WO2007148632A1 - マイクロ波加熱装置 - Google Patents

マイクロ波加熱装置 Download PDF

Info

Publication number
WO2007148632A1
WO2007148632A1 PCT/JP2007/062169 JP2007062169W WO2007148632A1 WO 2007148632 A1 WO2007148632 A1 WO 2007148632A1 JP 2007062169 W JP2007062169 W JP 2007062169W WO 2007148632 A1 WO2007148632 A1 WO 2007148632A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
antenna
microwave
rotating
rotating antenna
Prior art date
Application number
PCT/JP2007/062169
Other languages
English (en)
French (fr)
Inventor
Hirohisa Imai
Koji Yoshino
Masamitsu Kondou
Hiroshi Kawai
Miki Ueda
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/305,314 priority Critical patent/US8525086B2/en
Priority to EP07745423.9A priority patent/EP2051563B1/en
Priority to CN2007800230730A priority patent/CN101473692B/zh
Publication of WO2007148632A1 publication Critical patent/WO2007148632A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • H05B6/725Rotatable antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas

Definitions

  • the present invention relates to a microwave heating apparatus that dielectrically heats an object to be heated.
  • a microwave oven which is a typical microwave heating device, can directly heat food, which is a typical object to be heated, so it is not necessary to prepare a pan or pot and is essential for daily life with ease.
  • Device Up to now, microwave ovens have a size of about 300 to 400 mm in the width and depth dimensions and about 200 mm in the height direction. Power is generally popular.
  • the width of the space for storing foods has been flattened, and the width is 400 mm or more, which is relatively larger than the depth.
  • a product with a wide heating chamber shape has been put to practical use.
  • the microwave wavelength used by the microwave oven is about 120 mm, and a strong electric field distribution (hereinafter referred to as radio wave distribution) is generated in the heating chamber. Furthermore, the shape of the object to be heated and its physical characteristics It is known that the effects of the above are synergistic and heating unevenness occurs. In particular, in the heating chamber having a large size in the width direction as described above, it is necessary to increase the uniformity of heating more than before in order to simultaneously heat foods placed on a plurality of dishes.
  • this type of microwave heating apparatus has been difficult to locally heat the central portion of the force heating chamber, which has been provided with one radiation antenna and rotationally drives the antenna. Therefore, as a measure for improving the uniformity of heating, one having a plurality of radiation antennas or one having a plurality of high-frequency stirring means has been proposed (see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-259646
  • Patent Document 2 Japanese Patent No. 3617224
  • the present invention has been made to solve the above-described problem, and provides a microwave heating apparatus that normally achieves uniform central heating in accordance with the purpose while achieving uniform heating of the entire heating chamber.
  • the purpose is to do.
  • the microwave heating apparatus of the present invention includes a microwave generation means, a waveguide that transmits microwaves from the microwave generation means, a heating chamber that houses an object to be heated by the microwave, A rotating antenna for radiating the microwave from the waveguide to the heating chamber, a driving means for rotating the rotating antenna, a temperature distribution detecting means for detecting a temperature distribution in the heating chamber, and the temperature Control means for controlling the direction of the rotating antenna by controlling the driving means based on the detection result of the distribution detecting means, and the control The means controls at least one of the plurality of rotating antennas in a concentrated manner by controlling a portion having a strong radiation directivity in a direction determined based on the detection result of the temperature distribution detecting means, and the driving means And a position detecting means for detecting the position of the rotating antenna.
  • the microwave heating apparatus of the present invention accommodates a microwave generation means, a waveguide for transmitting microwaves from the microwave generation means, and an object to be heated by the microwave.
  • a heating chamber ; a plurality of rotating antennas for radiating the microwaves from the waveguide to the heating chamber; a driving means for rotating the rotating antenna; and a temperature distribution detection for detecting a temperature distribution in the heating chamber.
  • a control means for controlling the direction of the rotating antenna by controlling the driving means based on the detection result of the temperature distribution detecting means, wherein the control means is at least one of the plurality of rotating antennas.
  • the two rotating antennas are configured to be centrally heated by controlling a portion having a strong radiation directivity in a direction determined based on the detection result of the temperature distribution detecting means.
  • a moderate local calorific heat is realized by directing a portion of the rotating antenna having high radiation directivity to an area that needs to be heated in the heating chamber.
  • the control unit controls the portion having a strong radiation directivity of the rotating antenna in a direction determined based on the detection result of the temperature distribution detection unit, thereby performing concentrated heating.
  • An antenna control unit having a local heating mode control unit that performs heating and a distributed heating mode control unit that uniformly heats the heating chamber.
  • the heating chamber can be centrally heated or uniformly heated.
  • the antenna control unit controls the rotating antenna with the distributed heating mode control unit at an initial stage of heating, and when the initial stage ends, the local heating unit controls the local antenna. Control by heating mode controller.
  • the antenna control unit controls the rotating antenna with a local heating mode control unit at an initial stage of heating, and when the initial stage is completed, the distributed heating is performed. Control by the mode controller.
  • the heating chamber can be heated uniformly after being heated centrally.
  • control means includes a food determination unit that determines whether or not an object to be heated placed in the heating chamber is food, and the food The rotating antenna is controlled based on the temperature of the food area determined by the determination unit.
  • the rotating antenna can be controlled based on the temperature of the food area.
  • the control means stores an angle of the rotating antenna when a portion having a strong radiation directivity of the rotating antenna is directed to a specific region in the heating chamber.
  • An antenna angle storage section that directs a portion having a strong radiation directivity of the rotating antenna to a low temperature portion of the temperature of each detection region detected by the temperature distribution detecting means.
  • the distributed heating mode control unit changes a stop position of the rotating antenna every moment, or rotates the rotating antenna continuously, or
  • the configuration is such that distributed heating is performed by randomly changing the stop position of the rotating antenna.
  • distributed heating can be performed by changing the stop position of the rotating antenna every moment, continuously rotating the rotating antenna, or randomly changing the stopping position of the rotating antenna. .
  • the local heating mode control unit has a reciprocating angle.
  • the reciprocal angle storage unit stores the reciprocal angle storage unit, and the angle determined by referring to the antenna angle storage unit based on the detection result detected by the temperature distribution detection unit is the only angle stored by the reciprocal angle storage unit.
  • the rotary antenna is configured to swing back and forth.
  • the rotating antenna continues to stop during the microwave radiation, so that the microwave is prevented from being excessively concentrated on a part of the rotating antenna to prevent overheating. Powering about ⁇ 5 degrees around the target angle does not affect the local heating effect on the object to be heated, but it is sufficient to prevent the antenna component from overheating.
  • the local heating mode control unit includes a stop upper limit time storage unit that stores an upper limit time during which the rotating antenna stops at a predetermined angle, and the rotating antenna stops.
  • a stop time counting unit that counts the time, and when the time counted by the stop time counting unit reaches the time stored in the stop upper limit time storage unit, the position is shifted to a position shifted by a predetermined angle. Move the rotating antenna.
  • the rotating antenna continues to stop during microwave radiation, thereby preventing the microwave from being excessively concentrated on a part of the rotating antenna and causing excessive heating.
  • the upper limit time is experimentally determined under the severest conditions where there is no heated object. Force 30 seconds to 1 minute When microwaves are concentrated locally with no load, antenna components may melt Therefore, the shorter time, for example, about 30 seconds is set as the upper limit time, and if it is exceeded, the angle is rotated by, for example, about 5 degrees.
  • the temperature distribution detection means includes a plurality of infrared detection elements, and a direction in which the plurality of infrared detection elements intersects a direction in which the plurality of infrared detection elements are arranged. And a driving means for moving the device.
  • a plurality of infrared detection elements can be moved in a direction that intersects the direction in which the infrared detection elements are arranged.
  • the driving means includes a position detecting means for detecting a position of the rotating antenna.
  • the position of the rotating antenna can be detected by the position detection means.
  • the position detection unit is configured to detect the origin of the rotating antenna in the origin detection mode. With this configuration, the origin of the rotating antenna can be detected by the position detection means in the origin detection mode.
  • the microwave heating apparatus of the present invention is configured such that the origin detection mode confirms the origin of the rotating antenna before the heat treatment is performed or after the heat treatment is performed.
  • the origin of the rotating antenna can be confirmed before the start of heating or after the end of heating.
  • control means stops the operation of the magnetron while driving the rotating antenna in the origin detection mode.
  • control means includes a menu for determining that an error occurs when the origin is not detected in the origin detection mode and prohibiting execution of the heating process, and the rotating antenna.
  • a menu is provided for performing heat treatment in a stopped state.
  • the temperature distribution in the heating chamber may be biased according to the cooking menu.
  • the heating process is performed while the operation of the rotating antenna is stopped.
  • the minimum functions can be provided.
  • the rotation centers of the plurality of rotating antennas are arranged at substantially equal distances from the center of the heating chamber.
  • the rotation centers of the plurality of rotating antennas are arranged at approximately the same distance from the center of the heating chamber. Heating can be done by directing the part with strong radiation directivity near the center.
  • the microwave heating apparatus of the present invention uses a stepping motor as the driving means, and sets the time difference for each stepping motor to the timing of inputting a pulse to each stepping motor corresponding to each antenna. Provided.
  • the timing for inputting pulses to each stepping motor is provided with a time difference for each stepping motor, which eliminates the need for installing a circuit that can handle a large current and prevents an increase in circuit size. be able to.
  • the invention's effect is provided with a time difference for each stepping motor, which eliminates the need for installing a circuit that can handle a large current and prevents an increase in circuit size. be able to.
  • FIG. 1 is a front sectional configuration diagram of a microwave heating apparatus according to a first embodiment of the present invention.
  • FIG.2 Cross-sectional side view of the microwave heating device (AA 'cross-sectional view in Fig. 1)
  • FIG. 4 Diagram explaining the orientation of the rotating antenna when locally heating the vicinity of the center in the heating chamber.
  • FIG. 5 Diagram explaining the orientation of the rotating antenna when locally heating the left side of the heating chamber.
  • FIG. 6 Diagram explaining the orientation of the rotating antenna when the right side of the heating chamber is heated locally
  • FIG. 7 is a diagram illustrating the orientation of the rotating antenna when locally heating the front of the heating chamber
  • FIG. 8 A diagram for explaining the orientation of the rotating antenna when locally heating the back of the heating chamber
  • FIG. 10 is a cross-sectional plan view of a microwave heating device having three rotating antennas.
  • FIG. 11 Schematic cross-sectional configuration diagram of temperature distribution detection means
  • FIG. 12 is a diagram for explaining an infrared temperature detection spot in the CC ′ section in FIG.
  • FIG. 13 Schematic configuration diagram of control means 411
  • FIG. 14 is a flowchart for explaining the control operation in the initial stage of heating.
  • FIG. 15 is a flowchart for explaining the control operation in the heating feedback stage.
  • FIG. 16 is a flowchart for explaining the control operation in the heating feedback stage of the second embodiment.
  • FIG. 17 is a diagram showing a modification of the rotating antenna
  • FIG. 18 is a diagram showing a modification of the rotating antenna
  • FIG. 19 is a diagram showing a modification of the rotating antenna
  • Microwave oven (microwave heating device)
  • FIG. 1 to 3 are block diagrams of a microwave oven 31 that is a typical microwave heating apparatus according to the present invention.
  • FIG. 1 is a cross-sectional view seen from the front
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. 3 is a cross-sectional view taken along the line B-B 'of FIG. 1
  • FIG. 4 is a cross-sectional view taken along the line D-D' of FIG.
  • a microwave oven 31 is connected to a waveguide 33 that transmits a microwave emitted from a magnetron 32, which is a typical microwave generation means, and an upper portion of the waveguide 33.
  • the widthwise dimension (about 41 Omm) is larger than the depthwise dimension (about 315 mm) and the shape of the heating chamber 34 and the heating chamber 34 for placing food (not shown), which is a typical object to be heated 34
  • a mounting table 35 that is fixed inside and has a low loss dielectric material force such as ceramic and glass, and that can easily transmit microwaves, and an antenna formed below the mounting table 35 in the heating chamber 34.
  • Typical drive that can rotate the rotating antennas 38 and 39 and the rotating antennas 38 and 39 Motors 40 and 41 as control means, control means 411 for controlling the directions of the rotating antennas 38 and 39 by controlling the motors 40 and 41, and an origin detecting mechanism for detecting the origin of rotation of each of the rotating antennas 38 and 39
  • the infrared sensor 10 which is a temperature distribution detecting means for detecting the temperature distribution in the heating chamber 34.
  • the microwave oven 31 includes a door 64 as shown in FIG.
  • the setting means 63 is arranged under the 64.
  • the setting means 63 allows the user to select various cooking menus according to food and cooking contents. Based on this selection result, Stage 411 can control magnetron 32 and motors 40 and 41.
  • the rotating antennas 38 and 39 are configured to have radiation directivity.
  • the microwave oven 31 of the first embodiment is configured to centrally heat specific foods by controlling at least one of the rotating antennas 38 and 39 having a strong radiation directivity in a predetermined direction. The specific control method will be described later.
  • the rotating antennas 38 and 39 are approximately cylindrical with a diameter of about 18 mm that penetrates the coupling holes 43 and 44 having a diameter of about 30 mm provided on the boundary surface between the waveguide 33 and the bottom surface 42 of the heating chamber.
  • the joints 45 and 46 which also have the same conductive material force, are integrated by being electrically connected to the upper ends of the joints 45 and 46 by crimping, welding, etc., and have a wider area in the horizontal direction than in the vertical direction.
  • radiating portions 47 and 48 having conductive material power.
  • the rotating antennas 38 and 39 are configured to be fitted to the shafts 49 and 50 of the motors 40 and 41 so that the centers of the coupling portions 43 and 44 are the centers of the rotational driving.
  • the radiation parts 47 and 48 have a radiation directivity because the shape is not constant with respect to the direction of rotation.
  • the rotation centers of the rotary antennas 38 and 39 are arranged at substantially equal distances from the center in the heating chamber 34. With this configuration, it is possible to heat the vicinity of the center of the heating chamber, which is usually difficult to heat with one antenna, by directing the strong radiation directivity of the rotating antennas 38 and 39 toward the center. .
  • the waveguide 33 has a T-shape when viewed from the top as shown in FIG. 3 and is symmetrical, so that the distance from the magnetron 32 to the coupling portions 45 and 46 is equal and coupled. Since the parts 45 and 46 are attached at symmetrical positions with respect to the width direction of the heating chamber 34, the microwaves radiated from the magnetron 32 pass through the waveguide 33 and the rotating antennas 38 and 39 in the heating chamber 34. Is distributed evenly.
  • the radiating portions 47 and 48 have the same shape, and the radiating portion upper surfaces 51 and 52 have a shape having an R in a substantially quadrangular shape. It is configured to have the portions 53 and 54 and limit the microwave radiation to the outside of the two sides.
  • the distance between the bottom surface 42 of the heating chamber 42 and the top surfaces 51 and 52 of the radiating section is about 10 mm, and the bending sections 53 and 54 of the radiating section are pulled down to a position about 5 mm lower than that.
  • the remaining two sides have different horizontal lengths from the joints 45, 46 to the end, and the joints
  • the end portions 55 and 56 are about 75 mm from the center, and the end portions 57 and 58 are about 55 mm from the center of the coupling portion.
  • the width in the end is 80 mm or more.
  • the rotating antennas 38 and 39 can increase the radiation directivity in the direction from the coupling portions 45 and 46 to the end portions 57 and 58.
  • the rotating antennas 38 and 39 that do not need to be particular about the place of placement may be rotated as in the conventional case, as in the conventional microwave oven.
  • the control means 411 moves the end portions 57 and 58 of the rotating antennas 38 and 39 to the calorie heating chamber 34 as shown in FIG. It is controlled so as to be directed in a predetermined direction, ie, approximately the center in the width direction and approximately the center in the depth direction.
  • control means 411 faces the ends 57 and 58 of the rotating antennas 38 and 39 to the left (the heating chamber 34 is connected to the door 64). Control it so that it is directed to the left side when viewed from the side.
  • Both ends 57 and 58 of the rotating antennas 38 and 39 have a radiation directivity toward the ends 57 and 58 when the heating chamber 34 faces the left side when viewed from the door 64 side. Since it is strong, microwaves are emitted from the direction of the ends 57 and 58 in particular, and the food located in that direction can be intensively heated.
  • control means 411 directs the ends 57 and 58 of the rotating antennas 38 and 39 to the right (the heating chamber 34 is a door). Control it so that it faces the right side as viewed from the 64th side.
  • each antenna has a radiation directivity toward the ends 57 and 58. Since it is strong, microwaves are emitted from the direction of the ends 57 and 58 in particular, and the food located in that direction can be intensively heated.
  • the control means 411 moves the end portions 57 and 58 of the rotating antennas 38 and 39 in the width direction of the heating chamber 34 as shown in FIG. It is controlled so that it is directed to the front in the approximate center and direction of the back (near the center front in the heating chamber 34).
  • each antenna has a radiation directivity in the direction of the end portions 57 and 58.
  • microwaves are emitted from the direction of the ends 57 and 58, and the food located in that direction can be intensively heated.
  • control means 411 moves the end portions 57 and 58 of the rotating antennas 38 and 39 in the width direction of the heating chamber 34 as shown in FIG. It is controlled so that it is directed to the rear in the approximate center and the back direction (near the center rear in the heating chamber 34).
  • each antenna has a radiation directivity toward the end portions 57 and 58.
  • microwaves are emitted from the direction of the ends 57 and 58, and the food located in that direction can be intensively heated.
  • the microwave oven 31 controls the direction of the rotating antenna in accordance with the place where it is desired to locally heat.
  • a stepping motor is used as the motors 40 and 41. For example, even if the motor is a constant rotating motor, the reference position is detected and the energization time is controlled. Can be considered.
  • stepping motors are used as the motors 40 and 41, and position detection means for detecting the antenna position are provided on the shafts 40 and 41 of the motors, respectively.
  • This antenna position detecting means is a force that can be constituted by a known rotary encoder or potentiometer for detecting the rotational position of the rotary shaft.
  • the antenna position detecting means is constituted by an origin detecting mechanism described below. That is, as shown in FIG. 9, the original inspection mechanism is composed of a disc 36a having a shaft as a central axis and a photo interrupter 36.
  • the circular plate 36a is provided with a rectangular slit 36b.
  • the disc 36a is commonly attached to the shafts 49 and 50 of the motors that rotate the rotating antennas 38 and 39, and is a photointerrupter including a light emitting element and a light receiving element. It rotates to block 36 light paths.
  • control means 411 uses the angle of the rotating antennas 38, 39 when concentrating the highly directional portions of the rotating antennas 38, 39 at the local heating location with reference to the origin that can be detected by the origin detecting mechanism (
  • the antenna angle storage unit stores the stop position in advance. When local heating is performed by controlling the operation of the rotating antennas 38 and 39, information in the antenna angle storage unit is referred to.
  • the force described so far for the case of two rotating antennas is not limited to this.
  • the number of rotating antennas is not limited to this, and may be two or more.
  • a structure having an antenna may be used. In the state shown in Fig. 10, the end of each rotating antenna faces the center of the heating chamber, and the food located near the center can be heated intensively.
  • the temperature detection means includes a plurality of infrared detection elements 13 arranged in a line on the substrate 19, a case 18 that accommodates the entire substrate 19, and a direction in which the infrared detection elements 13 are arranged in the case 18.
  • the stepping motor 11 that moves in the direction that intersects perpendicularly is omitted.
  • a metal can 15 enclosing the infrared detection element 13 and an electronic circuit 20 for processing the operation of the infrared detection element are provided.
  • the can 15 is provided with a lens 14 through which infrared rays pass.
  • the case 18 is provided with an infrared passage hole 16 through which infrared light passes and a hole 17 through which lead wires from the electronic circuit 20 pass.
  • the case 18 can be moved in a direction perpendicular to the direction in which the infrared detection elements 13 are arranged in a row.
  • FIG. 12 is a diagram illustrating the infrared temperature detection spot in the CC ′ section in FIG.
  • the microwave oven 31 of the first embodiment can detect the temperature distribution in almost all regions in the heating chamber 34 by the reciprocating rotation of the stepping motor 11 as the temperature detecting means. Is.
  • the temperature detection elements 13 for example, infrared sensors arranged in a line of the temperature detection unit simultaneously detect the temperature distribution in the regions A1 to A4 in FIG.
  • the temperature detection element 13 detects the temperature distribution in the region of B1 to B4.
  • the temperature detection element 13 detects the temperature distribution in the region C1 to C4, and similarly detects the temperature distribution in the region D1 to D4. .
  • the stepping motor 11 rotates in reverse to detect the temperature distribution in the order of C1 to C4, B1 to B4, and A1 to A4 from the D1 to D4 region side.
  • the temperature detection means can detect the entire temperature distribution in the heating chamber 34 by repeating the above operation.
  • the control means 411 includes an antenna control unit 101 that controls the operation of the rotating antennas 38 and 39, a food determination unit 102 that determines whether the object to be heated placed in the heating chamber 34 is a food, a heating unit This is a configuration having an initial heating stage end determination unit 103 that determines the end of the initial stage of the process, and a heating end determination unit 104 that determines the end of the entire heating process.
  • the food determination unit 102 includes an initial temperature distribution storage unit 108 that stores an initial temperature distribution of the object to be heated, a temperature increase rate calculation unit 109 that calculates a temperature increase rate per unit time of the object to be heated, When the calculated temperature rise rate is equal to or higher than a predetermined value, it is determined that the object to be heated is food. In other words, this is to determine whether it is a mounting table on which an area force object to be heated is detected or a food to be heated. This is because the mounting table transmits microwaves and hardly rises in temperature, but food easily absorbs microwaves and rises in temperature! /, And is distinguished by the difference in its characteristics.
  • the heating initial stage end determination unit 103 determines, for example, a determination condition for determining that the heating initial stage has ended when the heating start force has also passed a predetermined time, and the maximum temperature of the object to be heated reaches a predetermined temperature or higher. Judgment conditions for determining that the initial stage of heating has been completed, Heating start force Judgment is made that the initial stage of the heat treatment has ended using the determination condition that determines that the initial stage of heating has ended when the maximum temperature change of the object to be heated is greater than or equal to a predetermined value. .
  • the heating end determination unit 104 determines, for example, a determination condition for determining that the heating process is to be ended when the maximum temperature of the temperature distribution of the object to be heated exceeds a preset temperature, or a location determined as food. Judgment conditions for ending the heat treatment when the average temperature of the product exceeds the set temperature, and the time required for the maximum temperature of the object to be heated to reach the specified temperature, and measuring a certain percentage of the time required The end of the heat treatment is determined by a configuration in which (for example, 50%) is heat-treated as the additional heating time and then the heat treatment is terminated when the additional heating time is over.
  • the antenna control unit 101 includes a distributed heating mode control unit 105 that controls the operation of the rotating antennas 38 and 39 that uniformly heat the heating chamber, and a rotating antenna 38 that heats the low-temperature portion of the object to be heated. 39, a local heating (spot heating) mode control unit 106 that controls the operation of 39, and a low-temperature part extraction unit 107 that detects a low-temperature part of an object to be heated placed in the heating chamber.
  • the distributed heating mode control unit 105 changes the stop position of the two rotary antennas 38 and 39 that can be locally heated by stopping at a predetermined position during microwave oscillation. To achieve distributed heating, to rotate the rotating antennas 38 and 39 continuously, to achieve distributed heating, and to change the stopping positions of the rotating antennas 38 and 39 randomly to achieve distributed heating. This is a configuration to be realized.
  • the local heating mode control unit 106 is configured to obtain information on the lowest temperature location from the low temperature part extraction unit 107 and to control the orientation of the rotating antennas 38 and 39 to perform local heating. For example, if the lowest temperature point is any of B2, B3, C2, and C3 in FIG. 12, the rotating antennas 38 and 39 are heated in the center, that is, at the stop position shown in FIG. , 39 is stopped.
  • the rotating antennas 38, 39 are heated in the left direction, that is, in the stop position shown in FIG. Stop 39. Also, if the minimum temperature location is either B4 or C4 in Figure 12, The rotating antennas 38 and 39 are stopped in the direction in which the rotating antennas 38 and 39 are heated in the right direction, that is, in the stop position shown in FIG.
  • the rotating antennas 38, 39 are in the direction in which the rotating antennas 38, 39 heat the front, that is, in the stop position shown in FIG. Stop.
  • the rotating antennas 38 and 39 are stopped in the direction in which the rotating antennas 38 and 39 heat the rear, that is, in the direction shown in Fig. 8.
  • control means 411 is a force for controlling the stop position of the rotating antennas 38 and 39 according to the lowest temperature location detected by the temperature detecting means. At this time, the rotating antenna is at a predetermined position. If the microwave is continuously radiated into the heating chamber while it is stopped, the rotating antenna itself may overheat and melt.
  • the local heating mode control unit 106 of the control means 411 is configured so that the rotating antenna is about a predetermined angle (for example, ⁇ 5 degrees) around the target angle (stop position) in the local heating mode described above. Reciprocally swing. As a result, the deterioration of the rotating antenna can be prevented without affecting the local heating effect. In addition, the rotating antenna continues to stop during the microwave radiation, so that the microwave is prevented from being excessively concentrated on a part of the rotating antenna to prevent overheating.
  • This reciprocating rocking operation may be performed at the time of starting local heating, but may be configured to start after a predetermined time has elapsed (for example, 30 seconds to 1 minute) after starting local heating.
  • the control means 411 includes a stop upper limit time storage unit that preliminarily stores an upper limit time that allows the rotating antennas 38 and 39 to stop, and the rotation antenna stops. And a reciprocal angle storage unit for storing an angle at which the rotating antennas 38 and 39 swing back and forth.
  • the rotation antenna may be rotated by a predetermined angle (for example, 5 degrees) after a predetermined time has elapsed from the start of local heating (for example, after 30 seconds to 1 minute).
  • control means 411 stores the time when the rotating antennas 38 and 39 are at a predetermined stop position (angle) as the origin. Then, for example, the control means 411 executes an origin detection mode in which the origin of the rotating antennas 38 and 39 is confirmed before the heat treatment is performed or after the heat treatment is performed. To do.
  • the control means 411 performs control to stop the operation of the magnetron while driving the rotating antenna in the origin detection mode.
  • control unit 411 performs the origin detection mode after the end of the heating process, and waits for non-heating with the origin detected. As a result, it is possible to prevent the waiting time for the origin detection from occurring before starting the heat treatment.
  • control means 411 includes a menu for determining that there is an error and prohibiting the subsequent heating process from being performed when the origin has a strong force in the origin detection mode, and the rotating antennas 38, 3 And a menu for executing the heat treatment in a state in which 9 is stopped.
  • the temperature distribution in the heating chamber 34 may be biased.
  • unevenness may be acceptable. Since the heat treatment is performed while the operations of 38 and 39 are stopped, the minimum functions can be provided to the user.
  • control means 411 uniformly heats the entire heating chamber 34 in the distributed heating mode in the initial stage of heating, and shifts to the local heating mode when a difference in the temperature distribution in the heating chamber 34 begins to occur. It is good to do. Since there is no difference in the temperature distribution in the heating chamber 34 at the initial stage of heating, the distributed heating mode can raise the temperature of the entire heating chamber 34 efficiently.
  • control means 411 may first locally heat the vicinity of the center in the heating chamber 34. Usually there is no difference in the temperature distribution in the heating chamber. When the heat treatment is started from a high state, the temperature rise is most difficult in the vicinity of the center of the heating chamber. Therefore, the entire heating chamber can be efficiently uniformly heated by first locally heating the vicinity of the center in the heating chamber 34 and then performing distributed heating to uniformly heat the entire heating chamber.
  • the motors 40 and 41 that drive the respective rotating antennas 38 and 39 may be, for example, stepping motors.
  • the control means 411 may control the timing of inputting pulses to the stepping motors attached to the rotary antennas 38 and 39 so as not to be simultaneously provided with a time difference for each stepping motor. If a pulse is input at the same time, the required current increases at that timing, and a circuit that can handle a large current must be installed in the microwave oven 31. An increase in size can be prevented.
  • the magnetron 32 when the heat treatment is started, the magnetron 32 generates a microwave, and the microwave is transmitted into the heating chamber 34 via the waveguide (S 101).
  • the temperature detection means detects the temperature distribution in the heating chamber 34 at the initial heating time, and the control means 411 stores the detection result of the temperature distribution (S102).
  • control means 411 rotates, for example, the rotating antennas 38 and 39 at a constant speed in order to realize distributed heating (S103).
  • the temperature detecting means detects the temperature distribution in the heating chamber 34 again (S104).
  • the heating initial stage end determination unit 103 of the control means 411 includes the temperature distribution in the heating chamber in the initial heating stage detected in the stage of S102, and the heating chamber after a predetermined time detected in the stage of S104. With reference to the temperature distribution of the above, it is determined whether or not a certain condition for determining the end of the initial heating stage has been found! If the determination condition is satisfied! Or not (S 105 —No), the inside of the heating chamber 34 is dispersedly heated, and the temperature distribution in the heating chamber 34 is detected again after a predetermined time.
  • the process proceeds to a step of determining whether or not each area where the temperature detecting means detects the temperature is an area where the food is placed. .
  • the rate of temperature increase per unit time in each area where the temperature is detected is calculated. If the reference value is greater than or equal to the predetermined value, it is determined that food is placed in the area.
  • the initial temperature is referred to for each area where the temperature is detected, and if the initial temperature is negative (for example, frozen food is assumed), the area is determined to be an area where food is placed. May be.
  • the step of S106 out of all the regions in the heating chamber 34, the region where the food is placed and the other region where the food is not placed are discriminated and stored in the control means 411. Keep it. (S106).
  • the microwave oven 31 proceeds to the heating feedback stage.
  • the operation in the heating feedback stage will be described with reference to FIG.
  • the temperature distribution detecting means of the microwave oven 31 detects the entire temperature distribution in the heating chamber 34 after the initial heating stage is completed (S107). Then, the lowest temperature region in the region where the food is determined to be placed in the heating chamber 34 is extracted, that is, the lowest temperature portion of the food portion is extracted (S108).
  • the control means 411 is designed to heat the center of the rotating antenna 38, 39 outlet heat 3 chamber 34. That is, the operation control is executed so that the rotating antennas 38 and 39 are stopped at the stop position shown in FIG. 4 (S117).
  • the control means 411 causes the rotating antennas 38 and 39 to heat the left in the heating chamber 34. Operation control is performed so that the rotating antennas 38 and 39 are stopped in the direction, that is, in the stop position shown in FIG. 5 (S118).
  • Means 411 controls the operation so that the rotating antennas 38 and 39 are heated in the right direction in the heating chamber 34, that is, stop the rotating antennas 38 and 39 at the stop position shown in FIG. (S 119).
  • the control means 411 causes the rotating antennas 38 and 39 to heat the forward direction in the heating chamber 34. Operation control is performed so that the rotating antennas 38 and 39 are stopped in the direction, that is, in the stop position shown in FIG. 7 (S120).
  • control means 411 causes the rotating antennas 38 and 39 to heat the rearward direction in the heating chamber 34. Operation control is performed so that the rotating antennas 38 and 39 are stopped in the direction, that is, the stop position shown in FIG. 8 (S121).
  • control means 411 rotates the rotating antennas 38 and 39 at a constant speed to make the inside of the heating chamber 34 uniform.
  • the process shifts to the distributed heating mode for heating (S114).
  • the control means 411 performs an end determination after executing any one of the steps S114 and S117 to S121 (S115). For example, the heat treatment end determination condition for determining that the heat treatment is to be terminated when the maximum temperature of the food temperature distribution exceeds a preset temperature, or the average temperature at the location determined as food exceeds the set temperature. It is determined whether or not the heat treatment end determination condition for determining that the heat treatment is to be completed is satisfied.
  • the microwave oven 31 can intensively heat a specific portion in the heating chamber 34 by two rotating antennas, and is covered during the heat treatment. Since the temperature distribution of the food, which is a heated product, can be detected, and the food can be heated locally by applying a spot to the lowest temperature portion of the food, the food can be heated evenly.
  • the local heating and the dispersion heating can be switched according to the temperature distribution of the food, that is, the microwave can be concentrated at a necessary place, so that the food can be efficiently heated in a short time. Can do.
  • the order of searching for the minimum temperature portion of the food is not limited to this, and any other order may be used as long as the whole food is searched as a result. It's okay to do it!
  • FIG. 16 is a flowchart for explaining the heating feedback stage of the microwave oven according to the second embodiment.
  • the same components as those described above are denoted by the same reference numerals, and the description thereof is omitted.
  • the process proceeds to the calorie heat feedback stage shown in FIG.
  • the difference between the heating feedback control of the first embodiment shown in FIG. 15 and the heating feedback control of the second embodiment shown in FIG. 16 is the heating feedback control force of the second embodiment.
  • A1 to A4, B1 to B4, CI to C4, D1 to D4 the central region A (B2, B3, C2, C3), the left region B (B1, CI) and the right region C (B4, C4) It is classified into the front area D (A2, A3) and the rear area E (D2, D3), and heating feedback is performed based on the average temperature of the food parts in the classified area.
  • the temperature detecting means of the microwave oven 31 detects the entire temperature distribution in the heating chamber 34 after the heating initial stage is completed (S201).
  • Central area A (B2, B3, C2, C3), left area B (B1, CI), right area C (B4, C4), front area D (A2, A3), and rear area E (D2, D3)
  • the average temperature of the food part is calculated every time (S202).
  • the control means 411 causes the rotating antennas 38 and 39 to heat the left side in the heating chamber 34, that is, to the stop position shown in FIG. Operation control is executed to stop the rotating antennas 38 and 39 (S211).
  • the control means 411 moves the rotating antennas 38 and 39 to the front side in the heating chamber 34, that is, to the stop position shown in FIG. Operation control is executed to stop the rotating antennas 38 and 39 (S213).
  • the control means 411 continues to disperse calorie that uniformly heats the inside of the heating chamber 34 by rotating the rotating antennas 38 and 39 at a constant speed. Transition to the heat mode (S208). [0135] After executing any one of steps S208 and S210 to S214, the control means makes an end determination (S209). As in the first embodiment, for example, it is determined that the heat treatment is terminated when the maximum temperature force in the temperature distribution of the food exceeds a preset temperature, or the average temperature of the location determined as food is the set temperature. It is determined whether or not the heat treatment end judgment condition for judging that the heat treatment is finished when exceeding the temperature is satisfied.
  • the microwave oven 31 of the second embodiment determines the local heating location based on the average temperature of the food location within the classified fixed area (A to E). Even if only the location is extremely low, it is possible to perform centralized heating on the location where the whole food needs to be heated.
  • the rotating antenna may have an opening in a part of a disk shape.
  • the rotating antennas 83 and 84 have arcuate openings 87 and 88 on the radiating portions 85 and 86, respectively.
  • the length L1 in the width direction is set to be one quarter or more of the wavelength of the microwave radiated into the heating chamber. Therefore, the rotating antennas 83 and 84 have a configuration in which the opening has radiation directivity when stopped, and can locally heat a specific region in the heating chamber 34.
  • the rotating antenna for example, there are rectangular rotating antennas 90 and 91 as shown in FIG.
  • the rotary antennas 90 and 91 have bent portions 94 and 95 in which three sides of the rectangular shape are bent toward the bottom surface of the heating chamber, and the remaining one side portions 92 and 93 are not bent but are bent.
  • the side portions 92 and 93 having no directivity have a strong directivity, and a specific region in the calorie heat chamber 34 can be locally heated.
  • the rotating antenna 201, 202 has power.
  • the rotating antennas 201 and 202 are oriented by having bent portions 203 and 204 bent on the bottom side of the heating chamber on the four sides of the rectangular shape, and further having openings 208 and 209 on the radiating portions 206 and 207. This makes it possible to locally heat a specific area in the heating chamber 34.
  • the rotating antennas are spaced 5 [mm] or more apart from each other. As a result, it is possible to prevent the rotating antennas from interfering with each other and causing a part of the rotating antennas to be damaged by excessive heating.
  • a specific object to be heated can be centrally heated by controlling a portion having a high radiation directivity of the rotating antenna disposed in the heating chamber in a predetermined direction. It can also be applied to applications such as heating, thawing, ceramic heating, drying, sintering, or biochemical reaction of various dielectric materials such as products.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

 本発明の課題は、通常は加熱室内全体の均一加熱を実現しつつ、目的に応じて局所集中加熱をも実現するマイクロ波加熱装置を提供することである。  本発明のマイクロ波加熱装置は、マイクロ波発生手段と、前記マイクロ波発生手段からマイクロ波を伝送する導波管と、前記マイクロ波で加熱する被加熱物を収納する加熱室と、前記導波管から前記加熱室に前記マイクロ波を放射するための複数の回転アンテナと、前記回転アンテナを回転駆動する駆動手段と、前記加熱室内の温度分布を検出する温度分布検出手段と、前記温度分布検出手段の検出結果に基づき前記駆動手段を制御して前記回転アンテナの向きを制御する制御手段とを有し、前記制御手段は、前記複数の回転アンテナのうち少なくとも一つの回転アンテナを、放射指向性の強い部位を前記温度分布検出手段の検出結果に基づき決定した向きに制御して集中加熱するとともに、前記駆動手段は、前記回転アンテナの位置を検出する位置検出手段を備えたものである。

Description

明 細 書
マイクロ波加熱装置
技術分野
[0001] 本発明は、被加熱物を誘電加熱するマイクロ波加熱装置に関するものである。
背景技術
[0002] 代表的なマイクロ波加熱装置である電子レンジは、代表的な被加熱物である食品 を直接的に加熱できるので、なべや釜を準備する必要がな 、簡便さでもって生活上 の不可欠な機器になっている。これまで、電子レンジは、マイクロ波が伝搬する加熱 室のうち食品を収納する空間の大きさが、幅方向寸法および奥行き方向寸法がおお よそ 300〜400mm前後、高さ方向寸法がおおよそ 200mm前後のもの力 一般に 普及している。
[0003] 近年においては、食材を収納する空間の底面をフラットにし、さらに幅寸法を 400m m以上として奥行き寸法よりも比較的大きくし、食器を複数個並べて加熱できるように 利便性を高めた横幅が広い加熱室形状を持った製品が実用化されている。
[0004] ところで、電子レンジが使用するマイクロ波の波長は約 120mmであり、加熱室内に は強弱の電界分布 (以下、電波分布と称す)が生じ、さらには被加熱物の形状やその 物理特性の影響が相乗されて加熱むらが発生することが知られている。特に、上述し た幅方向寸法が大きい加熱室にあっては、複数の食器に載置された食品を同時に 加熱するために加熱の均一性を従来以上に高める必要がある。
[0005] 従来、この種のマイクロ波加熱装置は、一つの放射アンテナを備えそのアンテナを 回転駆動させるものであった力 加熱室の中央部を局所的に加熱することが困難だ つた。そこで、加熱の均一性を高める方策として、複数の放射アンテナを備えるもの、 あるいは複数の高周波攪拌手段を備えるものが提案されて ヽる (特許文献 1参照)。
[0006] しかし、庫内が広くても常に大量の食品を加熱するとは限らず、たとえばマグカップ 一杯の牛乳をあたためるときは、庫内全体を均一に加熱せずとも牛乳にのみ集中さ せるほうが効率的と考えられる。
[0007] また、複数の食品を同時に加熱する場合でも、たとえば冷凍食品と室温の食品とを 同時に加熱する場合のように、食品の温度に差があれば、低温の食品のみを集中的 に加熱したい場合がある。さらに幕の内弁当のようなものであれば、一つの入れ物に 加熱したくない食品 (漬物、サラダ、デザートなど)が含まれており、加熱すべき食品( ごはん、おかずなど)のみを集中的に加熱したいという場合がある。
[0008] このような場合は、全体均一加熱ではなく局所集中加熱できる機能が必要となる。
このために複数の放射アンテナを切り替えるとともに停止位置を制御するなどして集 中加熱するものが提案されて ヽる (特許文献 2参照)。
特許文献 1:特開 2004— 259646号公報
特許文献 2:特許第 3617224号公報
発明の開示
発明が解決しょうとする課題
[0009] 特許文献 1、 2を参考にすれば、まず、横幅が広い加熱室であれば左右に複数の 放射アンテナを構成すれば加熱室内全体の均一加熱を実現できそうである。また、 局所への集中加熱については、例えば放射アンテナを停止させることでュ-ポール アンテナの先端方向にある程度なら集中させることがことができる。しかしながら、ど の程度集中させられるかが問題であり、通常は加熱室内全体の均一加熱を実現しつ つ、目的に応じて局所集中加熱をも実現するということは、現実的な構成としては難 しいものであった。
[0010] 本発明は、上記課題を解決するためになされたものであり、通常は加熱室内全体 の均一加熱を実現しつつ、目的に応じて局所集中加熱をも実現するマイクロ波加熱 装置を提供することを目的とする。
課題を解決するための手段
[0011] 本発明のマイクロ波加熱装置は、マイクロ波発生手段と、前記マイクロ波発生手段 からマイクロ波を伝送する導波管と、前記マイクロ波で加熱する被加熱物を収納する 加熱室と、前記導波管から前記加熱室に前記マイクロ波を放射するための回転アン テナと、前記回転アンテナを回転駆動する駆動手段と、前記加熱室内の温度分布を 検出する温度分布検出手段と、前記温度分布検出手段の検出結果に基づき前記駆 動手段を制御して前記回転アンテナの向きを制御する制御手段とを有し、前記制御 手段は、前記複数の回転アンテナのうち少なくとも一つの回転アンテナを、放射指向 性の強い部位を前記温度分布検出手段の検出結果に基づき決定した向きに制御し て集中加熱するとともに、前記駆動手段は、前記回転アンテナの位置を検出する位 置検出手段を備えている。
[0012] この構成により、温度分布検出手段の検出結果を参照して、回転アンテナの放射 性指向性の強い部位を加熱室内の加熱が必要な領域に向けることで適度な局所カロ 熱を実現することができるとともに、回転アンテナを通常の回転動作させる等してカロ 熱室の均一加熱も実現することができる。また、位置検出手段により回転アンテナの 位置を検出することができる。
[0013] また、本発明のマイクロ波加熱装置は、マイクロ波発生手段と、前記マイクロ波発生 手段カゝらマイクロ波を伝送する導波管と、前記マイクロ波で加熱する被加熱物を収納 する加熱室と、前記導波管から前記加熱室に前記マイクロ波を放射するための複数 の回転アンテナと、前記回転アンテナを回転駆動する駆動手段と、前記加熱室内の 温度分布を検出する温度分布検出手段と、前記温度分布検出手段の検出結果に基 づき前記駆動手段を制御して前記回転アンテナの向きを制御する制御手段とを有し 、前記制御手段は、前記複数の回転アンテナのうち少なくとも一つの回転アンテナを 、放射指向性の強い部位を前記温度分布検出手段の検出結果に基づき決定した向 きに制御して集中加熱する構成である。
[0014] この構成により、温度分布検出手段の検出結果を参照して、回転アンテナの放射 性指向性の強い部位を加熱室内の加熱が必要な領域に向けることで適度な局所カロ 熱を実現することができるとともに、回転アンテナを通常の回転動作させる等してカロ 熱室の均一加熱も実現することができる。
[0015] また、本発明のマイクロ波加熱装置は、前記制御手段は、前記回転アンテナの放 射指向性の強い部位を前記温度分布検出手段の検出結果に基づき決定した向きに 制御して集中加熱する局所加熱モード制御部と前記加熱室内を均一に加熱する分 散加熱モード制御部とを有するアンテナ制御部を備えている。
[0016] この構成により、加熱室内を集中加熱することができるし、均一に加熱することがで きる。 [0017] また、本発明のマイクロ波加熱装置は、前記アンテナ制御部は、前記回転アンテナ を、加熱開始の初期段階では前記分散加熱モード制御部で制御するとともに、前記 初期段階が終了すると前記局所加熱モード制御部で制御する。
[0018] この構成により、加熱室内を均一に加熱した後で、集中加熱することができる。
[0019] また、本発明のマイクロ波加熱装置は、前記アンテナ制御部は、前記回転アンテナ を、加熱開始の初期段階では局所加熱モード制御部で制御するとともに、前記初期 段階が終了すると前記分散加熱モード制御部で制御する。
[0020] この構成により、加熱室内を集中加熱した後で、均一に加熱することができる。
[0021] また、本発明のマイクロ波加熱装置は、前記制御手段は、前記加熱室内に載置さ れた被加熱物が食品であるか否かを判定する食品判定部を有し、前記食品判定部 で判定した食品領域の温度に基づいて前記回転アンテナを制御する。
[0022] この構成により、被加熱物が食品である場合、その食品領域の温度に基づいて回 転アンテナを制御することができる。
[0023] また、本発明のマイクロ波加熱装置は、前記制御手段は、前記加熱室内の特定の 領域に対して前記回転アンテナの放射指向性の強い部分を向けるときの前記回転 アンテナの角度を記憶するアンテナ角度記憶部を有し、前記温度分布検出手段が 検出した各検出領域の温度のうち低温部分に前記回転アンテナの放射指向性の強 い部分を向ける。
[0024] この構成により、予め実験で調べたデータをアンテナ角度記憶部に記憶しておくこ とで、精度良く低温部分を局所的に加熱することができる。
[0025] また、本発明のマイクロ波加熱装置は、前記分散加熱モード制御部は、前記回転 アンテナの停止位置を刻々と変化させる、或は前記回転アンテナを連続的に回転さ せる、或は前記回転アンテナの停止位置をランダムに変えることで分散加熱を実施 する構成とした。
[0026] この構成により、回転アンテナの停止位置を刻々と変化させたり、回転アンテナを 連続的に回転させたり、回転アンテナの停止位置をランダムに変えたりすることで、 分散加熱を行うことができる。
[0027] また、本発明のマイクロ波加熱装置は、前記局所加熱モード制御部は、往復角度 を記憶する往復角度記憶部を有し、前記温度分布検出手段が検出した検出結果に 基づき前記アンテナ角度記憶部を参照して決定された角度を中心として、前記往復 角度記憶部が記憶する角度だけ前記回転アンテナを往復揺動させる構成とした。
[0028] この構成により、マイクロ波放射中に回転アンテナが停止しつづけることで、回転ァ ンテナの一部にマイクロ波が集中しすぎて、過剰加熱することを防止する。 目標角度 を中心に ± 5度ぐらいを動力しても被加熱物に対しての局所的加熱効果への影響は なぐ一方、アンテナ部品の過昇防止には十分な効果が得られる。
[0029] また、本発明のマイクロ波加熱装置は、前記局所加熱モード制御部は、前記回転 アンテナが所定の角度で停止する上限時間を記憶する停止上限時間記憶部と、前 記回転アンテナが停止して 、る時間をカウントする停止時間計時部とを有し、前記停 止時間計時部がカウントした時間が前記停止上限時間記憶部が記憶する時間に到 達するとき、所定角度ずらした位置に前記回転アンテナを移動させる。
[0030] この構成により、マイクロ波放射中に回転アンテナが停止しつづけることで、回転ァ ンテナの一部にマイクロ波が集中しすぎて、過剰加熱することを防止する。例えば、 被加熱物が何もない条件が最も厳しい条件で実験的に上限時間を定めるものである 力 30秒〜 1分ぐらい無負荷で局所にマイクロ波を集中させるとアンテナ部品が溶融 する可能性があるのでそれより短い時間、例えば 30秒ぐらいを上限時間として、それ を超えると例えば 5度ぐらい角度を回転させるようにするものである。
[0031] また、本発明のマイクロ波加熱装置は、前記温度分布検出手段は、複数の赤外線 検出素子と、この複数の赤外線検出素子を当該複数の赤外線検出素子が並んでい る方向と交わる方向に移動させる駆動手段とを備えて 、る。
[0032] この構成により、複数の赤外線検出素子を該赤外線検出素子が並んでいる方向と 交わる方向に移動させることができる。
[0033] また、本発明のマイクロ波加熱装置は、前記駆動手段は、前記回転アンテナの位 置を検出する位置検出手段を備えている。
[0034] この構成により、位置検出手段により回転アンテナの位置を検出することができる。
[0035] また、本発明のマイクロ波加熱装置は、前記位置検出手段は、原点検出モードで 前記回転アンテナの原点を検出する構成とした。 [0036] この構成により、位置検出手段により原点検出モードで回転アンテナの原点を検出 することができる。
[0037] また、本発明のマイクロ波加熱装置は、前記原点検出モードは、加熱処理実行前 または加熱処理実行後に前記回転アンテナの原点を確認する構成とした。
[0038] この構成により、原点検出モードにおいて、加熱開始前または加熱終了後に回転 アンテナの原点を確認することができる。
[0039] また、本発明のマイクロ波加熱装置は、前記制御手段は、前記原点検出モードで 前記回転アンテナを駆動している間はマグネトロンの動作を停止する。
[0040] この構成により、原点検出モードにおいて、回転アンテナの駆動中はマグネトロン の動作を停止し、不本意な加熱状態の発生を防止することができる。
[0041] また、本発明のマイクロ波加熱装置は、前記制御手段は、前記原点検出モードで 原点を検出しない場合にエラーと判定して加熱処理の実行を禁止するメニューと、前 記回転アンテナを停止させた状態で加熱処理を実行するメニューを備えている。
[0042] この構成により、調理メニューに応じて、例えば、加熱室内の温度分布の偏ってい ても構わな 、メニューのときは、回転アンテナの動作を停止したまま加熱処理を実行 するので、ユーザに対して最低限の機能を提供することができる。
[0043] また、本発明のマイクロ波加熱装置は、前記複数の回転アンテナの回転中心を前 記加熱室内の中心から略等距離に配置した。
[0044] この構成により、複数の回転アンテナの回転中心を加熱室内の中心から略等距離 に配置したので、アンテナが一つの構成では通常は加熱しにくい加熱室内の中央付 近を、回転アンテナの放射指向性の強い部分を中央付近に向けることにより加熱す ることがでさる。
[0045] また、本発明のマイクロ波加熱装置は、前記駆動手段としてステッピングモータを用 いるとともに、各アンテナに対応する各ステッピングモータに対してパルスを入力する タイミングを前記各ステッピングモータごとに時間差を設けた。
[0046] この構成により、各ステッピングモータに対してパルスを入力するタイミングを各ステ ッビングモータごとに時間差を設けたので、大電流に対応可能な回路の設置が不要 となり、回路の大型化を防止することができる。 発明の効果
[0047] 本発明によれば、通常は加熱室内全体の均一加熱を実現しつつ、目的に応じて局 所集中加熱をも実現するマイクロ波加熱装置を提供することができる。
図面の簡単な説明
[0048] [図 1]本発明の実施の形態 1のマイクロ波加熱装置の正面断面構成図
[図 2]同マイクロ波加熱装置の側面断面構成図(図 1中の A—A'断面図)
[図 3]同マイクロ波加熱装置の平面断面構成図(図 1中の B— B '断面図)
[図 4]加熱室内の中央付近を局所加熱するときの回転アンテナの向きを説明する図 [図 5]加熱室内の左側を局所加熱するときの回転アンテナの向きを説明する図
[図 6]加熱室内の右側を局所加熱するときの回転アンテナの向きを説明する図
[図 7]加熱室内の前方を局所加熱するときの回転アンテナの向きを説明する図
[図 8]加熱室内の後方を局所加熱するときの回転アンテナの向きを説明する図
[図 9]回転アンテナの原点検出機構を説明する図(図 1中の D— D '断面図)
[図 10]三つの回転アンテナを有する構成のマイクロ波加熱装置の平面断面図
[図 11]温度分布検出手段の概略断面構成図
[図 12]図 1中の C C '断面における赤外線温度検出スポットを説明する図
[図 13]制御手段 411の概略構成図
[図 14]加熱初期段階の制御動作を説明するフローチャート
[図 15]加熱フィードバック段階の制御動作を説明するフローチャート
[図 16]実施の形態 2の加熱フィードバック段階の制御動作を説明するフローチャート
[図 17]回転アンテナの変形例を示す図
[図 18]回転アンテナの変形例を示す図
[図 19]回転アンテナの変形例を示す図
符号の説明
[0049] 10 温度センサ (温度検出手段)
31 電子レンジ (マイクロ波加熱装置)
32 マグネトロン(マイクロ波発生手段)
33 導波管 34 加熱室
35 載置台
37 アンテナ空間
38、 39、 回転アンテナ
40、 41 モータ(駆動手段)
411 制御手段
発明を実施するための最良の形態
[0050] 以下、本発明に係る実施の形態について図面を参照して詳細に説明する。
[0051] (実施の形態 1)
図 1から図 3は本発明に係る代表的なマイクロ波加熱装置である電子レンジ 31の構 成図で、図 1は正面から見た断面図、図 2は図 1の A— A'断面図、図 3は図 1の B— B '断面図、図 4は、図 1の D— D '断面図である。
[0052] 図 1に示すように、電子レンジ 31は、代表的なマイクロ波発生手段であるマグネトロ ン 32から放射されたマイクロ波を伝送する導波管 33と、導波管 33の上部に接続され 幅方向寸法 (約 41 Omm)が奥行き方向寸法 (約 315mm)より大き 、形状の加熱室 3 4と、代表的な被加熱物である食品(図示せず)を載置するため加熱室 34内に固定さ れ、セラミックやガラスなどの低損失誘電材料力 なるためにマイクロ波が容易に透 過できる性質の載置台 35と、加熱室 34内の載置台 35より下方に形成されるアンテ ナ空間 37と、導波管 33内のマイクロ波を加熱室 34内に放射するため、導波管 33か らアンテナ空間 37にわたり、加熱室 34の幅方向に対して対称位置に取り付けられた 二つの回転アンテナ 38、 39と、回転アンテナ 38、 39を回転駆動できる代表的な駆 動手段としてのモータ 40、 41と、モータ 40、 41を制御して回転アンテナ 38、 39の向 きを制御する制御手段 411と、各回転アンテナ 38、 39の回転の原点を検出する原 点検出機構を構成するフォトインタラプタ 36と、加熱室 34内の温度分布を検出する 温度分布検出手段である赤外線センサ 10とを有する。
[0053] また、電子レンジ 31は、図 2に示すようにドア 64を備えている。そして、設定手段 63 カ^ア 64の下部に配置されている。設定手段 63は、使用者が、食品や調理内容に 応じて様々な調理メニューを選択できるものである。この選択結果に基づき、制御手 段 411はマグネトロン 32やモータ 40、 41を制御することができる。
[0054] 回転アンテナ 38、 39は、放射指向性を有する構成である。本実施の形態 1の電子 レンジ 31は、回転アンテナ 38、 39のうちの少なくとも一方の放射指向性の強い部位 を所定の向きに制御して特定の食品を集中加熱する構成としている。具体的にどの ように制御して 、るかにっ 、ては後述する。
[0055] また、回転アンテナ 38、 39は、導波管 33と加熱室底面 42との境界面に設けられた 直径約 30mmで略円形の結合孔 43、 44を貫通する直径約 18mmで略円筒状の導 電性材料力も成る結合部 45、 46と、結合部 45、 46の上端に力しめや溶接などで電 気的に接続されて一体化され、概ね垂直方向よりも水平方向に広い面積を有する導 電性材料力も成る放射部 47、 48とを備える。
[0056] また、回転アンテナ 38, 39は、結合部 43、 44の中心が回転駆動の中心となるよう にモータ 40、 41のシャフト 49、 50に嵌合された構成としている。放射部 47、 48は回 転の方向に対して形状が一定ではな 、ために放射指向性がある構成として 、る。
[0057] 回転アンテナ 38、 39の回転の中心は加熱室 34内の中心から略等距離に配置する 。この構成により、アンテナが一つの構成では通常は加熱しにくい加熱室内の中央 付近を、回転アンテナ 38、 39の放射指向性の強い部分を中央付近に向けることによ り加熱可能とするものである。
[0058] 導波管 33は、図 3のように上から見て T字型を成し、左右対称な形状であるため、 マグネトロン 32から結合部 45、 46までの距離が等しぐかつ結合部 45、 46は加熱室 34の幅方向に対しても対称位置に取り付けられているので、マグネトロン 32から放射 されるマイクロ波は導波管 33、回転アンテナ 38、 39を介して加熱室 34内にほぼ均 等に分配される。
[0059] 放射部 47、 48は同一の形状で、放射部上面 51、 52が略四辺形に Rを有する形状 で、そのうち対向する 2辺には加熱室底面 42側に曲げられた放射部曲げ部 53、 54 を有し、その 2辺の外側へのマイクロ波の放射を制限する構成である。加熱室底面 4 2と放射部上面 51、 52までの距離は約 10mm程度とし、放射部曲げ部 53、 54は、 それよりも約 5mm程度低い位置に引き下げられている。
[0060] そして,残る 2辺は結合部 45、 46から端部までの水平方向の長さが異なり、結合部 の中心からの長さが 75mm程度の端部 55、 56、結合部の中心からの長さが 55mm 程度の端部 57、 58を構成している。また端部の幅方向の寸法はいずれも 80mm以 上としている。この構成において回転アンテナ 38、 39は、結合部 45、 46から端部 57 、 58の方向への放射指向性を強くすることができる。
[0061] この構成において一般的な食品を均一に加熱する場合は、従来の電子レンジと同 様、特に置き場所にこだわる必要はなぐ回転アンテナ 38、 39も従来同様に一定回 転させてよい。一方、集中加熱する場合は、加熱室 34内の中央付近を加熱する場 合、制御手段 411は、図 4に示すように、回転アンテナ 38、 39の端部 57、 58を、カロ 熱室 34の幅方向の略中央かつ奥行き方向の略中央という所定の向きに向けるように 制御する。
[0062] 回転アンテナ 38、 39の端部 57、 58が加熱室 34の幅方向の略中央かつ奥行き方 向の略中央を向くとき、端部 57、 58の方向への放射指向性が強いので、特に端部 5 7、 58の方向からマイクロ波が放射されその方向に位置する食品を集中的に加熱す ることがでさる。
[0063] また、加熱室 34内の左側付近を加熱する場合、制御手段 411は、図 5に示すよう に、回転アンテナ 38、 39の端部 57、 58を、左向き (加熱室 34をドア 64側から見て左 側)に向けるように制御する。
[0064] 回転アンテナ 38、 39の端部 57、 58力 両方とも、加熱室 34をドア 64側から見て左 側を向くとき、各アンテナは端部 57、 58の方向への放射指向性が強いので、特に端 部 57、 58の方向からマイクロ波が放射されその方向に位置する食品を集中的にカロ 熱することができる。
[0065] 同様に、加熱室 34内の右側付近を加熱する場合、制御手段 411は、図 6に示すよ うに、回転アンテナ 38、 39の端部 57、 58を、右向き (加熱室 34をドア 64側から見て 右側)に向けるように制御する。
[0066] 回転アンテナ 38、 39の端部 57、 58が両方とも、加熱室 34をドア 64側から見て右 側を向くとき、各アンテナは端部 57、 58の方向への放射指向性が強いので、特に端 部 57、 58の方向からマイクロ波が放射されその方向に位置する食品を集中的にカロ 熱することができる。 [0067] また、加熱室 34内の前方中央付近を加熱する場合、制御手段 411は、図 7に示す ように、回転アンテナ 38、 39の端部 57、 58を、加熱室 34の幅方向の略中央かつ奥 行き方向の前方 (加熱室 34内の中央前方付近)に向けるように制御する。
[0068] 図 7に示すように、回転アンテナ 38、 39の端部 57、 58が、加熱室 34内の中央前方 付近を向くとき、各アンテナは端部 57、 58の方向への放射指向性が強いので、特に 端部 57、 58の方向からマイクロ波が放射されその方向に位置する食品を集中的に カロ熱することがでさる。
[0069] また、加熱室 34内の後方中央付近を加熱する場合、制御手段 411は、図 8に示す ように、回転アンテナ 38、 39の端部 57、 58を、加熱室 34の幅方向の略中央かつ奥 行き方向の後方 (加熱室 34内の中央後方付近)に向けるように制御する。
[0070] 図 8に示すように、回転アンテナ 38、 39の端部 57、 58が、加熱室 34内の中央後方 付近を向くとき、各アンテナは端部 57、 58の方向への放射指向性が強いので、特に 端部 57、 58の方向からマイクロ波が放射されその方向に位置する食品を集中的に カロ熱することがでさる。
[0071] 以上のように、本実施の形態 1の電子レンジ 31は、局所的に加熱したい場所に応じ て回転アンテナの向きを制御するものであり。回転アンテナ 38、 39を所定の向きに 向けるためには、モータ 40、 41としてステッピングモータを用いると力、あるいは一定 回転のモータであっても基準位置を検出して通電時間を制御するなどの手段が考え られる。
[0072] 本実施の形態 1の電子レンジ 31では、モータ 40、 41としてステッピングモータを用 いており、各モータのシャフト 40、 41にそれぞれアンテナ位置を検出する位置検出 手段が設けてある。このアンテナ位置検出手段は、回転軸の回転位置を検出する周 知の例えばロータリーエンコーダゃポテンショメータ等で構成することができる力 本 実施の形態では以下に述べる原点検出機構で構成してある。すなわち、この原点検 出機構は、図 9に示すように、シャフトを中心軸とする円板 36aと、フォトインタラプタ 3 6とにより構成される。円板 36aには、矩形状のスリット 36bが設けられている。
[0073] 円板 36aは、回転アンテナ 38、 39を回転させるモータのシャフト 49、 50の軸にそ れぞれ共通に取り付けられていて、発光素子と受光素子とを備えたフォトインタラプタ 36の光路を遮るように回転するものである。
[0074] この構成により、スリット 36bがフォトインタラプタ 36の光路を通過するときは、前記 光路を遮るものが無いので、スリットの通過時点を検出することができる。従って、スリ ット 36bの位置を回転アンテナ 38、 39の原点と設定しておくことで、各モータに取り 付けられたフォトインタラプタ 36により回転アンテナの原点を検出することができるも のである。
[0075] また、制御手段 411は、原点検出機構で検出できる原点を基準として、回転アンテ ナ 38、 39の指向性の強い部分を局所加熱箇所に集中させるときの回転アンテナ 38 、 39の角度 (停止位置)を予め記憶しているアンテナ角度記憶部を有している。回転 アンテナ 38、 39の動作を制御して局所加熱を実行する際には、アンテナ角度記憶 部の情報が参照される。
[0076] なお、ここまで、回転アンテナが二つの場合について説明してきた力 回転アンテ ナの数はこれに限られず二個以上の複数個でも良ぐ例えば、図 10に示すように、 三つの回転アンテナを有する構成としても良い。図 10に示す状態では、各回転アン テナの端部が、加熱室内の中央付近を向いており、その中央付近に位置する食品を 集中的に加熱することができる。
[0077] 次に、図 11を参照して、本実施の形態 1の電子レンジ 31が備える温度検出手段に ついて説明する。この温度検出手段は、基板 19上に一列に並んで設けられた複数 の赤外線検出素子 13と、基板 19全体を収納するケース 18と、ケース 18を赤外線検 出素子 13が並んで 、る方向と垂直に交わる方向に移動させるステッピングモータ 11 と、を備免るものである。
[0078] 基板 19上には、赤外線検出素子 13を封入する金属製のカン 15と、赤外線検出素 子の動作を処理する電子回路 20とが設けられている。また、カン 15には赤外線が通 過するレンズ 14が設けられている。また、ケース 18には、赤外線を通過させる赤外線 通過孔 16と、電子回路 20からのリード線を通過させる孔 17とが設けられている。
[0079] この構成により、ステッピングモータ 11が回転運動することで、ケース 18を、赤外線 検出素子 13がー列に並んでいる方向とは垂直方向に移動させることができる。
[0080] 図 12は、図 1中の C C '断面における赤外線温度検出スポットを説明する図であ る。図に示すように、本実施の形態 1の電子レンジ 31は、温度検出手段のステツピン グモータ 11が往復回転動作することにより、加熱室 34内のほぼ全ての領域の温度 分布を検出することができるものである。
[0081] 具体的には、例えば、まず図 12中の A1〜A4の領域の温度分布を、温度検出手 段が有する一列に並んだ温度検出素子 13 (例えば、赤外線センサ)が同時に検出 する。次に、ステッピングモータ 11が回転動作しケース 18が移動するとき、温度検出 素子 13が B1〜B4の領域の温度分布を検出する。さらに、ステッピングモータ 11が 回転動作してケース 18が移動するとき、温度検出素子 13が C 1〜C4の領域の温度 分布を検出し、同様に、 D1〜D4の領域の温度分布が検出される。
[0082] また、上述の動作に続けて、ステッピングモータ 11が逆回転することで、 D1〜D4 の領域側から、 C1〜C4、 B1〜B4、 A1〜A4の順に、温度分布を検出する。温度検 出手段は、以上の動作を繰り返すことで、加熱室 34内の全体の温度分布を検出する ことができる。
[0083] 次に、図 13を参照して、制御手段 411の概略構成を説明する。制御手段 411は、 回転アンテナ 38、 39の動作を制御するアンテナ制御部 101と、加熱室 34内に載置 された被加熱物が食品である力否かを判定する食品判定部 102と、加熱処理のうち 初期段階の終了を判定する加熱初期段階終了判定部 103と、加熱処理全体の終了 を判定する加熱終了判定部 104とを有する構成である。
[0084] 食品判定部 102は、被加熱物の初期温度分布を記憶する初期温度分布記憶部 1 08と、被加熱物の単位時間あたりの温度上昇率を算出する温度上昇率算出部 109 と、を有し、算出した温度上昇率が所定以上の場合に、被加熱物が食品であると判 定するものである。これは、すなわち、温度を検出した領域力 被加熱物を載せる載 置台であるのか又は加熱対象である食品であるのかを判定するものである。これは載 置台はマイクロ波を透過してほとんど温度上昇しないが、食品はマイクロ波を吸収し て温度上昇しやす!/、、その特性の違いにより判別するものである。
[0085] 加熱初期段階終了判定部 103は、例えば、加熱開始力も所定時間が経過した場 合に加熱初期段階が終了したと判定する判定条件や、被加熱物の最高温度が所定 温度以上に到達した場合に加熱初期段階が終了したと判定する判定条件や、また、 加熱開始力 被加熱物の温度変化の最高値が所定以上である場合に加熱初期段 階が終了したと判定する判定条件を用いて、加熱処理の初期段階が終了したことを 判定するものである。
[0086] 加熱終了判定部 104は、例えば、被加熱物の温度分布のうち最高温度が予め設 定された設定温度を超えるときに加熱処理を終了すると判定する判定条件や、食品 と判定した箇所の平均温度が設定温度を越えるときに加熱処理を終了する判定条件 や、また、被加熱物の最高温度が所定温度に到達するのに要する時間を測定し、そ の要した時間の一定の割合 (例えば、 50%)を追加加熱時間として加熱処理し、その 後追加加熱時間が終了したときに加熱処理を終了する構成等により、加熱処理の終 了を判定するものである。
[0087] アンテナ制御部 101は、加熱室内を均一加熱させるベく回転アンテナ 38、 39の動 作を制御する分散加熱モード制御部 105と、被加熱物の低温部分を加熱すべく回 転アンテナ 38、 39の動作を制御する局所加熱 (スポット加熱)モード制御部 106と、 加熱室内に載置された被加熱物の低温部を検出する低温部抽出部 107とを有する 構成である。
[0088] 分散加熱モード制御部 105は、例えば、マイクロ波発振中に所定の位置で停止さ せることで局所的な加熱のできる二つの回転アンテナ 38、 39を、その停止位置を刻 々と変化させることで分散加熱を実現したり、回転アンテナ 38、 39を連続的に回転さ せることで分散加熱を実現したり、また、回転アンテナ 38、 39の停止位置をランダム に変えることで分散加熱を実現する構成である。
[0089] 局所加熱モード制御部 106は、低温部抽出部 107より最低温度箇所の情報を得て 、局所加熱すべく回転アンテナ 38、 39の向きを制御する構成である。例えば、最低 温度箇所が、図 12中の B2、 B3、 C2、 C3のいずれかであれば、回転アンテナ 38、 3 9が中央を加熱する向き、すなわち図 4に示した停止位置に回転アンテナ 38、 39を 停止させる。
[0090] また、最低温度箇所が、図 12中の Bl、 C1のいずれかであれば、回転アンテナ 38 , 39が左方向を加熱する向き、すなわち図 5に示した停止位置に回転アンテナ 38、 39を停止させる。また、最低温度箇所が、図 12中の B4、 C4のいずれかであれば、 回転アンテナ 38, 39が右方向を加熱する向き、すなわち図 6に示した停止位置に回 転アンテナ 38、 39を停止させる。
[0091] また、最低温度箇所が、図 12中の A2、 A3のいずれかであれば、回転アンテナ 38 , 39が前方を加熱する向き、すなわち図 7に示した停止位置に回転アンテナ 38、 39 を停止させる。また、最低温度箇所が、図 12中の D2、 D3のいずれかであれば、回 転アンテナ 38, 39が後方を加熱する向き、すなわち図 8に示した向きに回転アンテ ナ 38、 39を停止させる。
[0092] 以上のように、制御手段 411は、温度検出手段が検出した最低温度箇所に応じて 、回転アンテナ 38、 39の停止位置を制御するものである力 このとき、回転アンテナ が所定の位置に停止したまま加熱室内にマイクロ波を放射しつづけると、回転アンテ ナ自体が昇温し過ぎて融解する恐れがある。
[0093] この点を鑑みて、制御手段 411の局所加熱モード制御部 106は、上述の局所加熱 モード時に、回転アンテナを目標角度 (停止位置)を中心として所定角度 (例えば、 ± 5度)程度往復揺動させるものである。これにより、局所的加熱効果に影響を与える ことなく回転アンテナの劣化を防止することができる。また、マイクロ波放射中に回転 アンテナが停止しつづけることで、回転アンテナの一部にマイクロ波が集中しすぎて 、過剰加熱することを防止する。この往復揺動動作は、局所加熱開始時力 行っても 良いが、局所加熱開始時から所定時間経過後(例えば、 30秒〜 1分後)に開始する 構成としてもよい。
[0094] この往復揺動動作を実行するために、制御手段 411は、回転アンテナ 38、 39が停 止することを許容する上限時間を予め記憶する停止上限時間記憶部と、回転アンテ ナが停止している時間をカウントする停止時間計時部と、回転アンテナ 38、 39を往 復揺動させる角度を記憶する往復角度記憶部と、を有している。
[0095] また、局所加熱開始時から所定時間経過後(例えば、 30秒〜 1分後)に回転アンテ ナを所定角度 (例えば、 5度)だけ回転させる構成としても良い。
[0096] また、制御手段 411は、回転アンテナ 38、 39が所定の停止位置 (角度)にあるとき を原点として記憶している。そして、制御手段 411は、例えば、加熱処理実行前また は加熱処理実行後に回転アンテナ 38、 39の原点を確認する原点検出モードを実行 する。
[0097] 原点検出モード中は、回転アンテナ 38、 39の角度を特定することができず、このま まマイクロ波を発振すると不本意な加熱状態を起こし不良の原因となってしまうことが ある。そこで、制御手段 411は、原点検出モード中で回転アンテナを駆動している間 は、マグネトロンの動作を停止する制御を行う。
[0098] また、制御手段 411は、原点検出モードを加熱処理終了後に行い、原点を検出し た状態で非加熱時に待機する。これにより、加熱処理を開始する前に原点検出のた めの待機時間が発生するのを防ぐことできる。
[0099] また、制御手段 411は、原点検出モードで原点が見つ力もな力つた場合には、エラ 一と判定してそれ以降の加熱処理の実行を禁止するメニューと、回転アンテナ 38, 3 9を停止させた状態で加熱処理を実行するメニューと、を有するものである。この構成 により、調理メニューに応じて、例えば、加熱室 34内の温度分布の偏っていても構わ な 、メニュー(単に加熱処理できればムラがあっても良 、場合等)のときは、回転アン テナ 38、 39の動作を停止したまま加熱処理を実行するので、ユーザに対して最低限 の機能を提供することができる。
[0100] なお、原点が検出できない場合は、回転アンテナ 38、 39を駆動するモータ 40、 41 が故障している場合もあり、その状態のまま回転アンテナ 38、 39を動作させることは 危険であるので、回転アンテナ 38、 39の動作は停止させるものである。
[0101] 一方、加熱室 34内の温度分布が偏っていたのではユーザが所望する出来栄えの 加熱処理を実現することができな!/ヽメニューのときは、加熱処理の実行自体を禁止す るものである。
[0102] また、制御手段 411は、加熱開始の初期段階においては分散加熱モードで加熱室 34全体を均一加熱し、加熱室 34内の温度分布に差が生じはじめたときに局所加熱 モードに移行するものとしても良い。加熱開始の初期段階では加熱室 34内の温度分 布に差がな 、ので、分散加熱モードが効率よく加熱室 34全体を昇温させることがで きる。
[0103] また、制御手段 411は、加熱開始の初期段階においては、まず、加熱室 34内の中 央付近を局所的に加熱するものとしても良い。通常、加熱室内の温度分布に差がな い状態から加熱処理を開始すると、加熱室の中央付近が最も昇温しにくい。従って、 まず、加熱室 34内の中央付近を局所加熱し、その後、分散加熱を行って加熱室全 体の均一加熱を行うことで、効率よく加熱室全体を均一加熱することができる。
[0104] また、各回転アンテナ 38、 39を駆動するモータ 40、 41は、例えば、ステッピングモ ータとしても良い。このとき、制御手段 411は、各回転アンテナ 38、 39に取り付けられ た各ステッピングモータに対してパルスを入力するタイミングを、各ステッピングモータ 毎に時間差を設けて同時にならないように制御すると良い。同時にパルスを入力する と、そのタイミングで必要な電流が増大し、電子レンジ 31に大電流に対応可能な回 路を設置しなければならなくなるが、時間差を設けてパルスを入力することで回路が 大型化するのを防止できる。
[0105] 次に、本実施の形態 1の電子レンジ 31の動作について説明する。まず、加熱初期 段階時の動作について、図 14を参照して説明する。
[0106] まず、加熱処理が開始されると、マグネトロン 32がマイクロ波を発生させ、そのマイ クロ波が導波菅を介して加熱室 34内に伝送される(S 101)。このとき、温度検出手段 は、加熱初期時点での加熱室 34内の温度分布を検出し、制御手段 411は温度分布 の検出結果を記憶する(S 102)。
[0107] 次に、制御手段 411は、分散加熱を実現するために、例えば、回転アンテナ 38、 3 9を一定速度で回転させる(S103)。一定時間経過後、温度検出手段は、再び加熱 室 34内の温度分布を検出する(S104)。
[0108] そして、制御手段 411の加熱初期段階終了判定部 103は、 S102の段階で検出し た加熱初期段階での加熱室内の温度分布と、 S104の段階で検出した一定時間経 過後の加熱室内の温度分布とを参照して、一定の加熱初期段階終了の判定条件が 見たされて!/ヽるカゝ否かを判断する。判定条件が具備されて!、なかった場合は (S 105 —No)、続けて加熱室 34内を分散加熱し、所定時間経過後に再び加熱室 34内の 温度分布を検出する。
[0109] 判定条件が具備されていた場合は(S105— Yes)、温度検出手段が温度を検出し た各領域が、食品が載置された領域である力否かを判定するステップに移行する。こ のステップでは、例えば、温度を検出した各領域の単位時間あたりの温度上昇率を 参照し、所定値以上である場合には、その領域に食品が載置されていると判断する。 また、温度を検出した各領域について初期温度を参照し、その初期温度がマイナス だった場合 (例えば、冷凍食品等が想定される)に、その領域は食品が載置されてい る領域と判断しても良い。このように、 S106のステップにおいては、加熱室 34内の全 領域のうち、食品が載置されている領域と、食品が載置されていないその他の領域と を判別し、制御手段 411に記憶しておく。(S106)。
[0110] 加熱初期段階が終了すると、電子レンジ 31は、続けて、加熱フィードバック段階へ 移行する。図 15を参照して、加熱フィードバック段階の動作について説明する。電子 レンジ 31の温度分布検出手段は、加熱初期段階が終了した後、加熱室 34内の全体 の温度分布を検出する(S 107)。そして、加熱室 34内で食品が載置されていると判 定されている領域内での最低温度の領域を抽出、すなわち、食品箇所のうち最低温 度箇所を抽出する (S108)。
[0111] その最低温度箇所が図 12中の B2、 B3、 C2、 C3のいずれかの領域であるか否か を判定する(S109)。最低温度箇所が B2、 B3、 C2、 C3のいずれかの領域であった 場合は(S109— Yes)、制御手段 411は、回転アンテナ 38、 39カ 口熱 3室 34内の 中央を加熱する向き、すなわち図 4に示した停止位置に回転アンテナ 38、 39を停止 させるように動作制御を実行する(S 117)。
[0112] 最低温度箇所が B2、 B3、 C2、 C3のいずれの領域でもなかった場合は(S 109— No)、続けて、食品箇所のうち最低温度箇所が Bl、 C1のいずれかである否かを判 定する(S110)。
[0113] 最低温度箇所が Bl、 Cl、のいずれかの領域であった場合は(SI 10— Yes)、制 御手段 411は、回転アンテナ 38、 39が加熱室 34内の左方向を加熱する向き、すな わち図 5に示した停止位置に回転アンテナ 38、 39を停止させるように動作制御を実 行する(S 118)。
[0114] 最低温度箇所が Bl、 C1のいずれの領域でもな力つた場合は(SI 10— No)、続け て、食品箇所のうち最低温度箇所が B4、 C4のいずれかである否かを判定する(SI 1 D o
[0115] 最低温度箇所が B4、 C4、のいずれかの領域であった場合は(Si l l— Yes)、制 御手段 411は、回転アンテナ 38、 39が加熱室 34内の右方向を加熱する向き、すな わち図 6に示した停止位置に回転アンテナ 38、 39を停止させるように動作制御を実 行する(S 119)。
[0116] 最低温度箇所が B4、 C4のいずれの領域でもな力つた場合は(SI 11—No)、続け て、食品箇所のうち最低温度箇所が A2、 A3のいずれかである否かを判定する(SI 12)。
[0117] 最低温度箇所が A2、 A3、のいずれかの領域であった場合は(SI 12— Yes)、制 御手段 411は、回転アンテナ 38、 39が加熱室 34内の前方向を加熱する向き、すな わち図 7に示した停止位置に回転アンテナ 38、 39を停止させるように動作制御を実 行する(S 120)。
[0118] 最低温度箇所が A2、 A3のいずれの領域でもな力つた場合は(SI 12— No)、続け て、食品箇所のうち最低温度箇所が D2、 D3のいずれかである力否かを判定する(S 113)。
[0119] 最低温度箇所が D2、 D3、のいずれかの領域であった場合は(SI 13— Yes)、制 御手段 411は、回転アンテナ 38、 39が加熱室 34内の後方向を加熱する向き、すな わち図 8に示した停止位置に回転アンテナ 38、 39を停止させるように動作制御を実 行する(S121)。
[0120] 最低温度箇所が D2、 D3のいずれの領域でもな力つた場合は(S113— No)、続け て、制御手段 411は、回転アンテナ 38、 39を一定回転させて加熱室 34内を均一加 熱する分散加熱モードに移行する(S114)。
[0121] 制御手段 411は、 S114、 S117〜S121のいずれ力ステップを実行した後に、終了 判定を行う(S115)。例えば、食品の温度分布のうち最高温度が予め設定された設 定温度を超えるときに加熱処理を終了すると判定する加熱処理終了判定条件や、食 品と判定した箇所の平均温度が設定温度を越えるときに加熱処理を終了すると判定 する加熱処理終了判定条件を満たしているか否かを判定する。
[0122] 加熱処理終了判定条件を満たしていた場合は(S115— Yes)、加熱処理を終了す る(S116)。加熱処理終了判定条件を満たしていない場合は(S115—No)、 S107 のステップの段階に移行し、再び S 107以降のステップを繰り返す。 [0123] 以上のように、本実施の形態 1の電子レンジ 31は、二つの回転アンテナにより加熱 室 34内の特定の箇所を集中的に加熱することができるものであり、加熱処理中に被 加熱物である食品の温度分布を検出し、その食品の最低温度箇所にスポットを当て て局所的に加熱することができるので、食品をムラなく加熱処理することができる。
[0124] また、局所的加熱と分散加熱とを食品の温度分布に応じて切り換えることができ、 すなわち必要な箇所にマイクロ波を集中させることができるので、効率よく短時間で 食品を加熱することができる。
[0125] なお、図 15において説明した加熱フィードバック段階の動作制御については、食 品の最低温度箇所を探索する順序はこれに限られず、結果として食品全体を探索す るものであれば他の順序で実行しても良!、。
[0126] (実施の形態 2)
図 16は、本実施の形態 2の電子レンジの加熱フィードバック段階を説明するフロー チャートである。なお、以下の説明では、上述した構成要素と同一の構成要素には 同一の符号を付し、その説明を省略する。
[0127] 本実施の形態 2の電子レンジ 31は、加熱初期段階が終了した後、図 16に示すカロ 熱フィードバック段階に移行する。図 15に示した実施の形態 1の加熱フィードバック 制御と図 16に示した本実施の形態 2の加熱フィードバック制御との違いは、本実施の 形態 2の加熱フィードバック制御力 加熱室 34内の各領域 (A1〜A4、 B1〜B4、 CI 〜C4、 D1〜D4)を、中央領域 A(B2、 B3、 C2、 C3)と左側領域 B (B1、 CI)と右側 領域 C (B4、 C4)と前方領域 D (A2、 A3)と後方領域 E (D2、 D3)とに分類し、その 分類した領域内の食品箇所の平均温度に基づいて加熱フィードバックを行う点にあ る。
[0128] 図 16を参照して、本実施の形態 2の加熱フィードバック段階の動作制御について 説明する。電子レンジ 31の温度検出手段は、加熱初期段階が終了した後、加熱室 3 4内の全体の温度分布を検出する(S201)。そして、中央領域 A(B2、 B3、 C2、 C3) と左側領域 B (B1、 CI)と右側領域 C (B4、 C4)と前方領域 D (A2、 A3)と後方領域 E (D2、 D3)毎に食品箇所の平均温度を算出する(S202)。
[0129] 続けて、分類した各領域 (A〜F)のうち平均温度が最低である領域を求め、その結 果に応じて回転アンテナ 38、 39の動作を制御する。まず、分類した各領域 (A〜F) のうち最低温度領域 (平均温度が最低である領域)が中央領域 Aである力否かを判 定する。最低温度領域が中央領域 Aであった場合 (S203— Yes)、制御手段 411は 、回転アンテナ 38、 39が加熱室 34内の中央を加熱する向き、すなわち図 4に示した 停止位置に回転アンテナ 38、 39を停止させるように動作制御を実行する(S210)。
[0130] 最低温度領域が中央領域 Aでなかった場合は(S203— No)、続けて、分類した各 領域 (A〜F)のうち最低温度領域が左側領域 Bである力否かを判定する(S204)。 最低温度領域が左側領域 Bであった場合 (S204— Yes)、制御手段 411は、回転ァ ンテナ 38、 39が加熱室 34内の左側を加熱する向き、すなわち図 5に示した停止位 置に回転アンテナ 38、 39を停止させるように動作制御を実行する(S211)。
[0131] 最低温度領域が左側領域 Bでな力つた場合は(S204— No)、続けて、分類した各 領域 (A〜F)のうち最低温度領域が右側領域 Cである力否かを判定する(S205)。 最低温度領域が右側領域 Cであった場合 (S205— Yes)、制御手段 411は、回転ァ ンテナ 38、 39が加熱室 34内の右側を加熱する向き、すなわち図 6に示した停止位 置に回転アンテナ 38、 39を停止させるように動作制御を実行する(S212)。
[0132] 最低温度領域が右側領域 Cでなかった場合は(S205— No)、続けて、分類した各 領域 (A〜F)のうち最低温度領域が前方領域 Dであるか否かを判定する(S206)。 最低温度領域が前方領域 Dであった場合 (S206— Yes)、制御手段 411は、回転ァ ンテナ 38、 39が加熱室 34内の前方側を加熱する向き、すなわち図 7に示した停止 位置に回転アンテナ 38、 39を停止させるように動作制御を実行する(S213)。
[0133] 最低温度領域が前方領域 Dでな力つた場合は(S206— No)、続けて、分類した各 領域 (A〜F)のうち最低温度領域が後方領域 Eである力否かを判定する(S207)。 最低温度領域が後方領域 Eであった場合 (S207— Yes)、制御手段 411は、回転ァ ンテナ 38、 39が加熱室 34内の後方側を加熱する向き、すなわち図 8に示した停止 位置に回転アンテナ 38、 39を停止させるように動作制御を実行する(S214)。
[0134] 最低温度箇所が後方領域 Eでもな力 た場合は(S207— No)、続けて、制御手段 411は、回転アンテナ 38、 39を一定回転させて加熱室 34内を均一加熱する分散カロ 熱モードに移行する(S208)。 [0135] 制御手段は、 S208、 S210〜S214のいずれかステップを実行した後に、終了判 定を行う(S209)。実施の形態 1と同様に、例えば、食品の温度分布のうち最高温度 力 予め設定された設定温度を超えるときに加熱処理を終了すると判定したり、食品 と判定した箇所の平均温度が設定温度を越えるときに加熱処理を終了すると判定す る加熱処理終了判定条件を満たしているか否かを判定する。
[0136] 加熱処理終了判定条件を満たしていた場合は(S209— Yes)、加熱処理を終了す る(S116)。加熱処理終了判定条件を満たしていない場合は(S209— No)、 S201 のステップの段階に移行し、再び S201以降のステップを繰り返す。
[0137] このように、本実施の形態 2の電子レンジ 31は、分類した一定領域内(A〜E)の食 品箇所の平均温度に基づいて、局所加熱箇所を決定するので、食品の一箇所だけ が極端に低い場合であっても、食品全体として加熱が必要な箇所に対して集中加熱 を行うことができる。
[0138] (実施の形態 3)
本実施の形態 3の電子レンジとして、回転アンテナの変形例について説明する。な お、以下の説明では、上述した構成要素と同一の構成要素には同一の符号を付し、 その説明を省略する。例えば、回転アンテナとしては、図 17に示すように、円板形状 の一部に開口部を有するものであっても良い。
[0139] 具体的には、図 17中、回転アンテナ 83、 84は、放射部 85、 86上に円弧形状の開 口部 87、 88を有している。この開口部 87、 88は、幅方向の長さ L1が加熱室内に放 射されるマイクロ波の波長の 4分の 1以上としている。従って、回転アンテナ 83、 84は 、停止しているときは開口部に放射指向性がある構成となり、加熱室 34内の特定の 領域を局所的に加熱することを可能とする。
[0140] また、回転アンテナの他の変形例としては、例えば、図 18に示すように、長方形状 の回転アンテナ 90、 91がある。この回転アンテナ 90、 91は、長方形状のうち 3辺側 が加熱室底面側に曲げられた曲げ部 94、 95を有し、残り 1辺部分 92, 93が折り曲げ ておらず、その折り曲げられていない辺部分 92、 93に指向性が強い構成となり、カロ 熱室 34内の特定の領域を局所的に加熱することを可能とする。
[0141] また、回転アンテナの他の変形例としては、例えば、図 19に示すように、長方形状 の回転アンテナ 201、 202力ある。回転アンテナ 201、 202は、長方形状の 4辺側に 加熱室底面側に曲げられた曲げ部 203、 204を有し、さらに、放射部 206、 207上に 開口部 208、 209を有することで指向性が強い構成となり、加熱室 34内の特定の領 域を局所的に加熱することを可能とする。
[0142] また、各回転アンテナは、互いの間隔を 5[mm]以上空けるものとしている。これによ り、各回転アンテナが互いに干渉して回転アンテナの一部等が過剰加熱で破損する ことを防止することができる。
[0143] なお、以上に示した実施の形態は様々に組み合わせて実施することができるもので ある。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
[0144] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
[0145] 本出願は、 2006年 6月 19日出願の日本特許出願 (特願 2006— 169268)に基づ くものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0146] 以上のように、本発明は、加熱室に配置された回転アンテナの放射指向性の強い 部位を所定の向きに制御して特定の被加熱物を集中加熱することができるので、食 品などの各種誘電体の加熱、解凍、陶芸加熱、乾燥、焼結、或いは生体化学反応等 の用途にも適用することができるものである。

Claims

請求の範囲
[1] マイクロ波発生手段と、
前記マイクロ波発生手段力 マイクロ波を伝送する導波管と、
前記マイクロ波で加熱する被加熱物を収納する加熱室と、
前記導波管力 前記加熱室に前記マイクロ波を放射するための回転アンテナと、 前記回転アンテナを回転駆動する駆動手段と、
前記加熱室内の温度分布を検出する温度分布検出手段と、
前記温度分布検出手段の検出結果に基づき前記駆動手段を制御して前記回転ァ ンテナの向きを制御する制御手段とを有し、
前記制御手段は、前記複数の回転アンテナの放射指向性の強!、部位を前記温度 分布検出手段の検出結果に基づき決定した向きに制御して集中加熱するとともに、 前記駆動手段は、前記回転アンテナの位置を検出する位置検出手段を備えたマイ クロ波加熱装置。
[2] マイクロ波発生手段と、
前記マイクロ波発生手段力 マイクロ波を伝送する導波管と、
前記マイクロ波で加熱する被加熱物を収納する加熱室と、
前記導波管から前記加熱室に前記マイクロ波を放射するための複数の回転アンテ ナと、 前記回転アンテナを回転駆動する駆動手段と、
前記加熱室内の温度分布を検出する温度分布検出手段と、
前記温度分布検出手段の検出結果に基づき前記駆動手段を制御して前記回転ァ ンテナの向きを制御する制御手段とを有し、
前記制御手段は、前記複数の回転アンテナのうち少なくとも一つの回転アンテナを 、放射指向性の強い部位を前記温度分布検出手段の検出結果に基づき決定した向 きに制御して集中加熱する構成としたマイクロ波加熱装置。
[3] 前記制御手段は、前記回転アンテナの放射指向性の強 、部位を前記温度分布検 出手段の検出結果に基づき決定した向きに制御して集中加熱する局所加熱モード 制御部と前記加熱室内を均一に加熱する分散加熱モード制御部とを有するアンテナ 制御部を備えた請求項 1または 2に記載のマイクロ波加熱装置。
[4] 前記アンテナ制御部は、前記回転アンテナを、加熱開始の初期段階では前記分散 加熱モード制御部で制御するとともに、前記初期段階が終了すると前記局所加熱モ ード制御部で制御する請求項 3に記載のマイクロ波加熱装置。
[5] 前記アンテナ制御部は、前記回転アンテナを、加熱開始の初期段階では前記局所 加熱モード制御部で制御するとともに、前記初期段階が終了すると前記分散加熱モ ード制御部で制御する請求項 3に記載のマイクロ波加熱装置。
[6] 前記制御手段は、前記加熱室内に載置された被加熱物が食品であるか否かを判 定する食品判定部を有し、前記食品判定部で判定した食品領域の温度に基づ 、て 前記回転アンテナを制御する請求項 1または 2に記載のマイクロ波加熱装置。
[7] 前記制御手段は、前記加熱室内の特定の領域に対して前記回転アンテナの放射 指向性の強 、部分を向けるときの前記回転アンテナの角度を記憶するアンテナ角度 記憶部を有し、
前記温度分布検出手段が検出した各検出領域の温度のうち低温部分に前記回転 アンテナの放射指向性の強い部分を向ける請求項 1または 2に記載のマイクロ波加 熱装置。
[8] 前記分散加熱モード制御部は、前記回転アンテナの停止位置を刻々と変化させる 、或は前記回転アンテナを連続的に回転させる、或は前記回転アンテナの停止位置 をランダムに変えることで分散加熱を実施する構成とした請求項 3に記載のマイクロ 波加熱装置。
[9] 前記局所加熱モード制御部は、往復角度を記憶する往復角度記憶部を有し、前記 温度分布検出手段が検出した検出結果に基づき前記アンテナ角度記憶部を参照し て決定された角度を中心として、前記往復角度記憶部が記憶する角度だけ前記回 転アンテナを往復揺動させる構成とした請求項 3に記載のマイクロ波加熱装置。
[10] 前記局所加熱モード制御部は、前記回転アンテナが所定の角度で停止する上限 時間を記憶する停止上限時間記憶部と、前記回転アンテナが停止して!/、る時間を力 ゥントする停止時間計時部とを有し、前記停止時間計時部がカウントした時間が前記 停止上限時間記憶部が記憶する時間に到達するとき、所定角度ずらした位置に前 記回転アンテナを移動させる請求項 9に記載のマイクロ波加熱装置。
[11] 前記温度分布検出手段は、複数の赤外線検出素子と、この複数の赤外線検出素 子を当該複数の赤外線検出素子が並んでいる方向と交わる方向に移動させる駆動 手段とを備えた請求項 1または 2に記載のマイクロ波加熱装置。
[12] 前記駆動手段は、前記回転アンテナの位置を検出する位置検出手段を備えた請 求項 2に記載のマイクロ波加熱装置。
[13] 前記位置検出手段は、原点検出モードで前記回転アンテナの原点を検出する構 成とした請求項 1または 12に記載のマイクロ波加熱装置。
[14] 前記原点検出モードは、加熱処理実行前または加熱処理実行後に前記回転アン テナの原点を確認する構成とした請求項 13に記載のマイクロ波加熱装置。
[15] 前記制御手段は、前記原点検出モードで前記回転アンテナを駆動している間はマ グネトロンの動作を停止する請求項 13に記載のマイクロ波加熱装置。
[16] 前記制御手段は、前記原点検出モードで原点を検出しない場合にエラーと判定し て加熱処理の実行を禁止するメニューと、前記回転アンテナを停止させた状態でカロ 熱処理を実行するメニューを備えた請求項 13に記載のマイクロ波加熱装置。
[17] 前記複数の回転アンテナの回転中心を前記加熱室内の中心から略等距離に配置 した請求項 2に記載のマイクロ波加熱装置。
[18] 前記駆動手段としてステッピングモータを用いるとともに、各アンテナに対応する各 ステッピングモータに対してノルスを入力するタイミングを前記各ステッピングモータ ごとに時間差を設けた請求項 2に記載のマイクロ波加熱装置。
PCT/JP2007/062169 2006-06-19 2007-06-15 マイクロ波加熱装置 WO2007148632A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/305,314 US8525086B2 (en) 2006-06-19 2007-06-15 Microwave heating appliance
EP07745423.9A EP2051563B1 (en) 2006-06-19 2007-06-15 Microwave heating device
CN2007800230730A CN101473692B (zh) 2006-06-19 2007-06-15 微波加热装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006169268A JP4979280B2 (ja) 2006-06-19 2006-06-19 マイクロ波加熱装置
JP2006-169268 2006-06-19

Publications (1)

Publication Number Publication Date
WO2007148632A1 true WO2007148632A1 (ja) 2007-12-27

Family

ID=38833374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062169 WO2007148632A1 (ja) 2006-06-19 2007-06-15 マイクロ波加熱装置

Country Status (5)

Country Link
US (1) US8525086B2 (ja)
EP (1) EP2051563B1 (ja)
JP (1) JP4979280B2 (ja)
CN (1) CN101473692B (ja)
WO (1) WO2007148632A1 (ja)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273930B2 (ja) * 2007-03-07 2013-08-28 パナソニック株式会社 マイクロ波加熱装置
WO2008108046A1 (ja) * 2007-03-07 2008-09-12 Panasonic Corporation マイクロ波加熱装置
JP5217881B2 (ja) * 2008-10-10 2013-06-19 パナソニック株式会社 マイクロ波処理装置
JP5217882B2 (ja) * 2008-10-10 2013-06-19 パナソニック株式会社 マイクロ波処理装置
WO2010073528A1 (ja) * 2008-12-25 2010-07-01 パナソニック株式会社 マイクロ波加熱調理器
EP2499505B2 (en) 2009-11-10 2021-05-05 Goji Limited Device and method for controlling energy
MX2012012706A (es) 2010-05-03 2013-04-29 Goji Ltd Analisis modal.
EP2393340B1 (en) * 2010-06-04 2015-09-02 Whirlpool Corporation Microwave heating apparatus with rotatable antenna and method thereof
JP5820661B2 (ja) * 2010-09-14 2015-11-24 東京エレクトロン株式会社 マイクロ波照射装置
CA2814008C (en) * 2010-10-07 2015-10-06 Milt D. Mathis Microwave rotary kiln
JP2013053795A (ja) * 2011-09-02 2013-03-21 Toshiba Corp 加熱調理器
CN102519057B (zh) * 2011-12-22 2015-03-25 宁波方太厨具有限公司 平板微波炉微波搅波机构的检测装置
CN103591620B (zh) * 2012-08-16 2017-03-08 广东美的厨房电器制造有限公司 一种微波炉及其控制方法
CN103634959B (zh) * 2012-08-20 2015-12-02 侯梦斌 一种带有自动装卸原料盒钵的微波加热设备及工艺
DE102012222156A1 (de) * 2012-12-04 2014-06-05 BSH Bosch und Siemens Hausgeräte GmbH Mikrowellengerät
WO2016043731A1 (en) * 2014-09-17 2016-03-24 Whirlpool Corporation Direct heating through patch antennas
CN104235901A (zh) * 2014-09-25 2014-12-24 广东美的厨房电器制造有限公司 微波炉的食物解冻控制方法及微波炉
EP3285548B1 (en) * 2014-09-25 2020-12-09 Guangdong Midea Kitchen Appliances Microwave oven and thawing control method and device for the same
CN104456648B (zh) * 2014-11-24 2017-04-05 广东美的厨房电器制造有限公司 微波炉
US11229095B2 (en) * 2014-12-17 2022-01-18 Campbell Soup Company Electromagnetic wave food processing system and methods
CN105737540A (zh) * 2016-03-05 2016-07-06 何朝武 一种智能调节干燥系统
CN105655724B (zh) * 2016-03-07 2018-11-02 南京航空航天大学 面向复合材料微波固化的微波天线阵
CN108781486B (zh) * 2016-03-25 2021-08-10 松下知识产权经营株式会社 微波加热装置
US10004115B2 (en) * 2016-06-13 2018-06-19 The Markov Corporation Electronic oven with reflective energy steering
EP3476183B1 (en) * 2016-06-28 2021-12-29 Whirlpool Corporation Multi-feed microwave oven with improved crisp function
WO2018056977A1 (en) 2016-09-22 2018-03-29 Whirlpool Corporation Method and system for radio frequency electromagnetic energy delivery
WO2018075026A1 (en) 2016-10-19 2018-04-26 Whirlpool Corporation Method and device for electromagnetic cooking using closed loop control
EP3530074A4 (en) 2016-10-19 2020-05-27 Whirlpool Corporation MODULATION OF THE COOKING TIME OF FOOD
EP3529536B1 (en) 2016-10-19 2021-07-14 Whirlpool Corporation System and method for food preparation utilizing a multi-layer model
EP3560292A4 (en) 2016-12-22 2020-11-25 Whirlpool Corporation ELECTROMAGNETIC COOKING PROCESS AND DEVICE USING NON-CENTERED LOADS
EP3560291A4 (en) 2016-12-22 2020-11-25 Whirlpool Corporation METHOD AND DEVICE FOR ELECTROMAGNETIC COOKING USING NON-CENTERED LOAD MANAGEMENT BY SPECTROMODAL AXIS ROTATION
WO2018120773A1 (en) 2016-12-28 2018-07-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Antenna device for mobile terminal and mobile terminal
EP3563633B1 (en) 2016-12-29 2021-11-17 Whirlpool Corporation System and method for detecting cooking level of food load
WO2018125136A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation System and method for controlling a heating distribution in an electromagnetic cooking device
US11452182B2 (en) 2016-12-29 2022-09-20 Whirlpool Corporation System and method for detecting changes in food load characteristics using coefficient of variation of efficiency
WO2018125149A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation Electromagnetic cooking device with automatic melt operation and method of controlling cooking in the electromagnetic cooking device
WO2018125130A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation System and method for controlling power for a cooking device
EP3563632B1 (en) 2016-12-29 2023-01-18 Whirlpool Corporation Electromagnetic cooking device with automatic popcorn popping feature and method of controlling cooking in the electromagnetic device
WO2018125147A1 (en) * 2016-12-29 2018-07-05 Whirlpool Corporation Electromagnetic cooking device with automatic liquid heating and method of controlling cooking in the electromagnetic cooking device
EP3563631B1 (en) 2016-12-29 2022-07-27 Whirlpool Corporation Detecting changes in food load characteristics using q-factor
WO2018125137A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation System and method for analyzing a frequency response of an electromagnetic cooking device
US11412585B2 (en) 2016-12-29 2022-08-09 Whirlpool Corporation Electromagnetic cooking device with automatic anti-splatter operation
EP3563634B1 (en) 2016-12-29 2021-10-13 Whirlpool Corporation Electromagnetic cooking device with automatic boiling detection and method of controlling cooking in the electromagnetic cooking device
DE102017105320A1 (de) * 2017-03-14 2018-09-20 Vorwerk & Co. Interholding Gmbh System zur Zubereitung von mindestens einem Nahrungsmittel
US20190357324A1 (en) * 2018-05-19 2019-11-21 The Markov Corporation Universal Electronic Oven Heating Functionality Module
DE102019215684A1 (de) * 2019-10-11 2021-04-15 BSH Hausgeräte GmbH Erkennen eines Stillstands einer drehbaren Mikrowellenverteilvorrichtung
CN113551455B (zh) * 2020-04-23 2022-11-15 青岛海尔电冰箱有限公司 基于温度的解冻控制方法、解冻装置与冰箱
CN113551456B (zh) * 2020-04-23 2022-09-20 青岛海尔电冰箱有限公司 解冻物的温度检测方法、解冻装置与冰箱
CN113551454B (zh) * 2020-04-23 2022-11-08 青岛海尔电冰箱有限公司 基于温度的解冻控制方法、解冻装置与冰箱
KR20210136717A (ko) * 2020-05-08 2021-11-17 엘지전자 주식회사 복수 개의 안테나를 갖는 오븐
US20210392725A1 (en) * 2020-06-10 2021-12-16 Yizhou LIN Heating apparatus and methods for heating
CN112197310A (zh) * 2020-09-30 2021-01-08 广东美的厨房电器制造有限公司 温度控制方法、装置、电子设备、转盘式微波炉和介质
CN114340072A (zh) * 2021-12-22 2022-04-12 广东美的白色家电技术创新中心有限公司 一种微波炉用天线装置及微波炉
CN114302525A (zh) * 2021-12-22 2022-04-08 广东美的白色家电技术创新中心有限公司 一种微波炉
CN114302526A (zh) * 2021-12-22 2022-04-08 广东美的白色家电技术创新中心有限公司 一种微波炉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306664A (ja) * 1996-05-08 1997-11-28 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2004259646A (ja) 2003-02-27 2004-09-16 Mitsubishi Electric Corp 高周波加熱装置
JP3617224B2 (ja) 1996-12-16 2005-02-02 松下電器産業株式会社 高周波加熱装置
JP2006169268A (ja) 2004-12-10 2006-06-29 Nippon Paint Co Ltd 光輝性塗料組成物、光輝性塗膜形成方法および光輝性塗装物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1080555A (zh) * 1992-06-29 1994-01-12 天津市北洋仪器公司 医用微波加温测温装置
CN1050305C (zh) * 1995-05-17 2000-03-15 深圳安科高技术有限公司 微波辐射器
JP3375803B2 (ja) * 1995-10-04 2003-02-10 シャープ株式会社 電子レンジ
KR19990026281A (ko) 1997-09-23 1999-04-15 윤종용 전자렌지의 마이크로파 분산장치
JP3600094B2 (ja) * 1999-12-07 2004-12-08 三洋電機株式会社 電子レンジ
JP3825644B2 (ja) * 2001-02-28 2006-09-27 三洋電機株式会社 電子レンジ
JP2004071229A (ja) * 2002-08-02 2004-03-04 Sharp Corp 高周波加熱装置
CN2583598Y (zh) * 2002-11-25 2003-10-29 上海鸿泽企业发展有限公司 采用旋转天线馈能的箱式微波加热器
JP2004219010A (ja) * 2003-01-17 2004-08-05 Sharp Corp 高周波加熱調理器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306664A (ja) * 1996-05-08 1997-11-28 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP3617224B2 (ja) 1996-12-16 2005-02-02 松下電器産業株式会社 高周波加熱装置
JP2004259646A (ja) 2003-02-27 2004-09-16 Mitsubishi Electric Corp 高周波加熱装置
JP2006169268A (ja) 2004-12-10 2006-06-29 Nippon Paint Co Ltd 光輝性塗料組成物、光輝性塗膜形成方法および光輝性塗装物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2051563A4 *

Also Published As

Publication number Publication date
JP2007335377A (ja) 2007-12-27
US8525086B2 (en) 2013-09-03
EP2051563A4 (en) 2011-08-24
EP2051563B1 (en) 2014-06-11
EP2051563A1 (en) 2009-04-22
JP4979280B2 (ja) 2012-07-18
US20100059509A1 (en) 2010-03-11
CN101473692B (zh) 2012-03-14
CN101473692A (zh) 2009-07-01

Similar Documents

Publication Publication Date Title
WO2007148632A1 (ja) マイクロ波加熱装置
JP5116260B2 (ja) 高周波加熱装置
JP5310741B2 (ja) マイクロ波加熱調理器
JP2007227134A (ja) マイクロ波加熱装置
JP5104021B2 (ja) マイクロ波加熱装置
JP5076625B2 (ja) マイクロ波加熱装置
JP5076626B2 (ja) マイクロ波加熱装置
JP5076627B2 (ja) マイクロ波加熱装置
JP5034667B2 (ja) マイクロ波加熱装置
JP5217237B2 (ja) マイクロ波加熱装置
JP4807187B2 (ja) マイクロ波加熱装置
JP5194561B2 (ja) マイクロ波加熱装置
JP4967796B2 (ja) マイクロ波加熱装置
JP5028821B2 (ja) マイクロ波加熱装置
JP2011086486A (ja) マイクロ波加熱装置
JP4924197B2 (ja) マイクロ波加熱装置およびプログラム
JP5273930B2 (ja) マイクロ波加熱装置
JP5040426B2 (ja) マイクロ波加熱装置
JP5593710B2 (ja) マイクロ波加熱調理器
JP4882427B2 (ja) マイクロ波加熱装置
JP2008166253A (ja) マイクロ波加熱装置
JP2008282695A (ja) マイクロ波加熱装置
JP2008157586A (ja) マイクロ波加熱装置
JP2010040363A (ja) マイクロ波加熱装置
JP2008170076A (ja) マイクロ波加熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780023073.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12305314

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007745423

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE