WO2007138914A1 - 継目無ステンレス鋼管の製造方法 - Google Patents

継目無ステンレス鋼管の製造方法 Download PDF

Info

Publication number
WO2007138914A1
WO2007138914A1 PCT/JP2007/060391 JP2007060391W WO2007138914A1 WO 2007138914 A1 WO2007138914 A1 WO 2007138914A1 JP 2007060391 W JP2007060391 W JP 2007060391W WO 2007138914 A1 WO2007138914 A1 WO 2007138914A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
heat
mandrel bar
tube
rolling process
Prior art date
Application number
PCT/JP2007/060391
Other languages
English (en)
French (fr)
Inventor
Yasuyoshi Hidaka
Toshihide Ono
Satoshi Matsumoto
Kouji Nakaike
Sumio Iida
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to JP2008517853A priority Critical patent/JP4935812B2/ja
Priority to EP07743825.7A priority patent/EP2025421B1/en
Priority to CN2007800192226A priority patent/CN101454089B/zh
Priority to BRPI0712692A priority patent/BRPI0712692B8/pt
Publication of WO2007138914A1 publication Critical patent/WO2007138914A1/ja
Priority to US12/258,851 priority patent/US8307688B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/02Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B25/00Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs
    • B21B25/04Cooling or lubricating mandrels during operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0269Cleaning

Definitions

  • the present invention performs a heat treatment of a product through a piercing and rolling process, a drawing and rolling process using a mandrel bar such as a mandrel mill rolling, and a constant diameter rolling process such as a stretch reducer rolling, or as necessary. More specifically, it relates to a method for manufacturing a seamless stainless steel pipe that is subjected to product heat treatment after cold working, and more specifically, in the pipe due to lubricant used for mandrel bars in stretch rolling such as mandrel mill rolling and graphite contamination from the production line.
  • the carburized layer can be decarburized in the subsequent heat treatment of the product, heat treatment of the tube softening before cold working, or product heat treatment after cold working.
  • the present invention relates to a stainless steel pipe manufacturing method.
  • a round steel slab (billet) is heated to a predetermined temperature (usually 1150 to 1250 ° C) using a heating furnace such as a rotary hearth type, and the round steel slab is passed through an inclined roll piercing and rolling mill. Mold into a hollow hollow shell.
  • a mandrel bar coated with a lubricant is inserted into the hollow shell, passed through a mandrel mill having a 7 to 9 stand force, and roughly rolled into a final rolling blank of a predetermined size in one pass.
  • the finishing rolling raw tube is placed in a reheating furnace and reheated (usually 900-1000 ° C), and descaled by spraying high-pressure water only on the outer surface of the tube.
  • reheated usually 900-1000 ° C
  • descaled by spraying high-pressure water only on the outer surface of the tube.
  • a Tsuchi Reducer rolling mill the tube obtained by the stretch reducer rolling is used as a cold working blank, and drawing by a drawing machine or cold working by cold rolling using a perforated roll like a pilger mill rolling machine is performed. After that, a seamless pipe that becomes a product is obtained.
  • a mandrel bar used in rough rolling by a mandrel mill is inserted into a holo shell in a high temperature state (usually 1100 to 1200 ° C). It is exposed to a state where it is easily seized with the shell.
  • a high temperature state usually 1100 to 1200 ° C.
  • the tube shape and wall thickness after mandrel mill rolling are affected by the number of roll rotations during rolling and the roll hole shape, and by the friction between the mandrel bar and the holo-shell.
  • the mandrel bar is prevented from seizing with the holo shell, and the outer surface of the mandrel bar is coated with a lubricant so that the friction with the holo shell can be optimized to obtain a predetermined tube shape and wall thickness. Applied.
  • a lubricant for example, there is a water-soluble lubricant having graphite as a main component, which is inexpensive and has excellent lubricating properties, as disclosed in JP-B-59-37317.
  • a lot of lubricants have been used.
  • stainless steel containing 10 to 30% by mass of Cr is used as a raw material, carburization occurs during rolling when rough rolling is performed using a mandrel bar coated with a lubricant mainly composed of graphite. Then, a carburized layer with a carbon concentration higher than the carbon content of the base material is generated on the inner surface side of the pipe.
  • the carburized layer generated on the inner surface of the pipe is generated mainly when graphite, which is the main component of the inner surface lubricant, or part of carbon in the organic binder is CO gasified and enters the steel during mandrel mill rolling.
  • the carbon concentration in the wall thickness part of about 0.5 mm from the inner surface of the pipe to the wall thickness direction may be about 0.1% by mass higher than the carbon content of the base material. May exceed the upper limit of carbon (C) content.
  • JP-A-8-90043 in the reheating treatment of the finish rolling element tube, after filling with a gas containing 10% or more of water vapor as the atmosphere on the inner surface of the steel tube, 980 to 1080 ° C 2 to: Proposals have been made to heat for LO.
  • a gas containing 10% or more of water vapor as the atmosphere on the inner surface of the steel tube
  • 980 to 1080 ° C 2 to: Proposals have been made to heat for LO.
  • cracking occurs in the corrosion test when the water vapor is in the range of 0 to 9%.
  • the manufacturing method disclosed in JP-A-8 90043 is not suitable for mass production because a large-scale steam manufacturing apparatus is required to keep the water vapor of 10% or more on the pipe inner surface.
  • Lubricant is a stratified acid oxide and borate that contains no carbon, or even if it contains only carbon in the organic binder component and has a low carbon content. It is disclosed.
  • the application method of the non-graphite lubricant is the same as that of the graphite lubricant, and the component is designed so that the lubricating performance is not inferior to that of the graphite lubricant.
  • non-graphite lubricants as disclosed in JP-A-9-78080 are more expensive than black lead lubricants, for the economic reasons, It does not apply to rolling to materials that do not require consideration of the problem of carburized layers.
  • most of the products that are the subject of demand for seamless steel pipes in recent years do not need to consider internal carburization, it is usually the case that when extending and rolling using a mandrel bar such as mandrel mill rolling, it is economical. From the viewpoint of the properties Graphite-based lubricant is used.
  • the transport line of the mandrel bar is used during the drawing and rolling of a carbon steel pipe or a low alloy steel pipe. A large amount of graphite applied to the surface of the mandrel bar is transferred. However, since considerable equipment is required to clean the production line, sufficient cleaning is not performed, and graphite contamination due to the production line power is unavoidable.
  • the present invention corresponds to such a carburized layer generated on the inner surface of the pipe.
  • a stainless steel pipe is hot-rolled and further cold-worked as necessary, mandrel mill rolling or the like is performed. Even in the case of stretching and rolling using a drerver, even if graphite contamination occurs due to lubricants and production line strength, the carburized part can be decarburized by subsequent heat treatment, and the carburized layer generated on the inner surface of the pipe is suppressed.
  • the object of the present invention is to provide a method for producing a seamless stainless steel pipe having excellent inner surface quality.
  • the carburizing behavior of the actual machine is expected to be affected by the amount of carbon adhering to the mandrel bar surface.
  • the actual machine adhering condition to the mandrel bar surface was not detailed. For this reason, the amount of carbon adhering to the surface of the mandrel bar used for mandrel mill rolling was measured in the drawing and rolling using the mandrel bar.
  • Condition 1 The graphite lubricant is applied without cleaning the mandrel bar surface, and the mandrel bar transport line is not cleaned (so-called normal rolling conditions).
  • Condition 2 Force to clean the surface of the mandrel bar and apply non-graphite lubricant No cleaning of the mandrel bar transfer line.
  • Condition 3 Clean the mandrel bar surface and apply non-graphite lubricant and clean the mandrel transport line.
  • the mandrel bar surface cleaning is performed using an ultra-high pressure water washer, and after cleaning, the surface of the mandrel bar is almost free of carbon by analysis (1. Og / m 2 or less). confirmed.
  • the measurement of the amount of carbon adhering to the surface of the mandrel bar is made by collecting the mandrel bar surface adhering without omission while polishing a specific portion of the mandrel bar surface until a bare metal is exposed using a metal file. Then, the total amount of adhesion was quantitatively evaluated by weighing and quantitative analysis of carbon. 8 to 10 locations were collected for each mandrel bar, and the amount of adhesion on the surface of the mandrel bar was measured by weight equivalent to carbon by weight measurement and quantitative analysis. Table 1 shows the maximum value for each condition such as the surface property of the mandrel bar.
  • the carbon equivalent weight (g / m 2 ) means the carbon equivalent weight contained in the graphite and the organic binder in the lubricant per unit area of the lubricant adhering to the surface of the mandrel bar. Yes.
  • condition 2 only the mandrel bar is cleaned.
  • condition 1 is the normal rolling condition
  • condition 3 is considered to be able to reduce the amount of carbon adhering most at the current rolling technology level, and conditions that are considered to be intermediate between them.
  • the carbon equivalent weight of one surface of the mandrel bar was able to grasp it is that there is variation in the 80 ⁇ 12gZm 2.
  • a billet bowl (diameter 200 mm, length 3000 mm) of SU S 304 steel having a chemical composition shown in steel type A in Table 3 to be described later is 1150 to 125 0 ° in a rotary hearth calorie heat furnace.
  • a hot hollow shell with an outer diameter of 200 mm and a wall thickness of 16 mm was perforated by Mannesmann Piercer in the temperature range of C.
  • a finishing blank having an outer diameter of 110 mm and a wall thickness of 5.5 mm was roughly rolled by a mandrel mill.
  • the carbon equivalent weight on the surface of the mandrel bar is 10 to 80 gZm 2 by mixing the graphite-based lubricant and the non-graphite-based lubricant at a constant ratio. It adjusted so that it might become a range, and it apply
  • the transfer line and the mandrel bar were cleaned in advance with an ultra-high pressure water washer, and removed until the carbon adhesion amount became lgZm 2 or less.
  • reheating was performed at 1000 ° C and holding time of 20 minutes in a re-calorizing furnace, and then finished rolling into a steel pipe with an outer diameter of 45 mm and a wall thickness of 5 mm using a stress reducer.
  • FIG. 1 is a graph showing the influence of the carbon equivalent weight (g Zm 2 ) of the mandrel bar surface on the maximum carburization amount AC on the inner surface of the pipe.
  • the carbon equivalent weight of the mandrel bar surface is C (gZm 2 )
  • the effect on the maximum carburization amount AC on the inner surface of the tube can be quantified by the following equation (5).
  • AC 6.25CX10 " 4 (5)
  • FIG. 2 is a graph showing the influence of the carbon equivalent weight (gZm 2 ) of the mandrel bar surface on the carburization depth of the pipe inner surface.
  • the effect of the carbon equivalent weight C (g / m 2 ) of the mandrel bar surface on the carburization depth H of the pipe inner surface is as follows. It can be quantitatively determined by equation (6).
  • the carburization depth H can be predicted by the maximum carburization amount AC (%) on the inner surface of the pipe and the carbon equivalent weight C (gZm 2 ) on the mandrel bar surface, the carburized layer to be decarburized during heat treatment of the steel pipe The depth can be predicted.
  • the present invention has been completed on the basis of the above-described examination results, and has the gist of the following (1) to (6) methods for producing a seamless stainless steel pipe.
  • a seamless pipe manufacturing method in which product heat treatment is performed through a piercing and rolling process, a drawing and rolling process using a mandrel bar, and a constant diameter rolling process, and adheres to the mandrel bar surface in the drawing and rolling process.
  • C (gZm 2 ) is the carbon equivalent weight of graphite and organic binder in the lubricant per unit area of the lubricant
  • T (° C) is the heating temperature of the heat-treated tube in the heat treatment.
  • a seamless pipe manufacturing method in which cold working is performed through a piercing and rolling process, a drawing and rolling process using a mandrel bar, and a constant diameter rolling process, and the mandrel bar in the drawing and rolling process C (g / m 2 ) is the carbon equivalent weight of graphite and organic binder in the lubricant per unit area of the lubricant adhering to one surface, and before and after the cold working.
  • C (g / m 2 ) is the carbon equivalent weight contained in the graphite and organic binder in the lubricant per unit area of the lubricant adhering to the mandrel bar surface in the rolling process, and in the heat treatment after the cold working
  • the heating temperature of the heat-treated tube is T (° C)
  • the time for blowing decarburizing gas to the inner surface of the heat-treated tube is t (seconds)
  • the actual decarburization gas blowing time in the heat treatment is longer than t (seconds).
  • a method for producing a seamless stainless steel pipe characterized by comprising:
  • the maximum carburization amount on the inner surface of the heat-treated tube before heat treatment is ⁇ C (mass%)
  • the heating temperature of the heat-treated tube in the heat treatment after the cold working is T (° C)
  • the time for blowing decarburizing gas into the inner surface of the pipe is t (seconds)
  • the wall thickness of the tube before cold working is W.
  • the "stretch rolling using a mandrel bar” defined in the present invention is not limited to the mandrel mill rolling exemplified above, and is not limited to the mandrel mill rolling. It includes a rolling method in which a mandrel bar is inserted into the inner surface of the hollow shell and stretch-rolled. In either case, carburization on the inner surface of the pipe becomes a problem due to the lubricant applied to the surface of the mandrel bar.
  • the "constant diameter rolling” defined in the present invention is a rolling that adjusts the outer diameter and the wall thickness of the above-mentioned “rolling and rolling using a mandrel bar” to desired dimensions. Yes, stress This corresponds to roll reducer rolling and sizer rolling.
  • cold working defined in the present invention corresponds to cold working by drawing using a drawing machine or cold rolling using a hole roll like a pilger mill rolling machine.
  • the residual graphite-based lubricant and the rolling of the production line force cause the inner surface of the pipe to move.
  • the carburization depth H can be predicted from the carbon equivalent weight C (g / m 2 ) of the mandrel bar surface and the maximum carburization amount ⁇ C (%) of the pipe inner surface.
  • the carburized layer is suppressed by decarburization of the carburized part, and the inner surface product
  • a seamless steel pipe with excellent quality can be obtained.
  • FIG. 1 is a graph showing the influence amount of the carbon equivalent weight (g / m 2) of the mandrel bar surface on the maximum carburization amount AC on the inner surface of the pipe.
  • FIG. 2 is a graph showing the influence of the carbon equivalent weight (gZm 2 ) of the mandrel bar surface on the carburization depth of the pipe inner surface.
  • the method for producing a seamless stainless steel pipe according to the present invention has a carbon equivalent weight on the surface of a mandrel bar when carbon adhesion occurs in a lubricant or production line strength in stretching rolling using a mandrel bar such as mandrel mill rolling. Since C (gZm 2 ) can predict the carburization depth during the subsequent heat treatment, the heating temperature of the heat-treated tube in the heat treatment is T (° C), and decarburized gas is introduced into the inner surface of the heat-treated tube. When the blowing time is t (seconds), the relationship of equation (1) described later is satisfied, and the blowing time of the actual decarburizing gas in the heat treatment is made longer than the above t (seconds). It is characterized by doing.
  • the method for producing a seamless stainless steel pipe of the present invention can predict the carburization depth during the subsequent heat treatment based on the maximum carburization amount ⁇ C (%) on the inner surface of the pipe in the same case.
  • T heating temperature of the heat-treated tube in heat treatment
  • t seconds
  • blowing time of the actual decarburizing gas in the heat treatment is It is characterized by longer time (seconds).
  • the carbon equivalent weight C (g / m 2 ) on the surface of the mandrel bar is used during the subsequent heat treatment.
  • the carburization depth can be predicted during the heat treatment, or the carburization depth during the subsequent heat treatment can be predicted by the maximum carburization amount ⁇ C (%) on the pipe inner surface. Since the carburized depth during the subsequent heat treatment can be predicted, the thickness of the tube before cold working is W and the thickness of the tube after cold working is W.
  • a gas having a decarburizing action and containing an oxygen-containing gas such as oxygen, carbon dioxide and water vapor
  • an oxygen-containing gas such as oxygen, carbon dioxide and water vapor
  • Nitrogen gas, hydrogen gas, rare gas, etc., which are acidic, can also be mixed.
  • the decarburization action in the heat treatment using the "decarburizing gas” can be defined based on the diffusion behavior of carbon (C) in ⁇ -Fe. That is, the diffusion coefficient D (cm 2 Z seconds) of carbon (C) is expressed by the following equation (8), where T (° C) is the heating temperature of the heat-treated material.
  • the carburization depth H (m) to be decarburized in the heat treatment corresponds to the diffusion distance X (cm) represented by the above formula (9), which is shown in FIG.
  • Substituting the above expressions (8) and (9) into the expression () gives the relationship of the following expression (la).
  • the carbon equivalent weight contained in the graphite and the organic binder in the lubricant per unit area of the lubricant adhering to the surface of the mandrel bar is expressed as C (g / m 2 )
  • the heating temperature of the heat-treated tube in the heat treatment is T (° C)
  • the time for blowing the decarburizing gas into the inner surface of the heat-treated tube is t (seconds).
  • the actual blowing time of the gas having the decarburizing property in the heat treatment is set to t shown in the above equations (1) and (2).
  • the carburized portion formed on the inner surface of the pipe can be decarburized and the carburized layer can be suppressed.
  • the internal carburization depth is also reduced by the amount (ratio) of the wall thickness that has been reduced by cold working, so that the gas blowing time is shortened in the heat treatment after cold working. be able to.
  • the thickness of the tube before cold working is W
  • the thickness of the tube after cold working is W.
  • the heating temperature T (° C) of the heat-treated tube in heat treatment is 1000 ° C or more because it is intended for solution heat treatment as product heat treatment and softening heat treatment before cold working. Is desirable. More desirably, it is 1050 ° C or higher.
  • the upper limit of the heating temperature T (° C) is not set, but if it exceeds 1300 ° C, the scale loss will increase and the product yield will be reduced. It is desirable to use ° C.
  • the present invention Since the production method of the present invention suppresses the problem of corrosion resistance such as stress corrosion cracking due to the carburized layer on the inner surface of the pipe by decarburization, the present invention is intended to be applied at 1000 ° C. It is a stainless steel that becomes an austenitic phase by the above heating. Specific examples include SUS405, SUS410, SUS304, SUS309, SUS310, SUS316, SUS347, SUS329, NCF800, NCF825, and stainless steel corresponding to these.
  • the heat treatment defined in the present invention is a hot-rolled cold-rolled steel pipe that has been cold-worked from a hot-finished steel pipe or a hot-rolled cold-working raw material tube.
  • softening heat treatment When softening heat treatment is applied to a tube for processing, it may be applied to the softening heat treatment of the tube, or when soft heat treatment is performed in the course of cold working, it may be applied to the soft heat treatment. Good.
  • the heat treatment may be applied to both heat treatment of the product heat treatment after the cold working in addition to the heat treatment for softening the raw tube for cold working.
  • the heat treatment defined in the present invention can be applied to the underlined product heat treatment and raw tube softening heat treatment in the hot rolling process and the cold working process as exemplified in Table 2.
  • the gas having decarburizing property specified in the present invention if the gas having decarburizing property specified in the present invention is blown, the carburized portion can be decarburized, and internal carburization can be suppressed at the stage of the product steel pipe.
  • decarburization gas is blown in consideration of the thickness reduction rate due to cold working before heat treatment. Decide on the time of entry!
  • the Mandoreruba one used for elongation rolling the carbon deposition amount of the surface to be in the range of 10 ⁇ 80 gZm 2, a constant ratio of graphite-based lubricant and a non-graphite-based lubricant
  • the lubricant was applied after adjustment.
  • reheating was performed in a reheating furnace at a heating temperature of 1 000 ° C and a holding time of 20 minutes.
  • it was formed into a hot-finished steel pipe having an outer diameter of 45. Omm and a wall thickness of 5. Omm by a stress reducer.
  • Measurement of carbon equivalent weight C (g / m 2 ) on the surface of the mandrel bar is 8 to 8 per mandrel bar.
  • the maximum carburization amount ⁇ C on the inner surface of the steel pipe was obtained by collecting specimens for carburization analysis test from the end of the test tube before heat treatment of multiple products manufactured under the same conditions, The C concentration was measured at multiple points, and the difference between the maximum value and the C content at the center of the tube thickness was obtained.
  • ⁇ * marked in the table indicates that the conditions specified in the present invention are not satisfied.
  • the maximum carburization amount AC after product heat treatment is sufficiently smaller than the maximum carburization amount AC before product heat treatment.
  • the carburized layer could be suppressed.
  • the maximum carburization amount AC before the heat treatment of the product is as small as about 0.01%, it is possible to reduce the maximum carburization amount AC after the heat treatment of the product by applying the present invention.
  • a billet of SUS304 steel and SUS316 steel having the component yarn composition shown in Table 3 with a diameter of 200 mm and a length of 3000 mm is 1150 to 1250 in a rotary hearth calorie heat furnace.
  • Caro-heated in the temperature range of C produced a hollow hollow shell with an outer diameter of 200 mm and a wall thickness of 16 mm by Mannesmann Piercer, followed by rough rolling of a raw rolling tube with an outer diameter of 110 mm and a wall thickness of 5.5 mm by a mandrel mill did.
  • the Mandoreruba one used for elongation rolling the carbon deposition amount of the surface to be in the range of 10 ⁇ 80 gZm 2, a constant ratio of graphite-based lubricant and a non-graphite-based lubricant
  • the lubricant was applied after adjustment.
  • reheating was performed in a reheating furnace at a heating temperature of 1 000 ° C and a holding time of 20 minutes.
  • a cold-working tube having an outer diameter of 45. Omm and a wall thickness of 5. Omm was hot-rolled by a stress reducer.
  • the obtained tube for cold working was immersed in a nitric hydrofluoric acid solution for 60 minutes and descaled by pickling. Then, using a die and a plug with a cold drawing machine, the outer diameter was 38. Omm. , Thickness 4. Omm (thickness reduction rate 20%) was drawn. After that, by changing the heating temperature T (° C) and blowing time (seconds) in the product heat treatment furnace, air was blown into the inner surface of the heat-treated steel pipe as a decarburizing gas under various conditions, It was dipped again in nitric hydrofluoric acid solution for 60 minutes and descaled to obtain the final product.
  • the carbon equivalent weight C (g / m 2 ) on the surface of the mandrel bar was measured in the same manner as in Example 1.
  • the maximum carburization amount ⁇ C on the inner surface of the steel pipe was obtained by collecting specimens for carburization analysis test from the end of the test tube before and after heat treatment of multiple products manufactured under the same conditions, as in Example 1. The difference between the maximum value and the C content at the center of the tube thickness was determined and evaluated. These results are shown in Table 5.
  • ⁇ * marked in the table indicates that the conditions specified in the present invention are not satisfied.
  • the blowing time in () indicates that it is longer than 1 3 or 1 4 .
  • the maximum carburization amount AC after heat treatment of the product is sufficiently small, and the carburization on the inner surface of the pipe can be suppressed in the final product. Even if the maximum carburization amount AC before the heat treatment of the product is as small as about 0.01%, the maximum carburization amount AC after the heat treatment of the product can be further reduced by applying the present invention.
  • the maximum carburization amount ⁇ C after heat treatment of the product is sufficiently smaller than the maximum carburization amount ⁇ C before treatment, and carburization on the inner surface side of the pipe can be suppressed even in the final product after cold working. .
  • the residual graphite-based lubricant and the production line strength transfer to the inner surface of the pipe.
  • the carburization depth H can be predicted from the carbon equivalent weight C (g / m 2 ) of the mandrel bar surface and the maximum carburization amount ⁇ C (%) of the pipe inner surface.
  • the blowing time (t seconds) taking into account the thickness reduction during cold working.
  • the decarburization of the carburized part can suppress the carburized layer and obtain a seamless steel pipe with excellent inner surface quality. This is particularly suitable as a method for producing stainless steel in which deterioration of corrosion resistance due to carburization is a problem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Coating With Molten Metal (AREA)
  • General Factory Administration (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

 穿孔圧延工程、マンドレルバーを用いた延伸圧延工程および定径圧延工程を経て、製品熱処理を行う継目無管の製造方法であって、マンドレルバー表面に付着する潤滑剤の単位面積当たりの潤滑剤中の黒鉛および有機バインダー中に含まれる炭素相当重量がC(g/m2)で、または熱処理前の被熱処理管の内面の最大浸炭量がΔC(質量%)で、被熱処理管の加熱温度をT(°C)とし、当該被熱処理管の内面に脱炭性ガスを吹き込む時間をt1、t2(秒)とした場合に、また冷間加工時の肉厚の減少量を加味した吹き込み時間t3、t4(秒)とした場合に、所定の関係を満足させ、熱処理における実際の脱炭性を有するガスの吹き込み時間を前記t1、t2、t3、t4(秒)より長時間にすることにより、マンドレルミル圧延等おいて管内面に炭素付着が生じたとしても、浸炭層を抑制した継目無ステンレス鋼管を製造できる。

Description

明 細 書
継目無ステンレス鋼管の製造方法
技術分野
[0001] 本発明は、穿孔圧延工程、マンドレルミル圧延等のマンドレルバ一を用いた延伸圧 延工程、およびストレツチレデューサー圧延等の定径圧延工程を経て、製品熱処理 を行い、または必要に応じて冷間加工を施した後、製品熱処理を行う継目無ステンレ ス鋼管の製造方法に関し、さらに詳しくは、マンドレルミル圧延等の延伸圧延でマン ドレルバ一に用いる潤滑剤や製造ラインからの黒鉛汚染により管内面に浸炭層が形 成されたとしても、その後の製品熱処理、または冷間加工前の素管軟化熱処理、若 しくは冷間加工後の製品熱処理において浸炭層を脱炭させることができる継目無ス テンレス鋼管の製造方法に関するものである。
背景技術
[0002] 穿孔圧延、マンドレルミル圧延等のマンドレルバ一を用いた延伸圧延およびストレツ チレデューサー圧延等の定径圧延を行って得られる継目無管、さらに必要に応じて それを素管として冷間加工して得られる継目無管の製造は、通常、次のようにして行 われる。以下では、その製造方法を延伸圧延としてマンドレルミル圧延、および定径 圧延としてストレツチレデューサー圧延を適用した場合で説明する。
[0003] 回転炉床式等の加熱炉を用いて丸鋼片(ビレット)を所定温度 (通常、 1150〜125 0°C)に加熱し、この丸鋼片を傾斜ロール穿孔圧延機に通して中空のホロ一シェルに 成形する。次いで、このホロ一シェル内に潤滑剤を塗布したマンドレルバ一を挿入し 、 7〜9スタンド力 なるマンドレルミルに通して 1パスで所定寸法の仕上げ圧延用素 管に粗圧延する。
[0004] この粗圧延後、仕上げ圧延用素管を再加熱炉に装入して再加熱 (通常、 900-10 00°C)し、管外面のみに高圧水を吹き付けてデスケールした後、ストレツチレデュー サー圧延機により圧延される。さらに必要に応じて、ストレツチレデューサー圧延で得 られた管を冷間加工用素管として、抽伸機による引抜加工やピルガーミル圧延機の ように孔型ロールを用いた冷間圧延による冷間加工を経て製品となる継目無管を得 る。
[0005] 上述の継目無管の熱間圧延に際し、マンドレルミルによる粗圧延時に使用されるマ ンドレルバ一は、高温状態(通常、 1100〜1200°C)のホロ一シェル内に挿入され、 ホロ一シェルと焼き付き易い状態に曝される。また、マンドレルミル圧延後の管形状 や肉厚寸法は、圧延時のロール回転数とロール孔型形状の影響を受けるとともに、 マンドレルバ一とホロ一シェルとの間の摩擦による影響を受ける。このため、マンドレ ルバ一がホロ一シェルと焼き付くのを防ぐとともに、ホロ一シェルとの摩擦を適正にし て所定の管形状や肉厚寸法が得られるように、マンドレルバ一の外表面に潤滑剤が 塗布される。
[0006] このような潤滑剤として、例えば、 特公昭 59— 37317号公報に示されるような安 価で非常に優れた潤滑特性を有する黒鉛を主成分とする水溶性潤滑剤があり、この 黒鉛系の潤滑剤が従来から多く使用されている。しかし、特に Crを 10〜30質量%含 有するステンレス鋼を素材とする場合に、黒鉛を主成分とする潤滑剤を塗布したマン ドレルバ一を用いて粗圧延を行うと、圧延時に浸炭現象が生じ、管の内表面側に炭 素濃度が母材の炭素含有量よりも高い浸炭層が発生する。
[0007] 管内表面に発生した浸炭層は、主としてマンドレルミル圧延時に内面潤滑剤の主 成分である黒鉛や有機バインダー中の炭素の一部が COガス化して鋼中に浸入する ことにより発生する。その結果、管の内表面から肉厚方向に 0. 5mm程度までの肉厚 部分の炭素濃度が母材の炭素含有量よりも約 0. 1質量%程度高くなる場合があり、 規格等で規定された炭素 (C)含有量の基準の上限値を超えてしまう場合がある。
[0008] このように所定の基準を超えて残存する浸炭層部分では、ステンレス鋼にあっては 耐食性皮膜である不働態皮膜を形成する主要成分の Crが炭化物として固定される ことから、管内面の耐食性が著しく劣化する。
[0009] このため、管内表面に浸炭層が生じた継目無ステンレス鋼管は、そのままでは製品 として出荷できないので、浸炭層部分を消滅させる方法が行われている。例えば、浸 炭層が残存する管内表面を全面研磨したり、特開平 9— 201604号公報では、仕上 げ圧延後に管内面の酸化スケールの厚みを減少させるようにデスケールした後、酸 化性雰囲気中で 1050〜1250°Cに 3〜20分間加熱保持し、脱炭するための特殊な 熱処理を提案している。しかし、これらの浸炭層部分を消滅させる方法では、その処 理に多大な工数と費用を要するという問題がある。
[0010] さらに、特開平 8— 90043号公報には、仕上げ圧延用素管の再加熱処理において 、鋼管内面の雰囲気として 10%以上の水蒸気を含むガスで満たした後に、 980〜1 080°Cで 2〜: LO分加熱する提案がなされている。そして、実施例では水蒸気が 0〜9 %の範囲であると、腐食試験で割れが発生することが記されている。しかし、特開平 8 90043号公報の製造方法では、 10%以上の水蒸気を管内面に通気し続けるに は、大掛力りな水蒸気製造装置が必要となることから、大量生産には不向きである。 また、仕上げ圧延後には脱炭のための溶体ィ匕熱処理を行う必要がある。
[0011] また、特開平 4— 168221号公報には、黒鉛系潤滑剤を用いてマンドレルミル圧延 した仕上げ圧延用素管を、酸素濃度が 6〜15%の雰囲気にて 950〜1200°Cの温 度域で、 10〜30分保持した後に仕上げ圧延を行うオーステナイト系ステンレス鋼管 の製造方法が提案されている。しかし、特開平 4 168221号公報の製造方法では 、仕上げ圧延用素管の熱処理が長時間であるためスケールロスが大きく歩留まりの 観点から現実的ではない。
[0012] そこで、最近では、上記の黒鉛系潤滑剤に替え、非黒鉛系潤滑剤の開発とその使 用方法の開発が積極的に進められており、例えば、特開平 9— 78080号公報には、 主成分が層状酸ィ匕物であるマイ力と硼酸塩で、炭素を全く含まないか、仮に含むとし ても有機バインダー成分中の炭素のみで、炭素含有量を極力低くした潤滑剤が開示 されている。この非黒鉛系潤滑剤の塗布方法は、黒鉛系潤滑剤と同様であり、また、 その潤滑性能は、黒鉛系潤滑剤と比べて遜色がな 、ように成分設計されて ヽる。
[0013] し力しながら、特開平 9— 78080号公報で開示されるような非黒鉛系潤滑剤は、黒 鉛系潤滑剤に比べて高価であるため、経済的な理由から、管内面の浸炭層の問題 を考慮する必要のない材質等への圧延には適用されない。また、最近の継目無鋼管 の需要対象となる製品の大部分は、内面浸炭を考慮する必要がないことから、通常、 マンドレルミル圧延等のマンドレルバ一を用いた延伸圧延を行う場合には、経済性の 観点力 黒鉛系潤滑剤が用いられる。
[0014] ところが、低炭素材質のステンレス鋼管を製造する場合には、内面浸炭の問題を考 慮する必要がある。このような場合に、低炭素材質のステンレス鋼管の製造にのみに 非黒鉛系潤滑剤を用いたとしても、大部分の鋼種の延伸圧延に使用したのと同じマ ンドレルバ一を用いる場合に、そのマンドレルバ一表面に黒鉛が必ず残存付着して いる。
[0015] また、マンドレルバ一の搬送ライン、なかでも潤滑剤の塗布位置とホロ一シェルへの マンドレルバ一挿入位置との間の搬送ラインには、炭素鋼鋼管や低合金鋼鋼管など の延伸圧延時にマンドレルバ一表面に塗布された黒鉛が多量に転着している。しか し、製造ラインを洗浄するには相当の設備が必要になることから、充分な洗浄が行わ れず製造ライン力もの黒鉛汚染は不可避的なものとなる。
[0016] このため、マンドレルバ一を低炭素材質のステンレス鋼管の延伸圧延に使用するた めに、その表面に非黒鉛系潤滑剤を塗布しても、当該マンドレルバ一に黒鉛系潤滑 剤を塗布して延伸圧延に供したか否かに拘わらず、その表面 (すなわち、非黒鉛系 潤滑剤の皮膜表面)に搬送ラインに転着していた黒鉛が部分的に付着することにな る。
[0017] この非黒鉛系潤滑剤の皮膜表面に部分的に付着した黒鉛は、被加工材料である ホロ一シェルと直接接触することになるので、圧延後の管内表面に部分的な浸炭層 を生じさせ、黒鉛系潤滑剤を用いた場合に比べ程度の差こそあるが、浸炭層を生じ させる。
[0018] 一方、黒鉛系潤滑剤を塗布して延伸圧延に供したマンドレルバ一を用いる場合に は、新たに塗布した非黒鉛系潤滑剤皮膜の下部に黒鉛が残存付着しており、延伸 圧延ミルでの過酷な加工にともない、皮膜下部に残存する黒鉛も被加工材料と直接 接触することとなり、管の内表面に部分的な浸炭層を圧延中から、およびその後のェ 程において生じさせる。
[0019] このように、マンドレルバ一を用いた延伸圧延時に非黒鉛系潤滑剤を用いる場合で あっても、管内面に浸炭層が発生し耐食性が劣化する。
発明の開示
[0020] 前述の通り、実際の製造現場においては、マンドレルバ一を用いた延伸圧延時に 非黒鉛系潤滑剤を用いる場合であっても、マンドレルバ一の表面が黒鉛で汚染され ることが多く、内面に浸炭層が発生し耐食性が劣化するという問題がある。
[0021] 本発明は、このような管内面に発生した浸炭層に対応するものであり、ステンレス鋼 管を熱間圧延、さらに必要に応じて冷間加工する際に、マンドレルミル圧延等のマン ドレルバ一を用いた延伸圧延にぉ 、て潤滑剤や製造ライン力もの黒鉛汚染が生じた としても、その後の熱処理にて浸炭部を脱炭させることができ、管内面に発生する浸 炭層を抑制し、内面品質に優れた継目無ステンレス鋼管の製造方法を提供すること を目的にしている。
[0022] 本発明者らは、上記の課題を達成するため、穿孔圧延、マンドレルミル圧延等のマ ンドレルバ一を用いた延伸圧延および定径圧延を経て製造される鋼管内面の浸炭 挙動について詳細に調査し、実機における浸炭挙動は、マンドレルバ一表面の炭素 付着量の影響を受けることを明らかにした。
[0023] 具体的には、実機におけるマンドレルバ一表面の炭素相当重量 (gZm2)の測定、 並びに鋼管の内面表層における浸炭量および浸炭深さに及ぼすマンドレルバ一表 面の炭素相当重量 (gZm2)の影響を定量ィ匕することを試みた。
[0024] 1.マンドレルバ一表面の炭素相当重量 (gZm2)の実測結果
実機における浸炭挙動は、マンドレルバ一表面の炭素付着量の影響を受けること が予測される力 実機でのマンドレルバ一表面への付着状況は詳細にされていなか つた。このため、マンドレルバ一を用いた延伸圧延のうち、マンドレルミル圧延に用い られるマンドレルバ一表面に付着する炭素付着量を実測した。
[0025] 実機に採用されるマンドレルバ一をマンドレルミル圧延することなく通過させ、マンド レルミルの通過直後にクレーンで搬出し、マンドレルバ一表面より付着物をサンプリン グして重量測定とともに炭素分析を行った。これにより、もともとのマンドレルバ一表面 に付着していた炭素量およびマンドレルミルに挿入する前に製造ライン力ゝら転着した 炭素量の合計付着量を測定することができる。
[0026] このとき、マンドレルバ一表面性状等の条件およびマンドレルバ一搬送ラインの条 件は、次の条件 1〜条件 3に区分した。
条件 1:マンドレルバ一表面を洗浄することなく黒鉛系潤滑剤を塗布するとともに、マ ンドレルバ一搬送ラインの洗浄なし ( 、わゆる、通常の圧延条件)。 条件 2:マンドレルバ一表面を洗浄して非黒鉛系潤滑剤を塗布する力 マンドレルバ 一搬送ラインの洗浄なし。
条件 3:マンドレルバ一表面を洗浄して非黒鉛系潤滑剤を塗布するとともに、マンドレ ルバ一搬送ラインを洗浄する。
[0027] 上記条件 2、 3において、マンドレルバ一表面洗浄は超高圧水洗浄機を用いて行い 、洗浄後に、分析によりマンドレルバ一表面に殆ど炭素付着がないこと(1. Og/m2 以下)を確認した。
[0028] また、マンドレルバ一表面の炭素付着量の測定は、マンドレルバ一表面の特定部 位について、金属やすりを用い地金が露出するまで研磨しながら、マンドレルバ一表 面付着物を漏れなく採取し、重量測定と炭素の定量分析によって全体の付着量を定 量評価した。マンドレルバ一毎に 8〜10箇所採取し重量測定と定量分析によって、 マンドレルバ一表面の付着量を炭素相当重量で測定し、マンドレルバ一表面性状等 の条件毎の最大値を表 1に示した。
[0029] ここで、炭素相当重量 (g/m2)とは、マンドレルバ一表面に付着する潤滑剤の単位 面積当たりの潤滑剤中の黒鉛および有機バインダー中に含まれる炭素相当重量を 意味している。
[0030] [表 1] 表 1
Figure imgf000007_0001
条件 2ではマンドレルバ一のみ洗浄 表 1に示すように、通常の圧延条件である条件 1、現状の圧延技術レベルでもっとも 炭素付着量を少なくできると考えられる条件 3、およびそれらの中間と考えられる条件 2において、実際にマンドレルミル圧延では、マンドレルバ一表面の炭素相当重量に は 80〜 12gZm2の変動があることが把握できた。
[0032] 2.内面表層における浸炭量および浸炭深さに及ぼすマンドレルバ一表面の炭素相 当重量 (g/m2)の影響量
マンドレルバ一表面の炭素相当重量 (gZm2)が上記表 1で示す範囲で変動した場 合に、浸炭挙動に及ぼす影響を定量的に把握するため、マンドレルバ一表面の炭素 相当重量を意図的に変化させた実機試験にて、最終製品の管内面における浸炭に よる炭素濃度の増加量 (すなわち、浸炭量)および浸炭深さを調査した。
[0033] 実機試験における手順として、後述する表 3の鋼種 Aに示す化学組成を有する SU S 304鋼のビレツ卜(直径 200mm、長さ 3000mm)を回転炉床カロ熱炉で 1150〜 125 0°Cの温度範囲でカ卩熱し、マンネスマンピアサ一によつて外径 200mm、肉厚 16mm の中空のホロ一シェルを穿孔した。続いてマンドレルミルにより外径 110mm、肉厚 5 . 5mmの仕上げ用素管を粗圧延した。
[0034] このとき、上記表 1で示す調査結果を鑑みて、黒鉛系潤滑剤と非黒鉛系潤滑剤を 一定比率で混合することにより、マンドレルバ一表面の炭素相当重量が 10〜80gZ m2の範囲になるように調整して塗布した。
[0035] また、搬送ラインおよびマンドレルバ一は、予め超高圧水洗浄器にて洗浄を行 、、 炭素付着量が lgZm2以下になるまで除去した。マンドレルミルによる圧延後、再カロ 熱炉で加熱温度が 1000°C、保持時間が 20分の再加熱をおこなった後、ストレツチレ デューサ一により外径 45mm、肉厚 5mmの鋼管に仕上げ圧延した。
[0036] 仕上げ圧延された鋼管について、長さ lmごとに浸炭分析用試験片を採取し、鋼管 の内面表面のスケールをエメリー紙による研磨で除去し、脱脂後カントバックにより炭 素濃度を 20点測定し、その最大値を最大 C濃度 (質量%)とした。以下では、%の表 記は質量%を意味し、 {内表面の最大 C濃度(%)—肉厚中央部の C含有量 (%) }を 管内面の最大浸炭量とし Δ Cで示す。
[0037] 図 1は、管内面の最大浸炭量 A Cに及ぼすマンドレルバ一表面の炭素相当重量 (g Zm2)の影響量を示す図である。図 1に示すように、マンドレルバ一表面の炭素相当 重量を C (gZm2)とすると、管内面の最大浸炭量 A Cに及ぼす影響は、下記 (5)式 により定量ィ匕できる。 AC = 6.25CX10"4 ··· (5)
[0038] 図 2は、管内面の浸炭深さに及ぼすマンドレルバ一表面の炭素相当重量 (gZm2) の影響量を示す図である。図 2に示すように、管内面の浸炭深さを H ( m)とすると、 管内面の浸炭深さ Hに及ぼすマンドレルバ一表面の炭素相当重量 C (g/m2)の影 響は、下記(6)式により定量ィ匕できる。
H = 2.5XC ··· (6)
[0039] 上記図 1および図 2に示すマンドレルバ一表面の炭素相当重量 C(gZm2)の挙動 から、管内面の最大浸炭量 ACと浸炭深さ Hとは相関があり、上記 (6)式へ(5)式を 代入すると、下記(7)式に示すように、管内面の最大浸炭量 ACが小さいほど、管内 面の浸炭深さ Hも小さくなることが分かる。
H = 2.5XC = 2.5X{AC/(6.25X 10"4) }=4000X AC
•••(7)
[0040] 前述の通り、浸炭深さ Hが管内面の最大浸炭量 AC (%)やマンドレルバ一表面の 炭素相当重量 C(gZm2)によって予測できれば、鋼管の熱処理時に脱炭すべき浸 炭層の深さを予測できることになる。そうであれば、マンドレルミル圧延等のマンドレ ルバ一を用いた延伸圧延において黒鉛系潤滑剤の残留や製造ライン力ゝらの転着に より、管内面に炭素付着が生じたとしても、マンドレノレバー表面の炭素相当重量 C(g Zm2)、さらに管内面の最大浸炭量 AC (%)に応じて、その後の熱処理にて浸炭層 を脱炭させればよいことに着目した。
[0041] 本発明は、上述した検討結果に基づいて完成されたものであり、下記の(1)〜(6) の継目無ステンレス鋼管の製造方法を要旨としている。
(1)穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経 て、製品熱処理を行う継目無管の製造方法であって、前記延伸圧延工程でのマンド レルバー表面に付着する潤滑剤の単位面積当たりの潤滑剤中の黒鉛および有機バ インダ一中に含まれる炭素相当重量を C(gZm2)とし、前記熱処理における被熱処 理管の加熱温度を T(°C)とし、かつ当該被熱処理管の内面に脱炭性ガスを吹き込む 時間 (秒)とした場合に、下記(1)式の関係を満足し、前記熱処理における実際 の脱炭性を有するガスの吹き込み時間を前記 t (秒)より長時間にすることを特徴とす る継目無ステンレス鋼管の製造方法。
2.5XC={1.326X108Xt X EXP (-37460/1.987/(T+273)) }1/2
··· (1)
[0042] (2)穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経 て、製品熱処理を行う継目無管の製造方法であって、前記熱処理前の被熱処理管 の内面の最大浸炭量が Δ C (%)であり、前記熱処理における被熱処理管の加熱温 度を T(°C)とし、かつ当該被熱処理管の内面に脱炭性ガスを吹き込む時間を t (秒)
2 とした場合に、下記(2)式の関係を満足し、前記熱処理における実際の脱炭性を有 するガスの吹き込み時間を前記 t (秒)より長時間にすることを特徴とする継目無ステ ンレス鋼管の製造方法。
4000X AC={1.326X108Xt X EXP (-37460/1.987/(T+273)) }1/2
2
··· (2)
[0043] (3)穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経 て、冷間加工を行う継目無管の製造方法であって、前記延伸圧延工程でのマンドレ ルバ一表面に付着する潤滑剤の単位面積当たりの潤滑剤中の黒鉛および有機バイ ンダ一中に含まれる炭素相当重量を C (g/m2)とし、前記冷間加工前および冷間加 ェ後の少なくともいずれかの熱処理における被熱処理管の加熱温度を T(°C)とし、 かつ当該被熱処理管の内面に脱炭性ガスを吹き込む時間を t (秒)とした場合に、上 記(1)式の関係を満足し、前記熱処理における実際の脱炭性を有するガスの吹き込 み時間を前記 t (秒)より長時間にすることを特徴とする継目無ステンレス鋼管の製造 方法。
[0044] (4)穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経 て、冷間加工を行う継目無管の製造方法であって、前記冷間加工前および冷間加 ェ後の少なくともいずれかの熱処理前の被熱処理管の内面の最大浸炭量が Δ C (% )であり、当該熱処理における被熱処理管の加熱温度を T(°C)とし、かつ当該被熱処 理管の内面に脱炭性ガスを吹き込む時間を t (秒)とした場合に、上記 (2)式の関係 を満足し、当該熱処理における実際の脱炭性を有するガスの吹き込み時間を前記 t
2
(秒)より長時間にすることを特徴とする継目無ステンレス鋼管の製造方法。 [0045] (5)穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経 て、冷間加工を行った後に熱処理を行う継目無管の製造方法であって、前記延伸圧 延工程でのマンドレルバ一表面に付着する潤滑剤の単位面積当たりの潤滑剤中の 黒鉛および有機バインダー中に含まれる炭素相当重量を C (g/m2)とし、前記冷間 加工後の熱処理における被熱処理管の加熱温度を T(°C)とし、かつ当該被熱処理 管の内面に脱炭性ガスを吹き込む時間を t (秒)とし、さらに冷間加工前の管の肉厚
3
を W、冷間加工後の管の肉厚を Wとした場合に、下記(3)式の関係を満足し、前記
0 1
熱処理における実際の脱炭性を有するガスの吹き込み時間を前記 t (秒)より長時間
3
にすることを特徴とする継目無ステンレス鋼管の製造方法。
(W /W ) X2.5XC={1.326X108Xt X EXP (-37460/1.987/ (T+ 2
1 0 3
73))} 1/2 ··· (3)
[0046] (6)穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経 て、冷間加工を行った後に熱処理を行う継目無管の製造方法であって、前記冷間加 ェ前の被熱処理管の内面の最大浸炭量が Δ C (質量%)であり、前記冷間加工後の 熱処理における被熱処理管の加熱温度を T(°C)とし、かつ当該被熱処理管の内面 に脱炭性ガスを吹き込む時間を t (秒)とし、さらに冷間加工前の管の肉厚を W、冷
4 0 間加工後の管の肉厚を Wとした場合に、下記 (4)式の関係を満足し、当該熱処理に おける実際の脱炭性を有するガスの吹き込み時間を前記 t (秒)より長時間にするこ
4
とを特徴とする継目無ステンレス鋼管の製造方法。
(W /W ) X4000X AC={1.326X108Xt X EXP (-37460/1.987/ (T
1 0 4
+ 273))} 1/2 ··· (4)
[0047] 本発明で規定する「マンドレルバ一を用いた延伸圧延」とは、上記で例示したマンド レルミル圧延に限定されるのではなぐピルガーミル圧延やアッセルミル圧延等のよう に、穿孔圧延された中空のホロ一シェルの内面にマンドレルバ一を装入して延伸圧 延する圧延方法を包含するものである。いずれの場合も、マンドレルバ一表面に塗 布する潤滑剤により管内表面への浸炭発生が問題になることによる。
[0048] さらに、本発明で規定する「定径圧延」とは、上記「マンドレルバ一を用いた延伸圧 延」された仕上げ圧延用素管の外径や肉厚を所望の寸法に整える圧延であり、ストレ ッチレデューサー圧延やサイザ一圧延が該当する。
また、本発明で規定する「冷間加工」とは、抽伸機による引抜加工やピルガーミル 圧延機のように孔型ロールを用いた冷間圧延による冷間加工が該当する。
[0049] 本発明法の継目無ステンレス鋼管の製造方法によれば、マンドレルミル圧延等のマ ンドレルバ一を用いた延伸圧延において黒鉛系潤滑剤の残留や製造ライン力もの転 着により、管内面に炭素付着が生じたとしても、マンドレルバ一表面の炭素相当重量 C (g/m2)や管内面の最大浸炭量 Δ C (%)によって浸炭深さ Hを予測できることから 、その後の熱処理にて被熱処理管の加熱温度 T (°C)と、脱炭性ガスを吹き込む時間 t、 t、 t、 t (秒)を管理することにより、浸炭部の脱炭により浸炭層を抑制し、内面品
1 2 3 4
質に優れた継目無鋼管を得ることができる。
図面の簡単な説明
[0050] 図 1は、管内面の最大浸炭量 A Cに及ぼすマンドレルバ一表面の炭素相当重量 (g /m )の影響量を示す図である。
図 2は、管内面の浸炭深さに及ぼすマンドレルバ一表面の炭素相当重量 (gZm2) の影響量を示す図である。
発明を実施するための最良の形態
[0051] 本発明の継目無ステンレス鋼管の製造方法は、マンドレルミル圧延等のマンドレル バーを用いた延伸圧延において潤滑剤や製造ライン力もの炭素付着を生じた場合 に、マンドレルバ一表面の炭素相当重量 C (gZm2)によってその後の熱処理時にお ける浸炭深さを予測できることから、前記熱処理における被熱処理管の加熱温度を T (°C)とし、かつ当該被熱処理管の内面に脱炭性ガスを吹き込む時間を t (秒)とした 場合に、後述する(1)式の関係を満足し、前記熱処理における実際の脱炭性を有す るガスの吹き込み時間を前記 t (秒)より長時間にすることを特徴としている。
[0052] また、本発明の継目無ステンレス鋼管の製造方法は、同様の場合に、管内面の最 大浸炭量 Δ C (%)によってその後の熱処理時における浸炭深さを予測できることか ら、前記熱処理における被熱処理管の加熱温度を T (°C)とし、かつ当該被熱処理管 の内面に脱炭性ガスを吹き込む時間を t (秒)とした場合に、後述する(2)式の関係
2
を満足し、前記熱処理における実際の脱炭性を有するガスの吹き込み時間を前記 t (秒)より長時間にすることを特徴としている。
[0053] さらに、本発明の継目無ステンレス鋼管の製造方法は、冷間加工を行った後に熱 処理を行う場合に、マンドレルバ一表面の炭素相当重量 C (g/m2)によってその後 の熱処理時における浸炭深さを予測できること、または管内面の最大浸炭量 Δ C (% )によってその後の熱処理時における浸炭深さを予測できることにカ卩え、冷間加工時 の肉厚の減少量を加味してその後の熱処理時における浸炭深さを予測できることか ら、冷間加工前の管の肉厚を W、冷間加工後の管の肉厚を Wとし、前記冷間加工
0 1
後の熱処理における被熱処理管の加熱温度を T(°C)とし、かつ当該被熱処理管の 内面に脱炭性ガスを吹き込む時間を t )とした場合に、後述する(3)式および
3、 t (秒
4
(4)式の関係を満足し、前記熱処理における実際の脱炭性を有するガスの吹き込み 時間を前記 t、t (秒)より長時間にすることを特徴としている。
3 4
[0054] 本発明の製造方法では、管内面の炭素付着による浸炭層を脱炭するため、熱処理 における被熱処理管の内面に脱炭性ガスを吹き込み、管内面側を脱炭雰囲気にす る必要がある。このため、管内面に向けたノズル力ゝら脱炭性ガスを直接吹き込む方式 でもよぐまた、熱処理炉の炉圧を利用し、被熱処理管の両端での圧力差を利用し雰 囲気ガスとして用いられて ヽる脱炭性ガスを一方の管端から他端へ通気するようにし て吹き込んでもよい。
[0055] 本発明で適用する「脱炭性ガス」としては、脱炭作用を有する、酸素、二酸化炭素 や水蒸気等の酸ィ匕性ガスを含むガスを用いることができ、これらのガスに非酸ィ匕性で ある、窒素ガス、水素ガスや希ガス等を混合することもできる。
[0056] 本発明の製造方法では、 γ -Fe中の炭素 (C)の拡散挙動に基づいて、上記「脱炭 性ガス」を用いた熱処理における脱炭作用を規定することができる。すなわち、炭素( C)の拡散係数 D (cm2Z秒)は、被熱処理材の加熱温度を T(°C)とすると、下記 (8) 式で示される。
D=0. 663EXP (- 37460/1. 987/ (T+ 273) )
•••(8)
[0057] 次に、時間 t (秒)の間に炭素 (C)が被熱処理材中を拡散する距離 X(cm)は、下記
(9)式となる。 X=(2Dt)1/2 ··· (9)
[0058] 本発明の製造方法において、熱処理において脱炭させるべき浸炭深さ H( m)は 、上記(9)式で示される拡散距離 X (cm)に相当し、前記図 2に示す (6)式に上記(8 )式および(9)式を代入すると、下記(la)式の関係を得る。
H = 2.5 X C=X X 104= (2Dt) 1/2 X 104= { 2 X 0.663X 108XtEXP(— 374 60/1.987/(T+273))}1/2 ··· (la)
[0059] ここで、上記(la)式の関係において、マンドレルバ一表面に付着する潤滑剤の単 位面積当たりの潤滑剤中の黒鉛および有機バインダー中に含まれる炭素相当重量 を C(g/m2)とし、熱処理における被熱処理管の加熱温度を T(°C)とし、かつ被熱処 理管の内面に脱炭性ガスを吹き込む時間を t (秒)とした場合に、下記(1)式の関係 を満足することができる。
2.5XC={1.326X108Xt X EXP (-37460/1.987/(T+273)) }1/2
··· (1)
[0060] また、前記 (7)式に示す管内面の最大浸炭量 Δ Cと浸炭深さ Ηとの相関関係から、 上記(1)式に 2.5C=4000X ACを代入して、熱処理前の被熱処理管の内面の最 大浸炭量を Δ C (%)とし、熱処理における被熱処理管の加熱温度を T(°C)とし、 つ被熱処理管の内面に脱炭性ガスを吹き込む時間を t (秒)とした場合に、下記(2)
2
式の関係を満足することができる。
4000X AC={1.326X108Xt X EXP (-37460/1.987/(T+273)) }1/2
2
··· (2)
[0061] したがって、本発明の製造方法では、熱処理における実際の脱炭性を有するガス の吹き込み時間を上記(1)式および(2)式に示される t
1、t (秒)より長時間にすること 2
により、管内面に形成された浸炭部を脱炭し、浸炭層を抑制することができる。
[0062] 冷間加工を行う場合は、冷間加工で肉厚が減少した分 (比率)だけ、内面浸炭深さ も減少するため、冷間加工後の熱処理では、ガス吹き込み時間をより短くすることが できる。具体的には、冷間加工前の管の肉厚を W、冷間加工後の管の肉厚を Wと
0 1 した場合に、熱処理における実際の脱炭性を有するガスの吹き込み時間を下記(3) 式および (4)式に示される t、t (秒)より長時間にすることにより、浸炭層を抑制する ことができる。
[0063] (W /W ) X2.5XC={1.326X108Xt X EXP (-37460/1.987/ (T+ 2
1 0 3
73))} 1/2 ··· (3)
(W /W ) X4000X AC={1.326X108Xt X EXP (-37460/1.987/ (T
1 0 4
+ 273))} 1/2 ··· (4)
[0064] 本発明の製造方法では、熱処理における被熱処理管の加熱温度 T (°C)は、製品 熱処理としての固溶化熱処理や冷間加工前の軟化熱処理を対象とするため、 1000 °C以上とするのが望ましい。より望ましくは 1050°C以上である。加熱温度 T(°C)の上 限は特に設けないが、 1300°Cを超えるとスケールロスが多くなり製品歩留まりを低下 させるだけでなぐエネルギー源単位も悪ィ匕することから、その上限を 1300°Cにする のが望ましい。
[0065] 本発明の製造方法は、管内面の浸炭層により応力腐食割れ等の耐食性が問題に なるのを脱炭により抑制するものであるから、本発明が対象とするのは、 1000°C以上 の加熱でオーステナイト相となるステンレス鋼である。具体的には、 SUS405、 SUS 410、 SUS304, SUS309, SUS310、 SUS316、 SUS347, SUS329, NCF80 0、 NCF825およびこれらに相当するステンレス鋼などを例示することができる。
[0066] 本発明で規定する熱処理は、熱間仕上げ圧延された鋼管や熱間圧延された冷間 加工用素管から冷間加工された鋼管の製品熱処理だけでなぐ熱間圧延された冷間 加工用素管に軟化熱処理を行う場合は、その素管軟化熱処理に適用してもよぐ冷 間加工の途中工程で軟ィ匕熱処理を行う場合は、その軟ィ匕熱処理に適用してもよい。 さらには、冷間加工用素管の素管軟化熱処理に加えて冷間加工後の製品熱処理の 両方の熱処理に適用してもよい。
[0067] すなわち、本発明で規定する熱処理は、表 2に例示するような熱間圧延工程および 冷間加工工程における下線を付した製品熱処理および素管軟化熱処理に適用でき る。いずれの熱処理においても、本発明で規定する脱炭性を有するガスの吹き込み を行えば、浸炭部の脱炭を行うことができ、製品鋼管の段階で内面浸炭を抑制するこ とができる。また、冷間加工後の製品熱処理や冷間加工途中の軟化熱処理に適用 する場合は、熱処理前までの冷間加工による肉厚減少率を考慮して脱炭性ガスの吹 き込み時間を決定すればよ!/、。
[¾2]
延伸圧延 → 定径圧延 → 製品熱処理
延伸圧延 → 定径庄延 → 素管軟化熱処理 - - 冷間加工 → 製品熱処理 延伸圧延 → 定径圧延 → 素管軟化熱処理 - → 冷間加工 → 製品熱処理 延伸圧延 → 定径圧延 → 素管軟化熱処理 - → 冷間加工 → 製品熱処理 実施例
[0069] (実施例 1)
ステンレス鋼の圧延素材として、表 3に示す成分糸且成を有する SUS 304鋼と SUS 3 16鋼の直径 200mm、長さ 3000mmビレットを準備した。
[0070] [表 3] 表 3
Figure imgf000016_0001
[0071] この 2種類のビレットを回転炉床加熱炉で 1150〜1250°Cの温度範囲で加熱し、 マンネスマンピアサ一により外形 200mm、肉厚 16mmの中空のホロ一シェルを製造 し、続いてマンドレルミルによって外形 110mm、肉厚 5. 5mmの仕上げ圧延用素管 を製造した。
[0072] この際、延伸圧延に用いたマンドレルバ一には、その表面の炭素付着量を 10〜80 gZm2の範囲になるように、黒鉛系潤滑剤と非黒鉛系潤滑剤を一定比率で混合、調 整して潤滑剤を塗布した。マンドレルミルによる延伸圧延後、再加熱炉で加熱温度 1 000°C、保持時間 20分の再加熱をおこなった。続いてストレツチレデューサ一によつ て外径 45. Omm,肉厚 5. Ommの熱間仕上げ鋼管に製管した。
[0073] 得られた鋼管を硝弗酸液に 60分間浸漬して酸洗によるデスケーリングを行った後、 製品熱処理炉にて加熱温度 T(°C)および吹き込み時間(秒)を変化させて、被熱処 理鋼管の内面に種々の条件で脱炭性ガスとしてエアーの吹き込みを行い、再び硝弗 酸液に 60分間浸漬してデスケーリングを行い最終製品とした。
[0074] マンドレルバ一表面の炭素相当重量 C (g/m2)の測定は、マンドレルバ一毎に 8〜
10箇所について、金属やすりを用い地金が露出するまで研磨しながら、マンドレル バー表面付着物を漏れなく採取し、重量測定と炭素の定量分析によって測定し、マ ンドレルバ一表面に付着する最大値とした。
[0075] 鋼管内面の最大浸炭量 Δ Cは、同じ条件で製造した複数の製品熱処理前の供試 管の管端から浸炭分析試験用試験片を採取し、鋼管内面を発光分光分析装置によ り C濃度を複数点測定し、その中の最大値と管肉厚中央部の C含有量との差で求め た。
[0076] さらに、製品熱処理後の最大浸炭量 A Cも、同様に、複数の製品熱処理後の供試 管の管端から浸炭分析試験用試験片を採取し、鋼管内面を発光分光分析装置によ り C濃度を複数点測定し、その中の最大値と管肉厚中央部の C含有量との差で求め て評価した。これらの結果を表 4に示した。
[0077] [表 4]
表 4
Figure imgf000018_0002
注) ·表中で *を付したものは本発明で規定した条件を満足しないことを示す。
-熱処理後の ACが 0%を示すのは管内面に浸炭がないことを示す。
Figure imgf000018_0001
炭性を有するガスの吹き込み時間を前記(1)式および(2)式に示される t
1、t (秒)よ 2 り長時間にすることにより、製品熱処理前の最大浸炭量 A Cよりも、製品熱処理後の 最大浸炭量 A Cが十分小さな値となっており、最終製品において管内面の浸炭層を 抑制することができた。また、製品熱処理前に最大浸炭量 A Cが 0. 01%程度と小さ い場合であっても、本発明を適用することにより製品熱処理後の最大浸炭量 A Cをよ り小さくできることが分力る。
[0079] (実施例 2)
前記表 3に示す成分糸且成を有する SUS304鋼と SUS316鋼の直径 200mm、長さ 3000mmビレットを回転炉床カロ熱炉で 1150〜1250。Cの温度範囲でカロ熱し、マン ネスマンピアサーによって外形 200mm、肉厚 16mmの中空のホロ一シェルを製造し 、続いてマンドレルミルによって外形 110mm、肉厚 5. 5mmの仕上げ圧延用素管を 粗圧延した。
[0080] この際、延伸圧延に用いたマンドレルバ一には、その表面の炭素付着量を 10〜80 gZm2の範囲になるように、黒鉛系潤滑剤と非黒鉛系潤滑剤を一定比率で混合、調 整して潤滑剤を塗布した。マンドレルミルによる延伸圧延後、再加熱炉で加熱温度 1 000°C、保持時間 20分の再加熱をおこなった。続いてストレツチレデューサ一によつ て外径 45. Omm、肉厚 5. Ommの冷間加工用素管を熱間圧延した。
[0081] 得られた冷間加工用素管を硝弗酸液に 60分間浸漬して酸洗によるデスケーリング を行った後、冷間抽伸機でダイスとプラグを用いて、外径 38. Omm,肉厚 4. Omm( 肉厚減少率 20%)に引抜加工した。その後、製品熱処理炉にて加熱温度 T(°C)およ び吹き込み時間 (秒)を変化させて、被熱処理鋼管の内面に種々の条件で脱炭性ガ スとしてエアーの吹き込みを行 、、再び硝弗酸液に 60分間浸漬してデスケーリング を行い最終製品とした。
[0082] マンドレルバ一表面の炭素相当重量 C (g/m2)は、実施例 1と同様に測定した。鋼 管内面の最大浸炭量 Δ Cは、同じ条件で製造した複数の製品熱処理前後の供試管 の管端から浸炭分析試験用試験片を採取し、実施例 1の場合と同様に、その中の最 大値と管肉厚中央部の C含有量との差で求めて評価した。これらの結果を表 5に示し 表 5
Figure imgf000020_0001
注) ·表中で *を付したものは本発明で規定した条件を満足しないことを示す。
· ( ) 内の吹き込み時間は、 1 3または 1 4より長時間であることを示す。
•熱処理後の Δ Cが 0 %を示すのは管内面に浸炭がないことを示す。
[0084] 表 5に示すように、冷間加工後の製品熱処理にて、本発明で規定する脱炭性を有 するガスの吹き込み条件、すなわち、前記(1)式および(2)式を満足する場合におい て、実際の脱炭性を有するガスの吹き込み時間を前記(1)式および(2)式に示され る t、t (秒)より長時間にすることにより、製品熱処理前の最大浸炭量 A C量よりも、
1 2
製品熱処理後の最大浸炭量 A Cが十分小さな値となっており、最終製品で管内面側 の浸炭を抑制することができる。また、製品熱処理前に最大浸炭量 A Cが 0. 01%程 度と小さい場合であっても、本発明を適用することにより製品熱処理後の最大浸炭量 A Cをより/ J、さくできる。
[0085] さらに、冷間加工時の肉厚の減少量を加味した(3)式および (4)式を満足する場合 にお 、ても、実際の脱炭性を有するガスの吹き込み時間を前記(3)式および (4)式 に示される t、t (秒)より長時間にすることにより、前記(1)式および(2)式に示される
3 4
t、 t (秒)を満足しないガス吹込み時間(試験 No. 17、 23、 25)であっても、製品熱
1 2
処理前の最大浸炭量 Δ C量よりも、製品熱処理後の最大浸炭量 Δ Cが十分小さな値 となっており、冷間加工後の最終製品においても管内面側の浸炭を抑制することが できる。
産業上の利用の可能性
[0086] 本発明法の継目無ステンレス鋼管の製造方法によれば、マンドレルミル圧延等のマ ンドレルバ一を用いた延伸圧延において黒鉛系潤滑剤の残留や製造ライン力もの転 着により、管内面に炭素付着が生じたとしても、マンドレルバ一表面の炭素相当重量 C (g/m2)や管内面の最大浸炭量 Δ C (%)によって浸炭深さ Hを予測できることから 、その後の熱処理にて被熱処理管の加熱温度 T(°C)と、脱炭性ガスを吹き込む時間 t、 t (秒)を管理することにより、また、冷間加工を行った後に熱処理を行う場合には
1 2
、冷間加工時の肉厚の減少量を加味した吹き込み時間 t 秒)を管理することによ
3、 t (
4
り、浸炭部の脱炭により浸炭層を抑制し、内面品質に優れた継目無鋼管を得ることが できる。これにより、特に浸炭による耐食性の劣化が問題となるステンレス鋼の製造方 法として好適である。

Claims

請求の範囲
[1] 穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経て
、製品熱処理を行う継目無管の製造方法であって、
前記延伸圧延工程でのマンドレルバ一表面に付着する潤滑剤の単位面積当たり の潤滑剤中の黒鉛および有機ノ インダー中に含まれる炭素相当重量を C (g/m2)と し、
前記熱処理における被熱処理管の加熱温度を T(°C)とし、かつ当該被熱処理管の 内面に脱炭性ガスを吹き込む時間を t (秒)とした場合に、下記(1)式の関係を満足 し、
前記熱処理における実際の脱炭性を有するガスの吹き込み時間を前記 t (秒)より 長時間にすることを特徴とする継目無ステンレス鋼管の製造方法。
2.5XC={1.326X108Xt X EXP (-37460/1.987/(T+273)) }1/2
··· (1)
[2] 穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経て
、製品熱処理を行う継目無管の製造方法であって、
前記熱処理前の被熱処理管の内面の最大浸炭量が Δ C (質量%)であり、 前記熱処理における被熱処理管の加熱温度を T(°C)とし、かつ当該被熱処理管の 内面に脱炭性ガスを吹き込む時間を t (秒)とした場合に、下記(2)式の関係を満足
2
し、
前記熱処理における実際の脱炭性を有するガスの吹き込み時間を前記 t (秒)より
2 長時間にすることを特徴とする継目無ステンレス鋼管の製造方法。
4000X AC={1.326X108Xt X EXP (-37460/1.987/(T+273)) }1/2
2
··· (2)
[3] 穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経て 、冷間加工を行う継目無管の製造方法であって、
前記延伸圧延工程でのマンドレルバ一表面に付着する潤滑剤の単位面積当たり の潤滑剤中の黒鉛および有機ノ インダー中に含まれる炭素相当重量を C (g/m2)と し、 前記冷間加工前および冷間加工後の少なくともいずれかの熱処理における被熱処 理管の加熱温度を T(°C)とし、かつ当該被熱処理管の内面に脱炭性ガスを吹き込む 時間を t (秒)とした場合に、下記(1)式の関係を満足し、
前記熱処理における実際の脱炭性を有するガスの吹き込み時間を前記 t (秒)より 長時間にすることを特徴とする継目無ステンレス鋼管の製造方法。
2.5XC={1.326X108Xt X EXP (-37460/1.987/(T+273)) }1/2
··· (1)
[4] 穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経て 、冷間加工を行う継目無管の製造方法であって、
前記冷間加工前および冷間加工後の少なくとも 、ずれかの熱処理前の被熱処理 管の内面の最大浸炭量が Δ C (質量%)であり、
当該熱処理における被熱処理管の加熱温度を T(°C)とし、かつ当該被熱処理管の 内面に脱炭性ガスを吹き込む時間を t (秒)とした場合に、下記(2)式の関係を満足
2
し、
当該熱処理における実際の脱炭性を有するガスの吹き込み時間を前記 t (秒)より
2 長時間にすることを特徴とする継目無ステンレス鋼管の製造方法。
4000X AC={1.326X108Xt X EXP (-37460/1.987/(T+273)) }1/2
2
··· (2)
[5] 穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経て 、冷間加工を行った後に熱処理を行う継目無管の製造方法であって、
前記延伸圧延工程でのマンドレルバ一表面に付着する潤滑剤の単位面積当たり の潤滑剤中の黒鉛および有機ノ インダー中に含まれる炭素相当重量を C (g/m2)と し、
前記冷間加工後の熱処理における被熱処理管の加熱温度を T(°C)とし、かつ当該 被熱処理管の内面に脱炭性ガスを吹き込む時間を t (秒)とし、さらに冷間加工前の
3
管の肉厚を W、冷間加工後の管の肉厚を Wとした場合に、下記(3)式の関係を満
0 1
足し、
前記熱処理における実際の脱炭性を有するガスの吹き込み時間を前記 t (秒)より 長時間にすることを特徴とする継目無ステンレス鋼管の製造方法。
(W /W ) X2.5XC={1.326X108Xt X EXP (-37460/1.987/ (T+ 2
1 0 3
73))} 1/2 ··· (3)
穿孔圧延工程、マンドレルバ一を用いた延伸圧延工程および定径圧延工程を経て
、冷間加工を行った後に熱処理を行う継目無管の製造方法であって、
前記冷間加工前の被熱処理管の内面の最大浸炭量が Δ C (質量%)であり、 前記冷間加工後の熱処理における被熱処理管の加熱温度を T(°C)とし、かつ当該 被熱処理管の内面に脱炭性ガスを吹き込む時間を t (秒)とし、さらに冷間加工前の
4
管の肉厚を W、冷間加工後の管の肉厚を Wとした場合に、下記 (4)式の関係を満
0 1
足し、
当該熱処理における実際の脱炭性を有するガスの吹き込み時間を前記 t (秒)より
4 長時間にすることを特徴とする継目無ステンレス鋼管の製造方法。
(W /W ) X4000X AC={1.326X108Xt X EXP (-37460/1.987/ (T
1 0 4
+ 273))} 1/2 ··· (4)
PCT/JP2007/060391 2006-05-26 2007-05-21 継目無ステンレス鋼管の製造方法 WO2007138914A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008517853A JP4935812B2 (ja) 2006-05-26 2007-05-21 継目無ステンレス鋼管の製造方法
EP07743825.7A EP2025421B1 (en) 2006-05-26 2007-05-21 Process for producing seamless stainless-steel pipe
CN2007800192226A CN101454089B (zh) 2006-05-26 2007-05-21 无缝不锈钢钢管的制造方法
BRPI0712692A BRPI0712692B8 (pt) 2006-05-26 2007-05-21 processo para produzir um tubo de aço inoxidável sem costura
US12/258,851 US8307688B2 (en) 2006-05-26 2008-10-27 Process for producing seamless stainless steel pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-146167 2006-05-26
JP2006146167 2006-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/258,851 Continuation US8307688B2 (en) 2006-05-26 2008-10-27 Process for producing seamless stainless steel pipe

Publications (1)

Publication Number Publication Date
WO2007138914A1 true WO2007138914A1 (ja) 2007-12-06

Family

ID=38778433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060391 WO2007138914A1 (ja) 2006-05-26 2007-05-21 継目無ステンレス鋼管の製造方法

Country Status (6)

Country Link
US (1) US8307688B2 (ja)
EP (1) EP2025421B1 (ja)
JP (1) JP4935812B2 (ja)
CN (1) CN101454089B (ja)
BR (1) BRPI0712692B8 (ja)
WO (1) WO2007138914A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267040A (zh) * 2011-06-16 2011-12-07 张家港市逸洋制管有限公司 不锈钢轴承钢管和套圈的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049645A1 (de) * 2010-06-28 2011-12-29 Sms Meer Gmbh Verfahren zum Warmwalzen metallischer Hohlkörper sowie entsprechendes Warmwalzwerk
CN104107845B (zh) * 2013-04-19 2015-12-02 上海金保莱不锈钢有限公司 一种不锈钢钢管的生产工艺
CN103436840B (zh) * 2013-09-06 2016-01-20 安徽工业大学 一种钢材热加工中的补碳方法
CN104174650B (zh) * 2014-07-14 2016-02-03 天津钢管集团股份有限公司 防止二辊立式狄塞尔斜轧穿孔机导盘粘钢方法
EP3636789B1 (en) * 2017-06-09 2021-03-31 Nippon Steel Corporation Austenitic alloy pipe and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937317A (ja) 1982-08-27 1984-02-29 Mitsubishi Heavy Ind Ltd 分割軸受
JPS6268671A (ja) * 1985-09-20 1987-03-28 Kawasaki Steel Corp ステンレスクラツド鋼の製造方法
JPH04168221A (ja) 1990-11-01 1992-06-16 Kawasaki Steel Corp オーステナイト系ステンレス継目無鋼管の製造方法
JPH07278782A (ja) * 1994-04-14 1995-10-24 Nippon Steel Corp TiAl基金属間化合物の浸炭処理方法
JPH0857505A (ja) * 1994-08-19 1996-03-05 Sumitomo Metal Ind Ltd オーステナイト系ステンレス鋼管の製造方法
JPH0890043A (ja) 1994-09-26 1996-04-09 Sumitomo Metal Ind Ltd ステンレス継目無鋼管の製造方法
JPH0978080A (ja) 1995-09-12 1997-03-25 Sumitomo Metal Ind Ltd 高温加工用潤滑剤組成物およびその使用方法
JPH09201604A (ja) 1996-01-24 1997-08-05 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH596294A5 (en) 1974-05-08 1978-03-15 Lonza Ag High temp. lubricants for hot forming of metals
CH609728A5 (en) 1974-09-06 1979-03-15 Lonza Ag High temperature lubricant for the hot-forming of metals
US6620262B1 (en) * 1997-12-26 2003-09-16 Nsk Ltd. Method of manufacturing inner and outer races of deep groove ball bearing in continuous annealing furnace
JP2001105007A (ja) * 1999-10-08 2001-04-17 Sumitomo Metal Ind Ltd マンドレルミル圧延方法
JP4126979B2 (ja) * 2002-07-15 2008-07-30 住友金属工業株式会社 マルテンサイト系ステンレス継目無鋼管とその製造方法
EP1820576B1 (en) * 2004-10-28 2010-01-27 Sumitomo Metal Industries, Ltd. Production method of seamless steel pipe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937317A (ja) 1982-08-27 1984-02-29 Mitsubishi Heavy Ind Ltd 分割軸受
JPS6268671A (ja) * 1985-09-20 1987-03-28 Kawasaki Steel Corp ステンレスクラツド鋼の製造方法
JPH04168221A (ja) 1990-11-01 1992-06-16 Kawasaki Steel Corp オーステナイト系ステンレス継目無鋼管の製造方法
JPH07278782A (ja) * 1994-04-14 1995-10-24 Nippon Steel Corp TiAl基金属間化合物の浸炭処理方法
JPH0857505A (ja) * 1994-08-19 1996-03-05 Sumitomo Metal Ind Ltd オーステナイト系ステンレス鋼管の製造方法
JPH0890043A (ja) 1994-09-26 1996-04-09 Sumitomo Metal Ind Ltd ステンレス継目無鋼管の製造方法
JPH0978080A (ja) 1995-09-12 1997-03-25 Sumitomo Metal Ind Ltd 高温加工用潤滑剤組成物およびその使用方法
JPH09201604A (ja) 1996-01-24 1997-08-05 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2025421A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267040A (zh) * 2011-06-16 2011-12-07 张家港市逸洋制管有限公司 不锈钢轴承钢管和套圈的制备方法

Also Published As

Publication number Publication date
EP2025421A1 (en) 2009-02-18
US20090084151A1 (en) 2009-04-02
BRPI0712692B8 (pt) 2020-03-17
BRPI0712692B1 (pt) 2019-12-10
CN101454089B (zh) 2012-10-31
US8307688B2 (en) 2012-11-13
JP4935812B2 (ja) 2012-05-23
BRPI0712692A2 (pt) 2013-04-24
EP2025421B1 (en) 2013-10-16
JPWO2007138914A1 (ja) 2009-10-01
EP2025421A4 (en) 2012-06-20
CN101454089A (zh) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4853515B2 (ja) ステンレス鋼管の製造方法
JP2996245B2 (ja) 酸化スケ―ル層付きマルテンサイト系ステンレス鋼材およびその製造方法
WO2007138914A1 (ja) 継目無ステンレス鋼管の製造方法
JP5707177B2 (ja) 冷間鍛造用鋼線の製造方法
JP3379345B2 (ja) 酸化層を有する13Cr系ステンレス鋼管の製造方法
JP3125692B2 (ja) 黒皮被覆13Cr系ステンレス継目無鋼管の製造方法
JP4720491B2 (ja) ステンレス鋼管の製造方法
JP5045819B2 (ja) 冷間引抜用素管およびその製造方法並びに冷間引抜管の製造方法
JP2000024706A (ja) 継目無鋼管の製造方法および耐食性に優れた継目無合金鋼鋼管
JPH04168221A (ja) オーステナイト系ステンレス継目無鋼管の製造方法
EP1795274B1 (en) METHOD FOR HOT WORKING OF Cr-CONTAINING STEEL
JP3738660B2 (ja) マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP2867910B2 (ja) 継目無鋼管の浸炭防止方法
JP3646628B2 (ja) マンドレルミルによる圧延方法
JP2001105007A (ja) マンドレルミル圧延方法
JP4529640B2 (ja) ステンレス鋼管の製造方法
JP4240178B2 (ja) デスケール性と耐食性に優れたマルテンサイト系ステンレス継目無鋼管の製造方法
JP3232857B2 (ja) ステンレス継目無鋼管の製造方法
JP3949846B2 (ja) ステンレス鋼の脱スケール方法
JP2000343107A (ja) 高合金継目無鋼管の製造方法
JPH09201604A (ja) 継目無鋼管の製造方法
JPH0360598B2 (ja)
JP2002361318A (ja) 鋼線の製造方法、線材の中間加工設備列及び機械構造部品
JP2000239815A (ja) 溶融めっき鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019222.6

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008517853

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007743825

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0712692

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081117

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)