Verfahren zum Steuern einer Glühkerze in einem Dieselmotor
Beschreibung
Die Erfindung betrifft ein Verfahren zum Steuern einer Glühkerze in einem Dieselmotor.
Figur 1 zeigt das Blockschaltbild eines Glühkerzen-Steuergerätes 1 zum Durchführen eines Verfahrens, welches aus dem Aufsatz „Das elektronisch gesteuerte Glühsystem ISS für Dieselmotoren", veröffentlicht in der DE-Z MTZ Motortechnische Zeitschrift 61 , (2000) 10, S. 668-675, bekannt ist. Dieses Steuergerät enthält einen Mikroprozessor 2 mit integriertem Digital-Analog-Wandler, eine Anzahl MOSFET- Leistungshalbleiter 3 zum Ein- und Ausschalten einer gleichen Anzahl von Glühkerzen 4, eine elektrische Schnittstelle 5 zur Verbindung mit einem Motorsteuergerät 6 und eine interne Spannungsversorgung 7 für den Mikroprozessor 2 und für die Schnittstelle 5. Die interne Spannungsversorgung 7 hat über die "Klemme 15" eines Fahrzeuges Verbindung mit einer Fahrzeugbatterie.
Der Mikroprozessor 2 steuert die Leistungshalbleiter 3 an, liest deren Statusinformationen und kommuniziert über die elektrische Schnittstelle 5 mit dem Motorsteuergerät 6. Die Schnittstelle 5 nimmt eine Anpassung der Signale vor, die zur Kommunikation zwischen dem Motorsteuergerät 6 und dem Mikroprozessor 2 benötigt werden. Die Spannungsversorgung 7 liefert eine stabile Spannung für den Mikroprozessor 2 und für die Schnittstelle 5.
Wird der Dieselmotor kalt gestartet, dann versorgt das Steuergerät 1 die Glühkerzen 4 mit einer Aufheizspannung, die im zeitlichen Mittel z. B. 11 Volt beträgt, um möglichst rasch die Zündtemperatur - sie beträgt ca. 8600C - zu überschreiten und die Beharrungstemperatur zu erreichen, welche die Glühkerze nach dem Zünden des Motors annehmen und beibehalten soll, bis der Motor seine normale Betriebstemperatur erreicht hat.
Für die Beharrungstemperatur ist ca. 1000° C ein typischer Wert. Um die Beharrungstemperatur beizubehalten, wird eine niedrigere Spannung als für das Aufheizen der Glühkerze benötigt; sie beträgt bei modernen Glühkerzen im zeitlichen Mittel typisch lediglich 5 Volt bis 6 Volt.
Der Mikroprozessor 2 steuert die Leistungshalbleiter 3 durch ein Verfahren der Pulsweiten-Modulation, was zur Folge hat, dass die Spannung aus dem Bordnetz, welche den Leistungshalbleitern 3 über die "Klemme 30" des Fahrzeugs zugeführt wird, so moduliert wird, dass die gewünschte Spannung an den Glühkerzen im zeitlichen Mit- tel anliegt.
Die Zündtemperatur und die Beharrungstemperatur sollen so rasch wie möglich erreicht werden. Bei modernen Glühkerzen wird eine Temperatur von 10000C, ausgehend von einem kalten Motor (z. B. 00C) schon nach ca. 2s erreicht. Ein so rascher Temperaturanstieg kann nicht abrupt enden. Deshalb kommt es zu einem Überschwingen, d. h., die Temperatur steigt trotz Absenkens der effektiven Spannung von z. B. 11 Volt auf 6 Volt über die Beharrungstemperatur an und erreicht ein Maximum, welches typisch einige zehn Grad bis ca. 2000C über der angestrebten Beharrungstemperatur liegt, um dann auf die Beharrungstemperatur abzufallen.
Die Zeit des Aufheizens einer Glühkerze vom kalten Ausgangspunkt bis zum Überschreiten der Beharrungstemperatur wird auch als Vorheizzeit oder Vorheizphase bezeichnet. Damit sie erreicht, aber nicht soweit überschritten wird, dass die Glüh- kerze Schaden nimmt oder ihre Lebensdauer beeinträchtigt wird, ist es bekannt, der Glühkerze in der Vorheizphase eine vorbestimmte Energie in Form von elektrischer Energie zuzuführen. Bei einem gegebenen Glühkerzentyp sind die Energie und die Zeitspanne, in welcher sie zugeführt wird, mitbestimmend dafür, wie rasch die Temperatur der Glühspitze der Glühkerze ansteigt, und sie beeinflussen zusammen mit der Ausgangstemperatur der Glühkerze auch, wie hoch der Überschwinger der Temperatur der Glühspitze der Glühkerze ausfällt.
Ein rascher Anstieg der Glühkerzentemperatur ist zwar wünschenswert, um einen Dieselmotor möglichst verzögerungsfrei starten zu können, bringt für die Glühkerze jedoch die Gefahr mit, dass sie überlastet wird und Schaden nimmt oder an Lebensdauer einbüßt. Ein Gefahrenpunkt ist das Erreichen einer zu hohen Temperatur, insbesondere als Folge eines zu hohen Überschwingers im Temperaturverlauf. Ein anderer Gefahrenpunkt ergibt sich aus der unvermeidlichen thermischen Trägheit der Glühkerze und aus der Tatsache, dass Glühkerzen aus Werkstoffen mit unterschied- licher thermischer Trägheit zusammengesetzt sind, nämlich aus Werkstoffen mit unterschiedlicher Wärmekapazität und unterschiedlicher Wärmeleitfähigkeit. Deshalb treten in der Glühkerze insbesondere in Grenzbereichen zwischen unterschiedlichen Werkstoffen Temperaturunterschiede auf, die mechanische Spannungen erzeugen, die umso größer sind, je größer die Temperaturunterschiede sind, und die Tempera- turunterschiede sind umso größer, je schneller sich die Temperatur ändert. Die mechanischen Spannungen, die in jeder Vorheizphase auftreten, können die Glühkerze schädigen und/oder ihre Lebensdauer verkürzen.
Deshalb besteht der Wunsch, die Temperatur der Glühkerze zu regeln. Bisher gelingt das allenfalls in der sogenannten Nachheizphase, wenn die Glühkerze nach dem Starten des Motors ihre Beharrungstemperatur annehmen und beibehalten soll. In der Nachheizphase droht jedoch keine Überlastung der Glühkerze, wie sie in der Vorheizphase droht. Um die Temperatur der Glühkerze in der Vorheizphase regeln zu können, müsste man zunächst die Temperatur messen. Dafür kommt praktisch
nur eine Messung über den temperaturabhängigen elektrischen Widerstand der Glühkerze in Frage. Der Glühkerzenwiderstand unterliegt jedoch fertigungsbedingt deutlichen statistischen Streuungen, die die Aussagekraft einer Widerstandsmessung für die Glühkerzentemperatur einschränken. Es kommt hinzu, dass die Kürze der Aufheizphase und die Steilheit des Temperaturanstieges die Temperaturmessung und eine daraufhin erfolgende Steuerung der Temperatur zusätzlich erschweren. Die Streuung der Widerstandswerte und die Dynamik des Temperaturanstiegs sind zusammengenommen eine denkbar schlechte Voraussetzung für eine Regelung der Temperatur in der Vorheizphase.
Angesichts dieser Schwierigkeiten schlägt die DE 102 47 042 B3 vor, das thermische Verhalten der Glühkerze bei ihrer Aufheizung durch ein physikalisches Modell abzubilden, z. B. durch einen Kondensator, welcher so ausgebildet ist, dass er eine ihm zugeführte elektrische Energie mit ähnlicher Dynamik speichert wie die Glühkerze, welche die ihr bei Aufheizen zugeführte elektrische Energie in Wärme wandelt und speichert. Das physikalische Modell der Glühkerze wird nach der Lehre der DE 102
47 042 B3 im Steuergerät für die Glühkerze verwirklicht und parallel zur Beheizung der Glühkerze mit einem kleinen Strom versorgt. Handelt es sich um einen Kondensator, dann ist dieser so ausgelegt, dass sein Ladezustand proportional zur Tempe- ratur der Glühkerze ist. Im Steuergerät wird anstelle der Temperatur der Glühkerze der Ladezustand des Kondensators überwacht und unter der Annahme, dass sein Ladezustand der Temperatur der Glühkerze entspricht, die Glühkerze entsprechend dem Ladezustand gesteuert. Nachteilig dabei ist, dass das Ergebnis dieses Verfahrens nicht besser sein kann als das physikalische Modell. Die Temperaturentwick- lung der Glühkerze hängt jedoch von vielen Faktoren ab: Von Schwankungen der Versorgungsspannung, von statistischen Schwankungen des Glühkerzenwiderstandes, von den Einbaubedingungen der Glühkerze im Motor, von der Motortemperatur, vom Betriebszustand des Motors, insbesondere von der Motordrehzahl, von der Einspritzmenge, von der Motorlast und schließlich auch vom Alterungszustand der Glühkerze.
Insbesondere die im Motor herrschenden Abkühlbedingungen lassen sich in einem solchen physikalischen Modell nicht oder nur schwierig berücksichtigen. Die DE 103
48 391 B3 schlägt deshalb vor, die Abkühlbedingungen durch ein mathematisches
Modell nachzubilden. Dadurch soll insbesondere eine Aussage über die Temperaturentwicklung einer Glühkerze ermöglicht werden, wenn der Motor abgestellt wurde und neu gestartet werden soll. Ist in einem solchen Fall die Glühkerze nämlich noch warm, darf sie nicht mit derselben Energie wie im Falle eines Kaltstarts beaufschlagt werden, weil die Glühkerze sonst zu heiß werden und Schaden nehmen könnte.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Weg aufzuzeigen, wie Glühkerzen in einem Dieselmotor rasch aufgeheizt werden können, ohne zu riskieren, dass sie durch zu schnelles oder zu hohes Aufheizen Schaden nehmen. Diese Aufgabe wird durch ein Verfahren mit den im Patentanspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
Erfindungsgemäß wird eine Glühkerze in einem Dieselmotor, insbesondere in der Vorheizphase, gesteuert, indem der zeitliche Gradient einer an der Glühkerze temperaturabhängig auftretenden elektrischen Größe gemessen, mit einem Grenzwert verglichen und beim Passieren des Grenzwertes die effektive elektrische Versorgungsspannung der Glühkerze geändert wird.
Diese Vorgehensweise hat wesentliche Vorteile:
• Die Erfindung umgeht die Schwierigkeiten, die sich dem Fachmann entgegenstellen, wenn er versucht, die Temperatur einer Glühkerze direkt oder unter Einbeziehung eines physikalischen oder mathematischen Modells der Glühkerze zu regeln, indem sie darauf verzichtet, die Temperatur der Glühkerze oder eine der Temperatur der Glühkerze nachgebildete Größe eines physikalischen Modells zu bestimmen. Vielmehr wird erfindungsgemäß der zeitliche Gradient einer elektrischen Größe, die an der Glühkerze auftritt und temperaturabhängig ist, bestimmt und mit einem oder mehreren Grenzwerten verglichen. • Der Gradient einer temperaturabhängigen elektrischen Messgröße kann bestimmt werden, ohne dass man die absolute Größe der Temperatur kennen müsste. Das vereinfacht die Messaufgabe ganz wesentlich.
• Das erfindungsgemäße Verfahren ist weitgehend unabhängig von fertigungsbedingten Streuungen des Widerstandes der Glühkerzen.
• Die Steilheit des Temperaturanstiegs der Glühspitze einer Glühkerze, die für die Glühkerze zu einem Risiko wird, wenn sie zu groß ist und die einen schnellen Start des Dieselmotors verhindert, wenn sie zu klein ist, bildet sich unmittelbar in dem Gradienten der temperaturabhängigen elektrischen Größe ab, welche an der Glüh- kerze gemessen wird. Infolge dessen kann aus dem Gradienten unmittelbar abgelesen werden, wie schnell die Glühkerze aufgeheizt wird und wie stark die Glühkerze durch den Aufheizvorgang belastet wird.
• Erreicht oder überschreitet der Gradient eine vorgegebene Belastungsgrenze, kann die Belastung sofort verringert werden, indem die effektive elektrische Spannung, mit welcher die Glühkerze versorgt wird, herabgesetzt wird.
• Zeigt der Gradient hingegen an, dass der Temperaturanstieg, den er widerspiegelt, ohne Schaden für die Glühkerze größer sein könnte, dann kann die effektive elektrische Spannung, mit welcher die Glühkerze versorgt wird, noch in der laufenden Vorheizphase erhöht und dadurch das Erreichen der Zündtemperatur und in weite- rer Folge das Erreichen der Beharrungstemperatur der Glühkerze ohne Schaden für die Glühkerze beschleunigt werden, denn die Überwachung des Gradienten gegenüber einem oberen Grenzwert verhindert eine zu starke Belastung der Glühkerze.
• Das erfindungsgemäße Verfahren eignet sich zur Optimierung des Aufheizvorgan- ges der Glühkerzen, indem diese in der Nähe einer vorgegebenen Belastungsgrenze betrieben werden.
• Der Verlauf des Gradienten einer temperaturabhängigen elektrischen Größe ermöglicht eine Abschätzung, welche Endtemperatur erreicht werden würde, wenn in den Verlauf des Aufheizvorganges nicht steuernd eingegriffen würde. Eine solche Information kann z. B. dadurch gewonnen werden, dass man die zeitliche Entwicklung des Gradienten mit einer Referenzkennlinie vergleicht, die die zeitliche Entwicklung des Gradienten zeigt, welche mit einer Glühkerze gleichen Typs unter wirklichkeitsgetreuen Einbaubedingungen aufgenommen wurde. Insbesondere kann man den Verlauf des Gradienten mit dem Verlauf des Gradienten einer unter idealen Bedingungen aufgeheizten Glühkerze vergleichen und die effektive Versorgungsspannung reduzieren, wenn der beobachtete Gradient eine zu hohe Endtemperatur erwarten lässt, bzw. die Versorgungsspannung zeitweise anheben, wenn der beobachtete Gradient demgegenüber eine zu niedrige Endtemperatur erwarten lässt.
• In Extremfällen kann aufgrund einer Gradientenbestimmung der Aufheizvorgang der Glühkerze nicht nur gedämpft oder verzögert, sondern auch vollständig abgebrochen werden, um größeren Schaden zu vermeiden. In diesem Fall kann der Fahrer gewarnt werden, dass mit einer Glühkerze etwas nicht stimmt, und es kann ihm auch mitgeteilt werden, welche Glühkerze es betrifft.
Die Erfindung gewinnt eine nützliche Information über den Verlauf des Heizvorgangs einer Glühkerze aus dem zeitlichen Gradienten einer temperaturabhängigen elektrischen Messgröße. Als elektrische Größe, welche von der Temperatur abhängt, kann der elektrische Widerstand der Glühkerze beobachtet und sein Gradient bestimmt werden. Der Widerstand kann durch Messen der zur Verfügung stehenden Bordnetzspannung in Verbindung mit einer unabhängigen Strommessung bestimmt werden. Dabei wird vorzugsweise der an der Zuleitung zur Glühkerze auftretende Spannungsabfall berücksichtigt, um ein Messergebnis zu erhalten, welches im wesentli- chen nur vom Widerstand des bzw. der in der Glühkerze vorgesehenen Heizleiter abhängt, nicht aber vom Zuleitungswiderstand. Wie man den Zuleitungswiderstand bei der Messung berücksichtigen kann, ist in der DE 10 2006 010 082 A1 offenbart, auf weiche deswegen ausdrücklich verwiesen wird.
Moderne Stahlglühkerzen mit kurzer Aufheizzeit haben eine auf die Glühkerzenspitze konzentrierte Kombination aus Heizwendel und Sensorwendel, wobei der Widerstand der Heizwendel einen kleineren Temperaturkoeffizienten hat als der Widerstand der Regelwendel, welcher z. B. eine PTC-Charakteristik haben kann. Der Gradient des elektrischen Widerstandes ist bei kalter Glühkerze am größten. Mit steigender Tem- peratur fällt er ab und durchläuft den Wert Null, wenn die Temperatur der Glühkerze ihr Maximum durchläuft, wird negativ wenn die Glühkerzentemperatur wieder abfällt und nähert sich dem Wert Null an, so wie sich die Temperatur der Glühkerze der Beharrungstemperatur annähert. Die Begrenzung des Maximums des Gradienten des Widerstandes ist die einfachste Möglichkeit, die Steilheit des Temperaturanstiegs zu begrenzen. Das geschieht am einfachsten dadurch, dass die effektive Versorgungsspannung der Glühkerze herabgesetzt wird, wenn der Gradient einen vorgegebenen Grenzwert überschreitet. Umgekehrt kann in Fällen, in denen der beobachtete Gradient unterhalb eines Grenzwertes liegt, die effektive Versorgungsspannung für die Glühkerze entsprechend angehoben werden, um das Aufheizen zu beschleunigen.
Eine andere Möglichkeit, das erfindungsgemäße Verfahren durchzuführen, besteht darin, die Stromaufnahme der Glühkerze zu beobachten, denn auch sie ist über die Temperaturabhängigkeit des elektrischen Widerstandes der Glühkerze temperatur- abhängig. Die Stromaufnahme ist bei kalter Glühkerze am größten, fällt dann ab, bis die Glühkerze ihr Temperaturmaximum durchläuft und steigt dann wieder leicht an, bis sich die Glühkerze ihrer Beharrungstemperatur annähert. Infolgedessen ist der Gradient des Stroms zu Beginn negativ, steigt während der Vorheizphase der Glühkerze an, durchläuft den Wert Null, wenn der Widerstand der Glühkerze sein Maxi- mum durchläuft, und nähert sich dann von positiven Werten her dem Wert Null an, so wie sich die Temperatur der Glühkerze ihrer gleich bleibenden Beharrungstemperatur annähert. Um vom Vorzeichen des Gradienten unabhängig zu sein, kann man den Absolutwert des Gradienten zum Vergleich mit Grenzwerten heranziehen. Die Grenzwerte lassen sich aus Erfahrungswerten bilden.
Der Verlauf des Gradienten des elektrischen Widerstandes kann ebenso wie der Verlauf des Gradienten des elektrischen Stroms mit einem Referenzverlauf verglichen werden. Wenn der beobachtete zeitliche Verlauf des Gradienten steiler ist als der Referenzverlauf, kann dem durch eine Verringerung der effektiven Versorgungs- Spannung der Glühkerze entgegengewirkt werden, wohingegen in Fällen, in denen der beobachtete Verlauf des Gradienten der Stromstärke flacher ist als der Referenzverlauf, die effektive Versorgungsspannung für die Glühkerze zeitweise erhöht werden kann, um die Erwärmung der Glühkerze zu beschleunigen.
Eine grobe Absicherung der Glühkerzen kann dadurch erreicht werden, dass man für den Gradienten des elektrischen Widerstandes bzw. für den Gradienten der elektrischen Stromaufnahme einen einzigen Grenzwert festlegt, um die Steilheit des Temperaturanstieges nach oben absolut zu begrenzen. Die Begrenzung ist im unteren Temperaturbereich der Vorheizphase wirksam.
Die Höhe der erreichbaren Temperatur kann man unabhängig von einem steuernden Eingriff in die effektive Versorgungsspannung zur Vermeidung des Überschreitens von Grenzwerten steuern, indem man der Glühkerze in der Vorheizphase eine vorbestimmte Energie zuführt. Diese bestimmt hauptsächlich die erreichbare Tempera-
tur, wobei sich die Zeitspanne, über welche die Energie zugeführt wird, etwas verlängert, wenn ein anfänglich zu steiler Temperaturanstieg durch das erfindungsgemäße Verfahren gebremst werden sollte, wohingegen sich die Vorheizphase verkürzt, wenn wegen Unterschreitens einer unteren Grenze des Gradienten die effekti- ve Versorgungsspannung angehoben werden sollte.
Vorzugsweise wird nicht nur ein einziger Grenzwert für die Vorheizphase eingeführt, sondern der Grenzwert über den Verlauf der Vorheizphase verändert, so dass nicht nur zu Beginn der Vorheizphase, sondern während der gesamten Vorheizphase die Steilheit des Temperaturanstiegs kontrolliert werden kann. Das macht es möglich, die Aufheizzeit optimal kurz zu erhalten und/oder die Größe des Überschwingers der Temperatur der Glühkerze zu verringern, indem die Aufheizkurve der Glühkerze durch Einengen zwischen geeignete Grenzwerte des Gradienten geformt und einem idealen Verlauf angenähert wird.
Am einfachsten passt man die Grenzwerte stufenförmig an, d. h., man setzt sie mit fortschreitender Vorheizphase schrittweise herab. In je mehr Schritte die Vorheizphase eingeteilt wird, desto genauer kann der Temperaturgradient kontrolliert und einem idealen Verlauf angepasst werden. Praktisch erhält man recht ordentliche Er- gebnisse, wenn man die Vorheizphase in drei bis sechs Intervalle einteilt und demgemäß drei bis sechs Grenzwerte für die obere Grenze des Gradienten festlegt. In entsprechender Weise können untere Grenzwerte für den Gradienten festgelegt werden, bei deren Unterschreiten die effektive Versorgungsspannung vorübergehend erhöht und dadurch die Erwärmung der Glühkerze beschleunigt werden kann.
Es gibt verschiedene Möglichkeiten, die Weite der Schritte zu wählen, in denen die Grenzwerte konstant gehalten werden. Die Schritte können auf Zeitbasis bestimmt werden, sie können aber auch auf die Veränderung des elektrischen Widerstandes oder auf die Veränderung der elektrischen Stromaufnahme oder auf den Fortschritt der Energiezufuhr bezogen werden, wobei die letztgenannte Möglichkeit besonders bevorzugt ist, weil sie bei Unterteilung der Vorheizphase in Intervalle gleicher Energiezufuhr automatisch dazu führt, dass die Anpassung der Grenzwerte umso kurzfristiger erfolgt, je steiler der Temperaturanstieg ist.
Die Gradienten werden vorzugsweise periodisch wiederkehrend gemessen. Je kürzer die Periode ist, desto perfekter wird die Kontrolle. Zweckmäßigerweise wird der Gradient wenigstens 20 mal pro Sekunde, vorzugsweise wenigstens 30 mal pro Sekunde bestimmt. Die Frequenz der Impulsbreitenmodulation, mit welcher die effektive Versorgungsspannung eingestellt wird, beträgt vorzugsweise ein ganzzahliges Vielfaches der Frequenz, mit welcher die Gradientenbestimmung erfolgt; besonders bevorzugt ist ein Verfahren, in welchem die beiden Frequenzen übereinstimmen. Das ermöglicht eine Synchronisation der Zeitpunkte der Gradientenbestimmung mit der Stromzufuhr bei der Impulsbreitenmodulation bei der Spannungsversorgung.
Ein Vorzug der Erfindung liegt darin, dass es sogar möglich ist, den Gradienten des elektrischen Widerstandes oder der elektrischen Stromaufnahme auf einen Sollwert zu regeln, der sich aus dem idealen Temperaturverlauf einer idealen Glühkerze ableiten lässt. Auf diese Weise kann man sich mit dem realen Temperaturverlauf der realen Glühkerze dem Ideal bestmöglich annähern. Der ideale Temperaturverlauf einer idealen Glühkerze kann im Steuergerät für die Glühkerze gespeichert werden, z. B. im Speicher eines Mikroprozessors oder Mikrocontrollers, welcher die Spannungsversorgung der Glühkerze und die Ermittlung der Messwerte für die Gradientenbestimmung steuert, die Gradienten mit den Grenzwerten vergleicht und abhängig vom Ergebnis des Vergleiches die effektive Spannung anpasst, mit welcher die Glühkerze versorgt wird. Die Grenzwerte können im Speicher des Mikroprozessors oder Mikrocontrollers abgelegt sein, insbesondere als eine über den Verlauf der Vorheizphase verteilte Folge von diskreten Grenzwerten, aus denen sich der Mikroprozessor bzw. Mikrocontroller jeweils denjenigen auswählt, der zu dem Zeitpunkt in- nerhalb der jeweiligen Vorheizphase gehört, für welchen der Gradient bestimmt wurde.
Die beigefügte Figur 2 zeigt beispielhaft einen typischen Verlauf der Temperatur einer Glühkerze und die zugehörigen Verläufe des Gradienten des Glühkerzenwider- Standes und des durch die Glühkerze fließenden Stroms sowie Beispiele für die Wahl von Grenzwerten.