WO2007148784A1 - 無線通信装置及びその変調方式切り替え方法 - Google Patents

無線通信装置及びその変調方式切り替え方法 Download PDF

Info

Publication number
WO2007148784A1
WO2007148784A1 PCT/JP2007/062584 JP2007062584W WO2007148784A1 WO 2007148784 A1 WO2007148784 A1 WO 2007148784A1 JP 2007062584 W JP2007062584 W JP 2007062584W WO 2007148784 A1 WO2007148784 A1 WO 2007148784A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
modulation method
quality
switching
modulation scheme
Prior art date
Application number
PCT/JP2007/062584
Other languages
English (en)
French (fr)
Inventor
Masahiro Kawai
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US12/308,667 priority Critical patent/US8150329B2/en
Priority to CN200780023658.2A priority patent/CN101480006B/zh
Priority to EP07767395.2A priority patent/EP2034684B1/en
Priority to JP2008522535A priority patent/JP4761232B2/ja
Publication of WO2007148784A1 publication Critical patent/WO2007148784A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes

Definitions

  • the present invention relates to a wireless communication device and a modulation method switching method thereof, and more particularly to a method of selecting and switching a modulation method of a wireless communication device in accordance with the quality of a transmission path.
  • the amount of information transmission per unit frequency increases as the number of modulation multi-levels increases, but on the contrary, it becomes weak against disturbance in the transmission path.
  • the transmission error increases when the quality of the transmission line is lower than a certain level, and there is a demand for securing minimum communication even in such a case. Therefore, the communication channel is monitored, and when the channel quality deterioration is detected, the modulation multi-value number is lowered to ensure the communication with the minimum bit rate with good quality, and when the transmission channel quality is good, the modulation multi-value signal is reduced.
  • a communication system based on an adaptive modulation system that allows a large amount of communication by increasing the number is being considered.
  • control is performed to select a medium that can maintain a certain level of communication quality, depending on the state of the transmission path at a certain point in time.
  • control is performed to select a medium that can maintain a certain level of communication quality, depending on the state of the transmission path at a certain point in time.
  • 64Q AM Quadrature Amplitude Modulation
  • 16QAM Quadrature Amplitude Modulation
  • QPSK Quadrature Phase Shift Keying
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-012684
  • the bit rate is ensured by changing to a modulation method with a low rate. If the transmission path quality further deteriorates, change to a modulation method with a lower bit rate.
  • the lower the bit rate the lower the SZN required to secure the communication quality, so the required communication quality cannot be ensured with a modulation method with a large bit rate by changing the modulation method according to the channel conditions. Even in such a communication path situation, it is possible to ensure as high quality communication as possible in that state.
  • the present invention has been made in consideration of such a conventional situation, and an object of the present invention is to secure a more reliable communication path after switching the modulation method when the quality of the communication path deteriorates.
  • a wireless communication apparatus converts a data into a modulated wave by a set modulation scheme and transmits it, and receives and sets a modulated wave sent.
  • a receiver for converting the original data based on the modulated modulation method; reception quality determination means for determining the quality of the transmission path based on the signal received by the receiver; and the reception
  • the modulation method is switched to a modulation method that is most resistant to disturbances among a plurality of different modulation methods set in advance.
  • Modulation scheme switching means for switching to a modulation scheme in accordance with the quality of the transmission path.
  • a modulation method switching method converts data into a modulated wave by a set modulation method.
  • a modulation method switching method for a radio communication apparatus having a transmitter for converting and transmitting, and a receiver for receiving a modulated wave transmitted and converting it to original data based on a set modulation method.
  • a more reliable communication path can be secured after switching the modulation method when the quality of the communication path deteriorates.
  • FIG. 1 is a block diagram showing an overall configuration of a digital radio communication system according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the operation of the embodiment.
  • FIG. 3 (a) is a constellation diagram showing QPSK received signal points of the embodiment, and (b) is a graph showing the distribution of received signal points in the I-axis direction.
  • FIG. 4 (a) is a graph showing the spectrum of a modulated wave subjected to interference in a modification of the present invention, and (b) is a graph for explaining the frequency characteristics of the forging.
  • FIG. 5 is a graph illustrating frequency characteristics in the case of frequency selective fading. Explanation of symbols
  • FIG. 1 shows a configuration of the present example.
  • a wireless communication device 100 that constitutes station A and a wireless communication device 200 that constitutes station B are arranged facing each other, and communicate with each other bidirectionally.
  • the wireless communication device 100 for station A and the wireless communication device 200 for station B have transmitters la and lb, receivers 2a and 2, reception quality determination circuits (which form the determination means of the present invention) 3a and 3b, and modulation system control. 4a and 4b and antennas 5a and 5b (which constitutes the modulation system switching means of the present invention).
  • the data (information) input to the wireless communication device 100 of the A station is transmitted to the QAM (Quadrature-Amplitude Modulation) by the transmitter la. ) Type modulated wave and supplied to the antenna 5a.
  • a radio wave corresponding to the modulated wave output from the antenna 5a propagates through the space and is received by the antenna 5b in the radio communication apparatus 200 of the opposite station B.
  • the modulated wave received by the antenna 5b is supplied to the receiver 2b and demodulated, and the transmitted data is reproduced and output.
  • data transmission from station B to station A is performed by transmitting data through the transmitter lb, antenna 5b, antenna 5a, and receiver 2at.
  • receiver quality determination circuits 3a and 3b for determining the quality of a transmission path from information (see below) of received signals transmitted therein are connected to the receivers 2a and 2b. .
  • the reception quality judgment circuits 3a and 3b always monitor the communication quality based on the information of the received signal, select a modulation method suitable for the communication quality at that time, and convert the instruction signals Sla and Sib to the modulation method. Send to control unit 4a, 4b.
  • Modulation scheme controllers 4a and 4b perform control to change the reception modulation scheme of the own station and the transmission modulation scheme of the opposite station based on the modulation scheme selected by the reception quality judgment circuits 3a and 3b. Yes, control signals S2a to S4a and S2b to S4b are generated to change the modulation method based on the sent instruction signals Sla and Sib, and the receivers 2a and 2b of its own station and the transmitter of the opposite station are generated. Send to la, lb.
  • modulation schemes there are three types of modulation schemes used in the present embodiment: QPSK, 16QAM, and 64QAM. It shall be a kind.
  • the plurality of different modulation schemes applied in the present invention are not limited to these, and other modulation schemes may be used.
  • Figure 2 shows the temporal relationship between channel quality and modulation method in this example.
  • received signal information reflecting the quality of the transmission path is input from the receiver 2a to the reception quality determiners 3a and 3b.
  • Reception quality determiners 3a and 3b estimate the quality of the transmission path from the input received signal information, and determine whether or not the transmission data maintains a certain quality.
  • the quality of the transmission path can be judged from information such as the error rate of received data and the dispersion of received signal points.
  • a method for determining the state of a communication channel from the dispersion of received signal points will be described.
  • Figs. 3 (a) and 3 (b) show received signal points in a QPSK constellation as an example.
  • Fig. 3 (a) shows QPSK received signal points at the receiver
  • Fig. 3 (b) shows the distribution of received signal points in the I-axis direction.
  • this distribution is represented by a Gaussian distribution, and the standard deviation ⁇ representing the extent of the distribution can be obtained by measuring the distribution of the received signal.
  • the standard deviation ⁇ force can also know the SZN at the receiver, and the relationship between SZN and the error rate is determined by the modulation method. Therefore, the quality of the communication channel can be measured by obtaining the standard deviation ⁇ .
  • the reception quality determiners 3a and 3b can estimate the quality of the input received signal (e.g., dispersion of received signal points) and select a large multi-level modulation method. It is determined that the quality is maintained, and the instruction signals Sla and Sib are sent to the modulation system controllers 4a and 4b.
  • the modulation system controllers 4a and 4b generate control signals S2a to S4a and S2b to S4b based on the instruction signals Sla and Sib, and send them to the receivers 2a and 2b of the local station and the transmitters la and lb of the opposite station. Send.
  • the receivers 2a and 2b of the local station are set to a large multi-level modulation scheme (64QAM in this embodiment) based on the control signals S3a and S3b.
  • the transmitters la and lb of the opposite station are set to a large multi-level modulation scheme (64Q AM in this embodiment) based on the control signals S4a and S4b.
  • the situation here corresponds to section A in the example of Figure 2.
  • the reception quality determiner 3a and 3b estimate the quality of the transmission path from the input received signal information (eg, dispersion of received signal points), and determine whether the transmission data maintains a certain quality.
  • the reception quality judgment units 3a and 3b determine that the transmission path state is deteriorated and that the current modulation scheme cannot maintain a constant quality, and the modulation scheme is most resistant to disturbance, that is, most Instruction signals Sla and Sib for changing to a robust system (QPSK in this embodiment) are sent to the modulation system controllers 4a and 4b.
  • the modulation system controller 4b of station B generates control signals S2b and S3b for switching the modulation system to the most robust system (QPSK) based on the instruction signal Sib from the modulation system controller 4b.
  • the signal S3b is sent to the receiver 2b of the local station, while the control signal S2b is transmitted to the modulation scheme controller 4a of the A station through the transmitter lb of the local station and the receiver 2a of the A station.
  • the receiver 2b of station B switches the modulation method to the most robust method (QPSK) with 64QAM power based on the control signal S3b.
  • the modulation system controller 4a of the A station receives the control signal S2b for changing the modulation system from the B station, it generates the control signal S4a, which causes the transmitter la of the A station to perform the same modulation as the B station.
  • Set the method (QPSK) The situation here corresponds to section B in the example of Fig. 2.
  • the reception quality determiner 3b of station B re-determines the reception quality in the modulation scheme (QPSK).
  • QPSK modulation scheme
  • the reception quality judgment unit 3b uses the most robust modulation method and the multi-level number (this In the embodiment, an instruction signal Sib for changing to 16QAM) is sent to the modulation system controller 4b.
  • the modulation system controller 4b changes the control signals S2b and S3b to switch the modulation system to the system with the most robust system power (16QAM) based on the instruction signal Sib.
  • the control signal S3b is generated and sent to the receiver 2b of the local station, while the control signal S2b is modulated to be changed to the modulation system controller 4a of the A station through the transmitter lb of the local station and the receiver 2a of the A station. Tell the method. Thereafter, the receiver 2b of station B switches the modulation method from QPSK to 16QAM based on the control signal S3b. Also, the modulation system controller 4a of the A station receives the control signal S2b for changing the modulation system of the B station power, and generates a control signal S4a, which causes the transmitter la of the A station to communicate with the B station. Set the same 16QAM. The situation here corresponds to section C in the example of Figure 2.
  • the reception quality determiner 3b of station B re-determines the reception quality in the modulation scheme (16QAM).
  • the reception quality judgment unit 3b modifies the instruction signal Sib to change the modulation system to 16QAM and 64QAM.
  • the modulation system controller 4b generates control signals S2b and S3b for switching the modulation system from 16QAM to 64QAM based on the instruction signal Sib, and transmits the control signal S3b to the receiver of its own station.
  • control signal S 2b is transmitted to the modulation system controller 4a of the A station through the transmitter lb of the local station and the receiver 2a of the A station, while transmitting the control signal S 2b to the 2b. Thereafter, the receiver 2b of station B switches the modulation method from 16QAM to 64QAM based on the control signal S3b.
  • the modulation method controller 4a of the A station receives the control signal S2b for changing the modulation method from the B station
  • the control signal S4a is generated, and this causes the transmitter la of the A station to transmit the same 64QAM as the B station. Set. This situation corresponds to section D in the example of Figure 2.
  • the modulation scheme that is most resistant to disturbance is changed from the modulation schemes that can be used. After that, after confirming that a certain quality can be maintained with the target modulation system for a while, the process shifts to the target modulation system.
  • the transmission path when a modulation scheme is selected from three or more modulation schemes according to the transmission path quality, the transmission path
  • the modulation method that can be used is unconditionally switched to the most robust modulation method, and the quality is re-determined in that state.
  • the procedure is followed by switching to the target modulation method. In this way, a more stable communication path can be secured after switching the modulation method.
  • various multi-level modulation systems such as 4QAM (QPSK), 16QAM, 32QAM, 64QAM, 128QAM, and 256 ⁇ 3 256 are considered.
  • QPSK 4QAM
  • 16QAM 16QAM
  • 32QAM 32QAM
  • 64QAM 64QAM
  • 128QAM 128QAM
  • 256 ⁇ 3 256 256 ⁇ 3 256
  • the modulation method with a small modulation multi-level number Since the signal point interval is wide in the equation, even if there is a disturbance in the transmission path and there is a problem with the communication quality in the modulation system with a large number of values, synchronization is established relatively easily, and the communication path is secured. It can be performed.
  • the modulation multi-value number is used as an element for determining the strength against the disturbance in the transmission line.
  • the present invention is not limited to this.
  • the transmission band In other words, the symbol frequency (symbol rate) is also an element that determines the strength against disturbance in the transmission path.
  • a notch-like frequency characteristic determines the shape of the frequency characteristics of the amplitude.
  • the notch depth received by the modulated wave with a relatively large symbol rate and a wide band is A.
  • the influence of a modulation wave with a relatively small symbol rate and narrow bandwidth can be considered as the level fluctuation BO and the notch depth B.
  • the narrower the transmission band the smaller the effective notch depth. Since the amount of intersymbol interference generated by fading is reduced by the amount of shallow notches, the dispersion of received signal points is kept small, which is advantageous for resynchronization after switching the modulation method.
  • narrowing the transmission band beyond the above-described modulation multi-level number alone is also an effective method for securing a more robust communication path.
  • the modulation scheme control unit (modulation scheme switching means) has the transmission band that can be switched to the modulation scheme having the smallest number of modulation multi-values as the modulation scheme that is most resistant to disturbance. It is also possible to switch to a modulation method having the smallest modulation multi-level number and the narrowest transmission band that can be switched to a narrow modulation method.
  • the modulation scheme control unit switches the modulation scheme set in the receiver by the first control signal, and transmits the second control signal to another wireless communication device via the transmitter to switch the modulation scheme. May be.
  • each unit constituting the wireless communication apparatus includes a processor (CPU) that operates under program control and a storage area that stores control programs, control data, and the like. It can be realized using hardware such as semiconductor memory (ROM / RAM). In this case, components such as a processor and a memory are included in the scope of the present invention.
  • each unit constituting the wireless communication apparatus of the above-described embodiment is provided.
  • a powerful program code and a recording medium for recording the program code are included in the scope of the present invention.
  • the program code in this case also includes those program codes when the above functions are realized in cooperation with the operating system or other application software.
  • the hardware and software configurations of the reception quality determination circuit (determination unit) and modulation method control unit (modulation method switching unit) of the above-described embodiment are not particularly limited, and each function is realized.
  • the circuit or unit may be independently configured, or the circuit or unit may be integrated in one circuit or unit.
  • the reception quality determination circuit and the modulation scheme control unit may be configured integrally in the receiver or transmitter.
  • the present invention can also be applied to the use of a wireless communication apparatus that uses an adaptive modulation system that selects and switches a modulation system according to the quality of a transmission path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 通信路の品質劣化時の変調方式切り替え後に、より確実な通信路を確保する。無線通信装置は、設定された変調方式でデータを変調波に変換して送信する送信器と、送られてくる変調波を受信し、設定された変調方式に基づいて元のデータに変換する受信器と、受信器により受信された信号に基づいてその伝送路の品質を判定する判定手段と、判定手段により伝送路の品質が劣化していると判定されたときに、変調方式を予め設定された複数の異なる変調方式の中で最も外乱に対して強い変調方式に切り替えた後に伝送路の品質に応じた変調方式に切り替える変調方式切り替え手段とを有する。  

Description

明 細 書
無線通信装置及びその変調方式切り替え方法
技術分野
[0001] [文献の引用]
この出願は、 2006年 6月 23日に出願された日本出願特願 2006— 173807号を 基礎とする優先権を主張し、その開示の全てをここに取り込む。
[技術分野]
本発明は、無線通信装置及びその変調方式切り替え方法に係り、とくに無線通信 装置の変調方式を伝送路の品質に合わせて選択して切り替える方法に関する。 背景技術
[0002] 多値変調方式を用いたデジタル無線通信では、変調多値数が多くなるほど単位周 波数あたりの情報伝送量は多くなるが、逆に伝送路中での擾乱には弱くなる。伝送 路の品質がある一定のレベルよりも悪ィ匕したときには伝送誤りが増加し、やがて通信 が切れることになる力 このような場合でも最低限の通信を確保したいという要求が出 てきた。そこで、通信路を監視し、通信路の品質劣化が検出されたときには変調多値 数を下げて、品質の良い最低限のビットレートの通信を確保し、伝送路の品質が良い ときには変調多値数を大きくして大容量の通信を可能にする適応変調方式による通 信方式が考えられている。
[0003] 例えば、特許文献 1の方式では、ある時点での伝送路の状態にぉ 、て、使用し得る 変調方式の中力 一定の通信品質を保てるものを選択する制御が行われて 、る。例 えば、 64Q AM (Quadrature Amplitude Modulation)、 16QAM、 QPSK(Quadratur e Phase Shift Keying)の 3つの多値変調方式を例に挙げると、伝送路の品質が劣化 しつつある場合、まず 64QAMから 16QAMへ、さらに劣化すれば 16QAMから QP SKへと切り替えられる。
特許文献 1 :特開 2005— 012684号公報
発明の開示
発明が解決しょうとする課題 [0004] 上記のように複数の変調方式の中力 一定の品質を確保できる最もビットレートの 大きな変調方式を選択する適応変調では、一定の品質が保てないと判断されたとき には、ビットレートの低い変調方式に変更して通信品質の確保を行う。さらに伝送路 の品質が劣化した場合、よりビットレートの低い変調方式に変更する。一般にビットレ ートが低いほど通信品質確保に必要な SZNが低くてよいため、通信路の状況に合 わせて変調方式を変更することによって、ビットレートの大きな変調方式では必要な 通信品質が確保できないような通信路の状況になっても、その状態で可能な限りの 高品質な通信を確保することができる。
[0005] ここで、通信路の状況が悪ィヒしつつあり、変調方式を変更しょうとするときには、送 · 受信器間で変調方式を変更するということを事前に申し合わせておく必要があるため 、伝送路の品質が変化して力 実際に変調方式が変更されるまでにはある時間を必 要とする。このため、フェージングゃ降雨による伝送路の品質悪ィ匕が発生して変調方 式を変更する場合、伝送路品質劣化の変化速度によっては、変調方式切り替えが完 了した時点では伝送路の劣化が進んで受信器での復調がうまく行われず、最低限の 通信を確保するという目的で変調方式を切り替えたにもかかわらず、通信が確保でき な ヽと ヽぅ状況が続く場合が考えられる。
[0006] 本発明は、このような従来の事情を考慮してなされたもので、通信路の品質劣化時 の変調方式切り替え後に、より確実な通信路を確保することを目的とする。
課題を解決するための手段
[0007] 上記目的を達成するため、本発明に係る無線通信装置は、設定された変調方式で データを変調波に変換して送信する送信器と、送られてくる変調波を受信し、設定さ れた変調方式に基づいて元のデータに変換する受信器と、前記受信器により受信さ れた信号に基づ!/、てその伝送路の品質を判定する受信品質判定手段と、前記受信 品質判定手段により前記伝送路の品質が劣化していると判定されたときに、前記変 調方式を予め設定された複数の異なる変調方式の中で最も外乱に対して強い変調 方式に切り替えた後に前記伝送路の品質に応じた変調方式に切り替える変調方式 切り替え手段とを有することを特徴とする。
[0008] 本発明に係る変調方式切り替え方法は、設定された変調方式でデータを変調波に 変換して送信する送信器と、送られてくる変調波を受信し、設定された変調方式に基 づいて元のデータに変換する受信器とを有する無線通信装置の変調方式切り替え 方法であって、前記受信器により受信された信号に基づいてその伝送路の品質を判 定する判定ステップと、前記伝送路の品質が劣化していると判定されたときに、前記 変調方式を予め設定された複数の異なる変調方式の中で最も外乱に対して強い変 調方式に切り替えた後に前記伝送路の品質に応じた変調方式に切り替える変調方 式切り替えステップとを有することを特徴とする。
発明の効果
[0009] 本発明によれば、通信路の品質劣化時の変調方式切り替え後に、より確実な通信 路を確保することができる。
図面の簡単な説明
[0010] [図 1]本発明の実施例に係るデジタル無線通信システムの全体構成を示すブロック 図である。
[図 2]実施例の動作を説明する図である。
[図 3] (a)は実施例の QPSKの受信信号点を示すコンスタレーシヨン図、(b)はその I 軸方向の受信信号点の分布を示すグラフである。
[図 4] (a)は本発明の変形例において、干渉を受けた変調波のスペクトラムを示すグ ラフ、 (b)はフ ージングの周波数特性を説明するグラフである。
[図 5]周波数選択性フェージングの場合の周波数特性を説明するグラフである。 符号の説明
[0011] laゝ lb 送信器
2a, 2b 受信器
3a, 3b 受信品質判定回路
4a, 4b 変調方式制御部
5a、 5b アンテナ
100、 200 無線通信装置
発明を実施するための最良の形態 [0012] 次に、本発明に係る無線通信装置及びその変調方式切り替え方法の実施例につ いて、図面を参照して詳細に説明する。
[0013] 図 1は、本実施例の構成を示す。図 1に示す本実施例のデジタル無線通信システ ムは、 A局を構成する無線通信装置 100と、 B局を構成する無線通信装置 200が対 向して配置され、互いに双方向に通信を行っている。 A局の無線通信装置 100と B 局の無線通信装置 200は、それぞれ送信器 la、 lb、受信器 2a、 2、受信品質判定 回路 (本発明の判定手段を成す) 3a、 3b、変調方式制御部 (本発明の変調方式切り 替え手段を成す) 4a、 4b、及びアンテナ 5a、 5bを有している。
[0014] 上記の構成にぉ 、て、 A局力 B局へのデータ伝送の場合、 A局の無線通信装置 100に入力されたデータ(情報)は、送信器 laにより QAM (Quadrature- Amplitude Modulation)方式の変調波に変換され、アンテナ 5aに供給される。アンテナ 5aから出 力された変調波に対応する電波は、空間を伝播し、対向する B局の無線通信装置 2 00にて、そのアンテナ 5bで受けられる。アンテナ 5bで受信された変調波は、受信器 2bに供給されて復調され、送信されたデータが再生されて出力される。 B局から A局 へのデータ伝送も、上記と同様に、送信器 lb、アンテナ 5b、アンテナ 5a、受信器 2a t 、う経路でデータが伝送されて 、る。
[0015] 本実施例では、受信器 2a、 2bには、その内部に伝送された受信信号の情報 (後述 参照)から伝送路の品質を判定する受信品質判定回路 3a、 3bが接続されている。こ の受信品質判定回路 3a、 3bは、その受信信号の情報に基づいて常に通信品質の 監視を行い、そのときの通信品質に見合った変調方式を選択し、その指示信号 Sla 、 Sibを変調方式制御部 4a、 4bに送る。
[0016] 変調方式制御部 4a、 4bは、受信品質判定回路 3a、 3bで選択された変調方式に基 づいて自局の受信変調方式と対向局の送信変調方式を変更する制御を行うもので あり、送られた指示信号 Sla、 Sibに基づいて変調方式の変更を行うための制御信 号 S2a〜S4a、 S2b〜S4bを生成し、自局の受信器 2a、 2bと、対向局の送信器 la、 lbとに送る。
[0017] 次に、図 2及び図 3を参照して、本実施例の動作について説明する。
[0018] ここでは、本実施例で使用される変調方式が、 QPSK、 16QAM、 64QAMの 3種 類であるものとする。なお、本発明で適用される複数の異なる変調方式は、これら〖こ 限定されず、他の変調方式でもよい。図 2に本実施例での回線品質と変調方式の時 間的な関係を示す。
[0019] まず、受信器 2aから伝送路の品質を反映する受信信号の情報が受信品質判定器 3a、 3bに入力される。受信品質判定器 3a、 3bは、入力された受信信号の情報から 伝送路の品質を推定し、伝送データが一定の品質を保っているかどうかを判定する。 伝送路の品質は、たとえば受信データの誤り率や、受信信号点の分散などの情報か ら判断することができる。本実施例では、受信信号点の分散から通信路の状況を判 定する方法を述べる。
[0020] 図 3 (a)及び (b)は、一例として、 QPSKのコンスタレーシヨンでの受信信号点を示 す。図 3 (a)は、受信器における QPSKの受信信号点であり、図 3 (b)は、 I軸方向の 受信信号点の分布を示している。熱雑音を考えたとき、この分布はガウス分布で表さ れ、受信信号の分布を測定することにより分布の広がり具合を表す標準偏差 σを求 めることができる。標準偏差 σ力も受信器における SZNを知ることができ、 SZNと誤 り率の関係は変調方式により決まっている。このため、標準偏差 σを求めることによつ て通信路の品質を測定することができる。
[0021] ここで、伝送路の品質が十分良く安定している状況(図 2の区間 Α参照)を考える。
この場合、受信品質判定器 3a、 3bは、入力された受信信号の情報 (例:受信信号点 の分散)力 伝送路の品質を推定し、大きな多値数の変調方式を選択しても十分な 品質が保たれると判断し、その指示信号 Sla、 Sibを変調方式制御器 4a、 4bに送る 。変調方式制御器 4a、 4bは、その指示信号 Sla、 Sibに基づき、制御信号 S2a〜S 4a、 S2b〜S4bを生成し、自局の受信器 2a、 2bおよび対向局の送信器 la、 lbに送 る。これにより、自局の受信器 2a、 2bは、制御信号 S3a、 S3bに基づいて大きな多値 数の変調方式 (本実施例では 64QAM)に設定する。また、対向局の送信器 la、 lb は、制御信号 S4a、 S4bに基づいて、大きな多値数の変調方式 (本実施例では 64Q AM)に設定する。ここでの状況は、図 2の例では区間 Aに対応する。
[0022] 一方、上記の状態から、降雨やフ ージングなどが発生し、伝送路の品質が徐々に 劣化し始めた状況 (図 2の区間 Aの右端参照)を考える。この場合、受信品質判定器 3a、 3bは、入力された受信信号の情報 (例:受信信号点の分散)から伝送路の品質 を推定し、伝送データが一定の品質を保っているかどうかを判定する。その結果、受 信品質判定器 3a、 3bは、伝送路の状態が劣化し、現在の変調方式では一定の品質 を保つことができないと判断し、変調方式を最も外乱に対して強い、すなわち最も堅 牢な方式 (本実施例では QPSK)に変更するための指示信号 Sla、 Sibを変調方式 制御器 4a、 4bに送る。
[0023] ここでは、 A局力も B局への通信路の品質が劣化した場合を想定する。この場合、 B 局の変調方式制御器 4bは、変調方式制御器 4bからの指示信号 Sibに基づき、変調 方式を最も堅牢な方式 (QPSK)に切り替えるための制御信号 S2b、 S3bを生成し、 制御信号 S3bを自局の受信器 2bに送る一方、制御信号 S2bを自局の送信器 lbと A 局の受信器 2aとを通じて A局の変調方式制御器 4aにこれから変更する変調方式を 伝える。その後、 B局の受信器 2bは、制御信号 S3bに基づいて、変調方式を 64QA M力も最も堅牢な方式 (QPSK)に切り替える。また、 A局の変調方式制御器 4aは、 B 局から変調方式を変更するための制御信号 S2bを受け取ると、制御信号 S4aを生成 し、これにより A局の送信器 laに B局と同じ変調方式 (QPSK)を設定する。ここでの 状況は、図 2の例では区間 Bに対応する。
[0024] 上記の変調方式変更後、 B局の受信品質判定器 3bでは、その変調方式 (QPSK) において受信品質を再判定する。その結果、もっと多値数を上げても十分な品質が 保たれると判定された場合には、受信品質判定器 3bは、変調方式を最も堅牢な方式 力も多値数を上げた方式 (本実施例では 16QAM)に変更するための指示信号 Sib を変調方式制御器 4bに送る。以後、上記と同様の動作により、変調方式制御器 4b は、指示信号 Sibに基づき、変調方式を最も堅牢な方式力も多値数を上げた方式( 16QAM)に切り替えるための制御信号 S2b、 S3bを生成し、制御信号 S3bを自局の 受信器 2bに送る一方、制御信号 S2bを自局の送信器 lbと A局の受信器 2aとを通じ て A局の変調方式制御器 4aにこれから変更する変調方式を伝える。その後、 B局の 受信器 2bは、制御信号 S3bに基づいて、変調方式を QPSKから 16QAMに切り替 える。また、 A局の変調方式制御器 4aは、 B局力も変調方式を変更するための制御 信号 S2bを受け取ると、制御信号 S4aを生成し、これにより A局の送信器 laに B局と 同じ 16QAMを設定する。ここでの状況は、図 2の例では区間 Cに対応する。
[0025] さらに時間がたって伝送路の状態が改善した場合を考える。この場合、 B局の受信 品質判定器 3bでは、その変調方式(16QAM)において受信品質を再判定する。そ の結果、もっと多値数を上げても 64QAMでも品質が保たれると判断された場合、受 信品質判定器 3bは、変調方式を 16QAM力も 64QAMに変更するための指示信号 Sibを変調方式制御器 4bに送る。以後、上記と同様の動作により、変調方式制御器 4bは、指示信号 Sibに基づき、変調方式を 16QAMから 64QAMに切り替えるため の制御信号 S2b、 S3bを生成し、制御信号 S3bを自局の受信器 2bに送る一方、制御 信号 S 2bを自局の送信器 lbと A局の受信器 2aとを通じて A局の変調方式制御器 4a にこれから変更する変調方式を伝える。その後、 B局の受信器 2bは、制御信号 S3b に基づいて、変調方式を 16QAMから 64QAMに切り替える。また、 A局の変調方式 制御器 4aは、 B局から変調方式を変更するための制御信号 S2bを受け取ると、制御 信号 S4aを生成し、これにより A局の送信器 laに B局と同じ 64QAMを設定する。こ こでの状況は、図 2の例では区間 Dに対応する。
[0026] 以上のように本実施例では、伝送路の品質が劣化しつつあることが検知されたとき 、まず使用し得る変調方式の中から最も外乱に強く堅牢な変調方式に変更する。そ の後しばらく目的の変調方式で一定の品質を保てることを確認してから目的の変調 方式に移行する。
[0027] ここで、伝送路の品質が劣化しつつあるとき、劣化がどこまで進むかはその時点で はわからない。従って劣化を検出して一段階下の変調方式に切り替えたとしても、切 り替えが完了した時点では既にその変調方式でも十分な品質を保てないほど伝送路 品質の劣化が進んでいる場合が考えられる。図 2の例では、 64QAM力も最も堅牢 な変調方式である QPSKではなぐその一段階下の変調方式である 16QAMに切り 替える場合に対応する。これは、前述した特許文献 1の切り替え制御も同様である。 また、変更後の変調方式において、受信器での再同期が不可能なほど劣化が進む 場合も考えられる。これらの場合、再び通信路が回復するまでに通信が長時間切れ ることになる。
[0028] これを避けるため、本実施例では、伝送路品質の劣化が始まったことが検知された ら、使用し得る変調方式の中から無条件で最も堅牢な変調方式に一度移行し、その 変調方式のモードで伝送路品質の監視を行う。この間も最低限の通信路は確保され ている。監視の結果、たとえば元の変調方式の一段下の変調方式で伝送品質が保 たれることがわ力つた場合、改めてその変調方式に切り替える。このようにすると、短 時間に大きな伝送品質劣化が起こったとしても通信が確保できる時間を増やすこと ができる。
[0029] すなわち、本実施例では、適応変調方式を用いたデジタル無線通信システムにお いて、変調方式を 3種類以上の変調方式の中から伝送路の品質に合わせて選択す る場合、伝送路の品質が悪化して現在の変調方式からある変調方式に変更するとき に、使用し得る変調方式の中から無条件で最も擾乱に強い変調方式にー且切り替え 、その状態で品質を再判定した後目的の変調方式に切り替えるという手順をとつてい る。こうすることにより、変調方式切り替え後により安定した通信路を確保することがで きる。
[0030] 次に、本実施例の効果について説明する。
[0031] QAM方式を用いる場合、 4QAM (QPSK)、 16QAM、 32QAM、 64QAM、 12 8QAM、 256<3ΑΜ· · ·とさまざまな多値数の変調方式が考えられる。多値数が大き くなれば、単位周波数あたりの伝送可能な情報量は増えるが、信号点間隔が狭くな ることで、伝送路で発生する雑音や干渉で信号点の収束が悪くなることによる伝送誤 りが起こりやすくなる。
[0032] また、多値 QAM方式を用いたデジタル無線通信方式では、一般に復調器でキヤリ ァ同期やクロック同期を確立する必要がある力 一般的に多値数が大きくなるほど伝 送路に擾乱が発生した場合のキャリア同期やクロック同期の再確立が困難になる。た とえばキャリア同期の場合、多値 QAMのコンスタレーシヨンにおいて、受信された信 号点が、理想的な位置力 どちらにどれだけ離れているかという誤差情報を元に同 期を確立する方法がある。この方法では、多値になるほど信号点間隔が狭くなること により、擾乱を受けた受信信号点が近隣の信号点の属する領域に入ってしまう確率 が高くなる。こうなると誤った誤差情報が出力されるために、同期の再確立が困難に なったり、時間が力かったりするようになる。逆に言えば、変調多値数の小さい変調方 式では信号点間隔が広いことから、伝送路に擾乱が発生し且つ多値数の大きな変調 方式では通信品質に問題があるような状態でも、比較的容易に同期を確立し、通信 路の確保を行うことができる。
[0033] 適応変調方式では、送信側と受信側の両方の変調方式を変更する必要があること から、通常、変調方式切り替え前に変調方式の切り替えを行うことを事前に申し合わ せておく必要がある。これは対向局との通信の中で行われる。このため、切り替えを 行う必要のある状況になつてから実際に切り替わるまでには、ある程度の時間が必要 である。したがって、その間に通信路の劣化がさらに進み、切り替え後の変調方式で も十分な品質が確保されな 、、もしくは再同期できな 、状況になることも考えられる。
[0034] これに対し、本実施例では、このような状況に可能な限り対応するため、通信路の 品質が悪化してきたときには、使用できる変調方式の中から、擾乱に対して最も堅牢 な変調方式に切り替えることによって、通信路の品質劣化時の変調方式切り替え後 に、より確実な通信路を確保することができる。
[0035] 従って、以上の理由により、適応変調方式を用いた無線通信において、通信路の 品質が劣化して変調方式を変更しょうとするとき、一旦選択できる変調方式の中で最 も堅牢な変調方式に移行し、確実な伝送路を確保した後、再度伝送路の状態を確認 して目的の変調方式に切り替えることにより、擾乱の時間的変化の影響を抑え、また 変調方式切り替え失敗に伴う回線断時間を抑えることが可能となる。
[0036] (変形例)
なお、上記の実施例では、伝送路での擾乱に対する強度を決める要素として、変 調多値数を用いた場合を説明しているが、本発明にこれに限定されず、たとえば伝 送帯域、すなわちシンボル周波数 (シンボルレート)も、伝送路での擾乱に対する強 度を決める要素になる。
[0037] たとえば、受信電界低下による SZN劣化の場合、雑音は広帯域に一様に広がつ ているが、信号成分については、電力が同じ場合には帯域が狭くなるほど単位周波 数あたりの電力密度は上昇するため、 SZNは良くなる。この様子を図 5に示す。同図 に示すように、広帯域の場合は、伝送情報に影響を与える雑音の帯域も広いため、 S ZNは悪くなる。また、狭帯域の場合は、伝送情報の単位周波数あたりの電力密度 が上昇するだけでなぐ帯域が狭いため伝送情報に影響を与える雑音の量も少ない ため SZNは良くなる。
[0038] また、周波数選択性フェージングの場合、干渉波と主波の遅延差と位相差が決まる と、図 4 (b)に示すように、周波数とフ ージングによるノッチ状周波数特性(図 4 (b) は振幅の周波数特性)の形が決まる。このとき、図 4 (a)に示すように、伝送帯域 (シン ボルレート)の異なる二つの変調波を考えた場合、シンボルレートが相対的に大きく 帯域の広い変調波が受けるノッチ深さが Aであるのに対して、シンボルレートが相対 的に小さく帯域の狭い変調波が受ける影響は、レベル変動分 BOとノッチ深さ Bという ように考えることができる。すなわち、伝送帯域が狭いほど、実効的なノッチ深さが浅 くなる。ノッチが浅い分だけフェージングにより発生する符号間干渉量は小さくなるた め、受信信号点の分散は小さく抑えられ、変調方式切り替え後の再同期には有利で ある。
[0039] したがって、前述した変調多値数だけではなぐ伝送帯域を狭くするということも、よ り堅牢な通信路を確保するためには有効な方法である。伝送路の状態が悪ィ匕しはじ めたときに、変調多値数の小さいもので、かつ、伝送帯域の狭い変調方式を選択す ることによつても、切り替え失敗による回線断時間を抑えることができる。
[0040] 上記のように、変調方式制御部(変調方式切り替え手段)は、最も外乱に対して強 い変調方式として、変調多値数が最も小さい変調方式に切り替えてもよぐ伝送帯域 が最も狭い変調方式に切り替えてもよぐ変調多値数が最も小さぐかつ、伝送帯域 が最も狭い変調方式に切り替えてもよい。また、変調方式制御部は、第 1の制御信号 により受信器に設定する変調方式を切り替えると共に、第 2の制御信号を送信器を介 して他の無線通信装置に送信しその変調方式を切り替えてもよい。
[0041] また、前述した実施例に係る無線通信装置を構成する各部の少なくとも一部の機 能は、プログラム制御で動作するプロセッサ (CPU)と、制御プログラムや制御データ 等を格納する記憶領域を有する半導体メモリ (ROM/RAM)等のハードウ アを用 いて実現することが可能である。この場合、プロセッサ及びメモリ等の構成要素は、本 発明の範疇に含まれる。
[0042] また、前述した実施例の無線通信装置を構成する各部の少なくとも一部の機能を プログラムコードを用いて実現する場合、力かるプログラムコード及びこれを記録する 記録媒体は、本発明の範疇に含まれる。この場合のプログラムコードは、オペレーテ イングシステムや他のアプリケーションソフトウェア等と共同して上記機能が実現され る場合は、それらのプログラムコードも含まれる。
[0043] また、前述した実施例の受信品質判定回路 (判定手段)及び変調方式制御部 (変 調方式切り替え手段)のハードウェアおよびソフトウェア構成は、特に限定されるもの ではなぐ各々の機能を実現可能なものであれば、各々独立して回路又はユニットを 構成するものでも、 1つの回路又はユニット内に一体的に構成したものでも、いずれ のものであってもよい。あるいは、受信品質判定回路及び変調方式制御部は、受信 器又は送信器内に一体的に構成してもよい。
[0044] 以上、実施例を参照して本願発明を説明したが、本願発明は上記実施例に限定さ れるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理 解し得る様々な変更をすることができる。
産業上の利用可能性
[0045] 本発明は、変調方式を伝送路の品質に合わせて選択して切り替える適応変調方式 を用 、る無線通信装置の用途にも適用できる。

Claims

請求の範囲
[1] 設定された変調方式でデータを変調波に変換して送信する送信器と、
送られてくる変調波を受信し、設定された変調方式に基づいて元のデータに変換 する受信器と、
前記受信器により受信された信号に基づいてその伝送路の品質を判定する判定手 段と、
前記判定手段により前記伝送路の品質が劣化していると判定されたときに、前記変 調方式を予め設定された複数の異なる変調方式の中で最も外乱に対して強い変調 方式に切り替えた後に前記伝送路の品質に応じた変調方式に切り替える変調方式 切り替え手段とを有することを特徴とする無線通信装置。
[2] 前記変調方式切り替え手段は、前記最も外乱に対して強い変調方式として、変調 多値数が最も小さい変調方式に切り替えることを特徴とする請求項 1記載の無線通 信装置。
[3] 前記変調方式切り替え手段は、前記最も外乱に対して強!、変調方式として、伝送 帯域が最も狭い変調方式に切り替えることを特徴とする請求項 1記載の無線通信装 置。
[4] 前記変調方式切り替え手段は、前記最も外乱に対して強い変調方式として、変調 多値数が最も小さぐかつ、伝送帯域が最も狭い変調方式に切り替えることを特徴と する請求項 1記載の無線通信装置。
[5] 前記変調方式切り替え手段は、第 1の制御信号により前記受信器に設定する変調 方式を切り替えると共に、第 2の制御信号を前記送信器を介して他の無線通信装置 に送信しその変調方式を切り替えることを特徴とする請求項 1乃至 4のいずれ力 1項 に記載の無線通信装置。
[6] 設定された変調方式でデータを変調波に変換して送信する送信器と、
送られてくる変調波を受信し、設定された変調方式に基づいて元のデータに変換 する受信器とを有する無線通信装置の変調方式切り替え方法であって、
前記受信器により受信された信号に基づいてその伝送路の品質を判定する判定ス テツプと、 前記伝送路の品質が劣化していると判定されたときに、前記変調方式を予め設定 された複数の異なる変調方式の中で最も外乱に対して強い変調方式に切り替えた後 に前記伝送路の品質に応じた変調方式に切り替える変調方式切り替えステップとを 有することを特徴とする変調方式切り替え方法。
[7] 前記変調方式切り替えステップは、前記最も外乱に対して強 ヽ変調方式として、変 調多値数が最も小さい変調方式に切り替えることを特徴とする請求項 6記載の変調 方式切り替え方法。
[8] 前記変調方式切り替えステップは、前記最も外乱に対して強 ヽ変調方式として、伝 送帯域が最も狭い変調方式に切り替えることを特徴とする請求項 6記載の変調方式 切り替え方法。
[9] 前記変調方式切り替えステップは、前記最も外乱に対して強 ヽ変調方式として、変 調多値数が最も小さぐかつ、伝送帯域が最も狭い変調方式に切り替えることを特徴 とする請求項 6記載の変調方式切り替え方法。
[10] 前記変調方式切り替えステップは、第 1の制御信号により前記受信器の変調方式 を切り替えると共に、第 2の制御信号を前記送信器を介して他の無線通信装置に送 信しその変調方式を切り替えることを特徴とする請求項 6乃至 9のいずれか 1項に記 載の変調方式切り替え方法。
[11] 設定された変調方式でデータを変調波に変換して送信する送信器と、
送られてくる変調波を受信し、設定された変調方式に基づいて元のデータに変換 する受信器と、
前記受信器により受信された信号に基づいてその伝送路の品質を判定する判定回 路と、
前記判定回路により前記伝送路の品質が劣化していると判定されたときに、前記変 調方式を予め設定された複数の異なる変調方式の中で最も外乱に対して強い変調 方式に切り替えた後に前記伝送路の品質に応じた変調方式に切り替える制御部とを 有することを特徴とする無線通信装置。
PCT/JP2007/062584 2006-06-23 2007-06-22 無線通信装置及びその変調方式切り替え方法 WO2007148784A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/308,667 US8150329B2 (en) 2006-06-23 2007-06-22 Wireless communication device and method for switching modulation system thereof
CN200780023658.2A CN101480006B (zh) 2006-06-23 2007-06-22 无线通信装置及其调制系统切换方法
EP07767395.2A EP2034684B1 (en) 2006-06-23 2007-06-22 Wireless communication apparatus and method for switching modulation schemes thereof
JP2008522535A JP4761232B2 (ja) 2006-06-23 2007-06-22 無線通信装置及びその変調方式切り替え方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-173807 2006-06-23
JP2006173807 2006-06-23

Publications (1)

Publication Number Publication Date
WO2007148784A1 true WO2007148784A1 (ja) 2007-12-27

Family

ID=38833521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062584 WO2007148784A1 (ja) 2006-06-23 2007-06-22 無線通信装置及びその変調方式切り替え方法

Country Status (6)

Country Link
US (1) US8150329B2 (ja)
EP (1) EP2034684B1 (ja)
JP (1) JP4761232B2 (ja)
CN (1) CN101480006B (ja)
RU (1) RU2420902C2 (ja)
WO (1) WO2007148784A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147823A (ja) * 2008-12-19 2010-07-01 Kddi Corp 無線品質から通信品質を推定する無線通信装置、方法及びプログラム
JP2011091763A (ja) * 2009-10-26 2011-05-06 Kddi Corp 無線品質から最大伝送速度を推定する無線通信装置、方法及びプログラム
WO2011065409A1 (ja) * 2009-11-27 2011-06-03 日本電気株式会社 無線通信システム、無線通信装置及び無線通信方法
US20120093258A1 (en) * 2009-06-24 2012-04-19 Pantech Co., Ltd. Method for compensating for frequency attenuation using adaptive cyclic delay diversity, and transmitting apparatus and method and receiving apparatus and method using same
JP2014230098A (ja) * 2013-05-22 2014-12-08 Kddi株式会社 通信装置及びその制御方法
JP2018503291A (ja) * 2014-11-21 2018-02-01 華為技術有限公司Huawei Technologies Co.,Ltd. 情報伝送方法、装置、及びデバイス

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948046B2 (en) 2007-04-27 2015-02-03 Aerohive Networks, Inc. Routing method and system for a wireless network
US8218502B1 (en) 2008-05-14 2012-07-10 Aerohive Networks Predictive and nomadic roaming of wireless clients across different network subnets
US9674892B1 (en) 2008-11-04 2017-06-06 Aerohive Networks, Inc. Exclusive preshared key authentication
US8483194B1 (en) 2009-01-21 2013-07-09 Aerohive Networks, Inc. Airtime-based scheduling
US9900251B1 (en) 2009-07-10 2018-02-20 Aerohive Networks, Inc. Bandwidth sentinel
US11115857B2 (en) 2009-07-10 2021-09-07 Extreme Networks, Inc. Bandwidth sentinel
US8977309B2 (en) * 2009-09-21 2015-03-10 Kathrein-Werke Kg Antenna array, network planning system, communication network and method for relaying radio signals with independently configurable beam pattern shapes using a local knowledge
US9584199B2 (en) 2009-09-21 2017-02-28 Kathrein-Werke Kg User group specific beam forming in a mobile network
US20130142241A1 (en) * 2010-08-13 2013-06-06 Nec Corporation Wireless communication network and a path selection method
US9002277B2 (en) 2010-09-07 2015-04-07 Aerohive Networks, Inc. Distributed channel selection for wireless networks
RU2564251C2 (ru) * 2010-09-16 2015-09-27 Нокиа Корпорейшн Динамическое создание аккаунта в защищенной сети с беспроводной точкой доступа
US10091065B1 (en) 2011-10-31 2018-10-02 Aerohive Networks, Inc. Zero configuration networking on a subnetted network
CN104769864B (zh) 2012-06-14 2018-05-04 艾诺威网络有限公司 多播到单播转换技术
US10389650B2 (en) 2013-03-15 2019-08-20 Aerohive Networks, Inc. Building and maintaining a network
US9413772B2 (en) 2013-03-15 2016-08-09 Aerohive Networks, Inc. Managing rogue devices through a network backhaul
CN105225455B (zh) * 2015-10-20 2019-04-19 中北大学 一种转台无线近程遥测系统
CN110087249B (zh) * 2019-03-14 2022-02-08 北京必创科技股份有限公司 一种避免无线通信干扰的方法和无线通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261851A (ja) * 2001-02-27 2002-09-13 Matsushita Electric Ind Co Ltd 通信装置及び伝送方式選択方法
JP2003198426A (ja) * 2001-12-27 2003-07-11 Mitsubishi Electric Corp 適応変調無線通信装置
JP2005318533A (ja) * 2004-03-29 2005-11-10 Matsushita Electric Ind Co Ltd 通信装置及び通信方法
JP2006173807A (ja) 2004-12-13 2006-06-29 Sanyo Electric Co Ltd アナログデジタル変換器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW347616B (en) * 1995-03-31 1998-12-11 Qualcomm Inc Method and apparatus for performing fast power control in a mobile communication system a method and apparatus for controlling transmission power in a mobile communication system is disclosed.
US5794159A (en) 1996-08-07 1998-08-11 Nokia Mobile Phones Limited Dual band mobile station employing cross-connected transmitter and receiver circuits
JP3110333B2 (ja) * 1997-01-23 2000-11-20 埼玉日本電気株式会社 Tdma方式無線装置の送信ダイバシチー回路
US6208663B1 (en) * 1997-08-29 2001-03-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for block ARQ with reselection of FEC coding and/or modulation
US6359940B1 (en) 1998-03-02 2002-03-19 Qualcomm Incorporated Method and apparatus for downconverting signals transmitted using a plurality of modulation formats to a common intermediate frequency range
RU2251211C2 (ru) 1998-03-02 2005-04-27 Квэлкомм Инкорпорейтед Способ и устройство для преобразования с понижением частоты сигналов, передаваемых с использованием множества форматов модуляции, в общий диапазон промежуточных частот
JP2000261398A (ja) 1999-03-11 2000-09-22 Kokusai Electric Co Ltd 通信装置
JP3779092B2 (ja) * 1999-05-12 2006-05-24 松下電器産業株式会社 送受信装置
DE19961777A1 (de) 1999-12-21 2001-07-12 Rudolf Bannasch Verfahren und Vorrichtungen zur Informationsübertragung
US7047016B2 (en) 2001-05-16 2006-05-16 Qualcomm, Incorporated Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
JP2003198651A (ja) * 2001-12-27 2003-07-11 Mitsubishi Electric Corp 最大ドップラー周波数推定装置および適応変調無線通信装置
JP4251841B2 (ja) * 2002-09-24 2009-04-08 京セラ株式会社 無線装置、チャネル割当方法、およびチャネル割当プログラム
AU2003271118A1 (en) 2002-10-11 2004-05-04 Sony Corporation Network control confirmation system, control communication terminal, server, and network control confirmation method
US7945280B2 (en) * 2003-02-20 2011-05-17 Fujitsu Limited Radio channel control method and receiving apparatus
JP4189273B2 (ja) 2003-06-20 2008-12-03 株式会社日立国際電気 通信装置
JP4216678B2 (ja) 2003-09-19 2009-01-28 株式会社日立国際電気 適応変調方法及び適応変調回路及びデジタル無線装置
JP3898192B2 (ja) * 2004-03-29 2007-03-28 株式会社日立国際電気 適応変調方式を使用した無線通信方法及び無線通信装置
JP2005354325A (ja) * 2004-06-09 2005-12-22 Sanyo Electric Co Ltd 増幅装置および増幅装置の利得制御方法
US20090196216A1 (en) * 2004-06-29 2009-08-06 Takashi Onodera Wireless communication device
JP2006033309A (ja) 2004-07-15 2006-02-02 Nec Corp 伝送レート決定方法およびその回路
CN1588939A (zh) * 2004-08-16 2005-03-02 西安电子科技大学 基于星型qam的盲检测自适应接收机及自适应盲检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261851A (ja) * 2001-02-27 2002-09-13 Matsushita Electric Ind Co Ltd 通信装置及び伝送方式選択方法
JP2003198426A (ja) * 2001-12-27 2003-07-11 Mitsubishi Electric Corp 適応変調無線通信装置
JP2005318533A (ja) * 2004-03-29 2005-11-10 Matsushita Electric Ind Co Ltd 通信装置及び通信方法
JP2006173807A (ja) 2004-12-13 2006-06-29 Sanyo Electric Co Ltd アナログデジタル変換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2034684A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147823A (ja) * 2008-12-19 2010-07-01 Kddi Corp 無線品質から通信品質を推定する無線通信装置、方法及びプログラム
US20120093258A1 (en) * 2009-06-24 2012-04-19 Pantech Co., Ltd. Method for compensating for frequency attenuation using adaptive cyclic delay diversity, and transmitting apparatus and method and receiving apparatus and method using same
JP2011091763A (ja) * 2009-10-26 2011-05-06 Kddi Corp 無線品質から最大伝送速度を推定する無線通信装置、方法及びプログラム
WO2011065409A1 (ja) * 2009-11-27 2011-06-03 日本電気株式会社 無線通信システム、無線通信装置及び無線通信方法
CN102648608A (zh) * 2009-11-27 2012-08-22 日本电气株式会社 无线通信系统、无线通信装置及无线通信方法
JP5423807B2 (ja) * 2009-11-27 2014-02-19 日本電気株式会社 無線通信システム、無線通信装置及び無線通信方法
US8743935B2 (en) 2009-11-27 2014-06-03 Nec Corporation Wireless communication system, wireless communication apparatus and wireless communication method
CN102648608B (zh) * 2009-11-27 2016-08-24 日本电气株式会社 无线通信系统、无线通信装置及无线通信方法
JP2014230098A (ja) * 2013-05-22 2014-12-08 Kddi株式会社 通信装置及びその制御方法
JP2018503291A (ja) * 2014-11-21 2018-02-01 華為技術有限公司Huawei Technologies Co.,Ltd. 情報伝送方法、装置、及びデバイス
US10439762B2 (en) 2014-11-21 2019-10-08 Huawei Technologies Co., Ltd. Information transmission method, apparatus, and device

Also Published As

Publication number Publication date
US20100240313A1 (en) 2010-09-23
RU2009102069A (ru) 2010-07-27
CN101480006B (zh) 2015-05-13
EP2034684A4 (en) 2013-08-28
EP2034684A1 (en) 2009-03-11
RU2420902C2 (ru) 2011-06-10
CN101480006A (zh) 2009-07-08
JPWO2007148784A1 (ja) 2009-11-19
EP2034684B1 (en) 2014-06-04
JP4761232B2 (ja) 2011-08-31
US8150329B2 (en) 2012-04-03

Similar Documents

Publication Publication Date Title
JP4761232B2 (ja) 無線通信装置及びその変調方式切り替え方法
EP1367789B1 (en) Transmission apparatus, reception apparatus, transmission method and reception method
JP4409743B2 (ja) 無線通信装置及び無線通信方式
JP2009232477A (ja) 送信方法及び送信装置
WO2009093670A1 (ja) 無線伝送装置、変調方式決定方法及びその記録媒体
WO2007026682A1 (ja) 無線通信システム、無線通信端末、基地局、無線通信方法及びプログラム
EP1678857A1 (en) Mimo transmitter and receiver for low-scattering environments
US8744503B2 (en) Wireless communication device, wireless communication system, and wireless communication method
JP2005012684A (ja) 通信装置
KR20100126568A (ko) 수신기
US20110237205A1 (en) Wireless communications device with waveform configuration and related methods
JP5333608B2 (ja) 複合条件判定ユニット、伝送装置、複合条件判定方法
US7095797B2 (en) Method of modulating a data signal with modulation switching between direct and differential modulation and apparatus for modulation
JP5472448B2 (ja) 通信装置、通信システム、及び通信制御方法
JP6813146B2 (ja) データ送信信号を送信するための送信機およびデータ送信信号を受信するための受信機
EP2360963A1 (en) Wireless communications system and wireless device
US20050163092A1 (en) Radio apparatus and base station apparatus
JP2004356936A (ja) 回線品質測定方法及び装置、通信諸元制御方法、無線通信システム並びに無線通信局
WO2014097506A1 (ja) 通信システム、受信装置、送信装置、通信方法、送信方法及び受信方法
EP1965531A1 (en) Method and system for the adaptive modulation control of a digital communication system.
US20130215763A1 (en) Communication apparatus, circuit for communication apparatus, and communication method
JP2006191701A (ja) 送信装置及び送信方法
JP2024128083A (ja) 無線受信装置
JP2004328793A (ja) 送信装置、受信装置及び通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780023658.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007767395

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008522535

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12308667

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 411/CHENP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009102069

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009102251

Country of ref document: RU

Kind code of ref document: A