sind.
In einer weiteren bevorzugten Ausführungsform steht -(A-O)m-R2 für eine Oxalkylenkette der Formel
- (CH2-CH2-O)b - (CH(CHs)-CH2-O)3 - R2 worin a eine Zahl von 0 bis 300, vorzugsweise 1 bis 50 b eine Zahl von 3 bis 300, vorzugsweise 5 bis 200 und R2 die oben angegebene Bedeutung hat.
Vorzugsweise steht R1 für Wasserstoff.
Vorzugsweise steht R2 für Methyl. In einer weiteren bevorzugten Ausführungsform stehen R1 für Wasserstoff und R2 für Methyl.
In einer weiteren bevorzugten Ausführungsform ist n gleich 2, 3 oder 4.
Die Verbindungen der Formeln 2 werden im Folgenden auch als Ω-Alkoxy- Polyetheramindiole bezeichnet.
Im Folgenden wird das Verfahren zur Herstellung der Ω-Alkoxy- Polyetheramindiole sowie die Herstellung von Polyurethan-Dispersionen damit näher beschrieben und an Beispielen erläutert.
Die Ω-Alkoxy-Polyetheramindiole können aus kommerziell verfügbaren α-Amino- Ω-Alkoxypolyalkylenglykolen hergestellt werden (DE-A-16 43 426), oder man verwendet speziell für diesen Zweck hergestellte α-Amino-Ω-
Alkoxypolyalkylenglykolen die aus α-Hydroxy-Ω-Alkoxypolyalkylenglykolen nach dem in DE-A-16 43 426 beschriebenen Verfahren hergestellt werden, indem in einer Aminolysereaktion die α-Hydroxy-Gruppe durch eine primäre Aminogruppe ausgetauscht wird. Diese primäre Aminogruppe wird anschließend ohne Zugabe eines Alkoxylierungskatalysators mit genau 2 Mol Alkylenoxid zur Dihydroxyalkylaminogruppe umgesetzt.
Der Grad der Wasserlöslichkeit, definiert durch den Trübungspunkt nach DIN EN 1890, der Ω-Alkoxy-Polyetheramindiole, sowie der Grad ihrer hydrophilierenden und dispergierenden Wirkung kann durch das Verhältnis und Anzahl der Oxalkyleneinheiten (AO)m, vorzugsweise von Ethylenoxid zu Propylenoxid, eingestellt werden.
Die Isocyanate der Formel X(NCO)P sind vorzugsweise solche, in denen X für einen aliphatischen Kohlenwasserstoffrest mit 4 bis 12 Kohlenstoff atomen, einen cycloaliphatischen oder aromatischen Kohlenwasserstoffrest mit 6 bis 15 Kohlenstoffatomen oder einen araliphatischen Kohlenwasserstoffrest mit 7 bis 15 Kohlenstoffatomen steht. Beispiele derartiger Diisocyanate sind Tetramethylendiisocyanat, Hexamethylen- diisocyanat, Dodecamethylendiisocyanat, 1 ^-Diisocyanatocyclohexan, 1-lsocyanato-3,5,5-trimethyl-5-isocyanatomethylcyclohexan (IPDI), 2,2-Bis-(4- isocyanatocyclohexyl)-propan, Trimethylhexandiisocyanat, 1 ,4-Diisocyanatobenzol, 2,4-Diisocyanatotoluol, 2,6-Diisocyanatotoluol, 4,4'-Diisocyanato-diphenylmethan, 2,4'-Diisocyanato-diphenylmethan, p-Xylylendiisocyanat, Tetramethylxylylendiisocyanat (TMXDI), die Isomeren des Bis-(4-isocyanatocyclohexyl)methans (HMDI) wie das trans/trans-, das cis/-cis- und das cis/trans-lsomere sowie aus diesen Verbindungen bestehende Gemische.
Als Gemische dieser Isocyanate sind besonders die Mischungen der jeweiligen Strukturisomeren von Diisocyanattoluol und Diisocyanato-diphenylmethan von Bedeutung, insbesondere ist die Mischung aus 80 mol-% 2,4-Diisocyanatotoluol und 20 mol-% 2,6-Diisocyanatotoluol geeignet. Weiterhin sind die Mischungen von aromatischen Isocyanaten wie 2,4 Diisocyanattoluol und/oder 2,6-Diisocyanatotoluol mit aliphatischen oder cycloaliphatischen Isocyanaten wie Hexamethylendiisocyanat oder IPDI besonders vorteilhaft, wobei das bevorzugte Mischungsverhältnis der aliphatischen zu aromatischen Isocyanate 4 : 1 bis 1 : 4 beträgt.
Zum Aufbau der Polyurethane kann man als Verbindungen außer den vorgenannten auch Isocyanate einsetzen, die neben den freien Isocyanatgruppen weitere verkappte Isocyanatgruppen, z.B. Uretdiongruppen tragen.
Die für die Umsetzung der Polyurethan-Prepolymere zu den Polyurethan- Polymeren zum Einsatz kommenden Polyamine sind solche, in denen Y für einen aliphatischen Kohlenwasserstoffrest mit 4 bis 12 Kohlenstoffatomen, einen cycloaliphatischen oder aromatischen Kohlenwasserstoffrest mit 6 bis 15 Kohlenstoffatomen oder einen araliphatischen Kohlenwasserstoffrest mit 7 bis 15 Kohlenstoffatomen steht. Bevorzugte Amine sind polyfunktionelle Amine des Molgewichtsbereichs von 32 bis 500 g/mol, vorzugsweise von 60 bis 300 g/mol, welche mindestens zwei Aminogruppen, ausgewählt aus der Gruppe der primären und sekundären Aminogruppen, enthalten. Beispiele hierfür sind Diamine wie Diaminoethan, Diaminopropane, Diaminobutane, Diaminohexane, Piperazin, 2,5-Dimethylpiperazin, Amino-3-aminomethyl-3,5,5-trimethylcyclohexan (Isophorondiamin, IPDA), 4,4'-Diaminodicyclohexylmethan, 1 ,4-Diaminocyclohexan, Aminoethylethanolamin, Hydrazin, Hydrazinhydrat oder Triamine wie Diethylentriamin oder 1 ,8-Diamino-4-aminomethyloctan.
Die Amine können auch in blockierter Form, z.B. in Form der entsprechenden Ketimine (siehe z.B. CA-A-1 129 128), Ketazine (vgl. z.B. die US-4 269 748) oder Aminsalze (s. US-4 292 226) eingesetzt werden. Auch Oxazolidine, wie sie beispielsweise in der US-4 192 937 verwendet werden, stellen verkappte Polyamine dar, die für die Herstellung der erfindungsgemäßen Polyurethane zur Kettenverlängerung der Präpolymeren eingesetzt werden können. Bevorzugt werden Gemische von Di- und Triaminen verwendet, besonders bevorzugt Gemische von Isophorondiamin (IPDA) und Diethylentriamin (DETA).
Die beschriebenen Polyamine sind ebenfalls zur Verwendung bei der Umsetzung der Verbindung der Formel 2 mit einem Polyisocyanat geeignet.
Gegebenenfalls werden bei der Umsetzung der Verbindungen der Formel 2 mit Polyisocyanaten zum Polyurethan-Prepolymer, und bei der Herstellung der Polyurethanpolymere Diole eingesetzt.
Bei den Diolen handelt es sich insbesondere um Polyesterpolyole, die z.B. aus Ulimanns Encyklopädie der technischen Chemie, 4. Auflage, Band 19, S. 62 bis 65 bekannt sind. Bevorzugt werden Polyesterpolyole eingesetzt, die durch Umsetzung von zweiwertigen Alkoholen mit zweiwertigen Carbonsäuren erhalten werden. Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester von niederen Alkoholen oder deren Gemische zur Herstellung der Polyesterpolyole verwendet werden. Die Polycarbonsäuren können aliphatisch, cycloaliphatisch, araliphatisch, aromatisch oder heterocyclisch sein und gegebenenfalls, z.B. durch Halogenatome, substituiert und/oder ungesättigt sein. Als Beispiele hierfür seien genannt:
Korksäure, Azelainsäure, Phthalsäure, Isophthalsäure, Phthalsäureanhydrid, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäureanhydrid, Tetrachlorphthalsäureanhydrid, Endomethylentetrahydrophthalsäureanhydrid, Glutarsäureanhydrid, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, dimere Fettsäuren. Bevorzugt sind Dicarbonsäuren der allgemeinen Formel HOOC- (CH2)y-COOH, wobei y eine Zahl von 1 bis 20, bevorzugt eine gerade Zahl von 2 bis 20 ist, z.B. Bernsteinsäure, Adipinsäure, Sebacinsäure und Dodecandicarbonsäure.
Als mehrwertige Alkohole kommen z.B. Ethylenglykol, Propan-1 ,2-diol, Propan- 1 ,3-diol, Butan-1,3-diol, Buten-1 ,4-diol, Butin-1 ,4-diol, Pentan-1 ,5-diol, Neopentylglykol, Bis-(hydroxymethyl)-cyclohexane wie 1 ,4-Bis- (hydroxymethyl)cyclohexan, 2-Methyl-propan-1 ,3-diol, Methylpentand iole, ferner Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Polyethylenglykol, Dipropylenglykol, Polypropylenglykol, Dibutylenglykol und Polybutylenglykole in Betracht.
Bevorzugt sind Alkohole der allgemeinen Formel HO-(CH2)X-OH, wobei x eine Zahl von 1 bis 20, bevorzugt eine gerade Zahl von 2 bis 20 ist. Beispiele hierfür sind Ethylenglycol, Butan-1 ,4-diol, Hexan-1 ,6-diol, Octan-1 ,8-diol und Dodecan- 1,12-diol. Weiterhin bevorzugt ist Neopentylglykol. Ferner kommen auch Polycarbonat-Diole, wie sie z.B. durch Umsetzung von Phosgen mit einem Überschuss von den als Aufbaukomponenten für die Polyesterpolyole genannten niedermolekularen Alkohole erhalten werden können, in Betracht.
Geeignet sind auch Polyesterdiole auf Lacton-Basis, wobei es sich um Homo- oder Mischpolymerisate von Lactonen, bevorzugt um endständige Hydroxylgruppen aufweisende Anlagerungsprodukte von Lactonen an geeignete difunktionelle Startermoleküle handelt. Als Lactone kommen bevorzugt solche in Betracht, die sich von Verbindungen der allgemeinen Formel HO-(CH2)Z-COOH ableiten, wobei z eine Zahl von 1 bis 20 ist und ein H-Atom einer Methyleneinheit auch durch einen Cr bis C4-Alkylrest substituiert sein kann. Beispiele sind e-Caprolacton, ß-Propiolacton, γ-Butyτolacton und/oder Methyl-e-caprolacton sowie deren Gemische. Geeignete Starterkomponenten sind z.B. die vorstehend als Aufbaukomponente für die Polyesterpolyole genannten niedermolekularen zweiwertigen Alkohole. Die entsprechenden Polymerisate des e-Caprolactons sind besonders bevorzugt. Auch niedere Polyesterdiole oder Polyetherdiole können als Starter zur Herstellung der Lacton-Polymerisate eingesetzt sein. Anstelle der Polymerisate von Lactonen können auch die entsprechenden, chemisch äquivalenten Polykondensate der den Lactonen entsprechenden Hydroxycarbonsäuren, eingesetzt werden.
Daneben kommen als Monomere Polyetherdiole in Betracht. Sie sind insbesondere durch Polymerisation von Ethylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid oder Epichlorhydrin mit sich selbst, z.B. in Gegenwart von BF3 oder durch Anlagerung dieser Verbindungen gegebenenfalls im Gemisch oder nacheinander, an Startkomponenten mit reaktionsfähigen Wasserstoff atomen, wie Alkohole oder Amine, z.B. Wasser, Ethylenglykol, Propan-1 ,2-diol, Propan-1 ,3-diol, 1 ,2-Bis(4-hydroxy-diphenyl)-propan oder Anilin erhältlich. Besonders bevorzugt ist Polytetrahydrofuran eines Molekulargewichts von 240 bis 5000, und vor allem 500 bis 4500.
Ebenfalls geeignet sind Polyhydroxyolefine, bevorzugt solche mit 2 endständigen Hydroxylgruppen, z.B. α.-ω-Dihydroxypolybutadien, <x,-ω-Dihydroxypoly- methacrylester oder α,-ω-Dihydroxypolyacrylester als Monomere. Solche Verbindungen sind beispielsweise aus der EP-A-O 622 378 bekannt. Weitere geeignete Polyole sind Polyacetale, Polysiloxane und Alkydharze.
Folgende Beispiele verdeutlichen die Erfindung näher.
Beispiel 1
I. Schritt:
Zunächst wurden 120 g Diethylenglykolmonomethylether (1 mol), der durch
Destillation sorgfältig gereinigt war, in einem Druckreaktor vorgelegt. Nach Zugabe von 1 g NaOH wurde bei 900C unter Vakuum getrocknet. Anschließend wurde bei einer Temperatur von 1300C und einem Druck von ca. 6 bar zunächst ein Gemisch aus 290 g (5 mol) Propylenoxid und 1672 g (38 mol) Ethylenoxid zudosiert und nach dessen vollständiger Abreaktion erkennbar am Druckabfall eine Menge von 232 g (4 mol) Propylenoxid dosiert. Nach der Abreaktion des Propylenoxids erkennbar am Druckabfall wurde die Reaktion durch Zugabe von Essigsäure abgestoppt und das Produkt mittels OH-Zahl-Titration und NMR analysiert. Die OH-Zahl betrug 24 mgKOH/g entsprechend einer Molmasse von 2330 g/mol. Die Verteilung der Oxyethylen-, Oxypropylen-Kettenanteile sowie der Methoxy (CH3O-), primären (-CH2OH) und sekundären (-CHCH3OH)-Endgruppen ist aus dem NMR Spektrum ableitbar:
Figure imgf000013_0001
Schritt 2: 730 g des α-Hydroxy-Ω-methoxy-polyoxyalkylen-polyoxypropylen- blockcopolymers aus Schritt 1 mit einer Molmasse von 2330 g/mol und einem molaren Verhältnis der Oxypropylen- zu den Oxyethyleneinheiten von 19 zu 81 wurden mit Ammoniak und Wasserstoff in Gegenwart eines Ni-haltigen Katalysators zum entsprechenden Amin umgesetzt. Das resultierende primäre Amin hatte einen Gesamtstickstoffgehalt von 0,60 Gew.-%.
Schritt 3:
Das Amin aus Schritt 2 wurde nach Entfernung des Katalysators mit 2 Moläquivalenten Ethylenoxid (34 g) bei 1900C und einem Druck von 4 bar zum entsprechenden α-Dihydroxyethylamino-Ω-methoxy-polyalkylenglykol umgesetzt. Der Gesamtstickstoffgehalt nach der Umsetzung betrug 0,57 Gew.-%, entsprechend einer Molmasse von 2456 g/mol. Der Anteil an tertiärem Amin lag bei 98,2 Gew.-%. Das Produkt wurde mittels 1H-NMR charakterisiert. funktionelle CH 3-0- OCH2 CH2O OCH2 CHCH3O -CH2N(CH2 CH2OH)2 -CH2 OH
Gruppen molares Verhältnis, 1 mol 39 mol 8 ,5 mol 1 ,05 mol 2 ,1 gemessen durch
1H-Signale
Beispiel 2
1. Schritt:
Zunächst wurden 180 g Diethylenglykolmonomethylether (1 ,5 mol), der durch Destillation sorgfältig gereinigt war, in einem Druckreaktor vorgelegt. Nach Zugabe von 1 g NaOH wurde bei 900C unter Vakuum getrocknet. Anschließend wurde bei einer Temperatur von 1400C und einem Druck von ca. 6 bar zunächst 660 g (15 mol) Ethylenoxid zudosiert und nach dessen vollständiger Abreaktion erkennbar am Druckabfall eine Menge von 262 g (4,5 mol) Propylenoxid dosiert. Nach der Abreaktion des Propylenoxids erkennbar am Druckabfall wurde die Reaktion durch Zugabe von Essigsäure abgestoppt und das Produkt mittels OH- Zahl-Titration und NMR analysiert.
Die OH-Zahl betrug 75 mgKOH/g entsprechend einer Molmasse von 748 g/mol. Die Verteilung der Oxyethylen-, Oxypropylen-Kettenanteile sowie der Methoxy (CH3O-), primären (-CH2OH) und sekundären (-CHCH3OH)-Endgruppen ist aus dem NMR Spektrum ableitbar:
Figure imgf000014_0001
2. Schritt:
685 g des α-Hydroxy-Ω-methoxy-polyoxyethylen-polyoxypropylen-block- copolymers aus Schritt 1 mit einer Molmasse von 748 g/mol wurden mit Ammoniak und Wasserstoff in Gegenwart eines Ni-haltigen Katalysators zum entsprechenden Amin umgesetzt. Das resultierende primäre Amin hatte einen Gesamtstickstoffgehalt von 1 ,78 Gew.-%.
3. Schritt: Das Amin aus Schritt 2 wurde nach Entfernung des Katalysators mit 2 Moläquivalenten Ethylenoxid (81 g) bei 19O0C und einem Druck von 4 bar zum entsprechenden α-dihydroxyethylamino-Ω-Methoxy-polyalkylenglykol umgesetzt. Der Gesamtstickstoffgehalt nach der Umsetzung betrug 1,6 Gew.-%, entsprechend einer Molmasse von 875 g/mol. Der Anteil an tertiärem Amin lag bei 99 Gew.-%. Das Produkt wurde mittels 1H-NMR charakterisiert.
Figure imgf000015_0001
Beispiel 3: Herstellung einer wässrigen Polyurethandispersion im Aceton- Verfahren
224 g eines Adipinsäure-Diethylenglykol-Polyesterdiols (OH-Zahl 52,6), 1 ,34 g DMPA, 52,5 g des α-Dihydroxyethylamino-Ω-Methoxy-Polyalkylenglykols aus Beispiel 2, 16,8 g Hexamethylendiisocyanat und 44,2 g Isophorondiisocyanat wurden bei 9O0C in zwei Stunden zu einem Polyurethanprepolymer umgesetzt. Der theoretische Rest-NCO-Gehalt betrug 3,10 Gew.-%. Der theoretische, durch Titration bestimmte Messwert lag aufgrund des enthaltenen Amins bei
2,36 Gew.-%. Der im Versuch gemessene NCO-Restgehalt betrug 2,18 Gew.-%. Dem Prepolymer wurden 150 g Aceton zugegeben, mit 1 g Triethylamin neutralisiert, auf Raumtemperatur abkühlt und mit 650 g Wasser dispergiert. Die Kettenverlängerung des wässrig dispergierten Prepolymers erfolgte mit 6,7 g Ethylendiamin, gelöst in 50 g Wasser. Bei einer anschließenden Destillation im Vakuum wurde das Aceton entfernt. Es entstand eine milchig weiße, dünnflüssige und lagerstabile Polyurethandispersion mit einem Feststoffgehalt von 30 Gew.-%, einem pH von 8,0 und einem durchschnittlichen Teilchendurchmesser von 200 nm (gemessen mit Particle Size Analyzer 90 Plus, Brookhaven Instruments).
Beispiel 4:
Herstellung einer wässrigen Polyurethandispersion im Prepolymer-Ionomer- Verfahren
153 g eines Polypropylenglykols (OH-Zahl 110), 70 g des α-Dihydroxyethylamino- Ω-Methoxy-Polyalkylenglykols aus Beispiel 2 und 77,4 g Isophorondiisocyanat wurden mit 0,1 g Dibutylzinndilaurat bei 75°C in 2,5 Stunden zu einem Polyurethanprepolymer umgesetzt. Der theoretische Rest-NCO-Gehalt betrug 3,36 Gew.-%. Der theoretische, durch Titration bestimmte Messwert lag aufgrund des enthaltenen Amins bei 2,24 Gew.-%. Der im Versuch gemessene NCO- Restgehalt betrug 2,20 Gew.-%. Das Prepolymer wurde auf 450C abkühlt und in 650 g Wasser dispergiert. Die Kettenverlängerung des wässrig dispergierten Prepolymers erfolgte mit 7,1 g Ethylendiamin, gelöst in 50 g Wasser. Es entstand eine orange durchscheinende, dünnflüssige und lagerstabile Polyurethandispersion mit einem Feststoffgehalt von 30 Gew.-%, einem pH von 8,5 und einem durchschnittlichen Teilchendurchmesser von 40 nm.

Claims

Patentansprüche:
1. Verbindungen der Formel 2
Figure imgf000017_0001
worin
R1 H, Methyl oder Ethyl,
R2 C1- bis C4-Alkyl, A eine C2- bis C4-Alkylengruppe, m eine Zahl von 1 bis 400 n 1 , 2, 3, 4, oder 5 bedeuten.
2. Verbindungen gemäß Anspruch 1 , worin mindestens 50 mol-% der Reste (A-O) Oxethylenreste -CH2-CH2-O- sind.
3. Verbindungen gemäß Anspruch 2, worin die weiteren Reste (A-O) ad 100 mol-% Oxpropylenreste -CH(CH3)-CH2-O- sind
4. Verbindungen nach Anspruch 1 , worin die (A-O)m-Gruppe für eine reine Oxethylengruppe mit 3 bis 300 Oxethyleneinheiten steht.
5. Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 4, worin R1 für H steht.
6. Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 5, worin R2 für CH3 steht.
7. Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 6, worin -(A-O)m-R2 für eine Oxalkylengruppe der Formel
- (CH2-CH2-O)b - (CH(CHs)-CH2-O)3 - R2 steht, worin a für eine Zahl von 0 bis 300, b für eine Zahl von 3 bis 300 steht, und und R2 die in Anspruch 1 angegebene Bedeutung hat.
8. Verfahren zur Herstellung von Verbindungen der Formel 2, indem man zunächst ein α-Hydroxy-Ω-Alkoxypolyalkylenglykol mit einer sekundären Hydroxyendgruppe durch Alkoxylierung von R2-OH und anschließender Propoxylierung herstellt, die sekundäre α-Hydroxy-Gruppe anschließend durch eine Aminolyse durch eine primäre Aminogruppe austauscht, und diese primäre Aminogruppe anschließend ohne Zugabe eines Alkoxylierungskatalysators mit 2 Mol Alkylenoxid, insbesondere 2 Mol Ethylenoxid, zur Dihydroxyalkylaminogruppe, insbesondere zur Dihydroxyethylaminogruppe, umsetzt.
9. Verfahren zur Herstellung von Polyurethan-Prepolymeren, indem man Verbindungen der Formel 2 mit einem Polyisocyanat und gegebenenfalls mit weiteren Polyolen oder Polyaminen umsetzt.
10. Verfahren zur Herstellung von Polyurethanpolymeren, indem man a) eine Verbindung der Formel 2 mit einem Polyisocyanat und gegebenenfalls mit weiteren Polyolen oder Polyaminen zu einem Polyurethan-Prepolymer umsetzt, und b) das so erhaltene Polyurethan-Prepolymer in wässrigem Milieu mit einem Polyamin zu einem Polyurethanpolymer umsetzt.
11. Polyurethan-Prepolymere, erhältlich durch die Reaktion einer Verbindung der Formel 2 mit einem Isocyanat der Formel X(NCO)P, worin p eine Zahl von 2 bis 4 und X ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlenwasserstoffrest ist.
12. Polyurethanpolymere, erhältlich durch die Reaktion einer Verbindung der Formel 2 mit einem Isocyanat der Formel X(NCO)P, worin p eine Zahl von 2 bis 4 und X ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlen wasserstoffrest ist, und die anschließende Umsetzung des so erhaltenen Polyurethanprepolymers in wässrigem Milieu mit einem Polyamin der Formel Y(NH2)Q, worin Y ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlenwasserstoffrest, und q eine Zahl von 2 bis 4 ist.
13. Verwendung der Verbindungen der Formel 2 zur Herstellung von Polyurethan-Prepolymeren, indem die Verbindung der Formel 2 mit einem
Isocyanat der Formel X(NCO)P, worin p eine Zahl von 2 bis 4 und X ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlen wasserstoffrest ist, zur Reaktion gebracht wird.
14. Verwendung der Verbindungen der Formel 2 zur Herstellung von
Polyurethanpolymeren, indem die Verbindung der Formel 2 mit einem Isocyanat der Formel X(NCO)P, worin p eine Zahl von 2 bis 4 und X ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlen wasserstoffrest ist, zur Reaktion gebracht wird, und das so erhaltene Polyurethanprepolymer in wässrigem Milieu mit einem Polyamin der Formel Y(NH2)q, worin Y ein aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Kohlenwasserstoffrest, und q eine Zahl von 2 bis 4 ist, umgesetzt wird.
PCT/EP2007/005207 2006-08-03 2007-06-13 Polyetheramin-makromonomere mit zwei benachbarten hydroxylgruppen und ihre verwendung zur herstellung von polyurethanen WO2008014844A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE502007007012T DE502007007012D1 (de) 2006-08-03 2007-06-13 Polyetheramin-makromonomere mit zwei benachbarten hydroxylgruppen und ihre verwendung zur herstellung von polyurethanen
BRPI0714779-1A BRPI0714779A2 (pt) 2006-08-03 2007-06-13 macromonâmeros de polieteramina com dois grupos hidroxila adjacentes e seu uso para a produÇço de poliuretanos
EP07764637A EP2049581B1 (de) 2006-08-03 2007-06-13 Polyetheramin-makromonomere mit zwei benachbarten hydroxylgruppen und ihre verwendung zur herstellung von polyurethanen
JP2009522112A JP5213856B2 (ja) 2006-08-03 2007-06-13 2つの隣接する水酸基を有するポリエーテルアミンマクロモノマーおよびポリウレタンを製造するためのその使用
US12/376,273 US8546616B2 (en) 2006-08-03 2007-06-13 Polyetheramine macromonomers comprising two neighboring hydroxyl groups and their use for producing polyurethanes
MX2009001193A MX2009001193A (es) 2006-08-03 2007-06-13 Macromonomeros de polieteramina que comprenden dos grupos hidroxilo adyacentes y su uso para producir poliuretanos.
US14/011,475 US8889814B2 (en) 2006-08-03 2013-08-27 Polyetheramine macromonomers comprising two neighboring hydroxyl groups and their use for producing polyurethanes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006036220.9 2006-08-03
DE102006036220A DE102006036220A1 (de) 2006-08-03 2006-08-03 Polyetheramin-Makromonomere mit zwei benachbarten Hydroxylgruppen und ihre Verwendung zur Herstellung von Polyurethanen

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/376,273 A-371-Of-International US8546616B2 (en) 2006-08-03 2007-06-13 Polyetheramine macromonomers comprising two neighboring hydroxyl groups and their use for producing polyurethanes
US14/011,475 Division US8889814B2 (en) 2006-08-03 2013-08-27 Polyetheramine macromonomers comprising two neighboring hydroxyl groups and their use for producing polyurethanes

Publications (1)

Publication Number Publication Date
WO2008014844A1 true WO2008014844A1 (de) 2008-02-07

Family

ID=38461049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/005207 WO2008014844A1 (de) 2006-08-03 2007-06-13 Polyetheramin-makromonomere mit zwei benachbarten hydroxylgruppen und ihre verwendung zur herstellung von polyurethanen

Country Status (9)

Country Link
US (2) US8546616B2 (de)
EP (1) EP2049581B1 (de)
JP (1) JP5213856B2 (de)
BR (1) BRPI0714779A2 (de)
DE (2) DE102006036220A1 (de)
ES (1) ES2361204T3 (de)
MX (1) MX2009001193A (de)
PT (1) PT2049581E (de)
WO (1) WO2008014844A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006304B2 (en) 2008-05-28 2015-04-14 Stahl International B.V. Aqueous polyurethane-polyurea dispersions
DE102010021465A1 (de) 2010-05-25 2011-12-01 Clariant International Ltd. Wässrige Polyurethan-Polyharnstoff-Dispersionen
CN101967227B (zh) * 2010-09-28 2013-04-10 山东蓝星东大化工有限责任公司 慢回弹泡沫体聚醚多元醇的合成方法
DE102011107873B4 (de) 2011-07-19 2015-12-03 Stahl International Bv Verfahren zur Herstellung von Seitenketten enthaltenden Polyurethan-Polyharnstoffen und deren wässrigen Dispersionen
CN203257172U (zh) 2013-05-08 2013-10-30 客贝利(厦门)休闲用品有限公司 一种一字顶帐篷改进结构
CN107057016B (zh) * 2017-04-10 2019-11-08 龙岩学院 矿用堵水材料及制备装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006084592A1 (de) * 2005-02-11 2006-08-17 Clariant Produkte (Deutschland) Gmbh Polyetheramin-makromonomere mt zwei benachbarten primären hydroxylgruppen und ihre verwendung zur herstellung von polyurethanen

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719177A (en) 1953-03-18 1955-09-27 Eastman Kodak Co N-substituted acrylamides by vapor phase method using acrylic acids
DE1570542A1 (de) 1965-02-27 1969-07-31 Hoechst Ag Verfahren zur Herstellung von Polyaetheraminen
GB1185239A (en) 1966-12-16 1970-03-25 Jefferson Chem Co Inc Polyoxyalkylene Polyamines
GB1266561A (de) * 1968-04-04 1972-03-15
BE757840A (fr) 1969-10-23 1971-04-22 Basf Ag Procede de preparation d'amines a partir d'alcools
DE2314513C3 (de) * 1973-03-23 1980-08-28 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von wäßrigen Polyurethandispersionen
DE2551094A1 (de) 1975-11-14 1977-05-26 Bayer Ag Verfahren zur herstellung von in wasser dispergierbaren polyurethanen
DE2725589A1 (de) 1977-06-07 1978-12-21 Bayer Ag Verfahren zur herstellung von waessrigen polyurethan-dispersionen und -loesungen
DE2732131A1 (de) 1977-07-15 1979-01-25 Bayer Ag Verfahren zur herstellung von seitenstaendige hydroxylgruppen aufweisenden isocyanat-polyadditionsprodukten
DE2811148A1 (de) 1978-03-15 1979-09-20 Bayer Ag Verfahren zur herstellung von waessrigen polyurethan-dispersionen und -loesungen
DE2816516C2 (de) 1978-04-17 1985-05-15 Röhm GmbH, 6100 Darmstadt Verfahren zur Herstellung N-substituierter Acryl- und Methacrylamide
DE2843790A1 (de) 1978-10-06 1980-04-17 Bayer Ag Verfahren zur herstellung von waessrigen dispersionen oder loesungen von polyurethan-polyharnstoffen, die nach diesem verfahren erhaeltlichen dispersionen oder loesungen, sowie ihre verwendung
DE3049746C2 (de) 1981-02-10 1984-02-23 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Herstellung von Polymerisaten mit mindestens zwei endständigen primären Hydroxylgruppen
DE3025807A1 (de) 1980-07-08 1982-02-04 Th. Goldschmidt Ag, 4300 Essen Verfahren zur herstellung von polyaethern unter erhalt von mindestens zwei freien hydroxylgruppen am startalkohol
DE3123970A1 (de) 1981-06-19 1983-01-05 Röhm GmbH, 6100 Darmstadt "verfahren zur herstellung von methacrylamiden"
US4618717A (en) 1984-09-17 1986-10-21 Texaco Inc. Catalytic process for the production of primary amines from oxyethylene glycol monoalkyl ethers
US4766245A (en) 1985-03-01 1988-08-23 Texaco Inc. Process for the preparation of polyoxyalkylene polyamines
DE3608716A1 (de) 1985-05-31 1986-12-04 Texaco Development Corp., White Plains, N.Y. Verfahren zur herstellung von polyoxyalkylen-polyaminen
GB8721533D0 (en) * 1987-09-14 1987-10-21 Polyvinyl Chemical Ind Aqueous dispersions
US4960942A (en) 1988-05-17 1990-10-02 Union Carbide Chemicals And Plastics Company Inc. Process for the manufacture of N-(polyoxyalkyl)-N-(alkyl)amines
GB8913644D0 (en) * 1989-06-14 1989-08-02 Ici America Inc Aqueous dispersions
US5003107A (en) 1989-12-18 1991-03-26 Texaco Chemical Company Catalytic method for the reductive amination of poly(oxytetramethyle) glycols
US5331101A (en) 1990-01-05 1994-07-19 The Dow Chemical Company Process for preparation of amines from alcohols, aldehydes or ketones
US5352835A (en) 1993-02-08 1994-10-04 Texaco Chemical Company Supported catalysts for amination
DE4314111A1 (de) 1993-04-29 1994-11-03 Goldschmidt Ag Th alpha,omega-Polymethacrylatdiole, Verfahren zu ihrer Herstellung und deren Verwendung zur Herstellung von Polymeren, insbesondere Polyurethanen und Polyestern
US5783630A (en) * 1993-07-13 1998-07-21 Huntsman Petrochemical Corporation Polyether amine modification of polypropylene
DE4428004A1 (de) 1994-08-08 1996-02-15 Basf Ag Verfahren zur Herstellung von Aminen
FR2764603B1 (fr) 1997-06-11 1999-07-30 Oreal Procede de preparation de composes de type ceramides
US6372000B1 (en) * 1998-06-04 2002-04-16 Texaco Inc. Hydrocarbyl polyoxyalkylene aminoalcohol and fuel composition containing same
US6175037B1 (en) 1998-10-09 2001-01-16 Ucb, S.A. Process for the preparation of (meth)acrylate esters and polyester (meth)acrylates using microwave energy as a heating source
US7196033B2 (en) 2001-12-14 2007-03-27 Huntsman Petrochemical Corporation Advances in amination catalysis
DE10211101A1 (de) 2002-03-14 2003-09-25 Basf Ag Katalysatoren und Verfahren zur Herstellung von Aminen
DE102005029932A1 (de) 2005-06-28 2007-01-11 Clariant Produkte (Deutschland) Gmbh Verfahren zur Herstellung von Polyetheraminen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006084592A1 (de) * 2005-02-11 2006-08-17 Clariant Produkte (Deutschland) Gmbh Polyetheramin-makromonomere mt zwei benachbarten primären hydroxylgruppen und ihre verwendung zur herstellung von polyurethanen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHULTZ R A ET AL: "12-, 15-, and 18-Membered-Ring Nitrogen-Pivot Lariat Ethers: Syntheses, Properties, and Sodium and Ammonium Cation Binding Properties", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, vol. 107, 1985, pages 6659 - 6668, XP002377502, ISSN: 0002-7863 *

Also Published As

Publication number Publication date
DE502007007012D1 (de) 2011-06-01
EP2049581B1 (de) 2011-04-20
JP2010526155A (ja) 2010-07-29
ES2361204T3 (es) 2011-06-14
US8546616B2 (en) 2013-10-01
MX2009001193A (es) 2009-04-09
PT2049581E (pt) 2011-05-13
BRPI0714779A2 (pt) 2012-12-25
DE102006036220A1 (de) 2008-02-07
US20130345386A1 (en) 2013-12-26
US8889814B2 (en) 2014-11-18
US20090318656A1 (en) 2009-12-24
JP5213856B2 (ja) 2013-06-19
EP2049581A1 (de) 2009-04-22

Similar Documents

Publication Publication Date Title
DE102011107873B4 (de) Verfahren zur Herstellung von Seitenketten enthaltenden Polyurethan-Polyharnstoffen und deren wässrigen Dispersionen
EP1456267B1 (de) Waessrige polyurethan-dispersionen, erhaeltlich mit hilfe von caesiumsalzen
EP2576647B1 (de) Wässrige polyurethan-polyharnstoff-dispersionen
WO2007082655A1 (de) Polyurethan-polyharnstoff-dispersionen auf basis von polyether-polycarbonat-polyolen
EP2049581B1 (de) Polyetheramin-makromonomere mit zwei benachbarten hydroxylgruppen und ihre verwendung zur herstellung von polyurethanen
EP3109269B1 (de) Harnstofffreie polyurethan-dispersionen
EP3155029A1 (de) Polymerdispersionen enthaltend acylmorpholine
EP0807648A2 (de) Latent vernetzende wässerige Polyurethandispersionen
DE19603989A1 (de) Wässrige Polyurethandispersionen enthaltend Struktureinheiten abgeleitet von Alkenyl- oder Alkylbernsteinsäure
DE10352101A1 (de) Polyurethandispersion mit Siloxangruppen
WO2006084592A1 (de) Polyetheramin-makromonomere mt zwei benachbarten primären hydroxylgruppen und ihre verwendung zur herstellung von polyurethanen
EP1277772A2 (de) Wässrige Dispersionen für hydrolysefeste Beschichtungen
DE19733044A1 (de) Wässerige Disperionen enthaltend Polyurethane mit Carbodiimidgruppen
WO2004081074A1 (de) Verwendung einer wässrigen polyurethandispersion zur herstellung eines abziehbaren schutzüberzugs
EP2959023B1 (de) Verfahren zur herstellung von wässrigen polyurethanzubereitungen
DE19959653A1 (de) Wässrige Polyurethandispersionen für Lederzurichtungen
DE102011015459A1 (de) Polyurethane, ihre Herstellung und Verwendung
WO2004003045A1 (de) Wässrige polyurethan-dispersionen
WO2007028760A1 (de) Polyurethandispersion, enthaltend alkanolamine
DE102008000270A1 (de) Verfahren zur Herstellung von Polyurethandispersionen mit geringem Gehalt an hochsiedenden Lösungsmitteln

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07764637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007764637

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/001193

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2009522112

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12376273

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: PI0714779

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090130