WO2007148413A1 - 超高速光周波数掃引技術 - Google Patents

超高速光周波数掃引技術 Download PDF

Info

Publication number
WO2007148413A1
WO2007148413A1 PCT/JP2006/313036 JP2006313036W WO2007148413A1 WO 2007148413 A1 WO2007148413 A1 WO 2007148413A1 JP 2006313036 W JP2006313036 W JP 2006313036W WO 2007148413 A1 WO2007148413 A1 WO 2007148413A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
control device
frequency control
signal
optical frequency
Prior art date
Application number
PCT/JP2006/313036
Other languages
English (en)
French (fr)
Inventor
Tetsuya Kawanishi
Takahide Sakamoto
Masahiro Tsuchiya
Original Assignee
National Institute Of Information And Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Information And Communications Technology filed Critical National Institute Of Information And Communications Technology
Priority to US12/306,117 priority Critical patent/US8682177B2/en
Priority to PCT/JP2006/313036 priority patent/WO2007148413A1/ja
Priority to JP2008522256A priority patent/JP4882042B2/ja
Publication of WO2007148413A1 publication Critical patent/WO2007148413A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure

Definitions

  • the present invention provides an optical frequency control device using a modulation signal source in which an arbitrary waveform generator and an electric signal frequency multiplier are combined in order to make the modulation signal applied to the SSB modulator ultra-high speed and wide range. And so on.
  • An optical single sideband (S S B) modulator is known as an optical frequency control device.
  • the optical SSB modulator is an optical modulator that can obtain output light shifted by the frequency of the modulation signal (S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T Kawanishi and M. ⁇ tsutsu, Single Side-Band Modulation Performance of a LiNb03 Integrated Modulator Consisting of Four-Phase Modulator Wavegate, "IEEE Photon. Tech. Lett., Vol. 13, 364-366 (2001) See 1 and 2).
  • Frequency control technology using optical SSB modulators is characterized by relatively high accuracy and control with excellent stability.
  • the speed at which the optical frequency is swept using an optical SSB modulator is limited by the sweep speed of the modulation signal, which is an electrical signal.
  • the sweep speed was limited.
  • the FM modulator can sweep the frequency at a relatively high speed, but the frequency change width is as narrow as several tens of OMHz. Therefore, in any case, since signal control with high sweep speed and wide frequency range cannot be achieved, there is a problem that the frequency control technology of the optical SSB modulator cannot achieve both.
  • Non-Patent Document 1 S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawani shi and M. Izutsu, "S ingle S i de-Band Modulat ion Performance of a LiNb03 Integrated Modulator Cons i sting of Four-Phase Modulator Wavegate," IEEE Photon. Tech. Let t., Vo l. 13, 364-366 (2001)
  • Non-Patent Document 2 T. Kawanishi, T. Sakamoto and M. Izutsu, Optical filter characterization by using optical frequency sweep technique with a single sideband modulator, IEICE Electron. Express, 3, 34-38 (2006) Disclosure of the Invention
  • An object of the present invention is to provide an optical frequency control device that can be quickly controlled over a wide frequency range.
  • Another object of the present invention is to provide an optical frequency control signal generator, an optical filter accuracy measuring instrument, a measuring instrument, a radio signal generator, and the like using the control apparatus as described above.
  • the speed at which the optical frequency is swept using the optical SSB modulator is limited by the sweep speed of the modulation signal, which is an electrical signal. Based on the knowledge that optical SSB modulation can be controlled at high speed over a wide frequency range by obtaining a modulated electrical signal over a wide frequency range by using a modulation signal source combined with a detector. It is.
  • the arbitrary waveform generator can generate electrical signals that have been swept at a high speed, but the frequency band that can be generated is as narrow as less than 50 MHz. Therefore, the electric signal generated by this arbitrary waveform generator is expanded in the frequency change range by the electric signal frequency multiplier, thereby realizing a high-speed and wide frequency range modulation signal.
  • the optical SSB modulator By driving the optical SSB modulator using a signal, it is possible to perform high-speed frequency sweeping over a wide frequency range.
  • FIG. 1 is a block diagram showing the basic configuration of the apparatus of the present invention.
  • Figure 2 is a schematic diagram showing an example of an optical SSB modulator.
  • Figure 3 is a schematic diagram showing an example configuration of an optical comb generator.
  • FIG. 4 is a conceptual diagram showing the state of light in each process of the optical comb generator.
  • FIG. 5 is a schematic configuration diagram showing a radio signal generator according to the present invention.
  • Fig. 6 is a graph instead of a drawing showing the optical spectrum when a USB signal is generated in Example 1.
  • Figure 7 is a graph instead of a drawing showing the optical spectrum when the LSB signal is generated in Example 1.
  • Figure 8 shows a graph instead of a diagram showing the optical spectrum when the sweep time is 500 msec.
  • Figure 9 is a graph instead of a drawing showing the optical spectrum when USB is generated when a sine wave is input as the modulation signal.
  • Figure 10 is a graph instead of a drawing showing the optical spectrum when LSB occurs when a sine wave is input as the modulation signal.
  • Fig. 11 is a graph instead of a drawing showing calibration data in Example 2.
  • Fig. 1 1 A, Fig. 1 1 B, Fig. 1 1 C, and Fig. 1 1 D show that the frequency sweep speed is 0.5 microsecond, 5 microsecond, 50 microsecond, or 500 microsecond, respectively.
  • FIG. 6 is a diagram showing calibration data when seconds are taken.
  • Figure 12 shows a graph instead of a drawing that shows the measurement results of the first type optical filter.
  • Figures 12 (a), 12 (b), and 12 (c) show the reflectivity of 95%, 90%, and 85%, respectively.
  • Fig. 13 shows a drawing that replaces the drawing showing the measurement results of the second type optical filter.
  • Figures 13 ⁇ , 13,, 13 C and 13 D show the frequency sweep rates of 5, 5, 5, and 0.5 microseconds, respectively.
  • Figure 14 is a graph replacing the drawing showing the enlarged view of the sweep start part in Fig. 13.
  • Figures 14A, 14B, 14C, and 14D show the frequency sweep speeds of 50 microseconds, 50 microseconds, 5 microseconds, and 0.5 microseconds, respectively. .
  • Figure 15 shows a graph that replaces the measurement result of the first type optical filter with the measurement result of TLD.
  • Figure 16 shows a graph instead of a drawing that shows the output signal of the arbitrary waveform generator (AWG).
  • AVG arbitrary waveform generator
  • Figure 17 shows a graph instead of a drawing that shows the output signal of the arbitrary waveform generator (AWG).
  • AVG arbitrary waveform generator
  • Fig. 18 shows a diagram that shows a modulation signal applied to the optical SSB modulator.
  • Figures 18A and 18B show the output of the multiplier and the input signal to the RF A port of the modulator, respectively.
  • Figure 19 is a graph instead of a drawing showing the input signal to the optical SSB modulator.
  • Figures 19A and 19B show the sweep speeds of 5 microseconds and 0.5 microseconds, respectively.
  • Figure 20 is a graph instead of a drawing showing the optical spectrum when light source 2 is placed on the short wavelength side.
  • Figure 21 is a graph instead of a drawing showing the optical spectrum when the light source 2 is on the long wavelength side.
  • Figure 22 is a graph instead of a drawing showing the radio frequency spectrum when the wavelength of light source 2 is 1549.41 nm.
  • Fig. 23 is a partially enlarged view of Fig. 22.
  • Figure 24 is a graph instead of a drawing showing the radio frequency spectrum when the wavelength of light source 2 is 1549.48 nm.
  • Figure 25 is a partially enlarged view of Figure 24.
  • Figure 26 is a graph instead of a drawing showing the radio frequency spectrum when the wavelength of light source 2 is 1549.93 nm.
  • Figure 27 is a partially enlarged view of Figure 26.
  • Figure 28 shows the radio frequency spectrum when the wavelength of light source 2 is 1549.875 nm.
  • Figure 29 is a partially enlarged view of Figure 28.
  • Fig. 30 is a graph replacing the drawing showing the amplifier output spectrum.
  • Fig. 31 is a graph replacing the drawing showing the radio frequency spectrum.
  • Figure 32 is a partially enlarged view of Figure 31.
  • FIG. 1 is a block diagram showing the basic configuration of the apparatus of the present invention.
  • the optical frequency control device of the present invention basically includes an optical SSB modulator (2) and a bias voltage source (3) for applying a bias voltage to the optical SSB modulator (2).
  • a modulation signal source (4) for applying a modulation signal to the optical SSB modulator (2);
  • the modulation signal source (4) is an arbitrary waveform for generating an electric signal having an arbitrary waveform.
  • a generator (5), and an electric signal frequency multiplier (6) for multiplying the frequency of the electric signal generated by the mean waveform generator (5).
  • the optical frequency control device (1) is a device that can control the frequency of the output light, such as sweeping and outputting the optical frequency.
  • the optical SSB modulator (2) means an optical single sideband modulator.
  • Optical SSB modulator Is an optical modulator that can obtain output light shifted by the frequency (f m ) of the modulation signal (S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single Side-Band Modulation Performance of a LiNb03 Integrated Modulator Consisting of Four-Phase Modulator Wavegate," IEEE Photon. Tech.
  • optical SSB modulator (2) a known optical SSB modulator can be used as appropriate.
  • optical SSB modulator [2] for example, the one shown in Fig. 2 can be used.
  • Figure 2 is a schematic diagram showing an example of an optical SS B 'modulator. The optical SSB modulator shown in Fig.
  • the second sub-Mach-Zehnder waveguide (MZ B ) consists of the first sub-Mach-Zehnder waveguide (MZ A ) (22); the second sub-Mach-Zehnder waveguide (MZ B ) (23); (24), a branching section (25) for branching the optical signal into the first sub Mach-Zehnder waveguide (MZ A ) and the second sub-Mach-Zehnder waveguide (MZ B ), and the first Sub-Mach-Zehnder waveguide (MZ A ), the second sub-Mach-Zehnder waveguide (MZ B ), the first sub-Mach-Zehnder waveguide (MZ A ), and the second sub-Mach-Zehnder waveguide (MZ B ) includes a multiplexing unit (26) that combines the optical signals output from the optical signal, and an optical signal output unit that outputs the optical signals combined by the multiplexing unit.
  • the main Mach-Zehnder electrode may function as a DC c electrode to which a bias electrode is applied.
  • Each sub-Mach-Zehnder waveguide has, for example, a substantially hexagonal waveguide (which constitutes two arms) and two phase 'modulators in parallel.
  • a phase modulator can be achieved, for example, with electrodes along the waveguide.
  • the intensity modulator can be achieved with, for example, a matsu-zehnder waveguide and electrodes for applying an electric field to both arms of the mach-zender waveguide.
  • Mach-Zehnder waveguides and electrodes are provided on the substrate.
  • the substrate and each waveguide are not particularly limited as long as they can propagate light.
  • silicon (Si) dioxide silicon (Si0 2) on the substrate waveguide may be formed on the LN substrate.
  • an optical semiconductor waveguide in which an InGaAsP or GaAlAs waveguide is formed on an InP or GaAs substrate may be used.
  • the substrate is preferably lithium niobate (LiNb0 3 : LN) that has been cut out for X-cut and Z-axis transmission.
  • An optical waveguide is formed on the surface of the X-cut surface (YZ surface) of this substrate, and the guided light propagates along the Z-axis (optical axis).
  • a lithium niobate substrate other than X-cut may be used.
  • the substrate should be a triaxial or hexagonal uniaxial crystal with electro-optic effect, or a material whose crystal point group is C 3v. C 3, D 3, C 3h , D 3h. Can do. These materials have a function of adjusting the refractive index so that the change in refractive index with an applied electric field has a different sign depending on the mode of propagating light. Specific examples include using lithium niobate, lithium tantalate (LiT0 3 : LT), J3—BaB 2 0 4 (abbreviation BB0), Li I0 3 etc. Can do.
  • the size of the substrate is not particularly limited as long as a predetermined waveguide can be formed.
  • the width, length, and depth of each waveguide are not particularly limited as long as the module of the present invention can exert its function.
  • the width of each waveguide is, for example, about 1 to 20 micrometers, preferably about 5 to 10 micrometers.
  • the depth (thickness) of the waveguide is about 1 to 20 micrometers, preferably about 5 to 10 micrometers.
  • the sub Mach-Zehnder waveguide may be provided separately from the bias adjustment electrode is the above RF A electrode and the RF B electrode, and the above-described RF A electrode and the RF B electrode functions as a bias adjustment electrode Also good.
  • First bias adjustment electrode is, by controlling the bias voltage of between 2 Tsunoa over arm (Pathl and Path3) constituting the MZ A, of the light propagating in the two arms of the MZ A phase It is an electrode for controlling.
  • the second bias adjustment electrode (DC B electrode), by controlling the bias voltage between two ⁇ over beam constituting the MZ B (Path2 and Path4), of the light propagating in the two arms of the MZ B It is an electrode for controlling the phase.
  • a DC or low frequency signal is preferably applied to the DC A and DC B electrodes.
  • “low frequency” in a low-frequency signal means, for example, a frequency of 0 Hz to 500 MHz.
  • a phase modulator for adjusting the phase of the electric signal is provided at the output of the signal source of the low frequency signal so that the phase of the output signal can be controlled.
  • First modulation electrode is an electrode for inputting a la-di O Frequency (RF) signal to the two arms composing the MZ A.
  • the second modulation electrode is an electrode for inputting RF signals to the two arms composing MZ B.
  • RF A electrode and the RF B electrode a traveling wave type electrode or a resonance type electrode can be mentioned, and a resonance type electrode is preferable.
  • the DC A electrode and the RF A electrode may be separate electrodes, or one electrode may perform their functions. In the latter case In this case, a bias voltage and a radio frequency signal are applied to one electrode.
  • the RF A electrode and the RF B electrode are preferably connected to a high frequency electrical signal source.
  • the high-frequency electrical signal source is a device for controlling the signal transmitted to the RF A electrode and RF B electrode, and a known high-frequency electrical signal source can be used.
  • the output of a high-frequency electrical signal source is a sine wave with a constant frequency. It is preferable that a phase modulator is provided at the output of the high-frequency electric signal source so that the phase of the output signal can be controlled.
  • the RF A electrode and RF B electrode are composed of, for example, gold or platinum.
  • the width of the RF A electrode and RF B electrode is 1 ⁇ to 100 ⁇ m, and specifically 5 / im.
  • the length of the RF A electrode and the RF B electrode is 0.1 to 0.9 times the wavelength of the modulation signal (), 0.18 to 0.22 times, or 0.67 to 0.70 times, and more preferably, It is 20-25% shorter than the resonance point of the modulation signal. This is because the combined impedance with the stub electrode remains in an appropriate range.
  • a more specific RF A electrode and RF B electrode length is 3250 / ⁇ m. Below, the resonant electrode and the traveling wave electrode are described.
  • a resonant photoelectrode is an electrode that modulates using the resonance of the modulation signal.
  • Known resonant electrodes can be used.
  • Japanese Patent Publication No. 2002-268025 “Tetsuya Kawanishi, Satoshi Oikawa, Masayuki Izutsu, Resonant optical modulator with flat planar structure, Technical Report, TECHNICAL REPORT OF IEICE, IQE2001-3 (2001-05) J can be used.
  • a traveling wave electrode is an electrode (modulator) that modulates light while guiding and guiding light waves and aeration signals in the same direction (for example, Hiroshi Nishihara, Haruna Masamitsu and Sugawara Toshiaki, “Optical Integrated Circuits” (Revised Supplement) Ohm Co., pp. 119-120).
  • the traveling wave type electrode known ones can be adopted.
  • JP-A-2002-40381, JP-A-2000-267056, JP-A-2000-471159, and JP-A-10-133159 can be used.
  • a so-called symmetrical ground electrode arrangement (having at least a pair of ground electrodes on both sides of the traveling wave signal electrode) is preferably adopted.
  • the high frequency output from the signal electrode is easily applied to the ground electrodes placed on the left and right sides of the signal electrode. Radiation to the substrate side can be suppressed.
  • the RF electrode may serve as both an RF signal electrode and a DC signal electrode.
  • either or both of the RF A electrode and RF B electrode are connected to a feed circuit (bias circuit) that supplies a mixture of DC and RF signals.
  • the RF electrode is connected to the power supply circuit (bias circuit), so an RF signal (radio frequency signal) and a DC signal (DC signal: signal related to the bias voltage) are applied to the RF electrode. Can be entered.
  • the main Matsuhsunder electrode (electrode C) (31) applies a voltage to the main Matsuhsunder waveguide (MZ C ), and outputs from the first sub Mach-Zehnder waveguide (MZ A ).
  • the electrode C the electrode for the sub Mach-Zehnder described above can be used as appropriate.
  • a radio frequency signal is applied to electrode C as a modulation signal, and a traveling-wave electrode corresponding to it is preferable. electrode. Because the phase difference between the optical signals of both arms is controlled by this, it is possible to suppress these signals by reversing the phase of the signal to be canceled, such as USB or LSB. By performing this phase control at high speed, frequency shift keying can be achieved.
  • a preferred embodiment of the above optical modulator is the main Mach-Zehnder waveguide (MZ C ) as the main Mach-Zehnder one electrode (electrode C) (31).
  • the first main pine provided along at least a part of the waveguide between the output section of the first sub-Mach-Zehnder end waveguide (MZ A ) and the multiplexing section.
  • An electrode for a hinder (MZ CA electrode); a waveguide between the output portion of the second sub Mach-Zehnder waveguide (MZ B ) and the combined portion of the main matsuhinder waveguide (MZ C )
  • a second main Mach-Zehnder electrode MZ CB electrode
  • the optical modulator according to the above aspect includes the first main Mach-Zehnder electrode (MZ CA electrode) and the second main Mach-Zehnder electrode (MZ CB electrode) (15),
  • the optical phase of the output signal from each sub-sub Mach-Zehnder waveguide can be controlled, and the optical signal carried by this (carrier signal) or higher-order component (for example, second-order component (f. ⁇ 2)) ) Can be suppressed.
  • the first main Mach-Zehnder electrode (MZ CA electrode) is located between the output part of the first sub-Mach-Zehnder waveguide (MZ A ) and the multiplexing part of the main pine-Hahzender waveguide (MZ C ). This is an electrode provided along at least a part of the waveguide. And at least part of the output signal may be long enough to adjust the phase of the output signal. This electrode may be the same as the electrode in the sub Mach-Zender waveguide.
  • a second main Mach-Zehnder electrode (MZ CB electrode) is provided between the output portion of the second sub-Mach-Zehnder waveguide (MZ B ) and the combining portion of the main pine-Hazender waveguide (MZ C ).
  • This electrode is arranged along at least a part of the waveguide, and this is the same as the MZ CA electrode (31).
  • the first main Mach-Zehnder electrode (MZ CA electrode) and the second main Mach-Zehnder electrode (MZ CB electrode) have the waveguide portion in which each is provided as an optical phase modulator. You can make it work.
  • the branch part (25) included in the main Mach-Zehnder waveguide (MZ C ) has an optical signal connected to the first sub-Mach-Zehnder waveguide (MZ A ) and the first Mach-Zehnder waveguide (MZ C ). This is a part that branches to the sub-Mach-Zehnder waveguide (MZ B ), which has a Y-branch configuration. Further, the multiplexing unit (26.) outputs the optical signals from the first sub Mach-Zehnder waveguide (MZ A ) and the second sub-Mach-Zehnder waveguide (MZ B ). This is a part where the waveguide is Y-shaped. The Y shape above may be the target or asymmetric.
  • a directional coupler may be used as the branching section (25) or the combining section (26).
  • an asymmetric directional coupler is provided in the branch part (25) of the main Mach-Zehnder waveguide (MZ C ) (28), and by the asymmetric directional coupler,
  • the intensity of the optical signal demultiplexed into the first sub Mach-Zehnder waveguide (MZ A ) is greater than the intensity of the optical signal demultiplexed into the second sub Mach-Zehnder waveguide (MZ B ). It is an optical modulator that is controlled to become stronger.
  • the control in order to appropriately control the timing of the signal applied to each electrode, the control is electrically connected to the signal source of each electrode (or by an optical signal). It is preferable that a part is provided.
  • a control unit includes a modulation signal applied to the first electrode (RF A electrode) and the second electrode (RF B electrode), and the first main Mach-Zehnder electrode (MZ CA electrode).
  • MZ CA electrode first main Mach-Zehnder electrode
  • the second main Matsuhatsu :! Functions to adjust the modulation time with the modulation signal applied to the electrode for the reader (MZ CB electrode). In other words, the light propagation time is adjusted so that modulation by each electrode is performed on a specific signal. This adjustment time may be set to an appropriate value depending on the distance between the electrodes.
  • the control unit also includes an optical carrier signal included in the output signal from the first sub Mach-Zehnder waveguide (MZ A ) and the output signal from the second sub-Mach-Zehnder waveguide (MZ B ).
  • the voltage applied to the first main Mach-Zehnder electrode (MZ CA electrode) and the second main Mach-Zehnder electrode (MZ CB electrode) is adjusted so that the phase of a specific higher-order optical signal is shifted by 180 °. Things can be raised.
  • a computer storing a processing program connected to an electrode signal source can be used.
  • the CPU When the computer receives control information from an input device such as a keyboard, the CPU reads the processing program stored in the main program, for example, and reads the necessary information from various memories according to the program instructions. Thus, the information stored in the memory can be rewritten as appropriate, and a command to control the timing and phase difference of the optical signal output from the signal source to the signal source can be output from the external output device.
  • a computer uses a means for grasping the phase of a specific component in each sub Mach-Zehnder waveguide and the phase information of the component of the characteristic grasped by the means, Create a command to adjust the modulation signal applied to the first main Mach-Zehnder electrode (MZ CA electrode) and the second main Mach-Zehnder electrode (MZ CB electrode) so that the phases are opposite to each other.
  • MZ CA electrode first main Mach-Zehnder electrode
  • MZ CB electrode the second main Mach-Zehnder electrode
  • optical SSB modulator sinusoidal RF signals with different phases of 90 ° are applied to four optical phase modulators in parallel (subsequent to the RF A electrode and RF B electrode) in the sub Mach-Zehnder waveguide.
  • a bias voltage is applied to the DC A electrode and DC B electrode so that each phase difference is 90 °.
  • the phase difference between these electrical signals and the phase difference between the optical signals can be adjusted as appropriate, but basically they are adjusted so that they are shifted by an integer multiple of 90 °.
  • the LSB of the output signals from MZ A and MZ B is adjusted so that the phase is opposite.
  • the LSB component cancels out and only the USB component remains.
  • the C electrode is adjusted so that the phase difference of the output signal is 2700 °, the USB signal will cancel out and the LSB signal will remain.
  • these optical signals include the optical signal carrier (carrier signal) or higher-order components (for example, second-order components. ⁇ 2 ⁇ )).
  • the phase of the optical signal carrier wave (carrier signal) or higher-order component for example, second-order component (f.
  • the component (optical carrier (carrier) of the optical signal) is desired to suppress the phase of the output signal from each sub Mach-Zehnder waveguide before being combined at the combining section.
  • Signal or higher-order components (for example, second-order components (f. ⁇ 2f m )) are controlled so as to be in opposite phases. Since control is performed in this way, the component to be suppressed is effectively suppressed.
  • an optical carrier suppression double sideband (D S B — S C) modulator may be used instead of the optical S S B modulator (2).
  • the D S B—SC modulator ideally outputs two sidebands and suppresses the carrier component.
  • a phase modulator or intensity modulator can be used instead of the optical SSB modulator (2).
  • an optical filter for selecting a specific side band may be used as necessary.
  • a phase modulator or intensity modulator is installed, and an optical filter that selectively transmits specific sidebands generated by them is installed. It may be provided downstream of the phase modulator or intensity modulator.
  • the bias voltage source (3) is a device for obtaining a bias voltage applied to the optical SSB modulator, and a known bias power source used for the optical SSB modulator may be appropriately used.
  • the bias voltage source (3) should have a function that adaptively changes the bias voltage according to the disturbance and sweep conditions. For example, such a bias voltage source is controlled so as to reduce the deviation when detection information from the photodetector (8) is fed back and the detection value deviates from a predetermined range. It can be a thing.
  • the bias voltage source may be capable of measuring conditions such as the temperature at which the bias voltage source is placed and adjusting the bias voltage applied to the optical SSB modulator as appropriate according to the measured value. Les. Modulation signal source (4)
  • the modulation signal source (4) is a device that generates a modulation signal to be applied to the optical SSB modulator.
  • the modulation signal source (4) includes an arbitrary waveform generator (5) for generating an electric signal having an arbitrary waveform, and a frequency of the electric signal generated by the arbitrary waveform generator (5). And an electric signal frequency multiplier (6) for multiplication.
  • the arbitrary waveform generator (5) stores defined waveform data in the waveform memory, and sequentially reads the stored data and converts it to analog to generate an analog waveform corresponding to the defined waveform data.
  • a production device stores defined waveform data in the waveform memory, and sequentially reads the stored data and converts it to analog to generate an analog waveform corresponding to the defined waveform data.
  • Japanese Patent Application Laid-Open No. 6-6 1 37 is a “memory that stores waveform data and differentiators and differentiators that differentiate waveform data stored in the memory”. It has a memory unit consisting of a distributor that selectively outputs the differential data to be output at fixed intervals, and integrates the differential data selected and output by the distributor and DZA-converts the output of the integrator D It has a plurality of DZA converters composed of A / A converters, and a timing generator that gives timing signals to the memory and D converters.
  • Arbitrary waveform generator characterized by comprising an analog adder that adds the results of D / A conversion by the DZA conversion unit ”,“ Definition disclosed in Japanese Patent Laid-Open No. 3 1 3 6 1 78
  • An arbitrary waveform generator that generates an analog waveform corresponding to the defined waveform data by storing the stored waveform data in the waveform memory, sequentially reading the stored data, and performing analog conversion.
  • Multiple types of waveform data to be stored in the memory are obtained by calculation from the definition formulas, and the control circuit that generates and controls the data and signals given to each part and the control circuit when outputting multiple types of waveform data
  • the first address from the address storage means is set as the initial value and input at the rising edge of the first clock that is input from the control / arithmetic circuit after the mouth signal is given.
  • the address generating means for incrementing and outputting the address in accordance with the queue address, the address output from the address generating means and the last address stored in the address storing means are compared. When there is a match, the last address is output as a match signal that is also used as the load signal.
  • the first address and the last address stored in the sequence storage means when the trigger signal is input in synchronization with the coincidence signal from the last address detection means.
  • Arbitrary waveform characterized in that it has a waveform switching circuit that sends a waveform switching signal necessary to store the address in the address storage means and can automatically switch and output multiple types of waveforms. Generator ".
  • the arbitrary waveform generator can generate a complex waveform.
  • a frequency sweep signal waveform with a short sweep time as computer data and converting it to DZA
  • an ultrafast frequency sweep signal with a sweep time of 1 millisecond or less can be generated.
  • a typical frequency sweep range is from 500 MHz to 300 MHz.
  • the sweep time include 50 microseconds, 50 microseconds, 5 microseconds, and 0.5 microseconds.
  • the sweep sequence can be complicated. For example, after sweeping the frequency from 300 MHz to 40 MHz, the frequency sweep is stopped for a desired time, for example, one microphone mouth second, and then 45 MHz to 500 MHz.
  • the sweep sequence can be complicated, such as sweeping up to.
  • the frequency sweep operation can be performed only in a predetermined time range in synchronization with the desired phenomenon. For example, to detect a desired phenomenon It is possible to program in advance to perform a frequency sweep operation a predetermined number of times in response to the trigger signal using a device that generates a trigger signal. In this way, the arbitrary waveform generator can generate a high-speed sweep signal in a complex sequence.
  • the arbitrary waveform generator has the problem that the frequency that can be generated is limited to 50 MHz or less. Electric signal frequency multiplier (6)
  • the electrical signal frequency multiplier (6) is a device that multiplies the frequency of the input electrical signal and outputs it.
  • the electric signal frequency multiplier (6) a known one can be used as appropriate.
  • a specific electric signal frequency multiplier (6) disclosed in Japanese Patent Application No. 2 0 0 5-1 6 7 3 1 7 is an “oscillator that generates an oscillation signal of a desired frequency, A reference oscillation unit that generates a reference signal of a predetermined frequency, and a plurality of cascaded first variable delays that receive the reference signal and sequentially output the received reference signal with substantially the same delay amount.
  • a circuit a phase comparison unit that compares the phase of the reference signal generated by the reference oscillation unit and the phase of the delay signal output from the final stage of the plurality of first variable delay circuits, and the phase of the reference signal
  • a delay amount control unit for controlling the delay amounts of the plurality of first variable delay circuits so that the phases of the delay signals output from the final stage of the plurality of first variable delay circuits are substantially equal to each other;
  • An oscillator comprising a frequency adding circuit that generates the oscillation signal by combining the edges of the respective input signals by performing a logical operation on the signal.
  • a signal branching unit that splits an input signal into a first input transmission line and a second input transmission line, a combining unit that combines signals from the first output transmission line and the second output transmission line, and a control input terminal
  • the control input terminal is coupled to the first input transmission line, and the first and second ends of the current path are connected to the ground conductor and the first output transmission line, respectively.
  • 1 transistor, control input terminal and current path, this control input terminal is connected to the ground conductor in an AC manner, and the first and second ends of this current path are connected to the second input respectively.
  • a balanced frequency multiplier for microwaves or millimeter waves characterized by having a connected amplitude attenuating element, or disclosed in Japanese Patent Laid-Open No. 2 0 1-1 5 6 5 4 8 “A differential signal generation circuit that receives a sinusoidal input signal and generates two signals having the same frequency as that of the input signal but having a phase difference of 180 ° from each other. An output signal obtained by multiplying two signals and generating a signal containing a frequency component twice the frequency of the input signal, and multiplying the frequency based on the input signal.
  • a frequency multiplier characterized by being configured to obtain And the like.
  • An example of an electric signal frequency multiplier (6) is 32 times.
  • the electric signal frequency multiplier can be realized by using the nonlinearity of the amplifier. That is, in the present invention, it is preferable to use an electric signal frequency multiplier having an amplifier having nonlinearity.
  • the preferred embodiment of the electric signal frequency multiplier of the present invention is a high-order multiplier by using a multistage configuration in which the harmonics of a device having nonlinearity are extracted by a filter or the like. Is obtained. In this way, the multiplier is realized by using non-linearity, so the amplitude information of the input signal is generally lost at the output.
  • the frequency is obtained by multiplying the frequency of the input signal by the multiplication order, and the phase change is also obtained by multiplying the multiple order of the phase change of the input signal.
  • the phase change is doubled, the phase noise of the output signal is doubled, and the signal purity of the output signal is degraded to some extent compared to that of the input signal, but its frequency is exactly the input signal frequency. Is the order of multiple of. In other words, the electrical signal frequency multiplier impairs the amplitude information, but the frequency can be accurately controlled by the input signal.
  • the sweep time remains unchanged, and only the frequency is multiplied by the multiple order. Therefore, the time required to sweep the fixed frequency range is equal to the multiple order. That is, a certain frequency range The sweep speed for sweeping is a multiple order. Photodetector (8).
  • the photodetector (8) is a device for detecting an optical signal, and an appropriate one may be used as appropriate according to the application.
  • Light source (9) is a device for detecting an optical signal, and an appropriate one may be used as appropriate according to the application.
  • the light source (9) is a device for generating light that is input to the optical S S B modulator.
  • Examples of the light source (9) include those using a known wavelength tunable laser as appropriate, but are not limited thereto. In particular, a fixed wavelength light source may be used if it is sufficient to sweep the optical frequency in a relatively narrow frequency range.
  • a tunable laser When a tunable laser is used, the control of the tunable laser and the optical frequency sweep operation are linked, the optical frequency is roughly adjusted by the tunable laser control, and the fine tuning is performed by the optical frequency sweep. Expansion and high accuracy can be achieved at the same time.
  • the light source (9) and modulation signal source (4) are each connected to a control device such as a computer (not shown), and their operations such as synchronization means for synchronizing the tunable laser and the optical frequency sweep are performed. It is preferable that the operation is controlled by a mechanism for interlocking. That is, the optical frequency control device of the present invention preferably includes the above-described means and mechanism.
  • the optical frequency generator may be used as the optical source to sweep multiple optical components at once.
  • the output of the optical S S B modulator may be used as the light source of the comb generator.
  • a filter equipped with a filter that selects a specific one of a plurality of frequency components generated from an optical SSB modulator or comb generator is preferable because the range in which the optical frequency can be swept is widened.
  • Figure 3 is a schematic diagram showing an example configuration of an optical comb generator.
  • the optical comb generator (100) consists of an optical SSB modulator (101), an optical amplifier to compensate the conversion loss in the optical SSB modulator; T (102), '-G (103) -It comprises an optical fiber loop (105) with a core (104).
  • the basic operation of the optical comb generator is described below.
  • Optical comb -Input light (106) is input to G (104).
  • the input light is, for example, single-mode continuous light (f.).
  • the frequency of the input light is shifted by the optical SSB modulator (101) (f 0 + f m ).
  • the optical component (107) whose frequency is shifted goes around the loop and is combined with the new light input to the input port (f., F 0 + f m ). These lights are guided to the optical SSB modulator (101), and the frequency of both components shifts (f 0 + f ffl , f 0 + 2f m ). By repeating these steps, light (optical comb) with many spectral components can be obtained.
  • Figure 4 is a conceptual diagram showing the state of light in each process of the optical comb generator.
  • Figure 4A shows the first light input.
  • Figure 4B shows the output light from the optical SSB modulator.
  • Figure 4C shows the combined state of SSB modulated light and new light.
  • Figure 4D shows the third combined state.
  • Figure 4E is a conceptual diagram of an optical system derived from input light.
  • the optical adjustment unit adjusts at least one of the light (the phase, intensity, and frequency of f.
  • the adjusted optical power s is input to the optical input photo (103) (Fig. 4A).
  • This light passes through the optical fiber loop (105) and enters the optical SSB modulator (101), where the optical SSB modulator shifts the frequency of the modulated signal by the frequency of the input light.
  • Optical amplifier (102) increases the optical intensity of the output light of the optical SSB modulator and compensates for the optical intensity weakened by optical modulation.
  • the optical amplifier may be placed in front of the optical SSB modulator
  • the output light from the optical amplifier (102) passes through the optical fiber loop (105) and reaches the optical input host (103). Light amp.
  • the polarization controller (11) is an optional element for adjusting the polarization plane of the light output from the light source (9).
  • a known polarization controller can be used as appropriate as the polarization controller.
  • the amplifier (12) may be any amplifier that can amplify the intensity of the electric signal, and a known one can be used as appropriate. Also, the amplifier is an optional element, and it is not necessary to provide an amplifier. Coupler (13)
  • the force bra (13) can be used as appropriate to obtain the modulation signal of the optical SSB modulator.
  • a specific force bra is one that can shift the phase of the output signal by 90 °. For example, a 90 ° out-of-phase modulation signal should be applied to the modulation electrode of each sub Mach-Zehnder waveguide. If a modulation signal such as optical SSB modulation can be obtained, there is no need to use a force bra. That is, the force bra is an optional component.
  • the frequency range of the optical signal generated from the optical frequency controller is f. Sat n X f ⁇ f.
  • Sat n X f 2 Plus or minus can be switched by adjusting the voltage to the DC c electrode (the bias voltage of the main Mach-Zehnder waveguide) or by adjusting the phase relationship of the modulation signal.
  • F. Is the modulator input optical frequency
  • f 2 is the maximum output of the arbitrary waveform generator
  • fi is the minimum output of the arbitrary waveform generator
  • n is a multiple of the electric signal frequency multiplier.
  • the optical SSB modulator (2) has, for example, a main matsuhatsuender waveguide with two sub-machaz wander waveguides as shown in Fig. 2, and various electrodes.
  • a bias voltage for optical SSB modulation is applied to the various electrodes from the bias voltage source (3). This bias voltage is known.
  • the modulation signal of the optical SSB modulator is generated by the modulation signal source (4). More specifically, an arbitrary waveform generator (5) generates an electric signal having an arbitrary waveform (which may be a predetermined waveform), and an electric signal frequency multiplier (6) The frequency of the electrical signal is multiplied.
  • the amplified signal obtained in this way is amplified by the amplifier (12) and then demultiplexed by the force bra (13) in accordance with the electrode of the optical SSB modulator. Is controlled. Then, the electrical signal from the force bra (13) is applied to the optical SSB modulator as the modulation signal.
  • the arbitrary waveform generator (5) can sweep the frequency of electrical signals at high speed and with high accuracy.
  • the electrical signal frequency multiplier [6] can perform frequency multiplication of the electrical signal whose frequency has been swept at high speed and with high accuracy. Therefore, by combining these, an electrical signal whose frequency is swept over a wide frequency can be obtained at high speed.
  • the optical SSB modulator can output an optical signal whose frequency is swept over a wide frequency range at high speed.
  • the arbitrary waveform generator (5) can increase the sweep speed, but the upper limit of the generated signal frequency is about 50 MHz.
  • the frequency range can be expanded and the sweep speed per unit frequency range can be further improved.
  • the combination of the conventional signal generator and electrical signal multiplier (6) also has an effect of improving the sweep speed, but the effect is limited because the sweep speed of the signal generator itself is low. there were.
  • the arbitrary waveform generator (5) can also perform complex amplitude control, when generating high-frequency signals, frequency conversion by a mixer that holds amplitude information is often used. In this case, there is no idea that the output itself is input to the electric signal multiplier [6], and the frequency sweep speed is the same as the sweep speed of the arbitrary waveform generator. In frequency sweeping with an optical SSB modulator, the stability and certainty of the frequency of the modulation signal is the most important. For amplitude fluctuations, the power subtracted from the measured data or compensation for fluctuations in amplitude is performed.
  • Amplitude correction is easy in high-speed frequency sweep of arbitrary waveform generator (5), frequency range expansion by electric signal multiplier (6), improvement of sweep speed per unit frequency, and frequency sweep by optical SSB modulator.
  • the accuracy of frequency is important, and when the sweep is fast, unnecessary components can be sufficiently suppressed. The pull can be realized.
  • Optical frequency control is also possible by changing the current supplied to the laser, but the relationship between the current and frequency is complex and susceptible to disturbances such as temperature, and the mode hops when the frequency suddenly deviates during frequency sweeping. Phenomenon may occur and it is not suitable for high precision measurement. In contrast, in the configuration shown in Fig. 1, the amount of frequency shift is exactly the multiple of the modulation signal frequency, and irregular phenomena such as the mode hop phenomenon do not occur.
  • the frequency change is even larger by a multiple of the sideband order. Become.
  • An optical frequency control signal generator controls light output frequency using the optical frequency control device described above, and outputs light having a controlled frequency.
  • the optical frequency can be swept over a wide range at a high speed, so that it is possible to provide a device for generating an optical frequency control signal that can output light with such a frequency sweep.
  • the optical frequency can be swept over a wide range at high speed. For example, by irradiating the measurement object with such light and measuring light absorption, etc. Thus, the absorption spectrum of the measurement object can be measured quickly.
  • An optical filter accuracy measuring instrument includes an optical frequency control device (1) described above, and an optical frequency control device (1) that is output from the measurement target (7).
  • an optical filter is used as the measurement object (7).
  • the optical frequency control device of the present invention when used, the optical frequency can be swept over a wide range at high speed, so that the characteristics of the optical filter can be measured quickly and accurately.
  • a measuring instrument includes the optical frequency control device (1) described above and the light output from the optical frequency control device (1), and the optical frequency control device (1 ) And a light detector (8) for measuring light transmitted through the measurement object (7) or reflected from the measurement object (7), and a value detected by the light detector (8) is stored. And the transmittance or reflectance from the stored value. And a control device for obtaining By using such a measuring instrument, the light absorptivity and light reflectance of the measurement object can be obtained quickly and accurately. For this reason, the measuring instrument of the present invention can be used for identification of chemical substances, for example.
  • the control device a known computer or the like can be used as appropriate.
  • the conversion efficiency from the input signal to the output signal of the optical SSB modulator is stored in the computer as a function of the modulation frequency, and an intensity change proportional to the inverse of this is given to the optical source (9) or at the output of the modulator.
  • the output from the optical frequency controller (1) can be kept constant. In this case, the transmittance or reflectance can be obtained directly from the intensity of the light transmitted or reflected from the measurement object (7).
  • FIG. 5 is a schematic configuration diagram showing a radio signal generator according to the present invention.
  • a radio signal generation device detects an optical frequency control device (1) described above and light output from the optical frequency control device (1).
  • the photodetector (8) detects the mixture of the output of the optical frequency controller (1) and the output of the light source (19).
  • the photodetector (8) converts the detected optical signal into an electrical signal and outputs it as a radio signal.
  • a radio signal in the range of 2 X n X f to 2 X n X f 2 can be obtained.
  • the second light source for the optical signal input to the first light source (9) of the optical frequency controller (1) and the photodetector of the optical frequency controller (1) is used.
  • the light source (19) is a device equipped with optical frequency control means (eg, a variable frequency laser) for adjusting the optical frequency of at least one of the optical signals.
  • the difference in optical frequency between the two light sources (9) and (19) is changed, so that The center frequency of the radio signal generated from the signal generator can be controlled.
  • a radio signal in the frequency range of n X f 2 I can be obtained.
  • f and 0 are the optical frequencies of the light source (19).
  • the two light sources can be configured with separate lasers, or can be realized by using the light from one laser by generating two different optical frequency components by DSB-SC modulation.
  • an Agilent 8 1 6 8 9 A compact tunable laser was used as the light source (9).
  • the center wavelength is 1550 nm, and the set power is 10 mW.
  • the intensity at the output end of the polarization controller was 6.1 dBm. After passing through the polarization controller, the output light from the light source was input to the S S B modulator.
  • the optical SSB modulator (2) is a type without a polarizer, an external termination, and a bias electrode separation type, and has two sub Mach-Zehnder waveguides as disclosed in Non-Patent Document 1 above. It was.
  • As the bias voltage source (3) a DC power supply AD 8 7 1 1 was used, and a bias voltage was applied to the optical SSB modulator (2).
  • Various conditions such as the phase and intensity of the bias voltage were controlled using the control device of the bias voltage source (3).
  • a combination of an arbitrary waveform generator (5) and a signal frequency multiplier (6) was used as the modulation signal source (4).
  • the modulation signal used is a chirp signal (3 O OMH z—500 MHz) generated by an arbitrary waveform generator and expanded to a band (9.6 GHz—16 GHz) using a 3 2 multiplier. It was. Specifically, Tektronitas AWG 7 10 B was used as the arbitrary waveform generator [5].
  • As the signal frequency multiplier (6) a 32x multiplier from Sogo Electronics was used.
  • SHP 200 CP manufactured by SHF was used.
  • a 90-degree hybrid Krytar 3060200 made by KRYTAR was used as the 90-degree coupler.
  • a linear chirp signal was used as the output of the AWG710B, and the frequency sweep time was 50 microseconds, 50 microseconds, 5 microseconds, or 0.5 microseconds.
  • the amplitude of AWG710B is a linearly changing amplitude such that the frequency is 0.5 Vpp when the frequency is 300 MHz and l.OVpp when the frequency is 500 MHz.
  • the sampling rate was 4.2G samples per second.
  • an optical spectrum analyzer: Advantest Q8384 or a high-speed optical detector: Thorlab PDA8GS and LeCroy oscilloscope SDA were used.
  • Fig. 6 is a graph instead of a drawing showing the optical spectrum when a USB signal is generated in Example 1.
  • Optical Power indicates the light intensity
  • Wavelength indicates the wavelength [nm].
  • the solid line shows the case of the 50 microsecond sweep mode, and the dotted line shows the case of the 0.5 microsecond sweep mode.
  • the average light intensity in the 50-microphone-second sweep mode was -7.8 dBm
  • the average light intensity in the 0.5-microphone-second sweep mode was -8 OdBm.
  • Figure 7 is a graph instead of a drawing showing the optical spectrum when the LSB signal is generated in Example 1.
  • the measurement was performed in high-sense sweep mode.
  • Optical Power indicates the light intensity
  • Wavelength indicates the wavelength [nm].
  • the solid line shows the case of 50 microsecond sweep mode, and the dotted line shows the case of 0.5 microsecond sweep mode.
  • Figure 8 shows a graph instead of a diagram showing the optical spectrum when the sweep time is 500 msec.
  • Optical Power indicates the light intensity
  • Wavelength indicates the wavelength [nm].
  • the solid line shows the case of LSB signal
  • the dotted line shows the case of USB signal.
  • Figure 9 is a graph instead of a drawing showing the optical spectrum when USB is generated when a sine wave is input as the modulation signal.
  • the measurement is highly sensitive. This was done in high-sense sweep mode.
  • Optical Power indicates the light intensity
  • Wavelength indicates the wavelength [nm].
  • the solid line shows the case where the frequency of the electrical signal output from the arbitrary waveform generator is 300 MHz
  • the dotted line shows the case of 350 MHz
  • the broken line shows the case of 400 MHz.
  • Figure 10 is a graph instead of a drawing showing the optical spectrum when LSB occurs when a sine wave is input as the modulation signal.
  • the measurement is performed with 7 high-sense sweep mode.
  • Optical Power indicates the light intensity
  • Wavelength indicates the wavelength [nm].
  • the solid line shows the case where the frequency of the electrical signal output from the arbitrary waveform generator is 300 MHz
  • the dotted line shows the case of 350 MHz
  • the broken line shows the case of 400 MHz.
  • the first type of optical filter was a K0ERAS dual section FBG, with a section spacing of 10 mm.
  • the reflectivity of one section is the reflectivity
  • the reflectivity is 95% (SN IFBG1737)
  • the reflectivity is 90% (SN IFBG1736)
  • the reflectivity is 85% (SN IFBG1735).
  • These optical filters are FB There are multiple narrow-band transmission bands in the G reflection band, and the interval is several 10 GHz.
  • the frequency sweep speed was set to 0.5 ⁇ s.
  • the set wavelengths of the TLD light source were 1550.3020 nm (IFBG1737), 1550.2750 nm (IFBG1736), and 1550.3080 nm (IFBG1735).
  • the second type of optical filter consists of two FBGs connected in cascade.
  • the distance between FBGs was several meters.
  • fixed FBG THORLAB TG5F3
  • variable FBG AOS 25100154
  • the frequency sweep speed was 0.5 microseconds, 5 microphone mouth seconds, 50 microseconds, or 500 microsecond microseconds.
  • the set wavelength of TLD was 1550.35nm.
  • FIG. 11 is a graph instead of a drawing showing calibration data in Example 2.
  • FIG. 11D show the case where the frequency sweep speed is 0.5 microsecond, 5 microsecond, 50 microsecond, or 500 microsecond microsecond, respectively. It is a figure which shows the data for the calibration of.
  • the transmittance can be measured by taking the ratio with the data when the part under test (DUT) is inserted. Since the DC offset of the high-speed PD is a large 2 O mV, the DC offset was subtracted from each data in advance.
  • Figure 12 shows a substitute for the drawing that shows the measurement results for the first type optical filter.
  • Figures 12A, 12B, and 12C show the reflectivities of 95%, 90%, and 85%, respectively.
  • the sweep time was 0.5 microseconds. From Fig. 12, it can be seen that the higher the reflectance, the smaller the transmission band width.
  • Fig. 12 shows a substitute for the drawing that shows the measurement results for the first type optical filter.
  • Figures 12A, 12B, and 12C show the reflectivities of 95%, 90%, and 85%, respectively.
  • FIG. 13 shows a drawing that replaces the drawing showing the measurement results of the second type optical filter.
  • Figures 13A, 13B, 13C, and 13D show the frequency. Indicates sweep rates of 50 microseconds, 50 microseconds, 5 microseconds, and 0.5 microseconds.
  • the frequency sweep speed is preferably 0.5 microseconds or more, and more preferably 10 microseconds or more.
  • Fig. 14 is a graph instead of a drawing showing an enlarged view of the sweep start part of Fig. 13.
  • Figure 14A, Figure 14B, Figure 14C, and Figure 14D are for frequency sweep speeds of 50 microseconds, 50 microseconds, 5 microseconds, and 0.5 microseconds, respectively. Show. From Fig. 14, it is clear that when the frequency sweep speed is 500 microseconds and 50 microphone mouth seconds, a large number of uniformly arranged transmission bands can be measured.
  • Figure 15 shows a graph that replaces the measurement result of the first type optical filter with the result of the TLD measurement. The peak position was adjusted. The vertical axis is not standardized with measured values. In the figure, the vertical axis shows the transmittance, and the horizontal axis shows the offset frequency.
  • Figure 16 shows a graph instead of a drawing that shows the output signal of the arbitrary waveform generator (AWG).
  • AVG arbitrary waveform generator
  • the frequency range is 0 — 1 GHz.
  • the vertical axis is intensity, and the horizontal axis is frequency.
  • RF power means the strength of the electric signal, and Freq means the frequency.
  • Figure 17 shows a graph instead of a drawing that shows the output signal of the arbitrary waveform generator (AWG).
  • the frequency range is 0 — 5 GHz.
  • the vertical axis is intensity, and the horizontal axis is frequency.
  • RF power means the strength of the electric signal, and Freq means the frequency.
  • Figure 17 shows that there is sampling noise on both sides of 4.2 GHz.
  • Figure 18 is a graph instead of a drawing showing the modulation signal applied to the optical SSB modulator.
  • Figures 18A and 18B show the output of the multiplier and the input signal to the RF A port of the modulator, respectively.
  • Figure 19 is a graph instead of a drawing showing the input signal to the optical SSB modulator.
  • Figures 19A and 19B show the sweep speeds of 5 microseconds and 0.5 microseconds, respectively. For example, when the sweep speed is 0, the spectrum interval is 2 MHz, so the resolution of optical frequency measurement is not expected to exceed this.
  • the optical signal generated using the device of Example 1 was mixed with light of different optical frequencies to generate an ultra-wideband RF chirp signal having a desired center frequency.
  • the light source 1 As the light source 1 (9), an Agilent 8 1 6 8 9 A compact wavelength variable laser was used. The center wavelength is 1 5 4 9. 78 nm, and the set power is 6 mW. The intensity at the output end of the polarization controller was 6. l dBm. After passing through the polarization controller, the output light from the light source was input to the SSB modulator.
  • an optical SSB modulator (2) there is no polarizer, an external termination, and a bias electrode separation type.
  • the one having a Mach-Zender waveguide was used.
  • the bias voltage source (3) a DC power supply AD 8 7 1 1 was used, and a bias voltage was applied to the optical SSB modulator (2).
  • Various conditions such as the phase and intensity of the bias voltage were controlled using the control device of the bias voltage source (3).
  • the insertion loss was 4.8 dB.
  • the bias voltage of the main MZ waveguide was 5.9V, and the bias voltage of the sub MZ was 7.14V for the DC A electrode and 7.3V for the DC B electrode. In this example, a USB signal was used.
  • a combination of an arbitrary waveform generator (5) and a signal frequency multiplier (6) was used as the modulation signal source (4).
  • a modulation signal the band of the chirp signal (300 MHz — 500 MHz) generated by the arbitrary waveform generator is expanded to (9.6 GHz — 16 GHz) using the 3 2 multiplier. What was done was used.
  • Tektronix AWG710B was used as the arbitrary waveform generator [5].
  • As the signal frequency multiplier (6) a 32x multiplier from Sogo Electronics was used.
  • SHP20C CP made by EDSI was used.
  • a 90 ° Hybrid Krytar 3060200 made by KRYTAR was used as the 90-degree force bra.
  • a linear chirp signal was used as the output of AWG710B, and the frequency sweep time was 5 microseconds.
  • the amplitude of AWG710B is a linearly changing amplitude such that 0.5Vpp when the frequency is 300MHz and l.OVpp when the frequency is 500MHz.
  • the sampling rate was 4.2 GHz.
  • FIG. 20 is a graph instead of a drawing showing the optical spectrum when light source 2 is placed on the short wavelength side.
  • the solid line shows the wavelength of 1549.41 nm
  • the dotted line shows the wavelength of 1549.48 nm.
  • Figure 21 is a graph instead of a drawing showing the optical spectrum when the light source 2 is on the long wavelength side. The solid line in the figure indicates that the wavelength is 1549.93 nm. The dotted line indicates the wavelength of 1549.875 nm.
  • Figure 22 is a graph instead of a drawing showing the radio frequency spectrum when the wavelength of light source 2 is 1549.41 nm.
  • the input optical frequency difference was 46.2 GHz.
  • the frequency range of generation was from 36.6 GHz (46.2 GHz to 9.6 GHz) to 30.2 GHz (46.2 GHz to 16.0 GHz).
  • 9.6-16GHZ can be thought of as the intensity fluctuations (residual carrier and US beat) of the optical SSB modulator output.
  • the 20-30GHZ band components are considered to be the residual LSB of the SSB modulator output and the beat of light source 2.
  • Fig. 23 is a partially enlarged view of Fig. 22.
  • Figure 24 is a graph instead of a drawing showing the radio frequency spectrum when the wavelength of light source 2 is 1549.48 nm.
  • the input optical frequency difference was 37.5 GHz.
  • the generation frequency range was 27.9 GHz (37.5 GHz-9.6 GHz) to 21.5 GHz (37.5 GHz-16.0 GHz).
  • the 10-20GHZ band component is considered to be the overlap of the residual LSB of the SSB modulator output, the beat of the light source 2, and the intensity fluctuation (residual carrier and USB beat) of the SSB modulator output.
  • Figure 25 is a partially enlarged view of Figure 24.
  • Figure 26 is a graph instead of a drawing showing the radio frequency spectrum when the wavelength of light source 2 is 1549.93 nm.
  • the input optical frequency difference was 18.7 GHz.
  • the frequency range was 34.7GHz (18.7GHz + 16.0GHz) to 28.3GHz (18.7GHZ + 9.6GHZ).
  • In the 10-20GHZ band there is an overlap between the residual LSB of the SSB modulator output, the beat of light source 2, and the intensity fluctuation (residual carrier and USB beat) of the SSB modulator output.
  • Figure 27 is a partially enlarged view of Figure 26.
  • Figure 28 is a graph instead of a drawing showing the radio frequency spectrum when the wavelength of light source 2 is 1549.875 nm.
  • the input optical frequency difference was 11.8 GHz.
  • the frequency range was 27.8GHz (11.8GHz + 16.0GHz) to 20.6GHz (ll.8GHz + 9.6GHz).
  • Fig. 26 there is a beat with an SSB modulator residual carrier at 1 1.8 GHz.
  • Figure 29 is a partially enlarged view of Figure 28.
  • An optical amplifier was used to balance the optical frequency sweep signal and the light source 2 power.
  • the output of light source 2 and the output of the SSB modulator were combined with an interleaver, and then input to the PD via an optical amplifier (FITEL ErFA 1 1031 -SFS: Pump LD current 75 mA) and an lnm bandpass filter.
  • the wavelength of light source 2 was 1549.93 nm, and the power was set to 0.3 mW.
  • the frequency sweep speed was set to 500 microseconds, 5 microseconds, or 0.5 microseconds.
  • Figure 30 is a graph replacing the drawing showing the amplifier output spectrum. The solid line shows the sweep speed of 500 microphone mouth seconds, and the dotted line shows the sweep speed of 5 microphone mouth seconds.
  • FIG. 31 shows a graph replacing the drawing showing the radio frequency spectrum. The graph shows the frequency sweep speeds from the top to 500 microseconds, 5 microseconds, and 0.5 microseconds.
  • Fig. 32 is a partially enlarged view of Fig. 31.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本発明は,広い周波数にわたり迅速に制御できる光周波数の制御装置などを提供することを目的とする。 上記課題は,光SSB変調器(2)と,前記光SSB変調器(2)へバイアス電圧を印加するバイアス電圧源(3)と,前記光SSB変調器(2)へ変調信号を印加する変調信号源(4)とを具備し,前記変調信号源(4)は,任意の波形を有する電気信号を発生するための任意波形発生器(5)と,前記任意波形発生器(5)で発生した電気信号の周波数を逓倍するための電気信号周波数逓倍器(6)とを具備する光周波数制御装置などにより解決される。

Description

明細書
超高速光周波数掃引技術 技術分野
本発明は, S S B変調器に印加する変調信号を超高速かつ広範囲なも のとするために, 任意波形発生装器と電気信号周波数通倍器を組み合わ せた変調信号源とする光周波数制御装置などに関する。
'冃 技術
光周波数制御装置として, 光単側波帯 (S S B) 変調器が知られてい る。 光 S S B変調器は, 変調信号の周波数分だけシフ トした出力光を得 ることができる光変調器である (S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. 丄 zutsu, Single Side-Band Modulation Performance of a LiNb03 Integrated Modulator Consisting of Four-Phase Modulator Wavegate, " IEEE Photon. Tech. Lett. , Vol. 13, 364-366 (2001) (非特許文献 1, 2 ) 参照。 ) 。
光 S S B変調器を使った周波数制御技術は, 比較的精度が高く, かつ 安定性に優れた制御を行うことができるという特徴がある。 しかしなが ら, 光 S S B変調器を用いて光周波数を掃引する速度は, 電気信号であ る変調信号の掃引速度によって制限される。 たとえば, 周波数範囲が広 い電気信号周波数掃引装置を用いると,掃引速度に限界があった。一方, FM変調器は, 比較的高速に周波数を掃引できるものの, 周波数変化幅 が数 1 0 OMH z以下と狭い。 よって, いずれにせよ, 高い掃引速度と, 広い周波数範囲とを有する信号制御を達成できないので, 光 S S B変調 器の周波数制御技術もそれらを両立することができないという問題があ つた。 参考文献
非特許文献 1 : S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawani shi and M. Izutsu, " S ingle S i de-Band Modulat ion Performance of a LiNb03 Integrated Modulator Cons i st ing of Four-Phase Modulator Wavegate, " IEEE Photon. Tech. Le t t. , Vo l . 13, 364-366 (2001)
非特許文献 2 : T. Kawanishi, T. Sakamoto and M. Izutsu, Optical filter characterization by using optical frequency sweep technique with a single sideband modulator, IEICE Electron. Express, 3, 34-38 (2006) 発明の開示
本発明は, 広い周波数にわたり迅速に制御できる光周波数の制御装置 を提供することを目的とする。
本発明は, さらに, 上記のような制御装置を用いた, 光周波数制御信 号の発生装置, 光フィルタの精度計測器, 計測器, 無線信号発生装置な どを提供することを目的とする。 本発明は, 基本的には, 光 S S B変調器を用いて光周波数を掃引する 速度は, 電気信号である変調信号の掃引速度によって制限されるので, 任意波形発生装器と電気信号周波数遁倍器を組み合わせた変調信号源を 用いることで, 高速かつ広い周波数範囲にわたる変調電気信号を得るこ とにより, 光 S S B変調についても高速かつ広い周波数範囲にわたる波 長制御が可能となるという知見に基づくものである。
すなわち, 任意波形発生装器は, 高速に周波数掃引された電気信号を 発生させることができるものの, 発生できる周波数帯は 5 0 O M H z以 下と狭い。 そこで, この任意波形発生装置で発生させた電気信号を, 電 気信号周波数通倍器にて周波数変化の範囲を拡大することで, 高速かつ 広い周波数範囲の変調信号を実現し, そのような変調信号を用いて光 S S B変調器を駆動することで, 高速かつ広い周波数範囲の周波数掃引を 可能にするというものである。 図面の説明
図 1は, 本発明の装置の基本構成を示すブロック図である。
図 2は, 光 S S B変調器の例を示す概略図である。
図 3は, 光コム発生器の構成例を示す概略図である。
'図 4は, 光コム発生器における各工程における光の状態を示す概念図 である。
図 5は, 本発明の無線信号の発生装置を示す概略構成図である。
図 6は, 実施例 1における USB信号発生時の光スペク トルを示す図面 に替わるグラフである。
図 7は, 実施例 1における LSB信号発生時の光スペク トルを示す図面 に替わるグラフである。
図 8 は, 掃引時間が 5 0 0マイク口秒の場合の光スぺク トルを示す図 面に替わるグラフである。
図 9は, 変調信号として正弦波を入力した場合における, USB発生時 の光スペク トルを示す図面に替わるグラフである。
図 10は, 変調信号として正弦波を入力した場合における, LSB発生時 の光スぺク トルを示す図面に替わるグラフである。
図 1 1 は, 実施例 2におけるキヤリブレーション用のデータを示す図面 に替わるグラフである。 図 1 1 A , 図 1 1 B, 図 1 1 C, 及び図 1 1 Dは, それぞれ周波数掃引速度を 0 . 5マイクロ秒, 5マイクロ秒, 5 0マイ クロ秒, 又は 5 0 0 μ sマイクロ秒としたときのキャ リブレーショ ン用 のデータを示す図である。
図 12は, 第 1タイプの光フィルタの測定結果を示す図面に替わるグラ フである。 図 12 Α , 図 12 Β, 及び図 12 Cは, それぞれ反射率が 9 5 % , 9 0 %, 及び 8 5 %のものを示す。
図 13は, 第 2タイプの光フィルタの測定結果を示す図面に替わるダラ フである。 図 13 Α , 図 13 Β , 図 13 C及び図 13 Dは, それぞれ周波数 掃引速度が 5 0 0マイクロ秒, 5 0マイクロ秒, 5マイクロ秒, 及び 0 . 5マイクロ秒のものを示す。 図 14 は, 図 13 の掃引開始部の拡大図を示す図面に替わるグラフであ る。 図 14 A , 図 14 B, 図 14 C及び図 14 Dは, それぞれ周波数掃引速 度が 5 0 0マイクロ秒, 5 0マイクロ秒, 5マイクロ秒, 及び 0 . 5マ イク口秒のものを示す。
図 15は, 第 1タイプの光フィルタの測定結果を, T L Dによる測定結 果と比較した図面に替わるグラフである。
図 16は, 任意波形発生器 (AW G ) の出力信号を示す図面に替わるグ ラフである。
図 17は, 任意波形発生器 (AW G ) の出力信号を示す図面に替わるグ ラフである。
図 18は,光 SSB変調器に印加される変調信号を示す図面に替わるダラ フである。 図 18 A , 図 18 Bは, それぞれ遁倍器の出力, 及び変調器の RF Aポートへの入力信号を示す。
図 19は, 光 S S B変調器への入力信号を示す図面に替わるグラフであ る。 図 19 A, 図 19 Bは, そ ぞれ掃引速度が 5マイクロ秒と 0 . 5マ イク口秒のものを示す。 図 20は, 光源 2を短波長側においた場合にお ける光スぺク トルを示す図面に替わるグラフである。
図 21は, 光源 2を長波長側においた場合における光スぺク トルを示す 図面に替わるグラフである。
図 22は, 光源 2の波長が 1549.41nmの場合のラジオ周波数スぺク トル を示す図面に替わるグラフである。
図 23は, 図 22の部分拡大図である。
図 24は, 光源 2の波長が 1549.48nmの場合のラジオ周波数スぺク トル を示す図面に替わるグラフである。
図 25は, 図 24の部分拡大図である。
図 26は, 光源 2の波長が 1549.93nmの場合のラジオ周波数スぺク トル を示す図面に替わるグラフである。
図 27は, 図 26の部分拡大図である。
図 28 は, 光源 2の波長が 1549.875nmの場合のラジオ周波数スぺク ト ルを示す図面に替わるグラフである。
図 29は, 図 28の部分拡大図である。
図 30は, アンプ出カスペク トルを示す図面に替わるグラフである。 図 31 は, ラジォ周波数スぺク トルを示す図面に替わるグラフである。 図 32は, 図 31 の部分拡大図である。 発明を実施するための最良の形態
1 . 光周波数制御装置
以下, 図面を参照しつつ, 本発明の装置及ぴ方法を説明する。 図 1は, 本発明の装置の基本構成を示すブロック図である。 図 1に示されるよう に, 本発明の光周波数制御装置は, 基本的には, 光 S S B変調器(2)と, 前記光 S S B変調器(2)へバイアス電圧を印加するバイアス電圧源(3)と 前記光 S S B変調器(2)へ変調信号を印加する変調信号源(4)とを具備 し;前記変調信号源(4)は, 任意の波形を有する電気信号を発生するため の任意波形発生器(5)と, 前記 意波形発生器(5)で発生した電気信号の 周波数を遁倍するための電気信号周波数遁倍器(6)と, を具備する。 そし て,前記前記任意波形発生器(5)で発生し, 前記電気信号周波数通倍器(6) により遁倍された電気信号を用いて, 前記光 S S B変調器(2)への変調信 号を生成する。 なお, 図中, 7は計測対象物を示し, 8は光検出器を示 し, 9は光源を示し, 1 1は偏波コントローラを示し, 1 2は増幅器を 示し, 1 3は力ブラを示す。 以下, 本発明を構成する各要素について説 明する。 光周波数制御装置 (1)
光周波数制御装置(1)は, 光周波数を掃引して出力するなど, 出力する 光の周波数を制御できる装置である。 光 S S B変調器(2)
光 S S B変調器(2)は, 光単側波側帯変調器を意味する。 光 SSB変調器 は, 変調信号の周波数 (fm) 分だけシフ トした出力光を得ることができる 光変調器である (S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi and M. Izutsu, "Single Side-Band Modulation Performance of a LiNb03 Integrated Modulator Consisting of Four-Phase Modulator Wavegate," IEEE Photon. Tech. Lett., Vol.13, 364-366 (2001), 「下津臣一, 井筒雅之, "次世代通信のための LiNb03光 S S B変調器", 光ァライアン ス, 2000.7. pp. 27-30」 ) 。 なお, 光 S S B変調器の動作は, たとえ ば, 「川西哲也, 井筒雅之, "光 S S B変調器を用いた光周波数シフター ", 信学技報, TECHNICAL REPORT OF IEICE, OCS2002-49, PS2002-33, OFT2002-30(2002-08)」 , 「日隈ら, Xカッ トリチウムニオブ光 S S B変 調器, エレク トロンレター, vol. 37, 515-516 (2001) . 」 などに詳し く報告されている。 .
光 S S B変調器(2)として, 公知の光 S S B変調器を適宜用いることが できる。 光 S S B変調器 (2)として, 例えば, 図 2に示すものを用いるこ とができる。 図 2は, 光 S S B'変調器の例を示す概略図である。 図 2に 示される光 S S B変調器は,第 1のサブマッハツェンダー導波路(MZ A) (22)と ;第 2のサブマッハツェンダー導波路 (MZ B) (23)と ;光信号の 入力部(24)と, 前記光信号が前記第 1 のサブマッハツェンダー導波路(M Z A) と前記第 2のサブマッハツェンダー導波路 (MZ B) とへ分岐する 分岐部(25)と, 前記第 1のサブマッハツェンダー導波路 (MZ A) と, 前 記第 2のサブマッハツェンダー導波路 (MZ B) と, 前記第 1 のサブマツ ハツエンダー導波路 (MZ A) と前記第 2のサブマッハツェンダー導波路 (MZ B) から出力される光信号が合波される合波部(26)と, 前記合波部 で合波された光信号が出力される光信号の出力部. (27)とを含むメインマ ッハツエンダー導波路 (MZ c) (28)と ;前記第 1のサブマッハツエンダ 一導波路 (MZ A) を構成する 2つのアームにラジオ周波数 (R F) 信号 を入力するための第 1 の電極 (R FA電極) (29)と ;前記第 2のサブマツ ハツヱンダー導波路(MZ B)を構成する 2つのアームにラジオ周波数(R F) 信号を入力するための第 2の電極 (R F B電極) (30)と ;前記メイン マッハツェンダー導波路 (M Z C ) に電圧を印加して, 前記前記第 1のサ ブマッハツェンダー導波路 (M Z A ) からの出力信号と前記前記第 2のサ ブマツハツヱンダー導波路 (M Z B ) からの出力信号との位相差を制御す る為のメインマッハツェンダー電極 (電極 C ) (31)とを具備する。 なお, メインマッハツェンダー電極は, バイアス電極が印加される D C c電極と して機能しても良い。
それぞれのサブマッハツェンダー導波路は, 例えば, 略六角形状の導 波路 (これが 2つのアームを構成する) を具備し, 並列する 2つの位相 '変調器を具備するようにして構成される。 位相変調器は, たとえば, 導 波路に沿った電極により達成できる。 また強度変調器は, たとえばマツ ハツヱンダー導波路と, マッハツヱンダー導波路の両アームに電界を印 加するための電極どにより達成できる。
通常, マッハツェンダー導波路や電極は基板上に設けられる。 基板及 び各導波路は, 光を伝播することができるものであれば, 特に限定され ない。 例えば, L N基板上に, Ti 拡散のニオブ酸リチウム導波路を形成 しても良いし, シリコン (Si) 基板上に二酸化シリ コン (Si02) 導波路を 形成しても良い。 また, InPや GaAs基板上に InGaAsP, GaAlAs導波路を 形成した光半導体導波路を用いても良い。 基板と して, Xカッ ト Z軸伝 搬となるように切り出されたニオブ酸リチウム (LiNb03: LN) が好まし い。 これは大きな電気光学効果を利用できるため低電力駆動が可能であ り, かつ優れた応答速度が得られるためである。 この基板の Xカッ ト面 ( Y Z面) の表面に光導波路が形成され, 導波光は Z軸 (光学軸) に沿 つて伝搬することとなる。 Xカツ ト以外のニオブ酸リチウム基板を用い ても良い。 また, 基板と して, 電気光学効果を有する三方晶系, 六方晶 系といった一軸性結晶, 又は結晶の点群が C 3v . C 3 , D 3 , C 3h, D 3h である材料を用いることができる。 これらの材料は, 電界の印加によつ て屈折率変化が伝搬光のモードによって異符号となるような屈折率調整 機能を有する。 具体例としては, ニオブ酸リチウムの他に, タンタル酸 リチウム (LiT03: LT) , J3— BaB204 (略称 BB0) , Li I03等を用いること ができる。
基板の大きさは, 所定の導波路を形成できる大きさであれば, 特に限 定されない。 各導波路の幅, 長さ, 及び深さも本発明のモジュールがそ の機能を発揮しうる程度のものであれば特に限定されない。 各導波路の 幅と しては, たとえば 1〜 20マイクロメー トル程度, 好ましくは 5〜 1 0マイクロメー トル程度があげられる。 また, 導波路の深さ (厚さ) と して, 1〜 20マイクロメートル程度があげられ, 好ましくは 5〜 1 0マイクロメートル程度である。
なお, サブマッハツェンダー導波路には, 上記の R F A電極及び R F B 電極とは別にバイアス調整電極が設けられてもよいし, 上記の RFA電極 及び R FB電極がバイアス調整電極として機能してもよい。
第 1のバイアス調整電極 (DCA電極) は, MZAを構成する 2つのァ ーム (Pathl及び Path3) 間のバイアス電圧を制御することにより, MZ Aの 2つのアームを伝播する光の位相を制御するための電極である。 一方 第 2のバイアス調整電極 (DCB電極) は, MZ Bを構成する 2つのァー ム (Path2及び Path4) 間のバイアス電圧を制御することにより, MZB の 2つのアームを伝播する光の位相を制御するための電極である。 D CA 電極, 及び DC B電極は, 好ましくは通常直流または低周波信号が印加さ れる。 ここで低周波信号における 「低周波」 とは, 例えば, 0 H z〜500 MH zの周波数を意味する。 なお, この低周波信号の信号源の出力には 電気信号の位相を調整する位相変調器が設けられ, 出力信号の位相を制 御できるようにされていることが好ましい。
第 1の変調電極 (RFA電極) は, MZAを構成する 2つのアームにラ ジォ周波数 (R F) 信号を入力するための電極である。 一方, 第 2の変 調電極 (RFB電極) は, MZ Bを構成する 2つのアームに R F信号を入 力するための電極である。 RFA電極, 及び RFB電極としては, 進行波 型電極または共振型電極があげられ, 好ましくは共振型電極である。 先に説明したとおり, D CA電極と R F A電極とは, 別々の電極とされ てもよいし, 一つの電極がそれらの機能を果たしてもよい。 後者の場合 は, 一つの電極にバイアス電圧とラジォ周波数信号とが印加されること となる。
R FA電極, 及.ぴ R FB電極は, 好ましくは高周波電気信号源と接続さ れる。 高周波電気信号源は, R F A電極及び R F B電極へ伝達される信号 を制御するためのデバイスであり, 公知の高周波電気信号源を採用でき る。 R FA電極, 及び R F B電極に入力される高周波信号の周波数 ( f m) として, 例えば 1 GH z〜100 GH zがあげられる。 高周波電気信号源の 出力としては, 一定の周波数を有する正弦波があげられる。 なお, この 高周波電気信号源の出力には位相変調器が設けられ, 出力信号の位相を 制御できるようにされていることが好ましい。
R FA電極, 及び R FB電極は, たとえば金, 白金などによって構成さ れる。 RFA電極, 及び R F B電極の幅としては, 1 πι〜100μ mがあげ られ, 具体的には 5 /i.mがあげられる。 R FA電極, 及び R FB電極の長 さとしては, 変調信号の波長の( )の 0.1倍〜 0.9倍があげられ, 0.18〜 0.22倍, 又は 0.67倍〜 0.70倍があげられ, より好ましくは, 変調信号 の共振点より 20〜25%短いものである。 このような長さとすることで, ス タブ電極との合成ィンピーダンスが適度な領域に留まるからである。 よ り具体的な R FA電極, 及び R F B電極の長さとしては, 3250/^ mがあげ られる。 以下では, 共振型電極と, 進行波型電極について説明する。 共振型光電極 (共振型光変調器) は, 変調信号の共振を用いて変調を 行う電極である。 共振型電極と しては公知のものを採用でき, 例えば特 開 2002-268025号公報, 「川西哲也, 及川哲, 井筒雅之, 〃平面構造共振 型 光 変 調 器 〃 , 信 学 技 報 , TECHNICAL REPORT OF IEICE, IQE2001-3 (2001-05) J に記載のものを採用できる。.
進行波型電極 (進行波型光変調器) は, 光波と雩気信号を同方向に導 波させ導波している間に光を変調する電極 (変調器) である (例えば, 西原浩, 春名正光, 栖原敏明著, 「光集積回路」 (改訂増補版) オーム 社, 119 頁〜 120 頁) 。 進行波型電極は公知のものを採用でき, 例えば, 特開平 11一 295674号公報,特開平 11一 295674号公報,特開 2002— 169133 号公報, 特開 2002-40381 号公報, 特開 2000-267056 号公報, 特開 2000-471159号公報,特開平 10-133159号公報などに開示されたものを用 いることができる。
進行波型電極として, 好ましくは, いわゆる対称型の接地電極配置 (進 行波型の信号電極の両側に, 少なく とも一対の接地電極が設けられてい るもの) を採用するものである。 このように, 信号電極を挟んで接地電 極を対称に配置することによって, 信号電極から出力される高周波は, 信号電極の左右に配置された接地電極に印加されやすくなるので, 高周 波の基板側への放射を, 抑圧できる。
R F電極が, R F信号用の電極と, D C信号用の電極とを兼ねたもの でもよい。 すなわち, R F A電極及び R F B電極のいずれか又は両方は, DC信号と RF信号とを混合して供給する給電回路 (バイアス回路) と 連結されている。 この態様の光 S S B変調器は, RF電極が給電回路 (バ ィァス回路) と連結されているので, R F電極に R F信号 (ラジオ周波 数信号) と DC信号 (直流信号: バイアス電圧に関する信号) を入力で きる。
メインマツハツヱンダー電極 (電極 C) (31)は, メインマツハツヱン ダー導波路 (MZ C) に電圧を印加して, 前記前記第 1のサブマッハツエ ンダー導波路 (MZA) からの出力信号と前記前記第 2のサブマッハツエ ンダー導波路 (MZ B) からの出力信号との位相差を制御する為の電極で ある。 電極 Cとして, 上記に説明したサブマッハツェンダー用の電極を 適宜利用できる。 電極 Cには, たとえば変調信号と してラジオ周波数信 号が印加されるので, それに対応した進行波型電極が好ましい。 電極。 により両アームの光信号の位相差が制御されるので, U S B又は L S B など打ち消したい信号の位相を逆とすることでそれらの信号を抑圧でき ることとなる。 この位相制御を高速に行うことで, 周波数シフ トキーィ ングが達成できる。
また, 上記の光変調器の好ましい態様は, 前記メインマッハツエンダ 一電極 (電極 C) (31)として, メインマッハツェンダー導波路 (MZC) のうち, 前記第 1のサブマッハツエンダ一導波路 (MZA) の出力部と前 記合波部との間の導波路の少なく とも一部に沿うように設けられた第 1 のメインマツハツヱンダー用電極 (MZCA電極) と ; メインマツハツヱ ンダー導波路 (MZC) のうち, 前記第 2のサブマッハツェンダー導波路 (MZ B) の出力部と前記合波部との間の導波路の少なく とも一部に沿う ように設けられた第 2のメインマッハツエンダー用電極 (MZ CB電極) とを具備するものであってもよい。
上記のような態様に係る光変調器であれば, 第 1 のメインマッハツエ ンダー用電極(MZ CA電極) と第 2のメインマッハツェンダー用電極(M ZCB電極) (15)とを具備するので, 各サブサブマッハツェンダー導波路 からの出力信号の光位相を制御でき, それにより合波される光信号の搬 送波 (キャ リア信号) 又は高次成分 (例えば 2次成分 (f 。±2 ) ) など を抑圧できる。
第 1のメインマッハツェンダー用電極 (MZCA電極) は, メインマツ ハツヱンダー導波路 (MZC) のうち, 前記第 1のサブマッハツェンダー 導波路 (MZA) の出力部と前記合波部との間の導波路の少なく とも一部 に沿うように設けられた電極である。 そして, 少なく とも一部とは, 出 力信号の位相を調整できる程度の長さであればよい。 この電極としては, サブマッハツエンダー導波路における電極と同様のものを設ければよい。 第 2のメインマッハツェンダー用電極 (MZ CB電極) は, メインマツ ハツヱンダー導波路 (MZC) のうち, 前記第 2のサブマッハツェンダー 導波路 (MZB) の出力部と前記合波部との間の導波路の少なく とも一部 に沿うように設けられた電極であり, これについては MZ CA電極(31)と 同様である。 なお, 第 1のメインマッハツェンダー用電極 (MZCA電極) 及ぴ前記第 2のメインマッハツェンダー用電極 (MZCB電極) は, それ ぞれが設けられる導波路部分を光位相変調器と して機能させるものであ つてもよレヽ。
なお, メインマッハツェンダー導波路 (MZC) に含まれる分岐部(25) は, 光信号が前記第 1のサブマッハツェンダー導波路 (MZA) と前記第 2のサブマッハツェンダー導波路 (MZB) とへ分岐するようにされた部 位であり, 導波路が Y字型に分岐した構成をとるものがあげられる。 ま た, 合波部(26.)は, 前記第 1のサブマッハツェンダー導波路 (MZA) と 前記第 2のサブマッハツェンダー導波路 (MZB) から出力される.光信号 が合波される部位であり, 導波路が Y字型に形成されたものがあげられ る。 上記の Y字型は対象であっても, 非対称であってもよい。 なお, 分 岐部(25)又は合波部(26)として方向性結合器(力ブラ) を用いてもよい。 上記の光変調器の好ましい態様は, 前記メインマッハツェンダー導波 路 (MZC) (28)の分岐部(25)には非対称方向性結合器が設けられ, 前記 非対称性方向性結合器によって, 前記第 1のサブマッハツェンダー導波 路 (MZA) に分波される光信号の強度が, 前記第 2のサブマッハツエン ダー導波路 (MZB) に分波される光信号の強度よりも強くなるように制 御される光変調器である。
なお, 本発明の光変調器においては, 各電極に印加される信号のタイ ミ ングゃ位相を適切に制御するため, 各電極の信号源と電気的に (又は 光信号により) 接続された制御部が設けられることが好ましい。 そのよ うな制御部は, 前記第 1の電極 (RFA電極) 及び第 2の電極 (RFB電 極) に印加される変調信号と, 前記第 1 のメインマッハツェンダー用電 極 (MZCA電極) 及び第 2のメインマツハツ:! ンダー用電極 (MZCB電 極) に印加される変調信号との変調時間を調整するように機能する。 す なわち, 各電極による変調がある特定の信号に対して行われるように, 光の伝播時間を考慮して調整する。 この調整時間は, 各電極間の距離な どによって適切な値とすればよい。- また, 制御部は, 前記第 1のサブマッハツェンダー導波路 (MZA) と からの出力信号と前記第 2のサブマッハツェンダー導波路 (MZB) とか らの出力信号に含まれる光搬送波信号又は特定の高次光信号の位相が 180° ずれるように前記第 1のメインマッハツェンダー用電極(MZ CA電 極) 及び第 2のメインマッハツェンダー用電極 (MZCB電極) に印加さ れる電圧を調整するものがあげられる。 このような制御部としては, 各 電極の信号源と接続された処理プログラムを格納したコンピュータがあ げられる。 そして, コンピュータは, キーボードなどの入力装置から制 御情報の入力を受けると, C P Uは, たとえばメインプログラムに格納 された処理プログラムを読み出し, よりプログラムの指令に従って, 各 種メモリから必要な情報を読み出して, 適宜メモリに格納される情報を 書き換え, 信号源へ信号源から出力される光信号のタイミングと位相差 を制御するような指令を外部出力装置から出力すればよい。 なお, その ような処理プログラムとしては, コンピュータを, 各サブマッハツエン ダー導波路における特定の成分の位相を把握する手段と, 前記手段が把 握した特性の成分の位相情報を用いて, それらの位相が逆位相となるよ うに前記第 1 のメインマッハツェンダー用電極 (M Z C A電極) 及ぴ第 2 のメインマッハツェンダー用電極 (M Z C B電極) に印加される変調信号 を調整する指令を作製する手段とを具備するものとして機能させるよう なものであればよい。
光 S S B変調器の動作を一応以下に説明する。 サブマッハツェンダー 導波路の並列する 4つの光位相変調器 (これらは R F A電極, R F B電極 を構成する) に, たとえば, 位相が 9 0 ° ずつ異なる正弦波 R F信号を 印加する。 また, 光に関しても, たとえば, それぞれの位相差が 9 0 ° となるようにバイアス電圧を D C A電極, D C B電極に印加する。 これら の電気信号の位相差や光信号の位相差は, 適宜調整すればよいが, 基本 的には 9 0 ° の整数倍ずれるように調整する。
図 2の P点及び Q点では, それぞれ M Z A及び M Z Bからの出力信号の うち L S Bについて位相が逆位相となるように調整される。 このように 調整された信号は合波部(26)で合波されると, L S B成分が打ち消しあ レ、, U S B成分のみが残留することとなる。 一方, C電極を出力信号の 位相差が 2 7 0 ° となるように調整すると U S B信号が打ち消しあい, L S B信号が残留することとなる。 しかし, 実際には, これらの光信号 には, 光信号の搬送波 (キャ リア信号) 又は高次成分 (例えば 2 次成分 。± 2^) ) が含まれることとなる。 各サブマッハツェンダー導波路から出力される光信号に含まれる光信 号の搬送波 (キャリア信号) 又は高次成分 (例えば 2次成分 (f 。± 2fm) ) の位相は, 各サブマッハツエンダー導波路に印加する信号の位相やバイ ァス電圧によって求まるので, 合波部で合波される前の, 各サブマッハ ツェンダー導波路からの出力信号の位相を, 抑圧したい成分 (光信号の 搬送波 (キャリア信号) 又は高次成分 (例えば 2次成分 (f 。± 2fm) ) ) の位相が逆位相となるように制御する。 そのように制御するので, 抑圧 したい成分が効果的に抑圧されることとなる。
なお, 光 S S B変調器(2)の替わりに, 光搬送波抑圧両側波帯 (D S B — S C ) 変調器を用いてもよい。 D S B— S C変調器は理想的には, 2 つのサイ ドバンドを出力し, キヤリァ成分を抑圧する。
また, 光 S S B変調器(2)の替わりに位相変調器, 又は強度変調器を用 いることもできる。 この場合には特定のサイ ドバンドを選択するための 光フィルタを必要に応じて用いればよい。 具体的には, 例えば, 図 1の 光 S S B変調器(2)の替わりに位相変調器, 又は強度変調器を設置し, そ れらによって生ずる特定のサイ ドバンドを選択的に透過する光フィルタ を, 位相変調器, 又は強度変調器の下流に設ければよい。 バイアス電圧源(3)
バイアス電圧源(3)は, 光 S S B変調器へ印加されるバイアス電圧を得 るための装置であり, 光 S S B変調器に用いられる公知のバイアス電源 を適宜用いればよい。 バイアス電圧源(3)は, 外乱や掃引条件に応じてバ ィァス電圧を適応的に変化する機能をもつものが望ましい。 そのような バイアス電圧源は, 例えば, 光検出器(8)からの検出情報がフィードバッ クされ, 検出値が予め定められた範囲からずれたときに, そのずれを少 なくするように制御するものであってもよレ、。 また, バイアス電圧源は, たとえば, バイアス電圧源がおかれた温度などの条件を測定でき, その 測定値に応じて適宜光 S S B変調器へ印加するバイアス電圧を調整でき るものであってもよレ、。 変調信号源(4)
変調信号源(4)は, 光 S S B変調器へ印加する変調信号を生成するため の装置である。 本発明において, 変調信号源(4)は, 任意の波形を有する 電気信号を発生するための任意波形発生器(5)と, 前記任意波形発生器 (5)で発生した電気信号の周波数を通倍するための電気信号周波数通倍 器(6)と, を具備する。 任意波形発生器(5)
任意波形発生器(5)は, 例えば, 定義された波形データを波形メモリに 格納しておき, その格納データを順次読み出しアナログ変換してゆくこ とにより, 定義波形データに対応したアナログ波形を発,生する装置であ る。
任意波形発生器(5)の具体例として, 特開平 6 - 6 1 3 7号公報に開示 される 「波形データを記憶するメモリ とメモリに記憶される波形データ を微分する微分器と微分器の出力する微分データを一定周期毎に選択出 力する分配器とより成るメモリ部を具備し, 分配器により選択出力され る微分データをそれぞれ積分する積分器と積分器の出力を D Z A変換す る D / A変換器とより成る D Z A変換部を複数個具備し, メモリ部と D 変換部とにタイミング信号を与えるタイミング発生器を具備し, 各
D Z A変換部により D / A変換された結果を相加するアナログ加算器を 具備することを特徴とする任意波形発生器」 , 特開平 3— 1 3 6 1 7 8 号公報に開示された 「定義された波形データを波形メモリに格納してお き, その格納データを順次読み出しアナログ変換.してゆくことにより, 定義波形データに対応したアナログ波形を発生する任意波形発生 器で あって, 前記波形メモリに格納する複数種類の波形データを定義式より それぞれ演算により求めると共に, 各部に与えるデータおよび信号を発 生して制御する制御 ·演算回路と,複数種類の波形データを出力する際, 前記制御演算回路より与えられる出力波形のファーストア ドレスおよび ラス トア ドレスを記憶するシーケンス記憶手段と, このシーケンス記憶 手段より与えられるファース トア ドレスとラス トァ ドレスが設定される ァ ドレス記憶手段と, 前記波形メモリからデータを読み出す時に波形メ モリ に与えるァドレスを発生するもので, 口一ド信号が与えられた後に 前記制御 ·演算回路から入力される最初のクロ ックの立ち上がりで前記 ァ ドレス記憶手段からのファース トァ ドレスが初期値としてセッ トされ 入力されるク口ックに応じてァドレスをインク リメントして出力するァ ドレス発生手段と, このァ.ドレス発生手段から出力されるァドレスと前 記ァドレス記憶手段に記憶されたラス トア ドレスとを比較し, 一致した 時には前記ロード信号としても利用される一致信号を出力するラス トァ ドレス検出手段と, 外部からのトリガを受けた後, 前記ラス トア ドレス 検出手段からの一致信号に同期して, トリガ信号が入力された時点で前 記シーケンス記憶手段に格納されたファース トァ ドレスおよびラス トァ ドレスを前記ア ドレス記憶手段に記憶させるために必要な波形切替信号 を送出する波形切替回路を具備し, 複数種類の波形を自動的に切り替え て出力できるようにしたことを特徴とする任意波形発生器」 などがあげ られる。
任意波形発生装置は複雑な波形を発生させることが可能である。 掃引 時間の短い周波数掃引信号波形を計算機データと して生成し, それを, D Z A変換することで, 掃引時間 1 ミ リ秒以下の超高速周波数掃引信号 の発生が可能である。 典型的な周波数掃引範囲としては 5 0 0 M H z〜 3 0 0 M H zが挙げられる。 掃引時間としては 5 0 0マイクロ秒, 5 0 マイクロ秒, 5マイクロ秒, 0 . 5マイクロ秒などが挙げられる。 また, 掃引のシーケンスを複雑なものとするこどもできる。 例えば, 3 0 0 M H z〜4 0 ひ M H zまで周波数掃引した後に, 所望の時間, 例えば 1 マ ィク口秒の間周波数掃引を停止し, さらに 4 5 0 M H z〜 5 0 0 M H z まで掃引するなど, 掃引のシーケンスを複雑なものとすることができる。 任意波形発生装置によれば, 所望の現象と同期させて所定の時間範囲の みで周波数掃引動作を行うことも可能である。 例えば, 所望の現象を検 知して トリガ信号を発生させる装置を用いて, その トリガ信号に応じて 所定の回数のみ周波数掃引動作を行うことを予めプログラムすることが できる。 このように任意波形発生装置は高速掃引信号を複雑なシーケン スで発生させることが可能である。 しかしながら,任意波形発生装置は, 発生可能な周波数が 5 0 O M H z以下に制限されるという問題がある。 電気信号周波数遁倍器(6)
電気信号周波数通倍器(6)は, 入力された電気信号の周波数を通倍して 出力するための装置である。 電気信号周波数通倍器(6)は, 公知のものを 適宜用いることができる。 具体的な電気信号周波数通倍器(6)として, 特 開 2 0 0 5— 1 6 7 3 1 7号公報に開示される 「所望の周波数の発振信 号を生成する発振器であって, 予め定められた周波数の基準信号を生成 する基準発振部と, 前記基準信号を受け取り, 受け取った前記基準信号 を略同一の遅延量で順次遅延させて出力する, 縦続接続された複数の第 1可変遅延回路と, 前記基準発振部が生成した前記基準信号の位相と, 前記複数の第 1可変遅延回路の最終段から出力される遅延信号の位相と を比較する位相比較部と, 前記基準信号の位相と, 前記複数の第 1可変 遅延回路の最終段から出力される遅延信号の位相とが略等しくなるよう に, 前記複数の第 1可変遅延回路の遅延量を制御する遅延量制御部と, それぞれの前記第 1可変遅延回路に入力される入力信号を論理演算する ことにより, それぞれの前記入力信号におけるエツジを合成した前記発 振信号を生成する周波数加算回路とを備える発振器」 , 特開 2 0 0 2— 6 4 3 3 5号公報に開示される 「入力信号を第 1入力伝送路及び第 2入 力伝送路に分岐する信号分岐部と, 第 1出力伝送路及び第 2出力伝送路 からの信号を合成する合成部と, 制御入力端及び電流路を有し, この制 御入力端が該第 1入力伝送路に結合され, この電流路の第 1端及び第 2 端がそれぞれ接地導体及び該第 1出力伝送路に接続された第 1 トランジ スタと, 制御入力端及び電流路を有し, この制御入力端が交流的に接地 導体に接続され, この電流路の第 1端及び第 2端がそれぞれ該第 2入力 伝送線路及び該第 2出力伝送に結合された第 2 トランジスタと, 該第 1 入力伝送路, 該第 2入力伝送路, 該第 1出力伝送路又は該第 2出力伝送 路の少なく とも 1つに接続された振幅減衰素子と, を有することを特徴 とするマイクロ波又はミ リ波に対するバランス型周波数遁倍器」 , 又は 特開 2 0 0 1— 1 5 6 5 4 8号公報に開示される 「正弦波状の入力信号 を受けて, 該入力信号の周波数と同一周波数で位相が互いに 1 8 0 ° 異 なる二つの信号を発生する差動信号発生回路と, 該差動信号発生回路か らの二つの信号を乗算して, 前記入力信号の周波数の 2倍の周波数成分 を含む信号を発生する乗算回路と, を少なぐとも有し, 前記入力信号に 基づいてその周波数を通倍した出力信号を得るよう構成したことを特徴 とする周波数通倍器」 などがあげられる。 電気信号周波数通倍器(6)とし て, 例えば 32通倍のものがあげられる。
電気信号周波数遁倍器は, 増幅器の非線形性などを用いて実現できる。 すなわち, 本発明においては, 非線形性を有する増幅器を有する電気信 号周波数通倍器を用いる事が好ましい。 具体的に説明すると, 本発明の 電気信号周波数通倍器の好ましい態様は, 非線形性をもつデバイスの高 調波をフィルタなどで取り出す, という構成を多段にすることで高い次 数の通倍器を得たものである。 このように通倍器は非線形性を利用して 実現するものであるので, 出力において, 入力信号の振幅情報は一般に 失われる。 一方で, 周波数に関しては入力信号の周波数を避倍次数倍し たものとなり, 位相変化についても入力信号の位相変化の通倍次数倍し たものとなる。 位相変化が通倍次数倍となることから出力信号の位相雑 音も通倍次数倍となり, 出力信号の信号純度は入力信号のものに比べあ る程度劣化するもののその周波数は正確に入力信号周波数の通倍次数倍 となる。 すなわち, 電気信号周波数遁倍器は振幅情報を損なうものの, 周波数に関しては正確に入力信号で制御可能であることを意味している。 また, 入力信号と して周波数掃引信号を入力した場合, 掃引時間はその ままで周波数だけが通倍次数倍されるので, 一定の周波数範囲を掃引す るのにかかる時間は通倍次数分の一となり, すなわち一定の周波数範囲 を掃引する掃引速度は遁倍次数倍となる。 光検出器(8) .
光検出器(8)は, 光信号を検出するための装置であり, 用途に応じて適 切なものを適宜用いればよい。 光源(9)
光源(9)は, 光 S S B変調器に入力される光を発生するための装置であ る。 光源(9)として, 公知の波長可変レーザを適宜用いるものがあげられ るが, これに限定されない。 特に, 比較的狭い周波数範囲で光周波数を 掃引すればよい場合には固定波長の光源を用いてもよい。 波長可変レー ザを用いる場合には波長可変レーザの制御と光周波数掃引の動作を連動 させて, 光周波数の粗調整を波長可変レーザの制御で, 微調整を光周波 数掃引で行い,周波数範囲の拡大と, 高精度化を両立することができる。 よって, 光源 (9)と変調信号源 (4)とは, それぞれ図示しないコンピュータ などの制御装置に接続され, 波長可変レーザと光周波数掃引の同期を取 るための同期手段など, それらの動作を連動させるための機構により動 作が制御されることが好ましい。すなわち,本発明の光周波制御装置は, 上記の手段や機構を具備するものが好ましい。 また, 光コム発生器を光 源と して, 複数の周波数成分の光周波数掃引を一度に行ってもよい。 な お, 光 S S B変調器の出力をコム発生器の光源として用いてもよい。 特 に, 光 S S B変調器又はコム発生器から発生した複数の周波数成分のう ち特定のもの選択するフィルタを具備するものは, 光周波数を掃引でき る範囲が広がるので好ましい。
図 3は, 光コム発生器の構成例を示す概略図である。 図 3に示される ように, 光コム発生器(100)は, 光 SSB変調器(101) ,光 SSB変調器での変 換ロスを補償するための光アン; T (102), 光入力ホ ' -ト(103), 及ぴ光出力ホ。- ト(104)を具備する光ファイバループ(105)を具備する。 以下, 光コム発生 器の基本動作を説明する。 光コム 生器の入力ホ。 -ト(104)に入力光(106)を入力する。 入力光は, たとえば, 単一モー ドの連続光 (f。) である。 すると, 光 SSB変調器(101) により入力光の周波数がシフ トする ( f0+fm) 。 周波数がシフ ト した光成 分(107)は, ループを周回し, 入力ホ -トに入力される新たな光と合わさる (f。,f0+fm) 。 これらの光は, 光 SSB 変調器(101)へと導かれ, 両成分と も周波数がシフ 卜する (f0+fffl, f0+2fm) 。 これらの工程を繰り返すことで, 多数のスペク トル成分を有する光 (光コム) を得ることができる。
図 4は, 光コム発生器における各工程における光の状態を示す概念図 である。 図 4 Aは, 始めの光が入力した状態を示す。 図 4 Bは, 光 SSB 変調器の出力光の状態を示す。 図 4 Cは, SSB変調光と新たな光とが合波 した状態を示す。 図 4 Dは, 3順目の合波状態を示す。 図 4 Eは, 入力 光から派生した光ュムの概念図である。 まず, 光調整部が, 光 (f の位 相, 強度, 及び周波数のいずれかひとつ以上を調整する。 調整された光 力 s, 光入力ホ。-ト(103)に入力する (図 4 A ) 。 この光が, 光ファイバルー プ(105)を経て,光 SSB変調器(101)に入力する。すると,光 SSB変調器が, 入力光の周波数より変調信号の周波数分だけシフ トした光単側波帯信号 を出力する ( + ) (図 4 B ) 。 光アンフ。 (102)が, 光 SSB変調器の出力光 の光強度を高め, 光変調により弱まった光強度を補償する。 なお,光アンフ。 は,光 SSB 変調器の前におかれていても良い。 光アンフ ° (102)からの出力光 , 光ファイバループ(105)を経て, 光入力ホ。 ト(103)に到達する。 光アンフ。
(102)からの出力光 ( + ) と, 光調整部からの光 (f!) ifi , 光入力ホ。 ト
(103)にて合波される (fい (図 4 C ) 。 なお, この際の入力光 ( ) は, 第 1 順目の入力光と同様であってもよいし, 第 1順目の入力光とは 異なる変調 (変調の種類や大きさなど) を受けた.ものであっても良い。 これらの工程をもう一度繰り返すと, 第 3 チャネルを含む波長多重光 (f !, ^fm, f1+fm+2fm) を得ることができる (図 4 D ) 。 これらの工程を繰 り返すことにより, 光周波数が順次ずれた光の集合である光コム (図 4 E ) を得ることができる。 偏波コントローラ(1 1)
偏波コントローラ(11)は, 光源(9)から出力される光の偏波面などを調 整するための任意の要素である。 偏波コントローラとして, 公知の偏波 コントローラを適宜用いることができる。 増幅器(12)
増幅器(12)は, 電気信号の強度を増幅できるものであればよく, 公知 のものを適宜用いることができる。 また, 増幅器は任意の要素であり, 特に増幅器を設けなくてもよい。 カプラ (13)
力ブラ(13)は, 光 S S B変調器の変調信号を得るために用いられてい るものを適宜採用できる。 具体的な力ブラと して, 出力信号の位相を 9 0 ° ずらすことができるものがあげられる。 例えば, 9 0 ° 位相のずれ た変調信号が, 各サブマッハツェンダー導波路の変調電極に印加されれ ばよレ、。 また, 光 S S B変調などの変調信号を得ることができれば, 力 ブラを用いる必要はない。 すなわち, 力ブラは, 任意の構成要素である。 光周波数制御装置から発生する光信号の周波数の範囲は f 。土 n X f 〜 f 。土 n X f 2となる。 プラスマイナスは D C c電極への電圧 (メインマ ッハツェンダー導波路のバイアス電圧) を調整するか, 又は変調信号の 位相関係を調整することで切り替えることができる。 なお, f 。は変調器 入力光周波数であり, f 2は任意波形発生装置出力最高周波数であり, f iは任意波形発生装置出力最低周波数であり, nは電気信号周波数通倍器 の遁倍数である。 図 1に基づいて, 本発明の光周波数制御装置の動作例を説明する。 ま ず, 光源(9)から, 光信号が出力される。 この光信号は, 単一光であって もよいし, 光コムであってもよい。 ここでは, 簡単のため, 単一光の場 合について説明し, その周波数を f 。とする。 光源からの光は, 例えば, 偏波コントローラ(11)によって, 偏光面を調整され, 光 S S B変調器(2) に入力する。
光 S S B変調器(2)は, たとえば, 図 2に示されるような 2つのサブマ ッハツ工ンダー導波路を 2つのアームとするメインマツハツエンダー導 波路と, 各種電極を具備するものである。 そして, バイアス電圧源(3)か ら各種電極に光 S S B変調を行うためのバイアス電圧が印加される。 こ のバイアス電圧は, 公知のとおりである。
一方, 光 S S B変調器の変調信号は, 変調信号源(4)により生成される。 より具体的には, 任意波形発生器(5)が, 任意の波形 (予め定められた波 形であってもよい) を有する電気信号を発生し, 電気信号周波数通倍器 (6)が, その電気信号の周波数を通倍する。 このようにして得られた通倍 信号は, たとえば, 増幅器(12)で振幅が増幅された後, 力ブラ(13)にて, 光 S S B変調器の電極に合わせた形で分波され, 位相が制御される。 そ して, 力ブラ(13)からの電気信号が, 変調信号として光 S S B変調器に 印かされる。
任意波形発生器(5)は, 高速かつ高精度に電気信号の周波数を掃引でき る。 そして, 電気信号周波数通倍器(6)は, 周波数が掃引された電気信号 を高速かつ高精度に周波数通倍を行うことができる。 よって, これらを 組み合わせることによって, 広い周波数にわたって周波数が掃引された 電気信号を高速に得ることができることとなる。 そして, そのような電 気信号を変調信号として印加すると, 光 S S B変調器は, 高速に広い周 波数にわたって周波数が掃引された光信号を出力できることとなる。 任意波形発生装置(5)は掃引速度を高くすることができるが発生信号 周波数の上限が 5 0 O M H z程度であった。 電気信号通倍器(6)と組み合 わせることでその周波数範囲が拡大できるとともに, 単位周波数範囲あ たりの掃引速度のさらなる向上を図ることができる。 従来の信号発生器 と電気信号通倍器(6)の組み合わせにおいても掃引速度向上の効果はあ るが, 信号発生器自体の掃引速度が低かったためにその効果は限定的で あった。 一方, 任意波形発生装置(5)は複雑な振幅制御も可能であること から, 周波数の高い信号を発生させる場合, 振幅情報が保持されるミキ サ一による周波数変換を用いられることがあつたが, この場合, 出力そ のものを電気信号通倍器(6)の入力とする発想はなく, 周波数掃引速度は 任意波形発生装置の掃引速度と同じである。 また, 光 S S B変調器によ る周波数掃引においては変調信号の周波数の安定性 ·確実性が最も重要 で, 振幅変動については測定データから事後に差し引く力 , 若しぐは振 幅変動を補償するための振幅または強度変調を光 S S B変調器の入力信 号又は出力信号に施すことで, その影響を容易に取り除く ことができる。 また, 光 S S B変調器による周波数掃引において掃引速度が遅い場合に は, 非特許文献 2に開示されているように不要成分の発生を抑圧するた めには変調周波数ごとにバイアス電圧を調整する必要があった。 しかし ながら, 本発明者らは,.掃引速度が速い場合には実施例に示すように (図 6, 図 7, 及び図 8を参照) , 一定のバイアスで固定した状態で不要成分 を十分抑圧できるという新たな知見を得た。 任意波形発生装置(5)の高速 周波数掃引と電気信号通倍器(6)による周波数範囲拡大と単位周波数あ たりの掃引速度の向上, 光 S S B変調器による周波数掃引において振幅 の補正が容易であるのに対して周波数の正確さが重要であること, また, 掃引が高速である場合には不要成分が十分抑圧できることにより図 1に 示す構成で従来技術では不可能であった超高速光周波数掃.引が実現でき る。
レーザに供給する電流を変化させることでも光周波数制御は可能であ るが, 電流と周波数の関係は複雑で温度などの外乱の影響を受けやすく, また, 周波数掃引時に周波数が突然大きくずれるモードホップ現象起き ることもあり高精度計測には適していない。 これに対して, 図 1 に示す 構成では周波数シフ ト量は正確に変調信号周波数の通倍次数倍でありモ ードホップ現象などの不規則な現象は発生しない。
光 S S B変調器またはその他の変調器から発生する高次のサイ ドバン ドを用いる場合には周波数変化はさらにサイ ドバン ドの次数倍だけ大き くなる。
2 . 光周波数制御信号の発生装置
本発明のある側面に係る光周波数制御信号の発生装置は, 上記した光 周波数制御装置を用いて光の出力周波数を制御し, 制御された周波数の 光を出力するというものである。 特に, 本発明の光周波数制御装置を用 いると, 光周波数を高速かつ広範囲にわたって掃引できるので, そのよ うな周波数掃引をともなった光を出力できる光周波数制御信号の発生装 置を提供できることとなる。 そのような光周波数制御信号の発生装置を 用いれば, 光周波数を高速かつ広範囲にわたって掃引できるので, たと えば, 測定対象物にそのような光を照射して, 光吸収などを測定するこ とで, 測定対象物の吸収スぺク トルなどを迅速に測定できることとなる。 3 . 光フィルタの精度計測器
本発明のある側面に係る光フィルタの精度計測器は, 上記に記載の光 周波数制御装置(1)と, 前記光周波数制御装置(1)から出力され, 計測対 象物(7)を透過した光又は計測対象物(7)から反射または透過した光を計 測する光検出器(8)とを具備する。 すなわち, 計測対象物(7)と して光フ ィルタを用いるものである。 上記のとおり, 本発明の光周波数制御装置 を用いると, 光周波数を高速かつ広範囲にわたって掃引できるので, 光 フィルタの特性を迅速かつ高精度に測定できることとなる。
4 . 計測器
本発明のある側面に係る計測器は, 上記に記載の光周波数制御装置(1) と, 前記光周波数制御装置(1)から出力された光を計測するとともに, 前 記光周波数制御装置(1)から出力され, 計測対象物(7)を透過した光又は 計測対象物(7)から反射した光を計測する光検出器(8)と, 前記光検出器 (8)が検出した値を記憶するとともに, 記憶した値から透過率又は反射率 を求める制御装置とを具備する。 このような計測器を用いることで, 計 測対象物の光吸収率や光反射率などを迅速かつ高精度に求めることがで きる。 このため,.たとえば, 化学物質の同定などにも本発明の計測器を 用いることができる。 なお, 制御装置としては, 公知のコンピュータな どを適宜用いることができる。
光 S S B変調器の入力信号から出力信号への変換効率を変調周波数の 関数としてコンピュータに記憶し, これの逆数に比例する強度変化を光 源(9)に与えるか, 又は変調器の出力部に強度変調器を設けて出力光に与 えることで, 光周波数制御装置(1)からの出力を一定に保つことができる。 この場合, 計測対象物(7)から透過または反射した光の強度から直接透過 率又は反射率を得ることができる。
5 . 無線信号の発生装置
― 図 5は, 本発明の無線信号の発生装置を示す概略構成図である。 図 1 中, 図 1 と同じ要素には同じ符号を付している。図 5に示されるように, 本発明のある側面に係る無線信号の発生装置は, 上記に記載の光周波数 制御装置(1)と, 前記光周波数制御装置(1)から出力された光を検出する 光検出器(8)に光を入射するための光源(19)とを具備する。 光検出器(8) は, 光周波数制御装置(1)の出力と光源(19)の出力を混合したものを検出 する。 そして, 光検出器(8)は, 検出した光信号を電気信号に変換して無 線信号と して出力する。 なお, 変調器として D S B _ S C変調器を用い た場合, 2 X n X f 〜 2 X n X f 2の範囲の無線信号が得られる。 無線 信号の発生装置の好ましい態様では, 光周波数制御装置(1)の第 1の光源 (9)と,光周波数制御装置(1)の光検出器に入力される光信号のための第 2 の光源(19)とは, 少なく ともいずれかの光信号の光周波数を調整するた めの光周波数制御手段を具備するもの (例えば, 周波数可変レーザ) で ある。 光検出器に別個の光源(19) (光源(9)と同様のもの) からの光を入 力し, 2つの光源(9),(19)の光周波数の差を変化させることで, 無線信号 の発生装置から発生する無線信号の中心周波数を制御できる。 この場合, | f 。— f ,。土 n X f J l f 。― f ,。士 n X f 2 Iの周波数範囲の無線信号 が得られる。 f ,0は光源(19)の光周波数である。 2つの光源は別個のレ 一ザで構成しても.いいし, 1つのレーザからの光を D S B— S C変調など で異なる 2つの光周波数成分を生成して用いることでも実現できる。 実施例 1
一光周波数掃引一
光 S S B変調器による光周波数シフターの変調周波数を高速周波数掃 引することで, 出力光の超高速光周波数掃引を実現する検証を行った。 本実施例では, 基本的には, 図 1に示される構成の装置を用いた。
光源(9)と して, アジレン ト (Agilent) 社 8 1 6 8 9 Aコンパク ト波長 可変レーザを用いた。 中心波長は, 1 5 5 0 nm であり, 設定パワーを 1 0 mWとした。 なお, 偏波コントローラ出力端での強度は 6. 1 d B mであった。 偏波コントローラを経て, 光源からの出力光は, S S B変 調器に入力した。
光 S S B変調器(2)として, 偏光子なし, 外部終端, バイアス電極分離 型のものをであって, 上記非特許文献 1に開示されるような 2つのサブ マッハツェンダー導波路を有するものを用いた。 バイアス電圧源(3)とし て, 直流電源 AD 8 7 1 1を用い, 光 S S B変調器(2)へバイアス電圧を 印加した。 バイアス電圧の位相や強度などの諸条件は, バイアス電圧源 (3)の制御装置を用いて制御した。
変調信号源(4)として, 任意波形発生器(5)と信号周波数通倍器(6)とを 組み合わせたものを用いた。 変調信号として, 任意波形発生装置で発生 したチヤープ信号(3 O OMH z— 5 0 0MH z )を 3 2通倍器で(9. 6 GH z— 1 6 GH z )へ帯域拡張したものを用いた。 具体的には, 任意波 形発生器(5)として, テク トロ二タス 社製 AWG 7 1 0 Bを用いた。 信 号周波数遁倍器(6)として, 綜合電子社製の 3 2倍遁倍器を用いた。 強度 増幅器と して, S H F社製の S H P 2 0 0 C Pを用いた。 9 0度カプラ と して, KRYTAR社製, 90deg Hybrid Krytar 3060200を用いた。なお, AWG710Bの出力として線形チヤープ信号を用い, 周波数掃引時間は, 5 0 0マイクロ秒, 5 0マイクロ秒, 5マイクロ秒, 又は 0 . 5マイクロ 秒と した。 また, AWG710B の振幅は周波数が 300MHz のとき 0.5Vpp, 500MHzのとき l .OVppとなるような直線的に変化する振幅とした。また, サンプリングレートは 4.2Gサンプル毎秒とした。 一 測定系 (光検出器) と して, 光スペク トルアナライザ : アドバンテス ト社製 Q8384, 又は高速光検出器 : Thorlab 社製 PDA8GS とレクロイ社 製オシロスコープ SDAとを組み合わせたものを用いた。 図 6は, 実施例 1における USB信号発生時の光スペク トルを示す図面 に替わるグラフである。なお,測定は,高感度掃引モード(High-sense sweep mode) にて行った。 図中, Optical Powerは, 光強度を示し, Wavelength は波長 [nm]を示す。 また, 実線は 5 0マイクロ秒の掃引モードの場合を 示し, 点線は 0 . 5マイクロ秒の掃引モードの場合を示す。 5 0マイク 口秒の掃引モー ドの場合における平均光強度は- 7.8dBmであり, 0 . 5マ ィク口秒の掃引モードの場合における平均光強度は- 8. OdBmであった。 図 7は, 実施例 1における LSB信号発生時の光スぺク トルを示す図面 に替わるグラフである。なお,測定は,高感度掃引モード(High-sense sweep mode) にて行った。 図中, Optical Powerは, 光強度を示し, Wavelength は波長 [nm]を示す。 また, 実線は 5 0マイクロ秒の掃引モー ドの場合を 示し, 点線は 0 . 5マイクロ秒の掃引モードの場合を示す。
図 8 は, 掃引時間が 5 0 0マイク口秒の場合の光スぺク トルを示す図 面に替わるグラフである。 図中, Optical Power は, 光強度を示し, Wavelengthは波長 [nm]を示す。 また, 実線は LSB信号の場合を示し, 点 線は USB信号の場合を示す。
図 6〜図 8から, 本発明の装置を用いて, 光 SSB変調信号が得られる ことがわかる。
図 9は, 変調信号として正弦波を入力した場合における, USB発生時 の光スペク トルを示す図面に替わるグラフである。 なお, 測定は, 高感 度掃引モー ド (High-sense sweep mode) にて行った。 図中, Optical Power は, 光強度を示し, Wavelength は波長 [nm]を示す。 また, 実線は任意波 形発生器から出力.される電気信号の周波数が 300MHz の場合を示し, 点 線は 350 MHzの場合を示し, 破線は 400MHzの場合を示す。
図 10は, 変調信号と して正弦波を入力した場合における, LSB発生時 の光スぺク トルを示す図面に替わるグラフである。 なお, 測定は, 高感 度掃ラ Iモー ド (High-sense sweep mode) ίこてィ丁つ 7こ。 中, Optical Power は, 光強度を示し, Wavelength は波長 [nm]を示す。 また, 実線は任意波 形発生器から出力される電気信号の周波数が 300MHz の場合を示し, 点 線は 350 MHzの場合を示し, 破線は 400MHzの場合を示す。
高速掃引時には全域に対して (図 8の 500us sweepでの peak hold sweep で確認) 2 0 d B程度の不要成分抑圧比がとれている。 一方, 図 9, 図 10 で示されるように, 手動で周波数を変化させると抑圧比が大きく変動 し, 2 0 d Bを下回ることがあることがわかる。 手動切替え時には R F アンプ出力, 変調器入力が周波数特性により変化する。 また, 変調器内 部でのロスが周波数特性を持つなどの理由で変調器内部の温度変化がバ ィァス点変動を起こしている可能性があるといえる。 高速掃引時には, 温度変化よりも周波数変化の方が速く, 温度が一定していると考えられ る。 実施例 2
一光フィルタの測定装置一
実施例 1の装置を用いて, 以下に示す 2タイプの光フィルタの特性を 測定した。
第 1タイプの光フィルタは, K0ERAS 社製デュアルセクショ ンフアイ バグレーティング (Dual section FBG) であり, セクショ ンの間隔は 10mm であった。 1セクショ ンの反射率を反射率とすると, 反射率が 95%のも の(SN IFBG1737), 反射率が 90%のもの(SN IFBG1736)及ぴ 反 射 率 が 85%のもの(SN IFBG1735)を用いた。 なお, これらの光フィルタは, F B Gの反射帯域内に狭帯域透過帯を複数もつものであり, その間隔は数 1 0 GH zであった。 本実施例において, 周波数掃引速度を 0. 5 μ s と した。 光源である T L D の設定波長は, 1550.3020nm(IFBG1737), 1550.2750nm(IFBG1736),及び 1550.3080nm(IFBG1735)と した。
第 2タイプの光フィルタは, 2つの F B Gを縦列接続したものである。 F B G間の距離は, 数メー トルであった。 具体的には, 固定 F B G (THORLAB TG5F3) と可変 F B G(AOS 25100154)とを用いた。これらは, F B Gの反射帯域内に狭帯域透過帯を多数の複数もつものであり, その 間隔は数 1 OMH zであった。 周波数掃引速度を 0. 5マイクロ秒, 5 マイク口秒, 5 0マイクロ秒, 又は 5 0 0 μ sマイクロ秒とした。 T L Dの設定波長は 1550.35nmであった。 図 11は, 実施例 2におけるキヤリブレーション用のデータを示す図面 に替わるグラフである。 図 11 A, 図 11 B, 図 11 C, 及び図 11 Dは, それぞれ周波数掃引速度を 0. 5マイクロ秒, 5マイクロ秒, 5 0マイ クロ秒, 又は 5 0 0 μ sマイクロ秒と したときのキャ リ ブレーショ ン用 のデータを示す図である。 被測定部品 (DUT) を入れたときのデータ との比をとると透過率を測定できることとなる。 なお, 高速 P Dの DC オフセッ トが 2 O mVと大きめであるため, それぞれのデータからは予 め D Cオフセッ トを引いておいた。 図 12は, 第 1タイプの光フィルタの測定結果を示す図面 替わるダラ フである。 図 12 A, 図 12 B, 及び図 12 Cは, それぞれ反射率が 9 5 %, 9 0 %, 及ぴ 8 5 %のものを示す。 掃引時間は, 0. 5マイクロ秒であ つた。 図 12から, 反射率が高いほど透過帯域の幅が小さくなることがわ かる。 図 13は, 第 2タイプの光フィルタの測定結果を示す図面に替わるダラ フである。 図 13 A, 図 13 B, 図 13 C及び図 13 Dは, それぞれ周波数 掃引速度が 5 0 0マイクロ秒, 5 0マイクロ秒, 5マイクロ秒, 及び 0 . 5マイクロ秒のものを示す。 図 13に示されるように, 掃引速度が 0 . 5 マイク口秒の場合や 5マイク口秒の場合には掃引開始終了時に波形の乱 れがあり, 強度変化が一様でなかった。 このことから, 周波数掃引速度 と して, 0 . 5マイクロ秒以上が好ましく, 1 0マイクロ秒以上であれ ばより好ましいといえる。 図 14は, 図 13 の掃引開始部の拡大図を示す図面に替わるグラフであ る。 図 14 A, 図 14 B, 図 14 C及び図 14 Dは, それぞれ周波数掃引速 度が 5 0 0マイクロ秒, 5 0マイクロ秒, 5マイクロ秒, 及び 0 . 5マ ィク口秒のものを示す。図 14から,周波数掃引速度が 5 0 0マイクロ秒, 5 0マイク口秒のものは, 一様に並ぶ多数の透過帯域が測定できている ことがわかる。 図 15は, 第 1タイプの光フィルタの測定結果を, T L Dによる測定結 果と比較した図面に替わるグラフである。 ピークの位置をあわせた。 縦 軸は実測値で規格化していない。 図中, 縦軸は透過率を示し, 横軸はォ フセッ ト周波数を示す。 図 16は, 任意波形発生器 (AW G ) の出力信号を示す図面に替わるグ ラフである。 周波数範囲は, 0— 1 G H zである。 縦軸は, 強度であり, 横軸は周波数である。 図中, R F powerは, 電気信号の強度を意味し, Freqは周波数を意味する。 図 17は, 任意波形発生器 (AWG) の出力信号を示す図面に替わるグ ラフである。 周波数範囲は, 0— 5 GH zである。 縦軸は, 強度であり, 横軸は周波数である。 図中, RF powerは, 電気信号の強度を意味し, Freqは周波数を意味する。 図 17から, 4. 2 G H zの両側にサンプリン グノイズがあることがわかる。 図 18は,光 SSB変調器に印加される変調信号を示す図面に替わるグラ フである。 図 18 A, 図 18 Bは, それぞれ通倍器の出力, 及ぴ変調器の RF Aポートへの入力信号を示す。 図 19は, 光 S S B変調器への入力信号を示す図面に替わるグラフであ る。 図 19 A, 図 19 Bは, それぞれ掃引速度が 5マイクロ秒と 0. 5マ イク口秒のものを示す。 たとえば, 掃引速度が 0. の場合, スぺ ク トル間隔が 2MH z となるので, 光周波数測定の解像度もこれを上回 ることはないと考えられる。 実施例 3
実施例 1の装置を用いた発生させた光信号に, 光周波数の異なる光を ミキシングして所望の中心周波数をもつ超広帯域 R Fチヤープ信号を発 生させた。
光源 1 (9)として, アジレン ト (Agilent) 社 8 1 6 8 9 Aコンパク ト波 長可変レーザを用いた。 中心波長は, 1 5 4 9. 7 8 n m であり, 設定 パワーを 6 mWとした。 なお, 偏波コン トローラ出力端での強度は 6. l d Bmであった。 偏波コン トローラを経て, 光源からの出力光は, S S B変調器に入力した。
光源 2 (9)として, インターリ一バーで光 S S B変調器と結合したもの を用いた。
光 S S B変調器(2)として, 偏光子なし, 外部終端, バイアス電極分離 型のものをであって, 上記非特許文献 1に開示されるような 2つのサブ マッハツエンダー導波路を有するものを用いた。 バイアス電圧源(3)とし て, 直流電源 A D 8 7 1 1を用い, 光 S S B変調器(2)へバイアス電圧を 印加した。 バイアス電圧の位相や強度などの諸条件は, バイアス電圧源 (3)の制御装置を用いて制御した。 挿入損失は 4. 8dBであった。 メイン M Z導波路のバイアス電圧は 5. 9Vであり, サブ M Zのバイアス電圧は, DCA 電極が 7. 14Vであり, DCB電極が 7. 3Vであった。 本実施例では, USB信号 を利用した。
変調信号源(4)として, 任意波形発生器(5)と信号周波数通倍器(6)とを 組み合わせたものを用いた。 変調信号と して, 任意波形発生装置で発生 したチヤープ信号(3 0 0 M H z — 5 0 0 M H z )を 3 2通倍器で(9 . 6 G H z— 1 6 G H z )へ帯域拡張したものを用いた。 具体的には, 任意波 形発生器(5)として, テク トロニクス 社製 AWG710B を用いた。 信号周 波数通倍器(6)として, 綜合電子社製の 3 2倍遁倍器を用いた。 強度増幅 器として, E D S I社製の S H P 2 0 0 C Pを用いた。 9 0度力ブラと して, K R Y T A R社製, 90deg Hybrid Krytar 3060200を用いた。 なお, AWG710Bの出力として線形チヤープ信号を用い, 周波数掃引時間を, 5 マイクロ秒と した。 また, AWG710B の振幅は周波数が 300MHz のとき 0.5Vpp, 500MHzのとき l .OVpp となるような直線的に変化する振幅とし た。 また, サンプリングレートは 4.2G H z とした。
測定系 (光検出器) として, 光スペク トルアナライザ : アドバンテス ト社製 Q8384 を用い, 電気信号の検出器として, アジレン ト社製 P S A E 4 4 4 8 Aを用いた。 図 20は, 光源 2を短波長側においた場合における光スペク トルを示す 図面に替わるグラフである。 図中実線は, 波長が 1549.41nm のものを示 し, 点線は波長が 1549.48nmのものを示す。 図 21は, 光源 2を長波長側においた場合における光スぺク トルを示す 図面に替わるグラフである。 図中実線は, 波長が 1549.93nm のものを示 し, 点線は波長が 1549.875nmのものを示す。 図 22は, 光源 2の波長が 1549.41nmの場合のラジオ周波数スぺク トル を示す図面に替わるグラフである。入力光周波数差は, 46.2GHzであった。 発 生周 波数範 は , 36.6GHz ( 46.2GHz-9.6GHz ) 力 ら 30.2GHz (46.2GHz-16.0GHz) であった。 図 22 に示されるように, 46.2GHz ίこ S S Β変調器残留キャリアとのビートがある。 9.6-16GHZ は, 光 SSB変調 器出力のもつ強度変動 (残留キャリアと U S Βのビート) であると考え ら得る。 また, 20-30GHZ帯の成分は SSB変調器出力の残留 LSB と光源 2のビートであると考えられる。 図 23は, 図 22の部分拡大図である。 図 24は, 光源 2の波長が 1549.48nmの場合のラジオ周波数スぺク トル を示す図面に替わるグラフである。入力光周波数差は, 37.5GHzであった。 発 生周 波数範 は , 27.9GHz ( 37.5GHz-9.6GHz ) か ら 21.5GHz (37.5GHz-16.0GHz) であった。 図 24 に示されるように, 37.5GHz に S S B変調器残留キャリアとのビートがある。 また, 10-20GHZ帯の成分は SSB変調器出力の残留 LSBと光源 2のビートと SSB変調器出力のもつ強 度変動(残留キヤリアと U S Bのビート)の重複と考えられる。図 25は, 図 24の部分拡大図である。 図 26は, 光源 2の波長が 1549.93nmの場合のラジオ周波数スぺク トル を示す図面に替わるグラフである。入力光周波数差は, 18.7GHzであった。 発生周波数範は, 34.7GHz ( 18.7GHz+16.0GHz ) か ら 28.3GHz ( 18.7GHZ+9.6GHZ) であった。 図 26に示されるように, 18.7GHzに S S B変調器残留キヤリアとのビートがある。 10-20GHZ帯の成分は SSB変調 器出力の残留 LSB と光源 2のビートと SSB 変調器出力のもつ強度変動 (残留キャリアと U S Bのビート) の重複が存在する。 図 27 は, 図 26 の部分拡大図である。 図 28 は, 光源 2の波長が 1549.875nmの場合のラジオ周波数スぺタ ト ルを示す図面に替わるグラフである。 入力光周波数差は, 1 1.8GHzであつ た。発生周波数範は, 27.8GHz ( 1 1.8GHz+16.0GHz)から 20.6GHz ( l l .8GHz +9.6GHz) であった。 図 26 に示されるように, 1 1.8GHz に S S B変調器 残留キヤリァとのビートがある。 10-20GHZ帯には SSB変調器出力のもつ 強度変動(残留キヤリアと U S Bのビート)の重複が存在する。図 29は, 図 28の部分拡大図である。 実施例 4
光アンプを用いて光周波数掃引信号と光源 2のパワーをバランスした。 光源 2の出力と SSB変調器の出力をインターリ一バーで合わせた後に光 アンプ(FITEL ErFA 1 1031 -SFS: Pump LD current 75mA), lnmバンドパス フィルタを経て, PD に入力した。 光源 2の波長は, 1549.93nm, パワー は設定値で 0.3mWとした。 周波数掃引速度は, 5 0 0マイクロ秒, 5マ イク口秒, 又は 0 . 5マイクロ秒とした。 図 30は, アンプ出力スペク トルを示す図面に替わるグラフである。 実 線は掃引速度 5 0 0マイク口秒, 点線は掃引速度 5マイク口秒のものを 示す。 掃引速度 0 . 5マイクロ秒も掃引速度 5マイクロ秒のものとほぼ おなじであった。 図 31 は, ラジオ周波数スぺク トルを示す図面に替わるグラフである。 グラフは, 上から周波数掃引速度が, 5 0 0マイクロ秒, 5マイクロ秒, 0 . 5マイクロ秒のものである。 図 32は, 図 31の部分拡大図である。

Claims

請求の範囲
1 . 光 S S B変調器(2)と, 前記光 S S B変調器(2)へバイアス電圧を 印加するバイアス電圧源(3)と, 前記光 S S B変調器(2)へ入力光を供給 する光源(9)と,前記光 S S B変調器(2)へ変調信号を印加する変調信号 源(4)とを具備し,
前記変調信号源(4)は, 任意の波形を有する電気信号を発生するための 任意波形発生器(5)と,
前記任意波形発生器 (5)で発生した電気信号の周波数を通倍するため の電気信号周波数遁倍器(6)と, を具備し,
前記前記任意波形発生器(5)で発生し, 前記電気信号周波数通倍器(6) により通倍された電気信号を用いて, 前記光 S S B変調器(2)への変調信 号を生成する
光周波数制御装置。
2 . 請求の範囲 1に記載の光周波数制御装置を用いた光周波数制御信 号の発生装置。
3 . 請求の範囲 1に記載の光周波数制御装置(1)と,
前記光周波数制御装置(1)から出力され, 計測対象物(7)を透過した光 又は計測対象物(7)から反射した光を計測する光検出器(8)と,
を具備する光フィルタの精度計測器。
4 . 請求の範囲 1に記載の光周波数制御装置(1)と,
前記光周波数制御装置(1)から出力された光を計測するとともに, 前記 光周波数制御装置(1)から出力され, 計測対象物(7)を透過した光又は計 測対象物(7)から反射した光を計測する光検出器(8)と,
前記光検出器(8)が検出した値を記憶するとともに, 記憶した値から透 過率又は反射率を求める制御装置と,
を具備する計測器。
5 . 前記光 S S B変調器(2)の光源(9)と して, 光コム発生器を用いる 請求の範囲 1に記載の装置。
6 . 前記光 S S B変調器(2)の光源(9)と して, 波長可変光源を用いる 請求の範囲 1に記載の装置。
7 . 請求の範囲 1に記載の光周波数制御装置(1)と,
前記光周波数制御装置(1)から出力された光を検出する光検出器(8)を 具備する無線信号の発生装置。
8 . 請求の範囲 1に記載の光周波数制御装置(1)において,
前記光 S S B変調器(2)の替わりに, 光 D S B— S C変調器を用いる請 求の範囲 1に記載の光周波数制御装置。
9 . 請求の範囲 1に記載の光周波数制御装置(1)において,
前記光 S S B変調器(2)の替わりに, 光強度変調器または光位相変調器 を用いる請求の範囲 1に記載の光周波数制御装置。
1 0 . 請求の範囲 1に記載の光周波数制御装置(1)において,
前記光 S S B変調器(2)の替わりに, 光強度変調器または光位相変調器 と光フィルタを用いる請求の範囲 1に記載の光周波数制御装置。
1 1 . 請求の範囲 1に記載の光周波数制御装置(1)の出力を光コム発生器 の入力とする光周波数制御装置。
1 2 . 請求の範囲 8に記載の光周波数制御装置(1)の出力を光コム発生器 の入力とする光周波数制御装置。
1 3 . 請求の範囲 9に記載の光周波数制御装置(1)の出力を光コム発生器 の入力とする光周波数制御装置。 -
1 4 . 請求の範囲 1 0に記載の光周波数制御装置(1)の出力を光コム発生 器の入力とする光周波数制御装置。
1 5 . 請求の範囲 8に記載の光周波数制御装置(1)と,
前記光周波数制御装置(1)から出力された光を検出する光検出器(8)を 具備する無線信号の発生装置。
1 6 . 請求の範囲 9に記載の光周波数制御装置(1)と,
前記光周波数制御装置(1)から出力された光を検出する光検出器(8)を 具備する無線信号の発生装置。
1 7 . 請求の範囲 1 0に記載の光周波数制御装置(1)と, 前記光周波数制御装置(1)から出力された光を検出する光検出器(8)を 具備する無線信号の発生装置。
1 8 . 請求の範囲 1に記載の光周波数制御装置(1)と, 光源(9)と異な る光周波数の光を発生させる光源(19)を備え, 光周波数制御装置(1)の出 力と光源(19)の出力を混合したものを検出する光検出器(8)を具備する 無線信号の発生装置。
1 9 . 請求の範囲 8に記載の光周波数制御装置(1)と, 光源(9)と異な る光周波数の光を発生させる光源(19)を備え, 光周波数制御装置(1)の出 力と光源(19)の出力を混合したものを検出する光検出器(8)を具備する 無線信号の発生装置。
2 0 . 請求の範囲 9に記載の光周波数制御装置(1)と, 光源(9)と異な る光周波数の光を発生させる光源(19)を備え, 光周波数制御装置(1)の出 力と光源(19)の出力を混合したものを検出する光検出器(8)を具備する 無線信号の発生装置。
2 1 . 請求の範囲 1 0に記載の光周波数制御装置(1)と, 光源(9)と異 なる光周波数の光を発生させる光源(19)を備え, 光周波数制御装置(1)の 出力と光源(19)の出力を混合したものを検出する光検出器(8)を具備す る無線信号の発生装置。
2 2 . 光 S S B変調器(2)と,「前記光 S S B変調器(2)へバイアス電圧 を印加するバイアス電圧源(3)と, 前記光 S S B変調器(2)へ変調信号を 印加する変調信号源(4)とを具備し, 前記変調信号源(4)は, 任意の波形 を有する電気信号を発生するための任意波形発生器(5)と, 前記任意波形 発生器(5)で発生した電気信号の周波数を通倍するための電気信号周波 数通倍器(6)と, を具備した光周波数制御装置を用い,
前記任意波形発生器(5)で発生し, 前記電気信号周波数通倍器(6)によ り通倍された電気信号を用いて, 前記光 S S B変調器(2)への変調信号を 生成し, 前記光 S S B変調器(2)の変調信号と して印加する工程を含む, 光周波数の制御方法。
PCT/JP2006/313036 2006-06-23 2006-06-23 超高速光周波数掃引技術 WO2007148413A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/306,117 US8682177B2 (en) 2006-06-23 2006-06-23 Super high speed optical frequency sweeping technology
PCT/JP2006/313036 WO2007148413A1 (ja) 2006-06-23 2006-06-23 超高速光周波数掃引技術
JP2008522256A JP4882042B2 (ja) 2006-06-23 2006-06-23 超高速光周波数掃引技術

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313036 WO2007148413A1 (ja) 2006-06-23 2006-06-23 超高速光周波数掃引技術

Publications (1)

Publication Number Publication Date
WO2007148413A1 true WO2007148413A1 (ja) 2007-12-27

Family

ID=38833165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313036 WO2007148413A1 (ja) 2006-06-23 2006-06-23 超高速光周波数掃引技術

Country Status (3)

Country Link
US (1) US8682177B2 (ja)
JP (1) JP4882042B2 (ja)
WO (1) WO2007148413A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027161A (ja) * 2010-07-21 2012-02-09 National Institute Of Information & Communication Technology 光電変換デバイスにおける変換効率の周波数特性校正方法
JP2012128400A (ja) * 2010-12-03 2012-07-05 Raytheon Co 超広帯域の帯域幅を有する波形を合成する方法及び装置
JP2014510948A (ja) * 2011-03-07 2014-05-01 アルカテル−ルーセント 可変光周波数コム発生器
JP2015207601A (ja) * 2014-04-17 2015-11-19 日本電信電話株式会社 レーザ位相雑音低減装置
JP2017139642A (ja) * 2016-02-04 2017-08-10 富士通株式会社 光受信器評価方法および光源装置
CN107272218A (zh) * 2017-05-26 2017-10-20 清华大学 高速结构光成像系统
JP2021096383A (ja) * 2019-12-18 2021-06-24 株式会社ミツトヨ レーザ装置、測定装置、および測定方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396033B (zh) * 2008-11-07 2013-05-11 Univ Nat Chiao Tung Multi - frequency electrical signal of the photoelectric device
US8849071B2 (en) * 2009-12-30 2014-09-30 Jds Uniphase Corporation Optical waveguide modulator
US20130104661A1 (en) * 2011-10-31 2013-05-02 Raytheon Company Method and apparatus for range resolved laser doppler vibrometry
US8767187B2 (en) 2011-12-13 2014-07-01 Raytheon Company Doppler compensation for a coherent LADAR
US8947647B2 (en) 2011-12-13 2015-02-03 Raytheon Company Range-resolved vibration using large time-bandwidth product LADAR waveforms
US8947644B2 (en) 2012-01-19 2015-02-03 Raytheon Company Using multiple waveforms from a coherent LADAR for target acquisition
US9057605B2 (en) 2012-12-06 2015-06-16 Raytheon Company Bistatic synthetic aperture ladar system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133840A (ja) * 1991-11-11 1993-05-28 Nippon Telegr & Teleph Corp <Ntt> 光周波数フイルタ測定装置
JP2001077794A (ja) * 1999-09-08 2001-03-23 Matsushita Electric Ind Co Ltd 光伝送システムおよび光送信装置
JP2001264714A (ja) * 2000-03-14 2001-09-26 Nippon Hoso Kyokai <Nhk> 光ファイバ伝送用信号の発生装置およびアップコンバートシステムならびに高周波信号の光ファイバ伝送システム
JP2002277916A (ja) * 2001-03-19 2002-09-25 Communication Research Laboratory 光周波数変換装置
JP2002341299A (ja) * 2001-05-16 2002-11-27 Matsushita Electric Ind Co Ltd 光変調方法とその光変調装置及び光無線伝送システム
JP2004085602A (ja) * 2002-08-22 2004-03-18 Communication Research Laboratory 低雑音光周波数変換装置
JP2004245750A (ja) * 2003-02-14 2004-09-02 Sumitomo Osaka Cement Co Ltd 光スペクトル測定方法及びその装置
JP2004310138A (ja) * 2000-07-07 2004-11-04 Nippon Telegr & Teleph Corp <Ntt> 多波長一括発生装置
JP2005244655A (ja) * 2004-02-26 2005-09-08 National Institute Of Information & Communication Technology 無線光融合通信システムにおける周波数変換方法及び基地局
JP2005345642A (ja) * 2004-06-01 2005-12-15 Optical Comb Institute Inc 光周波数コム発生器制御装置
JP2005353769A (ja) * 2004-06-09 2005-12-22 Nippon Telegr & Teleph Corp <Ntt> 周波数可変ミリ波光源とその光ミリ波信号発生方法
JP2006011838A (ja) * 2004-06-25 2006-01-12 Mitsubishi Electric Corp 関数発生器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544210B2 (ja) 1989-10-23 1996-10-16 横河電機株式会社 任意波形発生器
JP3235676B2 (ja) 1992-06-17 2001-12-04 株式会社アドバンテスト 任意波形発生器
JP3603977B2 (ja) 1996-09-06 2004-12-22 日本碍子株式会社 進行波形光変調器およびその製造方法
JP3179408B2 (ja) 1998-04-06 2001-06-25 日本電気株式会社 導波路型光デバイス
JP3559170B2 (ja) 1998-07-28 2004-08-25 住友大阪セメント株式会社 導波路型光デバイス
JP3548042B2 (ja) 1999-03-18 2004-07-28 住友大阪セメント株式会社 導波路型光デバイス
JP2001156548A (ja) * 1999-11-30 2001-06-08 A&Cmos Communication Device Inc 周波数逓倍器
CA2352680C (en) * 2000-07-07 2006-01-10 Nippon Telegraph And Telephone Corporation Multi-wavelength generating method and apparatus based on flattening of optical spectrum
JP4443011B2 (ja) * 2000-07-27 2010-03-31 日本碍子株式会社 進行波型光変調器
JP3504598B2 (ja) * 2000-08-18 2004-03-08 富士通カンタムデバイス株式会社 マイクロ波又はミリ波に対するバランス型周波数逓倍器
JP4471520B2 (ja) * 2000-09-22 2010-06-02 日本碍子株式会社 進行波形光変調器
JP2002162659A (ja) * 2000-11-28 2002-06-07 National Institute Of Advanced Industrial & Technology シングルサイドバンド光周波数コム発生方法及び装置
JP3592245B2 (ja) 2001-03-09 2004-11-24 独立行政法人情報通信研究機構 共振型光変調器
US7106497B2 (en) * 2002-08-19 2006-09-12 National Institute Of Information And Communications Technology Low-noise optical frequency converter
JP4095016B2 (ja) * 2003-11-28 2008-06-04 株式会社アドバンテスト 発振器、周波数逓倍器、及び試験装置
JP3843322B2 (ja) * 2004-02-16 2006-11-08 独立行政法人情報通信研究機構 光波長多重fsk変調方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133840A (ja) * 1991-11-11 1993-05-28 Nippon Telegr & Teleph Corp <Ntt> 光周波数フイルタ測定装置
JP2001077794A (ja) * 1999-09-08 2001-03-23 Matsushita Electric Ind Co Ltd 光伝送システムおよび光送信装置
JP2001264714A (ja) * 2000-03-14 2001-09-26 Nippon Hoso Kyokai <Nhk> 光ファイバ伝送用信号の発生装置およびアップコンバートシステムならびに高周波信号の光ファイバ伝送システム
JP2004310138A (ja) * 2000-07-07 2004-11-04 Nippon Telegr & Teleph Corp <Ntt> 多波長一括発生装置
JP2002277916A (ja) * 2001-03-19 2002-09-25 Communication Research Laboratory 光周波数変換装置
JP2002341299A (ja) * 2001-05-16 2002-11-27 Matsushita Electric Ind Co Ltd 光変調方法とその光変調装置及び光無線伝送システム
JP2004085602A (ja) * 2002-08-22 2004-03-18 Communication Research Laboratory 低雑音光周波数変換装置
JP2004245750A (ja) * 2003-02-14 2004-09-02 Sumitomo Osaka Cement Co Ltd 光スペクトル測定方法及びその装置
JP2005244655A (ja) * 2004-02-26 2005-09-08 National Institute Of Information & Communication Technology 無線光融合通信システムにおける周波数変換方法及び基地局
JP2005345642A (ja) * 2004-06-01 2005-12-15 Optical Comb Institute Inc 光周波数コム発生器制御装置
JP2005353769A (ja) * 2004-06-09 2005-12-22 Nippon Telegr & Teleph Corp <Ntt> 周波数可変ミリ波光源とその光ミリ波信号発生方法
JP2006011838A (ja) * 2004-06-25 2006-01-12 Mitsubishi Electric Corp 関数発生器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027161A (ja) * 2010-07-21 2012-02-09 National Institute Of Information & Communication Technology 光電変換デバイスにおける変換効率の周波数特性校正方法
JP2012128400A (ja) * 2010-12-03 2012-07-05 Raytheon Co 超広帯域の帯域幅を有する波形を合成する方法及び装置
JP2015121796A (ja) * 2010-12-03 2015-07-02 レイセオン カンパニー 超広帯域の帯域幅を有する波形を合成する方法及び装置
JP2014510948A (ja) * 2011-03-07 2014-05-01 アルカテル−ルーセント 可変光周波数コム発生器
JP2015207601A (ja) * 2014-04-17 2015-11-19 日本電信電話株式会社 レーザ位相雑音低減装置
JP2017139642A (ja) * 2016-02-04 2017-08-10 富士通株式会社 光受信器評価方法および光源装置
CN107272218A (zh) * 2017-05-26 2017-10-20 清华大学 高速结构光成像系统
JP2021096383A (ja) * 2019-12-18 2021-06-24 株式会社ミツトヨ レーザ装置、測定装置、および測定方法
JP7373713B2 (ja) 2019-12-18 2023-11-06 株式会社ミツトヨ レーザ装置

Also Published As

Publication number Publication date
JP4882042B2 (ja) 2012-02-22
US20090304393A1 (en) 2009-12-10
JPWO2007148413A1 (ja) 2009-11-12
US8682177B2 (en) 2014-03-25

Similar Documents

Publication Publication Date Title
JP4882042B2 (ja) 超高速光周波数掃引技術
JP4665134B2 (ja) 光搬送波抑圧両側波帯変調器を用いた4倍波発生システム
JP4552032B2 (ja) 高次成分を消去可能な光振幅変調システム
US6583917B2 (en) Optical intensity modulation device and method
CN110113105B (zh) 一种基于dp-mzm的新型十二倍频毫米波产生装置及方法
JP4771216B2 (ja) 超平坦光周波数コム信号発生器
JP4547552B2 (ja) キャリアや2次成分を消去可能なdsb−sc変調システム
EP2239620B1 (en) Optical pulse generator
US10587938B2 (en) Ultra high-speed photonics based radio frequency switching
JPS6266734A (ja) 光ホモダイン受信器の位相偏移情報取得および調節方法、装置
JP4798338B2 (ja) 超高消光比変調方法
JP4706048B2 (ja) 光電気発振器及び光電気発振方法
Sharma et al. Demonstration of optical frequency comb generation using four-wave mixing in highly nonlinear fiber
EP1956353B1 (en) Light intensity measurement device calibration method and device
Shumakher et al. Optoelectronic oscillator tunable by an SOA based slow light element
CN114978326A (zh) 一种宽带任意波形光学发生器芯片
Hamid et al. Tunable radio frequency photonic filter based on intensity modulation of optical combs
JP5181384B2 (ja) 光干渉トモグラフィー装置,光形状計測装置
EP1217425B1 (en) Optical intensity modulation device and method
US20070111111A1 (en) Light measurement apparatus and light measurement method
JP2006267201A (ja) 位相連続光fsk変調方法,位相連続光fsk変調器
Thioulouse et al. High-speed modulation of an electrooptic directional coupler
Farías et al. Coupled-mode analysis of an electrooptic frequency shifter
Kawanishi et al. Optical frequency sweep technique using single sideband modulation
Ma et al. Broadband and repetition rate tunable frequency comb based on electro-optic time lens with AlGaAsOI waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06780668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522256

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12306117

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06780668

Country of ref document: EP

Kind code of ref document: A1