WO2007138747A1 - レジスト膜剥離方法、マスクブランクスの製造方法および転写マスクの製造方法 - Google Patents

レジスト膜剥離方法、マスクブランクスの製造方法および転写マスクの製造方法 Download PDF

Info

Publication number
WO2007138747A1
WO2007138747A1 PCT/JP2007/000573 JP2007000573W WO2007138747A1 WO 2007138747 A1 WO2007138747 A1 WO 2007138747A1 JP 2007000573 W JP2007000573 W JP 2007000573W WO 2007138747 A1 WO2007138747 A1 WO 2007138747A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist film
film
resist
mask blank
mask
Prior art date
Application number
PCT/JP2007/000573
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Horii
Keishi Asakawa
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to JP2008517783A priority Critical patent/JP5384106B2/ja
Priority to KR1020087031709A priority patent/KR101771250B1/ko
Priority to CN2007800174957A priority patent/CN101443886B/zh
Publication of WO2007138747A1 publication Critical patent/WO2007138747A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/46Antireflective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor

Definitions

  • Resist film peeling method Resist film peeling method, mask blank manufacturing method, and transfer mask manufacturing method
  • the present invention relates to a resist film peeling method for peeling a resist film from a mask blank having a resist film formed on a transfer pattern thin film, a mask blank manufacturing method, and a transfer mask manufacturing method. is there. Background art
  • a resist is applied to the surface of the base film, and then a transfer mask is used.
  • the resist is exposed using the resist, and then the resist is developed using a developer to form a resist pattern, and the underlying film is etched using the resist pattern as a mask. After that, the resist wrinkle pattern is removed using a stripping solution.
  • a metal for example, chromium
  • a metal compound for example, chromium includes at least one of oxygen, nitrogen, and carbon.
  • a transfer pattern thin film for example, a light-shielding film
  • a resist blank is applied on the transfer pattern thin film to produce a mask blank.
  • the resist film is developed using a developer to form a resist film pattern, and the resist film pattern is used as a mask for the transfer pattern. Etch the thin film. After that, the resist pattern is removed using a stripping solution.
  • the sensitivity of the resist film changes after a certain period of time, so that the mask blanks are always stocked to some extent (for example, mask blanks manufacturing site). And transfer mask manufacturing sites), mask blanks that become unusable due to changes in the sensitivity of the resist film occur. Also, apply a resist on the transfer pattern thin film. When creating mask blanks, there may be a convex or concave defect on the resist capsule surface for some reason. In such a case, if the resist film is removed from the mask blank and the substrate and the transfer pattern thin film formed on the substrate can be reused, the manufacturing cost can be reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0203 _ 2 7 3 0 79
  • Patent Document 2 Japanese Patent No. 3 3 4 4 3 9 1
  • Patent Document 2 proposes to use ozone water for removing the resist film after patterning.
  • the resist film after being used for patterning is proposed.
  • this is not a technology to remove the resist film before development.
  • Patent Document 2 describes a low concentration It has been proposed that high-concentration ozone water and an ozone decomposition catalyst solution are supplied onto the substrate, respectively, because the resist film cannot be removed efficiently with water.
  • such a method is highly reactive, it is considered impossible to remove only the resist film while leaving the base film formed under the resist film in a reusable state.
  • the surface of the transfer pattern thin film which is an underlayer, is peeled off when the resist film is peeled off from the mask blank having the transfer pattern thin film and the resist film formed on the substrate. If the optical characteristics (reflectance or transmittance) change due to damage (damage), a transfer mask is manufactured using the mask blank, and a semiconductor device or a liquid crystal device is manufactured using the transfer mask. This is a more serious problem because it causes pattern defects during manufacturing.
  • an object of the present invention is to remove only the resist film in a mask blank in which a transfer pattern thin film to be a transfer pattern and a resist film are formed on a substrate. It is an object of the present invention to provide a resist film peeling method, a mask blanks manufacturing method, and a transfer mask manufacturing method that make it possible to reuse a transfer pattern thin film and a substrate.
  • the present invention adopts the following configuration.
  • a mask blank comprising: a substrate; a transfer pattern thin film to be a transfer pattern formed on the substrate; and a resist film formed on the transfer pattern thin film.
  • a resist film peeling method for peeling the resist film wherein ozone water treatment in which ozone water dissolved in ozone is brought into contact with the resist film to dissolve the resist film is performed.
  • the resist film before development formed on the mask blank can be peeled off, and damage to the transfer pattern thin film surface can be extremely reduced. Therefore, with the resist film formed on the transfer pattern thin film, it is determined that the mask blank is defective or unusable due to changes in the sensitivity of the resist film, defects on the surface of the resist film, abnormal coating of the resist film, etc. Did For this, after removing only the resist film, a new resist film can be formed again on the transfer pattern thin film and used as a pattern for the transfer pattern thin film. Therefore, since both the substrate and the transfer pattern thin film can be reused, the manufacturing cost of mask blanks can be reduced.
  • the transfer pattern thin film is made of, for example, a material containing chromium.
  • the resist film peeling method of the present invention is particularly suitable when the transfer pattern thin film formed under the resist film is made of a material containing chromium.
  • the transfer pattern thin film may employ a configuration in which an antireflection layer having an antireflection function containing oxygen and Z or nitrogen is provided on the upper layer.
  • the upper layer portion of the transfer pattern thin film is provided with an antireflection layer such as chromium oxide, chromium nitride, or chromium oxynitride containing oxygen and Z or nitrogen, It is possible to suppress the fluctuation of the reflectance after the resist film peeling to a level that does not substantially change with respect to the reflectance before the resist film peeling. Therefore, it is possible to provide an extremely reliable mask blank that guarantees the optical characteristics of the transfer pattern thin film.
  • an antireflection layer such as chromium oxide, chromium nitride, or chromium oxynitride containing oxygen and Z or nitrogen
  • the content of oxygen and Z or nitrogen in the antireflection layer is 40 atomic% or more.
  • the optical characteristics (reflectance and transmittance) of the antireflection layer are not substantially changed, which is particularly good.
  • the content of oxygen and Z or nitrogen in the antireflection layer is preferably 50 atomic% or more, more preferably 6 ⁇ / ⁇ atoms or more.
  • an acidic or alkaline aqueous solution is brought into contact with the resist film to reduce the thickness of the resist film, and then the ozone water is used. It is preferable to carry out the treatment.
  • the resist capsule can be formed with an acidic or aqueous solution.
  • an acidic or aqueous solution By reducing the film thickness and then performing ozone water treatment, there is no resist film residue after the resist film is peeled off, and the resist film can be peeled off reliably.
  • there may be a thick region in the resist film such as the outer peripheral portion of the substrate, but it is certain that there is a thick region.
  • the resist film can be peeled off.
  • the resist film formed on the underlying film or transfer pattern thin film after surface treatment so that an acidic or alkaline aqueous solution preferentially contacts the resist film on the outer periphery of the substrate. It is preferable to perform ozone water treatment on the entire surface.
  • the resist film is peeled off by the ozone water treatment, it is preferable to perform a gas dissolved water treatment with a gas dissolved water.
  • the ozone water treatment is preferably performed using ozone water in which ozone is dissolved in 25 to 110 ppm.
  • the above configuration is preferable because the resist film peeling efficiency is improved while suppressing damage to the transfer pattern thin film.
  • the treatment temperature and treatment time in the ozone water treatment are set appropriately within a range that suppresses damage to the transfer pattern thin film.
  • a preferable temperature range of the processing temperature is 20 ° C to 35 ° C.
  • the treatment time is preferably 1 to 20 minutes.
  • the substrate can be effectively used in the state of the substrate with the transfer pattern thin film. Can be reduced.
  • the mask blank is, for example, a mask blank for KrF excimer laser exposure, a mask blank for ArF excimer laser exposure, a mask blank for F2 excimer laser exposure, or a mask for EUV exposure. Blanks.
  • the resist film pattern is then used as a mask.
  • the transfer pattern thin film is patterned to form a transfer pattern.
  • the transfer pattern thin film is patterned using the resist pattern as a mask.
  • a transfer pattern can be formed to produce a transfer mask.
  • FIG. 1 is a process cross-sectional view schematically showing how a mask blank is produced and how a transfer mask is produced using the mask blank.
  • FIG. 2 is an explanatory view showing a state where the resist capsule is thickened at the end of the mask blank.
  • FIG. 3 In the method of peeling a resist film to which the present invention is applied, when the surface temperature of the light-shielding film is optically measured when the ozone water treatment temperature is room temperature and the ozone water concentration and treatment time are changed. It is a graph of.
  • the surface condition of the light-shielding film when the ozone water treatment temperature is 25 ° C and the ozone water concentration and treatment time are changed is optically determined. It is a graph when it measures to.
  • the surface state of the light-shielding film when the treatment temperature of ozone water treatment is 30 ° C and the ozone water concentration and treatment time are changed is optically determined. It is a graph when it measures to.
  • FIG. 6 In the resist film peeling method to which the present invention is applied, a table of the light-shielding film when the treatment temperature of ozone water treatment is 35 ° C and the ozone water concentration and treatment time are changed. It is a graph when a surface state is measured optically.
  • FIG. 1 is a process cross-sectional view schematically showing how a mask blank is produced and how a transfer mask is produced using this mask blank.
  • a transfer mask To produce a transfer mask, first, as shown in Fig. 1 (a), synthetic quartz glass (for ArF excimer laser exposure), fluorine-doped quartz glass or fluoride fluoride (F2 excimer).
  • synthetic quartz glass for ArF excimer laser exposure
  • fluorine-doped quartz glass or fluoride fluoride F2 excimer
  • the substrate surface of materials such as low expansion glass (for EU V exposure) such as S i 0 2 -T i 0 2 is mirror-polished and then cleaned to a specified size (for example, 1 52. 4mm X 1 52. 4mm x 6. 35mm) board 1 1 is prepared.
  • a light-shielding film 12 that is a transfer pattern thin film is formed on the main surface of the substrate 11 by sputtering, vacuum evaporation, or the like.
  • the thickness of the light shielding film 12 is, for example, 40 nm to 120 nm so that desired optical characteristics (for example, transmittance (optical density), reflectance, etc.) can be obtained with respect to the wavelength of the exposure light. Adjust as appropriate.
  • chromium or a chromium compound containing at least one of oxygen, nitrogen, and carbon can be used for chromium, depending on the optical characteristics with respect to the wavelength of exposure light, the pattern cross-sectional characteristics, etc.
  • An antireflection layer having an antireflection function may be formed on the upper layer portion of the light shielding film 12.
  • Such an anti-reflection layer is, for example, chrome Formed with materials containing oxygen and z or nitrogen.
  • the content of oxygen and nitrogen in the antireflection layer is appropriately set according to the reflectance with respect to the wavelength of exposure light and the pattern cross-sectional characteristics.
  • another film may be formed between the substrate 11 and the light shielding film 12.
  • examples of other films include a phase shift film (including a halftone film) having a desired phase difference with respect to exposure light, an etching stopper layer, and a conductive film.
  • another film may be formed on the light shielding film 12.
  • a hard mask made of an inorganic material having resistance to an etchant of the light shielding film that functions as a mask layer when the light shielding film is patterned may be mentioned, for example, a material containing silicon.
  • the transfer pattern thin film is not limited to a light shielding film.
  • a resist film is formed from a reflective mask blank in which a multilayer reflective film is formed on a substrate 11, and an absorber film and a resist film as a transfer pattern thin film are further formed on the multilayer reflective film. It can also be applied when peeling.
  • the material of the absorber film includes a material containing chromium or a material containing tantalum.
  • a resist solution is applied onto the light shielding film 12 by a spin coating method or the like, and then heated and cooled, for example, a film thickness of 50 to ⁇ A 5 0 0 ⁇ m resist film 14 is formed.
  • a mask blank 1 in which the light shielding film 12 and the resist film 14 are laminated in this order on the substrate 11 is obtained.
  • the ozone water is purified by an aeration method or a molten film processing method, but in order to effectively remove the resist film 14, the ozone water purified by the molten film processing method or the like is used. Is preferably used.
  • the ozone concentration of ozone water purified by the aeration method has a limit of about 20 ppm, and such a low concentration of ozone water has a very slow dissolution rate for dissolving the resist film 14.
  • the ozone concentration of ozone water purified by the molten film processing method, etc. is a high concentration of about 25 ppm to 110 ppm, and the dissolution rate for dissolving the resist film 14 is reasonably fast and sure.
  • the resist film 14 can be peeled off from the light shielding film 12.
  • the resist film 14 before development can be efficiently peeled off with ozone water, and damage to the surface of the light shielding film 12 is extremely small.
  • an antireflection layer having an antireflection function containing oxygen and Z or nitrogen is provided on an upper layer of the transfer pattern thin film, and oxygen and oxygen in the antireflection layer are provided.
  • the content of Z and nitrogen is 40 atomic% or more, the optical characteristics (reflectance and transmittance) of the light-shielding film 12 are not substantially changed. Further, it is preferably 50 atom% or more, more preferably 60 atom% or more from the viewpoint of further changing the optical properties.
  • the optical characteristics (reflectance and transmittance) of the light shielding film 12 are not substantially changed, only the resist film 14 is removed, and then the light shielding film 12 is again formed. Even when a mask blank 1 is formed by forming a new resist film 14 thereon, the optical characteristics of the light-shielding film 12 2 are guaranteed, and a highly reliable mask blank 1 can be manufactured. In addition, since both the substrate 11 and the light shielding film 12 can be reused, the manufacturing cost of the mask blank 1 can be reduced.
  • the resist film peeling method to which the present embodiment is applied has a central region where a transfer pattern is formed on the outer periphery of the mask blank 1 manufactured as shown in FIG. 1 (c). This is a method suitable for the case where the thickness of the resist film 14 is increased compared to
  • Second treatment Ozone water treatment
  • an acidic or alkaline aqueous solution is preferentially brought into contact with a region where the thickness of the resist film 14 on the outer periphery of the substrate is thick.
  • the entire substrate may be immersed in these aqueous solution or gas-dissolved water.
  • An aqueous solution or a gas-dissolved water may be supplied.
  • the treatment using oxygen or an aqueous solution of strength is used.
  • the thickness of the resist film 14 on the outer periphery of the substrate 11 is preferentially reduced while the thickness of the resist film 14 on the entire surface of the light-shielding film 12 is reduced, and then the ozone water treatment is performed. Therefore, the resist film 14 can be reliably removed in a short time.
  • the acid or alkaline treatment is performed at a relatively first stage in the resist film peeling method, the surface of the light shielding film 12 is not damaged (damaged), and the light shielding is performed by the remaining aqueous solution.
  • the membrane 1 2 is not damaged.
  • no acid or alkali remains on the surface of the light shielding film 12 and the light shielding film 12 is not damaged.
  • the resist coating 14 can be removed with a sufficient dissolution rate if the resist coating 14 is not developed.
  • the damage to the light shielding film 1 2 is extremely small. Therefore, if the resist coating 14 is formed on the light-shielding film 12 and is no longer needed, the resist film 14 alone is removed and then a new one is formed on the light-shielding film 12 again.
  • a resist film 14 can be formed and used for patterning the light shielding film. Therefore, since it can be reused on both the substrate and the light shielding film, the manufacturing cost of the mask blank 1 can be reduced.
  • a resist capsule that is only treated with an acidic or alkaline aqueous solution.
  • the processing trace is generated, so further treatment with chemical rinsing etc. is necessary.
  • the light shielding film 1 2 is peeled off on the surface. It is possible to suppress the occurrence of processing traces due to. Ma
  • the amount of highly dangerous chemicals used can be reduced, and the burden of waste liquid treatment can be reduced.
  • the material of the resist film 14 is arbitrary.
  • the sensitivity is high, but the sensitivity tends to easily change. Therefore, when a chemically amplified resist film is used as the resist film 14, even if it cannot be used in the manufacture of a transfer mask because the sensitivity change is significant, the light shielding film 12 and the substrate 1 By reusing 1), the mask blank manufacturing costs can be significantly reduced.
  • the resist film peeling method 2 described above is employed. That is, as shown in FIG. 1 (c), when a mask blank 1 is fabricated and then a defect is found in the resist film 14, or because the mask blank 1 has been stored for a long time, the resist If the sensitivity change of membrane 14 increases,
  • Second treatment ozone water treatment
  • Ozone water concentration 3 0, 70, 90, 1 1 0 p p m
  • Processing temperature room temperature, 25, 30, 35 ° C
  • the reflectance of the light shielding film 12 after peeling off the resist film 14 formed under these conditions was measured to evaluate the light shielding film damage.
  • the reflectance of the light shielding film 12 was measured with a spectrophotometer.
  • An antireflection layer having an antireflection function is formed on the upper part of the light shielding film 12.
  • the light shielding film 12 is formed of a chromium nitride film (CrN film) from the substrate 11 side. Carbonized ROM film (C r C film), chromium oxynitride film (C r ON film).
  • the reflectance of the light shielding film 12 was 18% at an exposure wavelength of 19 3 nm.
  • the resist film 14 was a chemically amplified resist film having a thickness of 3500 nm.
  • FIGS. 3 to 6 show the light shielding film 1 after removing the resist film 14 by changing the treatment temperature of the ozone water treatment to room temperature, 25 ° C., 30 ° C., 35 ° C. 2 is a graph when the state of 2 is optically measured.
  • the horizontal axis represents the wavelength of light used to measure the state of the light shielding film 12.
  • the vertical axis shows the intensity of the reflected light from the light shielding film 12 after the resist film 14 is removed, and the light reflected from the light shielding film 12 after film formation (the light shielding film on which the resist 14 is not formed or peeled off).
  • the difference between the strength (%) and the smaller absolute value indicates that the damage to the light-shielding film 12 when the resist film 14 is peeled is smaller.
  • the numbers attached to each line in each graph indicate the results when the processing time is 1, 2, 3, 5, 7, 10 minutes.
  • Second treatment ozone water treatment
  • the upper part of the light-shielding film has an antireflection function having an antireflection function in which the total amount of oxygen 40% and nitrogen 20% is 60 atom%.
  • the light-shielding film was a chromium nitride film (C r N film), a chromium carbide film (C r C film), and a chromium oxynitride film (C r ON film) from the substrate side.
  • Example 2 In Example 2 described above, except that an antireflection layer having an antireflection function in which the total amount of oxygen and nitrogen is 30 atomic% is formed on the upper part of the light shielding film, the same as in Example 2, Remove resist film 14 formed on mask blank 1 Released. As a result, the change in the reflectance of the light shielding film 12 due to the resist film peeling was changed from that in Example 2, but was within 5%.
  • Second treatment ozone water treatment
  • Example 1 the resist film 14 formed on the mask blank 1 was peeled off in the same manner as in Example 1 except that the second process and the third process were not performed.
  • the variation of the reflectivity of the light shielding film 12 due to the resist film peeling exceeded 5%.
  • the surface state of the light shielding film 12 after the resist film was peeled was observed, the surface was roughened by the first treatment.
  • This state of the light shielding film 1 2 does not guarantee the optical characteristics of the light shielding film 12 in the mask blank 1. Therefore, it cannot be reused as a substrate with a light shielding film 12 and it is necessary to peel the light shielding film 12 and re-polish the substrate, so that the manufacturing cost of the mask blank cannot be reduced.
  • the accuracy of defect inspection performed in the subsequent process was deteriorated.
  • the resist film before development formed on the mask blank is peeled off by ozone water, the resist film can be peeled off without damaging the surface of the transfer pattern thin film. Therefore, with the resist film formed on the transfer pattern thin film, the mask blank is defective or unusable due to changes in the sensitivity of the resist film, defects on the resist film surface, abnormal application of the resist film, etc.
  • a new resist film can be formed on the transfer pattern thin film again and used for patterning the transfer pattern thin film. Therefore, since both the substrate and the transfer pattern thin film can be reused, the manufacturing cost of mask blanks can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 基板上に転写パターンとなる転写パターン用薄膜とレジスト膜が形成されたマスクブランクスにおいて、レジスト膜のみを剥離して転写パターン用薄膜と基板とを再利用可能とするレジスト膜剥離方法、マスクブランクスの製造方法、および転写マスクの製造方法を提供することを目的に以下の構成を採用する。基板(11)上に遮光膜(12)、および露光、現像前のレジスト膜(14)が形成されたマスクブランクス(1)において、レジスト膜(14)に膜厚むらが大きいなどの不具合が発生した場合、あるいは、マスクブランクス(1)の状態で長期間保存しておいたためレジスト膜(14)の感度が変化した場合には、レジスト膜(14)をオゾン水と接触させてレジスト膜(14)を剥離するオゾン水処理を行う。そして、再度、レジスト膜(14)を形成して、基板(11)および遮光膜(12)を再利用する。

Description

明 細 書
レジスト膜剥離方法、 マスクブランクスの製造方法および転写マス クの製造方法
技術分野
[0001 ] 本発明は、 転写パターン用薄膜上に形成されたレジスト膜を有するマスク ブランクスから、 レジスト膜を剥離するためのレジスト膜剥離方法、 マスク ブランクスの製造方法および転写マスクの製造方法に関するものである。 背景技術
[0002] 半導体デバイスや液晶デバイス等を製造する際、 フォ卜リソグラフィ技術 を用いて金属あるいは金属化合物からなる下地膜をパターニングする工程で は、 下地膜の表面にレジストを塗布した後、 転写マスクを用いてレジストを 露光し、 次に、 現像液を用いてレジストを現像してレジストパターンを形成 し、 このレジストパターンをマスクにして下地膜をエッチングする。 しかる 後には、 剥離液を用いてレジス卜パターンを除去する。
[0003] また、 転写マスクを作製する際にも、 基板上に、 金属 (例えば、 クロム)あ るいは金属化合物 (例えば、 クロムに、 酸素、 窒素、 炭素の何れか一つを少な くとも含むクロム化合物)からなる転写パターン用薄膜 (例えば、 遮光膜)を形 成した後、 転写パターン用薄膜上にレジス卜を塗布してマスクブランクスを 作製する。 次に、 電子線描画やレーザー描画などの手法を用いてレジストを 露光した後、 現像液を用いてレジス卜を現像してレジス卜パターンを形成し 、 このレジス卜パターンをマスクにして転写パターン用薄膜をエッチングす る。 しかる後には、 剥離液を用いてレジストパターンを除去する。
[0004] このようなマスクブランクスにおいて、 マスクブランクスは、 一定期間が 経過するとレジス卜膜の感度が変化してしまうため、 マスクブランクスをあ る程度、 常にストックする製造現場 (例えば、 マスクブランクス製造現場や転 写マスク製造現場)では、 レジス卜膜の感度変化により使用不能になるマスク ブランクスが発生する。 また、 転写パターン用薄膜上にレジストを塗布して マスクブランクスを作成する際、 何らかの理由でレジス卜膜表面に凸形状ま たは凹形状の欠陥が発生する場合もある。 このような場合、 マスクブランク スからレジスト膜を剥離して基板、 およびこの基板上に形成された転写バタ ーン用薄膜を再利用できれば、 製造コス卜を削減できる。
[0005] 特に、 マスクブランクスに用いられるレジスト膜としては、 近年、 化学増 幅型レジス卜膜が使われている。 この化学増幅型レジスト膜は高感度である 代わりに、 感度変化が始まるまでの期間が従来の高分子型レジス卜膜に比べ て短いので、 比較的短い期間でレジスト膜の感度変化が進行し、 マスクブラ ンクスが使用不能になってしまうことがある。 そのため、 このようなマスク ブランクスからレジスト膜を剥離して基板、 およびこの基板上に形成された 転写パターン用薄膜を再利用できれば、 製造コス卜を大幅に低減できる。
[0006] ところで、 半導体装置のパターンを微細化するに当たっては、 フォトマス クに形成されるマスクパターンの微細化に加え、 フォトリソグラフィで使用 される露光光源波長の短波長化が必要となる。 半導体装置を製造する際の露 光光源としては、 近年、 K r Fエキシマレーザー(波長 2 4 8 n m)から、 A r Fエキシマレーザー(波長 1 9 3 n m)、 F 2エキシマレーザー(波長 1 5 7 n m)、 E U V (極端紫外光:波長 1 3〜 1 4 n m)などへと短波長化が進んで いる。
[0007] また、 フォトマスクを用いて微細なパターン転写を行なうには、 レジスト 膜剥離による転写パターン用薄膜のダメージが、 レジス卜膜形成前の転写パ ターン用薄膜の反射率に対してほとんど変化なく抑える必要がある。 これは 、 マスクブランクスから転写マスクを作製して、 該転写マスクを用いてリソ グラフィー技術により微細なパターンを有する半導体デバイスや液晶デバィ スなどを作製したときに、 パターン欠陥がおきないようにする必要があるか らである。
[0008] さらに、 フォトマスクの製造プロセスの中で、 フォトマスクに微細なパタ ーンが形成されているか否かを検査するために、 レジスト膜をマスクとして パターニングされた層の表面と、 前記パターニングされたレジス卜をマスク にして露出された層との表面反射率の差によって検査が行われている。 この ため、 レジスト膜剥離によりダメージが生じてしまうと、 転写パターン用薄 膜や、 後述するいわゆるハードマスクは表面反射率に変動を生じてしまうた め、 設計通リの微細なパターン形成がなされたか否かを精度良く検査するこ とができないものとなる。
[0009] 従って、 レジスト膜剥離による転写パターン用薄膜やハードマスクに対す るダメージはできるだけないものにする必要がある。
[0010] ここで、 レジスト膜 (露光現像処理したレジスト膜)を除去 '剥離するため の技術としては、 プラズマ等によるアツシング処理、 硫酸(H 2 S 04)と過酸化 水素水(H 202)との混合液体(S P M)を用いた薬液処理、 アンモニア(N H 3)と 過酸化水素水との混合液体(A P M)を用いた薬液処理、 オゾン水による処理 等が提案されている(特許文献 1、 2参照)。
特許文献 1 :特開 2 0 0 3 _ 2 7 3 0 7 9号公報
特許文献 2:特許第 3 3 4 4 3 9 1号公報
発明の開示
発明が解決しょうとする課題
[0011 ] しかしながら、 基板上に転写パターン用薄膜とレジス卜膜とが形成された マスクブランクスからレジスト膜を剥離する際に、 従来のレジス卜膜の剥離 方法のように、 硫酸と過酸化水素水との混合液体や、 アンモニアと過酸化水 素水との混合液体などの酸性あるいはアル力リ性の水溶液で処理すると、 基 板に微量の薬液成分が残留し、 これが、 マスク時まで残留した場合には、 レ 一ザ一照射により化学反応が助長され異物となって転写パターン用薄膜に不 具合を発生させるという問題が生じる。 加えて、 上記の水溶液は人体への危 険性が高いという問題点がある。
[0012] さらに、 特許文献 2には、 パターニング後にレジスト膜を除去するにあた つて、 オゾン水を用いることが提案されているが、 ここに開示の技術では、 パターニングに用いた後のレジスト膜を除去対象としておリ、 現像前のレジ スト膜を除去する技術ではない。 このため、 特許文献 2には、 低濃度のォゾ ン水ではレジスト膜を効率よく除去できないとして、 高濃度のオゾン水と、 オゾン分解触媒液とを各々基板上に供給することが提案されている。 しかし ながら、 このような方法では、 反応性が高いため、 レジスト膜の下に形成さ れている下地膜を再利用できる状態で残しながらレジス卜膜のみを除去する ことは不可能と考えられる。
[0013] 特に上記の問題については、 基板上に転写パターンとなる転写パターン用 薄膜とレジス卜膜とが形成されたマスクブランクスからレジスト膜を剥離す る際に、 下地である転写パターン用薄膜表面が損傷(ダメージ)を受け、 光学 特性 (反射率や透過率)が変化してしまうと、 該マスクブランクスを使って転 写マスクを作製し、 該転写マスクを使って、 半導体デバイスや液晶デバイス を製造する際にパターン欠陥の原因となるので、 より深刻な問題である。
[0014] 以上の問題点に鑑みて、 本発明の課題は、 基板上に転写パターンとなる転 写パターン用薄膜とレジス卜膜が形成されたマスクブランクスにおいて、 レ ジス卜膜のみを剥離して転写パターン用薄膜と基板とを再利用可能とするレ ジス卜膜剥離方法、 マスクブランクスの製造方法、 および転写マスクの製造 方法を提供することにある。
課題を解決するための手段
[0015] 上記課題を解決するために、 本発明では、 以下の構成を採用する。
[0016] 本発明では、 基板と、 該基板上に形成された転写パターンとなる転写バタ ーン用薄膜と、 前記転写パターン用薄膜上に形成されたレジスト膜と、 を有 するマスクブランクスから、 前記レジスト膜を剥離するレジス卜膜剥離方法 であって、 オゾンが溶解してなるオゾン水を前記レジス卜膜に接触させて当 該レジスト膜を溶解させるオゾン水処理を行うことを特徴とする。
[0017] 上記構成によれば、 マスクブランクスに形成された現像前のレジスト膜を 剥離でき、 かつ、 転写パターン用薄膜表面へのダメージを極めて小さくする ことができる。 従って、 転写パターン用薄膜上にレジスト膜を形成した状態 で、 レジスト膜の感度変化や、 レジスト膜表面の欠陥、 レジスト膜の塗布異 常の原因等でマスクブランクスとしては不良、 または使用不能と判断したも のについては、 レジスト膜のみを除去した後、 再度、 転写パターン用薄膜上 に新たなレジスト膜を形成し、 転写パターン用薄膜のパターニングとして使 用できる。 それゆえ、 基板および転写パターン用薄膜の両方を再利用できる ので、 マスクブランクスの製造コス卜を低減することができる。
[0018] 本発明において、 前記転写パターン用薄膜は、 例えば、 クロムを含む材料 からなることを特徴とする。
[0019] 上記構成のように、 本発明のレジスト膜剥離方法は、 レジスト膜の下に形 成されている転写パターン用薄膜がクロムを含む材料からなる場合に特に適 している。
[0020] 本発明において、 前記転写パターン用薄膜は、 上層に酸素および Zまたは 窒素を含む反射防止機能を有する反射防止層が設けられている構成を採用す ることができる。
[0021 ] 上記構成によれば、 転写パターン用薄膜の上層部に酸素および Zまたは窒 素を含むクロム酸化物、 クロム窒化物、 クロム酸窒化物などの反射防止層が 設けられている場合には、 レジスト膜剥離前における反射率に対して、 レジ ス卜膜剥離後の反射率の変動を実質的に変動がないレベルまで抑えることが できる。 従って、 転写パターン用薄膜の光学特性を保証した極めて信頼性の 高いマスクブランクスを提供することができる。
[0022] 本発明において、 前記反射防止層における酸素および Zまたは窒素の含有 量が 4 0原子%以上であることが好ましい。
[0023] 上記構成によれば、 反射防止層の光学特性 (反射率や透過率)を実質的に変 化させることがないので特に良い。 光学特性をより変化させないという観点 からすると、 前記反射防止層における酸素および Zまたは窒素の含有量が 5 0原子%以上が好ましく、 さらに好ましくは 6 θ ο/ο原子以上である。
[0024] 本発明において、 前記オゾン水処理の前に酸性あるいはアル力リ性の水溶 液を前記レジス卜膜に接触させて、 前記レジス卜膜の膜厚を薄膜化させた後 、 前記オゾン水処理を行うことが好ましい。
[0025] 上記構成によれば、 酸性あるいはアル力リ性の水溶液で前記レジス卜膜の 膜厚を薄膜化させた後、 オゾン水処理を施すことにより、 レジスト膜剥離後 にレジスト膜残りがなく、 レジスト膜を確実に剥離することができる。 特に 、 基板の形状が四角形状のようなマスクブランクスの場合、 基板の外周部な どレジス卜膜に膜厚が厚い領域が存在する場合があるが、 該膜厚が厚い領域 があっても確実にレジスト膜を剥離することができる。 特に、 基板の外周部 のレジス卜膜に対して酸性あるいはアル力リ性の水溶液が優先的に接触する ように表面処理した後、 下地膜または転写パターン用薄膜上に形成されてい るレジス卜膜表面全体にオゾン水処理を行うのが好ましい。
[0026] 本発明において、 前記オゾン水処理により前記レジスト膜を剥離した後、 さらにガス溶解水によるガス溶解水処理を行うことが好ましい。
[0027] 上記構成によれば、 オゾン水処理によリレジスト膜を剥離した後、 さらに ガス溶解水によるガス溶解水処理を行うことにより、 レジス卜膜剥離後の下 地膜表面または転写パターン用薄膜表面に残滓している異物を確実に除去す ることができるので好ましい。
[0028] 本発明において、 前記オゾン水処理は、 オゾンが 2 5〜 1 1 0 p p m溶解 してなるオゾン水を用いることが好ましい。
[0029] 上記構成によれば、 転写パターン用薄膜に対してのダメージを抑えつつ、 レジス卜膜剥離効率が良好になるので好ましい。 オゾン水処理における処理 温度や処理時間は、 転写パターン用薄膜に対してダメージを抑える範囲で適 宜設定する。 処理温度の好ましい温度範囲は、 2 0 °C〜3 5 °Cである。 また 、 処理時間は、 1〜 2 0分が好ましい。
[0030] 本発明に係るレジス卜膜剥離方法を用いたマスクブランクスの製造方法で は、 前記転写パターン用薄膜上に形成された前記レジスト膜を剥離した後、 前記転写パターン用薄膜上に新たなレジスト膜を形成することを特徴とする
[0031 ] 上記構成によれば、 本発明を適用したレジス卜膜剥離方法を用いることで 、 転写パターン用薄膜付き基板の状態で基板を有効利用することができるの で、 マスクブランクスの製造コス卜を低減することができる。 [0032] 本発明において、 前記マスクブランクスは、 例えば、 K r Fエキシマレー ザ一露光用マスクブランクス、 A r Fエキシマレーザー露光用マスクブラン クス、 F 2エキシマレーザー露光用マスクブランクス、 または E U V露光用 マスクブランクスである。
[0033] 本発明に係るマスクブランクスを用いた転写マスクの製造方法では、 前記 新たなレジス卜膜に対して選択的に露光、 現像してレジス卜パターンを形成 した後、 当該レジス卜パターンをマスクにして前記転写パターン用薄膜をパ ターニングして転写パターンを形成してなることを特徴とする。
[0034] 本発明を適用したマスクブランクスは、 前記新たなレジスト膜を選択的に 露光、 現像してレジストパターンを形成した後、 当該レジストパターンをマ スクにして前記転写パターン用薄膜をパターニングして転写パターンを形成 し、 転写マスクを製造することができる。
図面の簡単な説明
[0035] [図 1 ]マスクブランクスを作製する様子、 および、 このマスクブランクスを用 いて転写マスクを作製する様子を模式的に示す工程断面図である。
[図 2]マスクブランクスの端部でレジス卜膜が厚くなつている様子を示す説明 図である。
[図 3]本発明を適用したレジス卜膜の剥離方法において、 オゾン水処理の処理 温度を室温とし、 オゾン水濃度および処理時間を変えたときの遮光膜の表面 状態を光学的に測定したときのグラフである。
[図 4]本発明を適用したレジス卜膜の剥離方法において、 オゾン水処理の処理 温度を 2 5 °Cとし、 オゾン水濃度および処理時間を変えたときの遮光膜の表 面状態を光学的に測定したときのグラフである。
[図 5]本発明を適用したレジス卜膜の剥離方法において、 オゾン水処理の処理 温度を 3 0 °Cとし、 オゾン水濃度および処理時間を変えたときの遮光膜の表 面状態を光学的に測定したときのグラフである。
[図 6]本発明を適用したレジス卜膜の剥離方法において、 オゾン水処理の処理 温度を 3 5 °Cとし、 オゾン水濃度および処理時間を変えたときの遮光膜の表 面状態を光学的に測定したときのグラフである。
符号の説明
[0036] 1 マスクブランクス
1 0 転写マスク
1 1 基板
1 2 遮光膜 (転写パターン用薄膜)
1 4 レジス卜膜
発明を実施するための最良の形態
[0037] 図面を参照して、 本発明を適用したレジスト膜剥離方法、 マスクブランク スの製造方法、 および転写マスクの製造方法を説明する。
[0038] (マスクブランクス、 および転写マスクの製造方法)
図 1は、 マスクブランクスを作製する様子、 および、 このマスクブランク スを用いて転写マスクを作製する様子を模式的に示す工程断面図である。
[0039] 転写マスクを作製するには、 まず、 図 1 (a)に示すように、 合成石英ガラ ス(A r Fエキシマレーザー露光用)、 フッ素ドープ石英ガラスやフッ化カル シゥム(F 2エキシマレーザー露光用)、 S i 02-T i 02などの低膨張ガラス (EU V露光用)などからなる材料の基板表面を鏡面研磨した後、 洗浄して所 定寸法(例えば、 1 52. 4mm X 1 52. 4mm x 6. 35mm)の基板 1 1を準 備する。
[0040] 次に、 図 1 (b)に示すように、 スパッタリング法や真空蒸着法などにより 、 基板 1 1の主表面上に転写パターン用薄膜である遮光膜 1 2を形成する。 遮光膜 1 2の膜厚は、 例えば、 40 nm〜1 20 nmであり、 露光光の波長 に対して所望の光学特性 (例えば、 透過率 (光学濃度)や反射率等)が得られる ように適宜調整される。 遮光膜 1 2の材料としては、 クロムや、 クロムに、 酸素、 窒素、 炭素の少なくとも 1つを含むクロム化合物を用いることができ 、 露光光の波長に対する光学特性や、 パターン断面特性などに応じて適宜選 定される。 なお、 遮光膜 1 2の上層部に、 反射防止機能を有する反射防止層 を形成していてもかまわない。 このような反射防止層は、 例えば、 クロムに 、 酸素および zまたは窒素を含む材料で形成される。 反射防止層における酸 素、 窒素の含有量は、 露光光の波長に対する反射率、 パターン断面特性に応 じて適宜設定される。
[0041 ] また、 基板 1 1と遮光膜 1 2の間に他の膜を形成してもかまわない。 他の 膜としては、 例えば、 露光光に対して所望の位相差をもつ位相シフト膜 (ハー フトーン膜を含む)や、 エッチングストッパー層、 導電膜などが挙げられる。 また、 遮光膜 1 2上に他の膜を形成してもかまわない。 例えば遮光膜をバタ 一二ングする際にマスク層として機能する遮光膜のエツチャントに対して耐 性を有する無機材料からなるハードマスク、 例えば珪素を含む材料などが挙 げられる。
[0042] また、 転写パターン用薄膜は、 遮光膜に限らない。 例えば、 マスクブラン クスとして、 基板 1 1上に多層反射膜を形成し、 さらに多層反射膜上に転写 パターン用薄膜である吸収体膜とレジス卜膜とを形成した反射型マスクブラ ンクスからレジスト膜を剥離する場合においても適用できる。 この場合に、 吸収体膜の材料としては、 クロムを含む材料ゃタンタルを含む材料などが挙 げられる。
[0043] 次に、 図 1 ( c )に示すように、 回転塗布法などにより、 遮光膜 1 2上にレ ジスト液を塗布した後、 加熱 '冷却し、 例えば、 膜厚が5 0 门 〜 5 0 0 门 mのレジスト膜 1 4を形成する。 その結果、 基板 1 1上に遮光膜 1 2、 およ びレジス卜膜 1 4がこの順に積層されたマスクブランクス 1が得られる。
[0044] このように構成したマスクブランクス 1を用いて転写マスクを作製する場 合には、 まず、 レジスト膜 1 4に対して、 電子ビーム描画装置によって電子 線描画 (選択露光)を行い、 次に、 アミン類などを含有する現像液を用いて現 像処理する。 その結果、 図 1 ( d )に示すレジストパターン 1 4 0が形成され る。
[0045] 次に、 図 1 ( d )に示すレジストパターン 1 4 0をマスクとして、 遮光膜 1 2に対して塩素系ガスを含むェッチングガスを用いてドライエッチングを行 ラ。 [0046] 次に、 レジストパターン 1 4 0を過酸化水素水(H 202)と硫酸(H 2 S 04)と の混合溶液などからなるレジスト剥離液により、 レジストパターン 1 4 0を 剥離することにより、 図 1 ( e )に示す転写パターン 1 2 0を形成した転写マ スク 1 0が得られる。
[0047] (レジスト膜 1 4の剥離方法 1 )
本実施の形態を適用したレジスト膜 1 4の剥離方法においては、 図 1 ( c ) に示すように、 マスクブランクス 1を作製した際、 レジスト膜 1 4に欠陥が 見つかった場合、 あるいはマスクブランクス 1の状態で長期間保存しておい たためレジス卜膜 1 4の感度が大きく変化した場合などには、 オゾンが溶解 してなるオゾン水にマスクブランクス 1を浸漬する方法や、 レジスト膜が形 成されている表面にオゾン水を供給するなどの方法により、 レジスト膜 1 4 をオゾン水と接触させることで、 レジスト膜 1 4を剥離する(オゾン水処理)
[0048] そして、 レジスト膜 1 4のみを剥離した後、 再度、 遮光膜 1 2上に新たな レジスト膜 1 4を形成し、 マスクブランクス 1を作製する。
[0049] ここで、 オゾン水は、 ばつ気法や溶融膜処理法などによって精製されるが 、 レジスト膜 1 4を効果的に剥離するためには、 溶融膜処理法等で精製され たオゾン水を用いることが好ましい。 ばつ気法で精製されたオゾン水のォゾ ン濃度は、 2 0 p p m程度が限界であり、 このような低濃度のオゾン水では 、 レジスト膜 1 4を溶解させる溶解速度が極めて遅い。 一方、 溶融膜処理法 等で精製されたオゾン水のオゾン濃度は、 2 5 p p m〜 1 1 0 p p m程度の 高濃度であって、 レジスト膜 1 4を溶解させる溶解速度が適度に速く、 確実 に遮光膜 1 2からレジス卜膜 1 4を剥離することができる。
[0050] 上記のレジス卜膜剥離方法によれば、 現像前のレジス卜膜 1 4であればォ ゾン水によって効率よく剥離でき、 かつ、 遮光膜 1 2表面へのダメージが極 めて小さい。
[0051] また、 転写パターン用薄膜の上層に、 酸素および Zまたは窒素を含む反射 防止機能を有する反射防止層が設けられ、 前記反射防止層における酸素およ び Zまたは窒素の含有量が 4 0原子%以上であると、 遮光膜 1 2の光学特性( 反射率や透過率)を実質的に変化させることがないので特に良い。 さらに光学 特性をより変化させないという観点から 5 0原子%以上が好ましく、 さらに 好ましくは 6 0原子%以上である。
[0052] 従って、 遮光膜 1 2の光学特性 (反射率や透過率)を実質的に変化させるこ とがないので、 その後、 レジスト膜 1 4のみを除去した後、 再度、 遮光膜 1 2の上に新たなレジス卜膜 1 4を形成してマスクブランクス 1を作製した場 合でも、 遮光膜 1 2の光学特性が保証され、 信頼性の高いマスクブランクス 1を作製することができる。 また、 基板 1 1および遮光膜 1 2の双方を再利 用することができるので、 マスクブランクス 1の製造コス卜を低減すること ができる。
[0053] (レジスト膜 1 4の剥離方法 2 )
本実施の形態を適用したレジスト膜の剥離方法は、 図 2に示すように、 図 1 ( c )に示すように製造したマスクブランクス 1の外周部では、 転写パター ンが形成される中央領域と比較してレジス卜膜 1 4の膜厚が厚く形成された 場合に適した方法であり、 以下の処理
第 1の処理:酸性あるいはアル力リ性の水溶液による処理 (膜厚低減処理) 第 2の処理:オゾン水処理
第 3の処理: ガス溶解水処理 (異物残滓除去処理)
を行う。 即ち、 オゾン水処理の前に、 硫酸(H 2 S 04)と過酸化水塩水(H 202) との混合液体( S P M)からなる薬液、 アンモニア( N H 3)と過酸化水素水との 混合液体(A P M)からなる薬液、 ァミンなどを含む現像液などにより、 レジ スト膜 1 4の膜厚を低減させる。 また、 オゾン水処理の後には、 水素水 (水素 ガス溶解水)などのガス溶解水により、 レジスト膜 1 4を剥離した後に、 遮光 膜 1 2表面に残滓している異物を除去するガス溶解水処理を行う。 第 1の処 理は、 基板の外周部におけるレジス卜膜 1 4の膜厚が厚い領域に対して優先 的に、 酸性あるいはアル力リ性の水溶液が接触するようにした方が好ましい [0054] ここで、 上記の酸性あるいはアルカリ性の水溶液による処理、 ガス溶解水 処理は、 基板全体をこれらの水溶液やガス溶解水に浸潰してもよいが、 レジ ス卜膜 1 4に対してこれらの水溶液やガス溶解水を供給してもかまわない。
[0055] そして、 レジスト膜 1 4のみを剥離した後、 再度、 遮光膜 1 2上に新たな レジスト膜 1 4を形成し、 マスクブランクス 1を作製する。
[0056] このように本実施の形態では、 基板 1 1の外周部のレジス卜膜 1 4に膜厚 が厚い領域が存在する場合には、 酸素あるいはアル力リ性の水溶液を用いた 処理により、 基板 1 1の外周部のレジスト膜 1 4の膜厚を優先的に低減させ つつ、 遮光膜 1 2の表面全面におけるレジス卜膜 1 4の膜厚を低減させてか ら、 オゾン水処理を行うため、 レジスト膜 1 4を短時間で確実に除去するこ とができる。 しかも、 この場合、 酸性あるいはアルカリ性処理は、 レジスト 膜剥離方法における比較的最初の段階で行われるので、 遮光膜 1 2の表面を 損傷(ダメージ)することがなく、 かつ、 上記水溶液の残留によって遮光膜 1 2が損傷することもない。 また、 オゾン水処理の後に行うガス溶解水処理で は、 遮光膜 1 2表面に酸やアルカリが残ることがなく、 かつ、 遮光膜 1 2を 損傷することもない。
[0057] また、 酸性あるいはアル力リ性の水溶液による処理後に行うオゾン水処理 では、 現像前のレジス卜膜 1 4であれば十分な溶解速度でもってレジス卜膜 1 4を除去■剥離でき、 かつ、 遮光膜 1 2へのダメージが極めて小さい。 従 つて、 遮光膜 1 2上にレジス卜膜 1 4を形成した状態で使用不要となった場 合などについては、 レジスト膜 1 4のみを除去した後、 再度、 遮光膜 1 2上 に新たなレジスト膜 1 4を形成し、 遮光膜のパターニングに使用できる。 そ れゆえ、 基板および遮光膜の双方で再利用できるので、 マスクブランクス 1 の製造コス卜を低減することができる。
[0058] また、 酸性あるいはアル力リ性の水溶液による処理のみで行うレジス卜膜
1 4の剥離方法では、 処理跡が発生するため、 更なる薬液リンスなどによる 処理が必要であるが、 本実施の形態では、 複数の処理を併用するため、 遮光 膜 1 2表面にレジスト膜剥離による処理跡が発生することを抑止できる。 ま た、 危険性の高い薬液の使用量を減らすことができ、 廃液処理などの負荷を 低減できる。
[0059] (その他の実施の形態)
上記形態において、 レジスト膜 1 4の材質は任意であるが、 化学増幅型レ ジス卜膜の場合には、 感度が高いという利点がある代わりに、 感度変化が起 きやすい傾向にある。 従って、 レジスト膜 1 4として化学増幅型レジスト膜 を用いた場合に、 感度変化が著しくなリ実際に転写マスクの製造には使うこ とができない場合であっても、 遮光膜 1 2および基板 1 1を再利用すること により、 マスクブランクスの製造コス卜を大幅に低減することができる。 実施例
[0060] (実施例 1 )
以下、 実施例に基づいて本発明をさらに詳細に説明する。 本実施例では、 上記のレジスト膜剥離方法 2を採用する。 即ち、 図 1 ( c )に示すように、 マ スクブランクス 1を作製した後、 レジスト膜 1 4に欠陥を発見した場合、 あ るいはマスクブランクス 1の状態で長期間保存しておいたためレジス卜膜 1 4の感度変化が大きくなつた場合には、 以下の処理
第 1の処理:ァミン類を含む現像液処理
第 2の処理:オゾン水処理
第 3の処理:水素水処理
を行う。 ここで、 第 2の処理におけるオゾン水処理は以下の各条件
オゾン水濃度: 3 0、 7 0、 9 0、 1 1 0 p p m
処理温度:室温、 2 5、 3 0、 3 5 °C
処理時間: 1、 2、 3、 5、 7、 1 0分
で行い、 これらの各条件により形成されたレジスト膜 1 4を剥離した後の遮 光膜 1 2の反射率を測定して、 遮光膜ダメージを評価した。 遮光膜 1 2の反 射率は分光光度計により測定した。
[0061 ] なお、 遮光膜 1 2の上層部には反射防止機能を有する反射防止層が形成さ れており、 遮光膜 1 2は、 基板 1 1側から窒化クロム膜(C r N膜)、 炭化ク ロム膜(C r C膜)、 酸窒化クロム膜(C r O N膜)とした。 遮光膜 1 2の反射 率は、 露光波長 1 9 3 n mにおいて、 1 8 %であった。 また、 レジスト膜 1 4は、 膜厚が 3 5 0 n mの化学増幅型レジス卜膜とした。
[0062] 図 3〜図 6は、 オゾン水処理の処理温度を室温、 2 5 °C、 3 0 °C、 3 5 °C と変化させてレジス卜膜 1 4を除去した後の遮光膜 1 2の状態を光学的に測 定したときのグラフである。 ここで、 横軸は遮光膜 1 2の状態を測定するの に用いた光の波長である。 縦軸は、 レジスト膜 1 4を除去した後の遮光膜 1 2からの反射光強度と、 成膜後の遮光膜 1 2 (レジスト 1 4の形成および剥離 を行わない遮光膜)からの反射光強度との差 (%)であり、 絶対値が小さい方が 、 レジスト膜 1 4を剥離した際に遮光膜 1 2が受けたダメージが小さいこと を表している。 また、 各グラフにおいて各線に付した数字は各々、 処理時間 が 1、 2、 3、 5、 7、 1 0分のときの結果であることを示している。
[0063] 図 3〜 6に示すように、 上記第 2の処理条件の範囲内において、 レジス卜 膜剥離による遮光膜 1 2のダメージが、 レジスト膜形成前の遮光膜の反射率 に対してほとんど変化なく抑えることができた。 これは、 マスクブランクス から転写マスクを作製して、 該転写マスクを用いてリソグラフィ一技術によ リ半導体デバイスや液晶デバイスを作製したときに、 パターン欠陥が起きな いレベルであり、 本発明におけるレジス卜膜剥離による遮光膜に対するダメ ージはないと考えられる。
[0064] また、 レジスト膜剥離後の遮光膜 1 2表面の欠陥を欠陥検査装置で測定し たところ、 レジスト膜残滓もなく極めて良好であった。 なお、 レジスト膜剥 離後、 遮光膜 1 2上に新たなレジス卜膜 1 4を形成してマスクブランクスを 得た。
[0065] (実施例 2 )
主表面及び端面が精密研磨された合成石英ガラスからなる透光性基板上に 、 インライン型スパッタ装置を用いて、 スパッタターゲットにクロムターゲ ッ卜を使用し、 アルゴンと窒素と酸素の混合ガス雰囲気中で反応性スパッタ リングを行うことによって、 遮光膜を形成し、 化学増幅型レジストを塗布し フォ卜マスクブランクを作製した。
[0066] このようにしてマスクブランクス 1を作製した後、 レジスト膜に欠陥を発 見した場合、 あるいはマスクブランクス 1の状態で長期間保存しておいたた めレジスト膜 1 4の感度変化が大きくなつた場合に、 以下の処理
第 1の処理:ァミン類を含む現像液処理
第 2の処理:オゾン水処理
第 3の処理:水素水処理
を行った。 なお、 遮光膜の上層部には、 ラザフォード後方散乱分析法(R B S )によると、 酸素 4 0原子%と窒素 2 0原子%の合計量が 6 0原子%である反 射防止機能を有する反射防止層が形成されており、 遮光膜は、 基板側から窒 化クロム膜(C r N膜)、 炭化クロム膜(C r C膜)、 酸窒化クロム膜(C r O N 膜)とした。
[0067] オゾン水処理の処理温度を室温、 2 5 °C、 3 0 °C、 3 5 °Cと変化させてレ ジス卜膜 1 4を除去した後の遮光膜 1 2の状態を光学的に測定したところ、 レジスト膜剥離による遮光膜 1 2のダメージが、 レジスト膜形成前の遮光膜 の反射率に対してほとんど変化なく抑えられた。 これは、 マスクブランクス から転写マスクを作製して、 該転写マスクを用いてリソグラフィ一技術によ リ微細なパターンを有する半導体デバイスや液晶デバイスを作製したときに 、 パターン欠陥がおきないレベルであり、 本発明におけるレジス卜膜剥離に よる遮光膜に対するダメージはないと考えられる。
[0068] また、 レジスト膜剥離後の遮光膜 1 2表面の欠陥を欠陥検査装置で測定し たところ、 レジスト膜残滓もなく極めて良好であった。 なお、 レジスト膜剥 離後、 遮光膜 1 2上に新たなレジス卜膜 1 4を形成してマスクブランクスを 得た。
[0069] (実施例 2の変形例)
上述の実施例 2において、 遮光膜の上層部に酸素と窒素の合計量が 3 0原 子%である反射防止機能を有する反射防止層が形成されたこと以外は実施例 2と同様にして、 マスクブランクス 1に形成されているレジスト膜 1 4を剥 離した。 その結果、 レジスト膜剥離による遮光膜 1 2の反射率の変動が、 実 施例 2よりは変動するものとなつたが、 5 %以内となった。
[0070] (実施例 3)
主表面及び端面が精密研磨された合成石英ガラスからなる透光性基板上に 、 インライン型スパッタ装置を用いて、 スパッタターゲットにクロムターゲ ッ卜を使用し、 アルゴンと窒素と酸素の混合ガス雰囲気中で反応性スパッタ リングを行った。
[0071] 次いで、 遮光性クロム膜 1 2の上に、 モリブデン(Mo)とシリコン(S i ) の混合ターゲット(Mo : S i =20 : 80 [mo I %] )を用いて、 ァルゴ ン(A r)と窒素(N2)の混合ガス雰囲気(A r : N2= 1 0 : 90 [体積%] 、 圧力 0. 3 [Pa] )中で、 反応性スパッタリングを行うことにより、 MoS i Nからなるハードマスク用膜を成膜した。
[0072] 次いで、 無機系エッチングマスク用膜 3の上に、 化学増幅型レジストを塗 布しフォ卜マスクブランクを作製した。
[0073] このようにしてマスクブランクスを作製した後、 レジスト膜に欠陥を発見 した場合、 あるいはマスクブランクス 1の状態で長期間保存しておいたため レジスト膜 1 4の感度変化が大きくなつた場合に、 以下の処理
第 1の処理:ァミン類を含む現像液処理
第 2の処理:オゾン水処理
第 3の処理:水素水処理
を行った。 なお、 ハードマスクの上層部には、 ラザフォード後方散乱分析法( RBS)によると、 窒素の合計量が 60原子%である層が形成された。
[0074] オゾン水処理の処理温度を室温、 25°C、 30°C、 35°Cと変化させてレ ジス卜膜 1 4を除去した後のハードマスクの表面状態を光学的に測定したと ころ、 レジスト膜剥離によるハードマスクの表面反射率が、 レジスト膜形成 前のハードマスクの表面反射率に対してほとんど変化なく抑えられた。 これ により、 マスクブランクスから転写マスクを作製した際、 微細なパターンが 、 設計通りのパターンに形成されているか否かの検査精度の悪化を防止する ことができるものとなつ
[0075] なお、 実施例 1乃至 3において化学増幅型レジス卜の代わりに高分子型レ ジス卜を使用したところ、 実施例 1乃至 3と同様の結果を得ることができた
[0076] (比較例 1 )
上述の実施例 1において、 第 2の処理、 および第 3の処理を行わなかった こと以外は実施例 1と同様にして、 マスクブランクス 1に形成されているレ ジス卜膜 1 4を剥離した。 その結果、 レジスト膜剥離による遮光膜 1 2の反 射率の変動が、 5 %超となった。 レジスト膜剥離後の遮光膜 1 2の表面状態 を観察したところ、 第 1の処理によって表面が荒れていた。 この遮光膜 1 2 の状態は、 マスクブランクス 1における遮光膜 1 2の光学特性を保証するも のではない。 従って、 遮光膜 1 2付き基板として再利用することはできず、 遮光膜 1 2を剥離して、 基板を再研磨する必要があるので、 マスクブランク スの製造コストを低減することはできない。 また、 レジスト膜剥離後の遮光 膜 1 2の反射率の変動により、 後工程で行われる欠陥検査精度を悪化させる 結果となった。
産業上の利用可能性
[0077] 本発明では、 マスクブランクスに形成された現像前のレジスト膜をオゾン 水によって剥離するので、 転写パターン用薄膜表面にダメージを与えること なく、 レジスト膜を剥離することができる。 従って、 転写パターン用薄膜上 にレジスト膜を形成した状態で、 レジスト膜の感度変化や、 レジスト膜表面 の欠陥、 レジス卜膜の塗布異常の原因等でマスクブランクスとしては不良、 または使用不能となったものについては、 レジスト膜のみを剥離した後、 再 度、 転写パターン用薄膜上に新たなレジスト膜を形成し、 転写パターン用薄 膜のパターニングに使用できる。 それゆえ、 基板および転写パターン用薄膜 の双方を再利用できるので、 マスクブランクスの製造コス卜を低減すること ができる。

Claims

請求の範囲
[1 ] 基板と、 該基板上に形成された転写パターンとなる転写パターン用薄膜と
、 該転写パターン用薄膜上に形成されたレジス卜膜とを有するマスクブラン クスから、 前記レジスト膜を剥離するレジス卜膜剥離方法であって、 オゾンが溶解してなるオゾン水を前記レジス卜膜に接触させて当該レジス ト膜を溶解させるオゾン水処理を行うことを特徴とするレジス卜膜剥離方法
[2] 前記転写パターン用薄膜は、 クロムを含む材料からなることを特徴とする 請求項 1に記載のレジス卜膜剥離方法。
[3] 前記転写パターン用薄膜は、 上層に、 酸素および Zまたは窒素を含む反射 防止機能を有する反射防止層が設けられていることを特徴とする請求項 1に 記載のレジス卜膜剥離方法。
[4] 前記反射防止層における酸素および Zまたは窒素の含有量が 4 0原子%以 上であることを特徴とする請求項 3に記載のレジス卜膜剥離方法。
[5] 前記オゾン水処理の前に、 酸性あるいはアルカリ性の水溶液を前記レジス 卜膜に接触させて、 前記レジス卜膜の膜厚を薄膜化させた後、 前記オゾン水 処理を行うことを特徴とする請求項 1に記載のレジス卜膜剥離方法。
[6] 前記オゾン水処理により前記レジスト膜を剥離した後、 さらにガス溶解水 によるガス溶解水処理を行うことを特徴とする請求項 1に記載のレジス卜膜 剥離方法。
[7] 前記オゾン水処理は、 オゾンが 2 5〜 1 1 0 p p m溶解してなるオゾン水 を用いることを特徴とする請求項 1に記載のレジス卜膜剥離方法。
[8] 請求項 1乃至 7の何れか一項に記載のレジス卜膜剥離方法を用いたマスク ブランクスの製造方法であって、
前記転写パターン用薄膜上に形成された前記レジスト膜を剥離した後、 前 記転写パターン用薄膜上に新たなレジスト膜を形成することを特徴とするマ スクブランクスの製造方法。
[9] 前記マスクブランクスが、 K r Fエキシマレーザー露光用マスクブランク ス、 A r Fエキシマレーザー露光用マスクブランクス、 F 2エキシマレーザ 一露光用マスクブランクス、 または E U V露光用マスクブランクスであるこ とを特徴とする請求項 8に記載のマスクブランクスの製造方法。
請求項 8に記載の製造方法により製造されたマスクブランクスを用いた転 写マスクの製造方法であって、
前記新たなレジス卜膜に対して選択的に露光、 現像してレジス卜パターン を形成した後、 当該レジス卜パターンをマスクにして前記転写パターン用薄 膜をパターニングして転写パターンを形成すること特徴とする転写マスクの 製造方法。
PCT/JP2007/000573 2006-05-30 2007-05-29 レジスト膜剥離方法、マスクブランクスの製造方法および転写マスクの製造方法 WO2007138747A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008517783A JP5384106B2 (ja) 2006-05-30 2007-05-29 レジスト膜剥離方法、マスクブランクスの製造方法および転写マスクの製造方法
KR1020087031709A KR101771250B1 (ko) 2006-05-30 2007-05-29 레지스트막 박리 방법, 마스크 블랭크의 제조 방법 및 전사마스크의 제조 방법
CN2007800174957A CN101443886B (zh) 2006-05-30 2007-05-29 掩模基板的制造方法和转印掩模的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006149918 2006-05-30
JP2006-149918 2006-05-30

Publications (1)

Publication Number Publication Date
WO2007138747A1 true WO2007138747A1 (ja) 2007-12-06

Family

ID=38778274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000573 WO2007138747A1 (ja) 2006-05-30 2007-05-29 レジスト膜剥離方法、マスクブランクスの製造方法および転写マスクの製造方法

Country Status (4)

Country Link
JP (1) JP5384106B2 (ja)
KR (1) KR101771250B1 (ja)
CN (2) CN101443886B (ja)
WO (1) WO2007138747A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016657A (ja) * 2007-07-06 2009-01-22 Tokyo Electron Ltd レジストパターンの再形成方法
JP2011013382A (ja) * 2009-06-30 2011-01-20 Ulvac Seimaku Kk ハーフトーンマスクの製造方法
EP2397904A1 (en) 2010-06-18 2011-12-21 Shin-Etsu Chemical Co., Ltd. Treatment of synthetic quartz glass substrate
JP2012089659A (ja) * 2010-10-19 2012-05-10 Tokyo Electron Ltd レジスト除去方法、レジスト除去装置及び記憶媒体
JP2012141583A (ja) * 2010-12-17 2012-07-26 Hoya Corp マスクブランク、転写用マスク、転写用マスクの製造方法、及び半導体デバイスの製造方法
WO2014021235A1 (ja) * 2012-07-31 2014-02-06 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
JP2018045253A (ja) * 2012-09-26 2018-03-22 大日本印刷株式会社 ガラス再生処理方法および再生ガラス基板とそれを用いたフォトマスクブランクスとフォトマスク
US10290511B2 (en) 2012-08-08 2019-05-14 SCREEN Holdings Co., Ltd Substrate treatment apparatus and substrate treatment method
JP2022009220A (ja) * 2016-10-21 2022-01-14 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5154626B2 (ja) 2010-09-30 2013-02-27 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法、および半導体デバイスの製造方法
CN104658899B (zh) * 2013-11-22 2017-11-10 中芯国际集成电路制造(上海)有限公司 一种蚀刻栅极介电层的方法
CN105045051B (zh) * 2015-08-24 2016-06-01 北京中科紫鑫科技有限责任公司 光刻胶的去除方法
TWI625607B (zh) * 2016-03-17 2018-06-01 許銘案 具薄膜圖案的基板及形成薄膜圖案於基板的方法
CN114274689B (zh) * 2021-12-28 2024-05-14 浙江顺福印业有限公司 一种抗剥落型复合包装料烫金工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240243A (ja) * 1985-04-18 1986-10-25 Asahi Glass Co Ltd フオトマスクブランクおよびフオトマスク
JP2000330262A (ja) * 1999-05-20 2000-11-30 Mitsubishi Electric Corp フォトマスクの洗浄方法、洗浄装置およびフォトマスクの洗浄液
JP2005266534A (ja) * 2004-03-19 2005-09-29 Sekisui Chem Co Ltd マスク基板用レジスト除去装置
JP2006078825A (ja) * 2004-09-10 2006-03-23 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6955698A (en) * 1998-04-06 1999-10-25 Olin Microelectronic Chemicals, Inc. Method for removing photoresist and plasma etch residues
JP2001351893A (ja) * 2000-06-05 2001-12-21 Sumitomo Precision Prod Co Ltd 基板処理方法
JP4000247B2 (ja) * 2001-04-18 2007-10-31 株式会社ルネサステクノロジ フォトマスクの洗浄方法
JP2003017456A (ja) * 2001-06-28 2003-01-17 Dainippon Screen Mfg Co Ltd 基板処理装置
JP3956103B2 (ja) * 2002-02-26 2007-08-08 信越化学工業株式会社 フォトマスクブランク、フォトマスク及びフォトマスクブランクの評価方法
JP2003273079A (ja) * 2002-03-12 2003-09-26 Shibaura Mechatronics Corp クロムマスクのレジストアッシング方法および装置
TWI238465B (en) * 2002-07-24 2005-08-21 Toshiba Corp Method of forming pattern and substrate processing apparatus
KR20060003346A (ko) * 2003-04-16 2006-01-10 세키스이가가쿠 고교가부시키가이샤 레지스트 제거 방법 및 레지스트 제거 장치
CN1774793A (zh) * 2003-04-16 2006-05-17 积水化学工业株式会社 除去抗蚀剂的方法和除去抗蚀剂的装置
US20060057472A1 (en) * 2004-09-15 2006-03-16 Fu Tsai Robert C Method for making chrome photo mask

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240243A (ja) * 1985-04-18 1986-10-25 Asahi Glass Co Ltd フオトマスクブランクおよびフオトマスク
JP2000330262A (ja) * 1999-05-20 2000-11-30 Mitsubishi Electric Corp フォトマスクの洗浄方法、洗浄装置およびフォトマスクの洗浄液
JP2005266534A (ja) * 2004-03-19 2005-09-29 Sekisui Chem Co Ltd マスク基板用レジスト除去装置
JP2006078825A (ja) * 2004-09-10 2006-03-23 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016657A (ja) * 2007-07-06 2009-01-22 Tokyo Electron Ltd レジストパターンの再形成方法
JP2011013382A (ja) * 2009-06-30 2011-01-20 Ulvac Seimaku Kk ハーフトーンマスクの製造方法
US8951386B2 (en) 2010-06-18 2015-02-10 Shin-Etsu Chemical Co., Ltd. Treatment of synthetic quartz glass substrate
KR101612575B1 (ko) * 2010-06-18 2016-04-14 신에쓰 가가꾸 고교 가부시끼가이샤 합성 석영 유리 기판의 처리 방법
CN102314102A (zh) * 2010-06-18 2012-01-11 信越化学工业株式会社 合成石英玻璃基板的处理
JP2012004404A (ja) * 2010-06-18 2012-01-05 Shin Etsu Chem Co Ltd 合成石英ガラス基板の処理方法
EP2397904A1 (en) 2010-06-18 2011-12-21 Shin-Etsu Chemical Co., Ltd. Treatment of synthetic quartz glass substrate
CN102314102B (zh) * 2010-06-18 2015-09-30 信越化学工业株式会社 合成石英玻璃基板的处理
JP2012089659A (ja) * 2010-10-19 2012-05-10 Tokyo Electron Ltd レジスト除去方法、レジスト除去装置及び記憶媒体
JP2012141583A (ja) * 2010-12-17 2012-07-26 Hoya Corp マスクブランク、転写用マスク、転写用マスクの製造方法、及び半導体デバイスの製造方法
US9075320B2 (en) 2010-12-17 2015-07-07 Hoya Corporation Mask blank, transfer mask, method of manufacturing a transfer mask, and method of manufacturing a semiconductor device
WO2014021235A1 (ja) * 2012-07-31 2014-02-06 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
US9377679B2 (en) 2012-07-31 2016-06-28 Hoya Corporation Reflective mask blank and method for manufacturing same, method for manufacturing reflective mask, and method for manufacturing semiconductor device
JPWO2014021235A1 (ja) * 2012-07-31 2016-07-21 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
US9535318B2 (en) 2012-07-31 2017-01-03 Hoya Corporation Reflective mask blank and method for manufacturing same, method for manufacturing reflective mask, and method for manufacturing semiconductor device
US10290511B2 (en) 2012-08-08 2019-05-14 SCREEN Holdings Co., Ltd Substrate treatment apparatus and substrate treatment method
JP2018045253A (ja) * 2012-09-26 2018-03-22 大日本印刷株式会社 ガラス再生処理方法および再生ガラス基板とそれを用いたフォトマスクブランクスとフォトマスク
JP2022009220A (ja) * 2016-10-21 2022-01-14 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
JP7193344B2 (ja) 2016-10-21 2022-12-20 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法

Also Published As

Publication number Publication date
KR101771250B1 (ko) 2017-08-24
CN102681332B (zh) 2015-03-11
JPWO2007138747A1 (ja) 2009-10-01
CN102681332A (zh) 2012-09-19
CN101443886B (zh) 2012-06-27
CN101443886A (zh) 2009-05-27
JP5384106B2 (ja) 2014-01-08
KR20090018667A (ko) 2009-02-20

Similar Documents

Publication Publication Date Title
JP5384106B2 (ja) レジスト膜剥離方法、マスクブランクスの製造方法および転写マスクの製造方法
KR100918233B1 (ko) 리소그래피 마스크의 제조 방법 및 리소그래피 마스크
KR100264023B1 (ko) 포토 마스크의 잔류결함 수정방법
US20040121269A1 (en) Method for reworking a lithographic process to provide an undamaged and residue free arc layer
US20050208393A1 (en) Photomask and method for creating a protective layer on the same
TWI772645B (zh) 空白光罩、光罩之製造方法及光罩
US20050260527A1 (en) Methods of patterning photoresist
KR101216797B1 (ko) 기판 처리 방법, euv 마스크의 제조 방법 및 euv 마스크
KR101109902B1 (ko) 포토마스크의 제조 방법, 패턴 전사 방법, 포토마스크 기판용 처리 장치, 및 박막 패터닝 방법
JPS62218585A (ja) フオトマスクの製造方法
JP4697735B2 (ja) マスクブランク、マスクブランクの製造方法、及びマスクの製造方法
JP4566547B2 (ja) マスクブランクスの製造方法及び転写マスクの製造方法
JP3061790B1 (ja) マスク製造方法及びパタ―ン形成方法
KR101921759B1 (ko) 전사용 마스크의 제조 방법
JP7009746B2 (ja) Hazeの除去方法、及びフォトマスクの製造方法
CN113874784A (zh) 光掩模坯、光掩模的制造方法和光掩模
JP4760404B2 (ja) フォトマスク
US6423479B1 (en) Cleaning carbon contamination on mask using gaseous phase
KR20120081661A (ko) 자기조립단분자층을 이용한 포토마스크의 형성방법
JP3484557B2 (ja) 位相シフトフォトマスクの製造方法
KR20050001093A (ko) 반도체 소자의 제조를 위한 포토 마스크
KR20050063340A (ko) 노광용 마스크의 제조 방법
KR20080109569A (ko) 포토마스크 제조방법
JPH10104821A (ja) フォトマスク及びその製造方法
KR20080084371A (ko) 포토마스크 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737229

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008517783

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780017495.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737229

Country of ref document: EP

Kind code of ref document: A1