WO2007129656A1 - 液晶パネル製造用ラビング布材 - Google Patents

液晶パネル製造用ラビング布材 Download PDF

Info

Publication number
WO2007129656A1
WO2007129656A1 PCT/JP2007/059368 JP2007059368W WO2007129656A1 WO 2007129656 A1 WO2007129656 A1 WO 2007129656A1 JP 2007059368 W JP2007059368 W JP 2007059368W WO 2007129656 A1 WO2007129656 A1 WO 2007129656A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
yarn
rubbing
liquid crystal
weft
Prior art date
Application number
PCT/JP2007/059368
Other languages
English (en)
French (fr)
Inventor
Yasuo Hirota
Takashi Inoue
Keiko Nakano
Hayami Tabira
Michihisa Matsushita
Original Assignee
Somacho Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somacho Co., Ltd. filed Critical Somacho Co., Ltd.
Priority to CN2007800167760A priority Critical patent/CN101443496B/zh
Priority to KR1020087029935A priority patent/KR101087007B1/ko
Publication of WO2007129656A1 publication Critical patent/WO2007129656A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0088Fabrics having an electronic function
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D27/00Woven pile fabrics
    • D03D27/02Woven pile fabrics wherein the pile is formed by warp or weft
    • D03D27/06Warp pile fabrics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial

Definitions

  • the present invention relates to a rubbing cloth material used in a rubbing process performed for controlling the orientation of liquid crystal molecules in a liquid crystal panel manufacturing process.
  • a rubbing cloth with raised pile yarn is attached to the outer peripheral surface of a metal roller with double-sided adhesive tape, and this roller (hereinafter referred to as "rubbing roller") is rotated at high speed.
  • This is an operation of rubbing the substrate surface with pile yarn.
  • an alignment film made of a dedicated polyimide resin is applied to the substrate surface. It is the surface of this alignment film that the rubbing cloth rubs directly.
  • the polyimide molecules on the surface of the alignment film are uniaxially stretched by rubbing between the rubbing cloth and the alignment film, and using the alignment state, a liquid crystal molecular layer formed on the liquid crystal molecular layer is given a uniform alignment stake.
  • a liquid crystal display element used in a liquid crystal panel is composed of a TFT substrate in which a driving element (TFT) made of a thin film transistor is formed on a glass substrate and a CF substrate in which a color filter (CF) is formed on the glass substrate. These two substrates are aligned with each other and face each other, and a liquid crystal molecular layer is sandwiched between them.
  • TFT driving element
  • CF color filter
  • the liquid crystal molecular layer sandwiched between the TFT substrate and the CF substrate is uniformly aligned along the alignment axis of the alignment film surface. Only after this uniform alignment of the liquid crystal molecular layer is achieved, electrical switching of the liquid crystal becomes possible, and a desired image display becomes possible.
  • the uniformity of liquid crystal alignment is governed by the uniformity of rubbing. Ensuring sufficient alignment regulation and uniformity by rubbing is an important issue that affects the display quality of liquid crystal panels.
  • a plurality of these TFT substrates and CF substrates are formed on a thin large glass substrate called mother glass. This is the so-called multi-chamfering. From the standpoint of improving productivity, it is essential to increase the size and size of the mother glass, and I do not know that this trend will remain.
  • the current mainstream 6th generation (G6) line uses a glass substrate of 1500 mm x 1850 mm.
  • a rubbing cloth width force S of 2000 mm is sufficient.
  • the rubbing direction is rotated by 45 degrees, and the length of the rubbing cloth reaches a maximum of 2600 mm.
  • longitudinal fabrics vertical fabrics that cut the fabric in the longitudinal direction in accordance with the weaving direction (warp direction) has progressed.
  • the current mainstream of vertical fabric is rayon fabric, but as described later, in the vertical fabric of rayon, the fur line is not stable, and rubbing streaks may occur, and the orientation quality is unstable. There is.
  • a pile rubs the surface of the substrate in the rubbing direction, so that there are no vertical stripe-shaped luminance irregularities (rubbing stripes). This is based on the principle of rubbing the surface with countless raised fibers. The problem is the degree of this rubbing streak and whether it can be visually perceived.
  • LCD panels have been adopted in TVs and the demand for display quality has increased, it is necessary to thoroughly reduce uneven brightness such as rubbing lines.
  • the contact pressure of the pile against the alignment film varies between the mouth and the macro, and the variation reflects the alignment state of the liquid crystal molecules. There may be rubbing streaks in the display state. This is the identity of the rubbing muscle. If this happens, display quality will be poor and the product yield will be reduced. Therefore, a device for reducing rubbing muscles has been proposed.
  • Brushing is a process in which a rotating roll brush or a rotating belt brush with a stainless needle planted on the surface is used to rub the pile in a desired direction.
  • the dryness fluctuates due to the effect of seasonal humidity and temperature, and the napped state tends to vary in-plane and between lots.
  • the resin is cured at about 150 ° C. in a heating process to fix the pile.
  • This brushing process and heating process can easily vary from lot to lot, so the slope is not stable, and there is a problem! It is difficult to uniformly give the pile a sufficient tilt angle.
  • the pile yarn of the rayon velvet cloth is inclined in the weft direction of the fabric structure (the lateral direction of the velvet fabric) as a method of dealing with the widening of the labinda roll accompanying the increase in the size of the mother glass.
  • a method of cutting the cloth material in the warp direction by a length corresponding to the width of the mother glass substrate to be rubbed has been proposed (Japanese Patent No. 3400424).
  • Japanese Patent No. 3400424 Japanese Patent No. 3400424
  • this method is basically the same as the conventional method in which the viscose rayon cut pile described above is inclined by brushing and the inclination is fixed by thermal curing of the cellulose reactive resin processed material.
  • the brushing direction is only changed to the weft direction, the problem remains that the inclination is not stable depending on the processing lot.
  • Fig. 10 is one of the velvet fabrics that have a ground structure that weaves pile yarn into a W shape. It is mainly used when weaving with long fiber yarns, and is used for rayon rubbing fabrics.
  • the warp 11 is below the wefts 1, 3, and 5 and above the wefts 2, 4, and 6.
  • Warp 12 ⁇ Weft 1, 3 and 5 above [This is under Weft 2, 4 and 6
  • Knurl yarns ⁇ , ⁇ , C, and D are in the positions shown in the figure.
  • pile yarns C and D are warp yarns 12 Although it is slightly inclined in the direction (right side of the figure), the amount of inclination is not sufficient and the structure is not designed to fix the inclination.
  • Fig. 11 is one of woven fabrics of velvet fabric with a ground structure that is used mainly when weaving with spun yarn and weaves pile yarn into a V-shape, and is used as a cotton rubbing fabric. Is.
  • wefts 1 and 2 are under warp 11 and above warp 12. Since weft 2 is above warp 12, pile A is slightly inclined toward warp 11 and pile B is slightly inclined toward warp 12 as shown in FIG.
  • this woven structure there is no element that actively inclines in the weft direction where the amount of inclination in the weft direction is not sufficient. Therefore, in order to impart an inclination in the weft direction with this woven structure, the inclination only by brushing, which is only a method of brushing in the weft direction, is extremely unstable and is not practical.
  • Producing rubbing fabric includes a process of coating an emulsion resin processing agent (such as acrylate ester or vinyl acetate copolymer) on the back side of the fabric (the side without the pile). This is called a back coating process. If the back coating is not carried out, the ground yarn and pile yarn at the end of the cloth material cut from the rubbing cloth material will fray and fall off, damaging the alignment film. For this reason, back coating is always applied to rubbing fabric.
  • knock coating multiple guide rollers are installed to move the fabric in the length direction of the fabric (the warp direction of the fabric) (eg Fig. 12).
  • a method of measuring the directionality of pile yarn hair a method of measuring the movement trajectory of a 1-yen or spherical ball placed on the pile yarn hair by applying vibration to the rubbing cloth material (Patent No. 1) 3 636601 gazette) is common.
  • Patent No. 1 a 1-yen coin is placed on a rubbing cloth with a pile yarn inclined in the weft direction with a brush and the vibration is applied, the 1-yen coin moves approximately 90 degrees (ie, the weft direction) with respect to the ground warp direction.
  • this 1-yen coin moves in an oblique direction with respect to the ground warp (Fig. 14).
  • the angle of movement of this 1-yen coin reflects that the force applied to the pile yarn varies from place to place due to the force that constrains the lateral movement of the fabric. For example, it varies depending on the position of the fabric in the weft direction (al, a2, and a3 angles are different), and also varies depending on the position of the fabric in the warp direction.
  • the rubbing cloth material using the rayon yarn is impregnated with a cellulose-reactive thermosetting resin and cured, so that a certain degree of inclination is maintained in the direction of the weft yarn. It also tilts in the length direction due to friction.
  • a cotton rubbing cloth material that has a fine single fiber fineness and is not impregnated with thermosetting resin
  • the inclination in the warp direction is dominant, and when the fabric is processed, the tension that can be held in the fabric varies depending on the processing lot. Friction resistance with the guide roll is different, and the slope of the pile yarn varies depending on the location of the fabric depending on the processing lot.
  • the only way to provide the pile slope is the unstable brushing without the means to securely fix the slope.
  • the longitudinal direction of the rubbing cloth is not in the width direction (weft direction) of the weaving process, but in the warp direction. It is indispensable to take (this kind of cloth cutting is hereinafter referred to as “longitudinal cutting”). Therefore, it is necessary to incline the rubbing cloth in the weft direction.
  • a method of inclining the nozzle it does not depend on unstable processing processes such as brushing and impregnating resin processing that are not affected by the influence of guide roll friction in the woven fabric conveyance process, and is uniform in the fabric weft direction. It is necessary to achieve a pile slope.
  • the object of the present invention is to regulate the pile inclination in the weft direction of the woven fabric by appropriate design of the fabric structure, brush it in the weft direction, and then fix it stably by the back coating.
  • the object is to provide a rubbing cloth material for liquid crystal panel having a uniform and stable pile inclination in the direction.
  • the present inventors have intensively studied from the viewpoint of modifying the woven fabric structure of the velvet cloth. As a result, we have found that it is effective to weave additional warp yarns as floating yarns for plain weave fabrics that determine the basic structure of the fabric.
  • the “floating yarn” is a ground warp yarn that is woven in a state where it floats on the upper side (the side from which the end of the pile yarn protrudes) of a plurality of ground weft yarns.
  • the present invention is a rubbing cloth material for liquid crystal panel production of a velvet fabric having a ground fabric structure consisting of warp and weft yarns, and pile yarns woven in the warp direction of the fabric structure.
  • the warp is woven in a state of floating on the upper side of the weft on the surface on which the end of the pile yarn protrudes and the one that forms a plain weave structure
  • a rubbing cloth material for manufacturing a liquid crystal panel characterized by comprising floating yarns.
  • Cloth materials can be provided.
  • FIG. 1 is a view showing an embodiment of a rubbing cloth material of the present invention.
  • FIG. 2 is a view showing an embodiment of a rubbing cloth material of the present invention.
  • FIG. 3 is a photomicrograph showing a cross section of one embodiment of the rubbing cloth material of the present invention.
  • FIG. 4 is a photomicrograph showing a cross section of one embodiment of the rubbing cloth material of the present invention.
  • FIG. 5 is a photomicrograph showing a cross section of one embodiment of the rubbing cloth material of the present invention.
  • FIG. 6 is a photomicrograph showing a cross section of one embodiment of the rubbing cloth material of the present invention.
  • FIG. 7 is a view showing an embodiment of a rubbing cloth material of the present invention.
  • FIG. 8 is a view showing an embodiment of a rubbing cloth material of the present invention.
  • FIG. 9 is a view showing an embodiment of a rubbing cloth material of the present invention.
  • FIG. 10 is a view showing an embodiment of a conventional rubbing cloth material.
  • FIG. 11 is a view showing an embodiment of a conventional rubbing cloth material.
  • FIG. 12 shows an example of a back coating process.
  • FIG. 13 is a diagram for explaining a 1-yen coin test.
  • FIG. 14 is a diagram for explaining a 1-yen coin test.
  • FIG. 15 is a diagram for explaining a pile inclination angle.
  • FIG. 16 is a view showing a liquid crystal alignment state of the test liquid crystal cell of Example 2.
  • FIG. 17 is a view showing a liquid crystal alignment state of a test liquid crystal cell of Comparative Example 1.
  • FIG. 1 is a diagram showing an embodiment of a rubbing cloth material according to the present invention including a floating yarn woven in a state of floating on the upper side of the weft on the surface on which the end portion of the pile yarn protrudes. .
  • 1 complete structure means the smallest structural unit of the structure that constitutes the fabric, and warp, weft and pile in this structural unit.
  • a cloth material having a fixed structure is formed.
  • an excellent effect can be obtained by including at least one float in one complete structure.
  • FIG. 1 is a woven diagram in which 21 and 22 are arranged as floating yarns on the velvet woven fabric structure shown in FIG.
  • the float 22 is above the wefts 1, 2, 3, 4 and 5 and is woven under the weft 6.
  • the float 21 is above the wefts 1, 2, 4, 5, 6 and is woven under the weft 3.
  • these floating yarns 21 and 22 are referred to as “5/1 floating yarn”.
  • the warps 11 and 12 and the wefts 1, 2, 3, 4, 5, and 6 are in a so-called plain weave relationship, and repeat the unevenness in the vertical direction alternately.
  • the ground warp yarn 11 and the float yarn 21 are under the ground weft yarn 3, and the ground weft yarn 3 is under the ground warp yarn 12.
  • the ground weft yarn 3 is convex with the ground warp yarn 11 and the float yarn 21 sandwiched below. Natsume.
  • the floating yarn 21 and the ground warp yarn 11 are brought to a position in contact with the lower side of the weft yarn 3.
  • Fig. 2 is an enlarged and three-dimensional drawing of a part of this organization chart. Since the weft yarn 6 is held down by the ground warp yarn 11, the floating yarn 22 is drawn toward the warp yarn 12 so as to be squeezed.
  • Figure 1 (i) shows the ground weft 3 as seen from the direction of the ground weft 2. The warp 11 and the float 21 are close together under the ground weft 3.
  • the floating yarn 22 is configured to tighten the diagonal upper force against the roots of the pile yarns C and D, and pushes the pile yarns C and D in the direction of the ground warp yarn 12.
  • the piles C and D are forcibly inclined in the direction of the ground warp yarn 12.
  • FIG. 3 is a photomicrograph of the surface cut along the weft yarn 2 in the structure diagram of the velvet fabric woven with the structure of FIG.
  • the pile yarn (A etc.) is slightly inclined in the direction of the fabric weft, but is not pressed by the ground warp.
  • Fig. 4 is a photomicrograph of the ground fabric and pile yarn after partially removing the pile yarn of the velvet fabric woven with the fabric structure of Fig. 1 and showing oblique upper forces in the warp direction. 22 are oriented in the direction of warp threads 11 and 12, and the pile threads (A, B, etc.) are inclined to the left.
  • Fig. 5 shows the surface cut along the weft 2 in the structure diagram of the velvet fabric shown in Fig. 1. It is a microscopic photograph. The fact that the floating yarns 21 and 22 are pressing the pile yarn (A, C, etc.) in the right direction of the screen is surprising.
  • Fig. 6 is a photomicrograph taken from diagonally above in the weft direction after partially removing the pile yarn in the same manner as in Fig. 4.
  • the floating yarn 22 has five weft yarns 1, 2, 3, 4 , 5 and is held down by one weft 6 from above.
  • FIG. 7 is a structure diagram in which 3Z1 floats 21 and 22 are arranged on the ground warp of the fabric structure diagram shown in FIG.
  • the floating yarns 21 and 22 press the pile yarns A and B in the weft direction, respectively, so that a tilt in the weft direction can be stably given to the needle. By doing so, a rubbing cloth with less rubbing streaks can be provided as compared with the conventional structure of FIG.
  • Fig. 8 shows that one pile yarn is woven over five or more weft yarns (in the case of five weft yarns, the pile yarn is W-shaped). It is a figure which shows the rubbing cloth material of this invention which has the structure where the number of the edge parts which the pile yarn contained between wefts protrudes is equal.
  • the piles A, B, C, and D are pressed by the floats 21, 22, 23, and 24 to give an inclination.
  • This strength distribution is converted into a streak distribution of alignment regulating force on the alignment film surface, which may ultimately cause rubbing streaks on the liquid crystal panel. That is, in the structure of FIG. 10, rubbing streaks are relatively easy to occur.
  • the rubbing cloth woven with the structure of FIG. 8 there are two piles in each weft row gap as described above. When attached and rubbed in the weft direction, piles on the alignment film Inhomogeneous contact is not likely to occur, and the distribution of orientation regulating force in the surface is uniform, and rubbing streaks are unlikely to occur.
  • the number of pile fibers per unit area can be increased. This increases the number of piles that are rubbed per unit area of the alignment film. This increases the density of friction lines that rub the alignment film, which is advantageous for uniform orientation.
  • the fineness is too thin, the stiffness of the pile fiber is reduced, and the force for pressing the pile tip against the alignment film is weakened.
  • the force of pressing the pile tip against the alignment film becomes strong, which can give strong alignment control, but make a velvet fabric with a large number of pile fibers per unit area.
  • the alignment film may be damaged. From the above trade-off relationship, it is desirable that the single fiber fineness of the pile yarn is 0.888-5. 5 decitex! /.
  • the total number of fibers in a unit area is limited. In order to produce a velvet fabric with a large number of pile fibers per unit area, if the pile yarn is thickened and the number of fibers with a large fineness is increased, the fineness of the ground warp yarn and the float yarn must be reduced. A pile yarn having a high fineness has a high fiber rigidity and is difficult to deform, so that it is difficult to sufficiently tilt the pile. When the number of pile fibers per unit area is small, the inclination becomes large, it is difficult to obtain an inclination of 60 to 80 degrees suitable for rubbing, the orientation regulating force becomes weak, and the life as a rubbing cloth is short. The total number of single fibers contained in one square centimeter is 1.5. In terms of decitex, 20000 to 80000 bars is good, preferably about 40000 to 75000 bars.
  • the base fabric of the velvet fabric is a plain weave. There are few warp floats on the plain warp. When there is little weaving or shrinking of the floating yarn, since the floating yarn exists near the root of the yarn yarn, the inclination is reduced. When the weaving is large, the floating yarn is located away from the fabric and is above the root of the needle yarn. This increases the slope. In order to obtain a pile inclination angle suitable for rubbing, it is desirable that the weaving of the float is 1-8%.
  • the machine that is not knock-coated is fixed with a wooden frame, and a solution of vinyl acetate resin dissolved in acetone and ethyl alcohol is applied from the back, dried and piled Was fixed and the inclination angle in the weft direction was measured.
  • the inclination angle is defined as the angle 0 with respect to the rubbing cloth, and ⁇ is the deviation from the ground warp direction.
  • Example 2 Using the woven structure shown in FIG. 8, weaving was performed using the same pile yarn and ground warp yarn as in Example 1.
  • the weft is 33 dtex double yarn and the total number of fibers per square centimeter is 74600.
  • the floating yarn weaving was 2.2%.
  • the pile of the living machine was fixed and the inclination angle was measured. In this case, the inclination angle in the weft direction was 74 degrees.
  • the finished fabric width is 112cm at the piled part.
  • Example 2 and Comparative Example 1 were cut into lengths of 50 cm each immediately after being inclined in the weft direction with a brush and after coating, and a mark was placed at 6 cm from the right ear end. Eleven places were marked at 10cm intervals.
  • Example 2 shows the movement angle of the 1-yen coin between the dough collected immediately after being tilted with the brush and the dough after coating with the resin.
  • the movement angle immediately after tilting with a brush is close to 90 degrees.
  • the movement angle after coating is also reduced.
  • the angle of the rubbing cloth due to the conventional structure of Comparative Example 1 can be seen, but because the pile has a greave such as darioxar, the decrease in the moving angle is small
  • Example 2 has a low single fiber fineness.
  • Example 2 Since the oil impregnation treatment is not performed, the movement angle decreases depending on the large part.
  • Comparative Example 1 when the coating was applied, the fabric was rubbed strongly against the guide roll, and the fabric moved and was about to come off from the coating machine. Coated. Since both ears were pulled, the movement angle of the 1-yen coin in both ears decreased after coating. The force to move was stronger in Comparative Example 1 than in Example 2.
  • Test liquid crystal cells were prepared using the velvet cloth prepared in Example 2 and Comparative Example 1 as a rubbing cloth, and the liquid crystal alignment quality was compared. Details of the experiment are described below.
  • an alignment film was applied to a glass substrate (100 mm X 100 mm X O. Tmm *) with a thin film by printing.
  • the alignment film coating area is approximately 70 mm square. This was dried and leveled at 70 ° C. for 1 minute, and then fired at 230 ° C. for 3 minutes. All of these operations were performed on a hot plate.
  • the velvet cloth of Example 2 or Comparative Example 1 was attached to a 50 mm ⁇ stainless steel rubbing roller with double-sided tape. At this time, the pile was fixed so that the inclination direction of the pile (weft direction) was directed to the rear of the rotation of the rubbing roller. This rubbing roller was used to rub the glass substrate with the alignment film.
  • the rubbing condition is the number of roller rotations.
  • the cutting depth defines the contact state between the roller and the substrate surface.
  • the position where the roller surface, that is, the tip of the rubbing cloth pile contacts the substrate surface is set to zero, and the amount of the roller pressed against the substrate side is measured by the moving distance of the roller and expressed as the cut amount. If the depth of cut is too large, the friction of the pile on the alignment film is too strong and damages the alignment film. On the other hand, if the cutting depth is too small, the alignment film and the pile are not sufficiently rubbed, so that the molecular alignment of the alignment film cannot be sufficiently achieved. For the cloth used here, it was confirmed separately that the cutting depth of 0.4 mm is appropriate.
  • the pile is spontaneously inclined in the weft direction in an orderly manner.
  • this cloth is cut into a vertical orientation and used as a rubbing cloth, the occurrence of rubbing streaks is greatly reduced and uniform liquid crystal alignment can be achieved. Therefore, it can be confirmed that it is suitable for the production of liquid crystal panels with high display quality. It was.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Woven Fabrics (AREA)

Abstract

 経糸11~22及び緯糸1~6からなる地布組織と、地布組織の経糸方向に織り込まれたパイル糸A~Dとを有するベルベット織物の液晶パネル製造用ラビング布材であって、ベルベット織物の1完全組織の中で経糸が、平織り組織を形成するもの11及び12と、パイル糸の端部が突出している側の面において緯糸の上側に浮いた状態で織り込まれている浮き糸21及び22とからなることを特徴とする液晶パネル製造用ラビング布材が開示される。

Description

明 細 書
液晶パネル製造用ラビング布材
技術分野
[0001] 本発明は、液晶パネル製造工程において、液晶分子の配向を制御するために行 われるラビング工程に用いるラビング布材に関する。
[0002] ラビング工程とは、起毛されたパイル糸を持つラビング布を、金属製ローラーの外 周面に両面粘着テープで貼り付け、このローラー(以下「ラビングロ一ラー」と称す)を 高速回転させてパイル糸によって基板表面を擦る操作である。ここで、基板表面には 、専用のポリイミド榭脂からなる配向膜が塗布されている。ラビング布が直接擦るのは 、この配向膜の表面である。ラビング工程では、ラビング布と配向膜の摩擦によって 配向膜表面のポリイミド分子を一軸延伸し、その配向状態を利用してその上に形成さ れる液晶分子層に対して均一配向の切っ掛けを与えて 、る。
[0003] 近年、液晶パネルの表示画面はますます大型化し、それに伴って工程中のガラス 基板サイズもさらに拡大する傾向にある。したがって、ラビングロ一ラーの大型化が要 望されている。本発明では、ラビング布に用いるベルベット織物の地布組織を工夫す ることにより、パイル糸を地布の緯糸方向に積極的に均一に傾斜させ、ラビング布の 長手方向をベルベット織物の経糸方向に取って布を切断することを可能とした。これ により、ラビングロ一ラーの大型化に十分対応するとともに、表示むらが少なぐコント ラスト比に優れた液晶パネルの製造を可能にするラビング布を提供することができる 背景技術
[0004] 液晶パネルに使用される液晶表示素子は、ガラス基板上に薄膜トランジスターから 成る駆動素子 (TFT)を形成した TFT基板と、ガラス基板上にカラーフィルター (CF) を形成した CF基板からなり、これら 2枚の基板を相互に位置合わせして対向させ、そ の間に液晶分子層を挟みこむ形で構成される。ここで、 TFT基板および CF基板の それぞれの液晶側表面には、専用のポリイミド榭脂からなる厚さ数十 nm程度の配向 膜が形成されている。そして、この配向膜の表面にはラビング処理により配向処理が 施されており、最表面のポリイミド分子が一軸配向されている。このため、これら TFT 基板および CF基板に直に接触して挟まれた液晶分子層が、配向膜表面の配向軸 に沿って均一に配向する。この液晶分子層の均一配向が達成されて初めて、液晶の 電気的スイッチングが可能となり、所望の画像表示が可能となる。液晶配向の均一性 は、ラビングの均一性に支配されており、ラビングによって十分の配向規制力と均一 性を確保することは、液晶パネルの表示品質を左右する重要課題である。
[0005] 実際の液晶パネル製造工程では、これら TFT基板および CF基板のいずれもが、 マザ一グラスと呼ばれる薄い大型ガラス基板の上に複数形成される。これは所謂、多 面取りと称されるものである。生産性向上の観点から、マザ一ガラスの大型化と多面 取りは必須の条件であり、この趨勢は留まることを知らない。この複数枚の TFT基板 、CF基板の上に形成されたポリイミド榭脂の配向膜を高速でラビングすることにより、 配向膜の表面に一軸方向の分子配向性を付与することができる。
[0006] 例えば現在主流の第 6世代(G6)ラインでは 1500mm X 1850mmのガラス基板を 用いる。このガラス基板を縦あるいは横方向にラビングする場合には、ラビング布幅 力 S 2000mmあれば十分である。し力し、このガラス板で TN (twisted nematic)パ ネルも製造する場合には、ラビング方向を 45度回転させて処理するのでラビング布 の長手方向の長さは最大 2600mmに達する。このため G6ライン以降の大形ラインで は、布の長尺方向を織布方向(経糸方向)に合わせて切断する縦取りの布(以下「縦 取り布」と称す)の採用が進行して 、る。縦取り布の現在の主流はレーヨン布であるが 、後述するようにレーヨンの縦取り布では毛並みが安定せず、ラビング筋が発生する 場合があり、配向品質が安定しな 、と 、う問題がある。
[0007] ラビングを利用した液晶パネルでは、基板表面をラビング方向にパイルが擦るため 、縦筋状の輝度むら (ラビング筋)が皆無ではない。これは無数の立毛した繊維で表 面を擦るという原理に基づくものである。問題はこのラビング筋の程度であり、 目視認 識されるかどうかということである。液晶パネルが TVに採用され、表示品質に対する 要求が高まって来たため、ラビング筋のような輝度むらを徹底的に低減する必要があ る。ラビング布パイルの毛並みが変動すると、配向膜に対するパイルの接触圧がミク 口、マクロにばらつき、そのばらつきが液晶分子の配向状態に反映して、液晶パネル の表示状態にラビング筋が認められる場合がある。これがラビング筋の正体である。 こうなると、表示品質不良となって、製品歩留を落とすことになる。そこでラビング筋を 低減させる工夫が提案されて 、る。
[0008] 例えば、ラビング布のパイルを所望角度で傾斜するよう加工すると(図 15)、ラビン グ筋が低減することが知られている(特開平 7— 168186号公報、特開平 11— 1839 08号公報、特許第 3209328号公報)。ラビング布のパイルに傾斜を与える具体的な 方法として、ビスコースレーヨン 'フィラメントから成るカットパイルを、セルロース反応 型樹脂加工材により傾斜保持させることが提案されて!、る (登録実用新案第 303282 0号公報)。この方法では、剛性の足りないレーヨンパイルを立毛状態で固定しなけ ればならない。そこで、製織後のベルベットをセルロース反応型榭脂ェマルジヨンに 浸漬し、次いでこれを温風乾燥させながら起毛処理を施す。起毛処理は、ステンレス 製の針を表面に植えつけた回転ロールブラシや回転ベルトブラシを用い、パイルを 擦って所望の方向になびかせる工程であり、ここで毛並みが規定される。この工程で は、季節の湿度'温度の影響で乾燥度が変動し、立毛状態が面内、ロット間でばらつ き易い。この後、加熱工程で約 150°Cで榭脂を硬化させてパイルを固定する。この起 毛工程、加熱工程の出来栄えがロット間で変動しやす 、ため傾斜が安定しな 、と!/、う 問題があり、またパイルに十分な傾斜角度を均一に与えることが難しい。
[0009] このような問題を解消し、安定したパイル傾斜を付与するために、ベルベットの地布 組織を工夫することによって地布経糸方向に傾斜を与える方法が提案されている(特 開 2004— 341209号公報)。この方法によりラビング筋が劇的に少なぐコントラスト 比の優れた液晶パネルを製造するためのラビング布材を提供することが可能になる。 このように表示品質向上を満たすとともに、液晶パネルの大型化を同時に達成するた めには、理論的には特開 2004— 341209号公報の技術でも巾の広い生地を製作 することで問題解決が可能である。しかし、ラビング布の長手方向を織布の横幅方向 に切り取る従来の織布方法では、ラビング布の広幅化のためにはまず広幅の織機が 必要となり、また後工程の加工機やプロセス装置も全て大型化を必要とするため、莫 大なコスト増加を来たす。マザ一ガラスの拡大は G7 (1870mm X 2200mm) , G8 (2 160mm X 2400mm) , G9, G10' · ·と、今後さらに進行するものと予想される。そし て、その都度ラビング布幅確保のために広幅の布製造ラインを新設することは、経済 的に不合理である。
[0010] マザ一グラスの大型化に伴うラビンダロールの広幅化に対処する方法として、既に 述べたように、レーヨンベルベット布のパイル糸を地布組織の緯糸方向(ベルベット生 地の横方向)に傾斜させ、ラビング処理を行うマザ一ガラス基板の巾に対応する長さ だけ経糸方向に布材を切断する方法が提案されて ヽる (特許第 3400424号公報)。 し力し、この方法も基本的には既に述べたビスコースレーヨンのカットパイルにブラッ シングで傾斜を与えセルロース反応型樹脂加工材の熱硬化によってその傾斜を固 定する従来同様の手法であって、ブラッシング方向を緯糸方向に変えただけである ため、加工ロットによって傾斜が安定しない問題を残している。
[0011] この方式を、図によって説明する。図 10はパイル糸を W字形に織り込む地組織を 持つベルベット織物の織組織の一つで、主として長繊維糸で製織する場合に用いら れ、レーヨンラビング布材に用いられているものである。図 10において、経糸 11は緯 糸 1、 3、 5の下【こあり、緯糸 2、 4、 6の上【こある。経糸 12ίま緯糸 1、 3、 5の上【こあり、 緯糸 2、 4、 6の下にある。これらの関係は所謂平織りの組織である。ノィル糸 Α、 Β、 C、 Dはそれぞれ図に示された位置にあり、緯糸 3を緯糸 2の方向から見ると図 10の( ィ)の如くになり、パイル糸 C、 Dは経糸 12の方向(図の右側)にわずかに傾斜するが 、傾斜量が十分ではなぐまた傾斜を固定する構造設計にはなっていない。
[0012] 図 11は、主として紡績糸で製織する場合に用いられ、パイル糸を V字形に織り込む 地組織を持つベルベット織物の織組織の一つで、コットンラビング布材として上巿さ れているものである。
[0013] 図 11において、緯糸 1、 2は経糸 11の下にあり、経糸 12の上にある。緯糸 2は経糸 12の上にあるため、図 11 (ィ)のごとくパイル Aは経糸 11側に、パイル Bは経糸 12の 側にわずかに傾斜している。この織組織では、緯糸方向の傾斜量が十分ではなぐ 緯糸方向に積極的に傾斜させる要素がない。そこで、この織構造で緯糸方向の傾斜 を付与するには、緯糸方向にブラッシングする程度の方法しかなぐブラッシングだけ の傾斜は極めて不安定であり、実用性が無い。
[0014] ラビング布パイルの傾斜方向を狂わせるもう一つの要因は、布のバックコーティング 工程に関係する。ラビング布材を生産するには地布の裏側 (パイルの無い側)にエマ ルジョン樹脂加工剤(アクリル酸エステルや酢酸ビニール系共重合ィ匕合物等)をコー ティングする工程が含まれる。これをバックコーティング工程と呼ぶ。仮にバックコーテ イングを実施しないと、ラビング布材を切断した布材の端の地糸、パイル糸等がほつ れ、脱落し、配向膜を傷つける。このためラビング布材には必ずバックコーティングが 行われている。ノ ックコーティングする場合、生地の長さ方向(地布の経糸方向)に生 地を移動させるため(例えば図 12)、複数のガイドローラーが設置されている。このた め、ガイドローラーが生地のパイル面を擦る作業が必然的に発生する。地緯糸方向 にパイル糸を傾斜させたラビング布材のパイル面がガイドローラーに擦られると、生 地は、パイル糸の傾斜の作用によって(図 12ィ参照)ローラーの片側に寄る傾向があ る。そこでこれを防ぐために、特別なガイドロールを設置したり、張力を生地に与える ことによって生地の横移動を強制的に制限する必要がある。またラビング布材が張力 によってガイドローラーに強く擦られた場合、パイル糸は生地の地経糸方向にも傾斜 する。これらの要素は、パイル傾斜の均一性を劣化させる。実際、この問題を下記の ように計測することができる。
[0015] パイル糸の毛の方向性を測定する方法として、ラビング布材に振動与え、パイル糸 の毛の上に置かれた 1円玉あるいは球状の玉の移動軌跡を測定する方法 (特許第 3 636601号公報)が一般的である。ブラシにより緯糸方向にパイル糸を傾斜させたラ ビング布に 1円玉を乗せ、振動を与えると、 1円玉は地経糸の方向に対して、ほぼ 90 度方向(即ち緯糸の方向)に移動するが(図 13)、さらに地布にバックコーティングし た後のラビング布材に 1円玉を乗せ、振動を与えると、 1円玉は地経糸に対して斜方 向(図 14)に移動する。この 1円玉の移動する角度は、生地の横移動を強制的に制 限した力によってパイル糸に加わる力が場所毎に異なることを反映する。例えば生地 の緯糸方向の位置によっても異なり(al、 a2、 a3の角度が異なる)、また生地の地経 糸方向の位置によっても異なる。
[0016] 以上のように地布のバックコーティングまで完了してパイル傾斜方位の狂った布材 を、再度ブラッシングをかけてパイルの傾斜を地緯糸方向に矯正することは困難であ る。何故なら、ノ ックコーティングが完了した布では、榭脂がパイル糸の根元力もパイ ル糸繊維中に浸透してある程度上昇し、繊維の固定が進行している力 である。従つ て、生地全体において緯糸方向の均一な傾斜を達成することはなかな力難しい。
[0017] レーヨンノ ィル糸を用いたラビング布材は、セルロース反応型の熱硬化性榭脂を含 浸し、硬化させるため、地緯糸方向にある程度の傾斜状態が保持されるが、上述の ガイドロールの摩擦により長さ方向にも傾斜する。一方、単繊維繊度が細ぐ熱硬化 性榭脂を含浸させないコットンのラビング布材では経糸方向の傾斜が支配的であり、 生地の加工時に、生地にカ卩えられる張力が加工ロットにより異なると、ガイドロールと の摩擦抵抗が異なり、加工ロットによっても生地の場所毎にパイル糸の傾斜が異なつ てくる。さらに従来のコットン布の場合は、含浸樹脂加工がないために、傾斜を確実 に固定する手段がなぐ不安定なブラッシングだけがパイル傾斜を付与する唯一手 段である。
発明の開示
[0018] 以上のことを総合すると、ますます進展する液晶パネルの大型化に対応するために は、ラビング布の長手方向を織布工程の幅方向(緯糸方向)に取るのではなぐ経糸 方向に取ることが必須である(このような布の切り取り方のことを、以後「縦取り」と呼ぶ )。このため、ラビング布のノィルは緯糸方向に傾斜させる必要がある。またノィルを 傾斜させる方法としては、織布の搬送過程におけるガイドロール摩擦の影響に負ける ことなぐブラッシングや含浸樹脂加工のような不安定な加工工程にも頼らずに、地 布緯糸方向に均一なパイル傾斜を達成することが必要である。
[0019] すなわち、本発明の目的は、地布組織の適切な設計によってパイル傾斜を織布の 緯糸方向に規制し、これを緯糸方向にブラシングした後バックコーティングによって 安定に固定することで、緯糸方向に均一で安定なパイル傾斜を持つ液晶パネル製 造用ラビング布材を提供することにある。
[0020] 本発明者らは、上記の課題を解決するために、ベルベット布の織布構造を改造す る観点カゝら鋭意検討した。その結果、布の基本構造を決める平織りの地布に対して、 付加的な経糸を浮き糸として織り込むことが有効であることを見出した。ここで「浮き 糸」とは、複数の地緯糸の上側 (パイル糸の端部が突出している側)に浮いた状態で 織り込まれて 、る地経糸のことである。 [0021] すなわち、本発明は、経糸及び緯糸カゝらなる地布組織と、該地布組織の経糸方向 に織り込まれたパイル糸とを有するベルベット織物の液晶パネル製造用ラビング布材 であって、前記ベルベット織物の 1完全組織の中で前記経糸が、平織り組織を形成 するものと、前記パイル糸の端部が突出している側の面において前記緯糸の上側に 浮いた状態で織り込まれている浮き糸とからなることを特徴とする液晶パネル製造用 ラビング布材である。
[0022] 本発明によれば、パイル傾斜を織布の緯糸方向に規制し、これをバックコーティン グによって安定に固定することで、緯糸方向に均一で安定なパイル傾斜持つ液晶パ ネル製造用ラビング布材を提供できる。
図面の簡単な説明
[0023] [図 1]本発明のラビング布材の一形態を示す図である。
[図 2]本発明のラビング布材の一形態を示す図である。
[図 3]本発明のラビング布材の一形態断面を示す顕微鏡写真である。
[図 4]本発明のラビング布材の一形態断面を示す顕微鏡写真である。
[図 5]本発明のラビング布材の一形態断面を示す顕微鏡写真である。
[図 6]本発明のラビング布材の一形態断面を示す顕微鏡写真である。
[図 7]本発明のラビング布材の一形態を示す図である。
[図 8]本発明のラビング布材の一形態を示す図である。
[図 9]本発明のラビング布材の一形態を示す図である。
[図 10]従来のラビング布材の一形態を示す図である。
[図 11]従来のラビング布材の一形態を示す図である。
[図 12]バックコーティング工程の一例を示す図である。
[図 13] 1円玉試験を説明するための図である。
[図 14] 1円玉試験を説明するための図である。
[図 15]パイル傾斜角を説明するための図である。
[図 16]実施例 2のテスト液晶セルの液晶配向状態を示す図である。
[図 17]比較例 1のテスト液晶セルの液晶配向状態を示す図である。
発明を実施するための最良の形態 [0024] 図 1は、パイル糸の端部が突出している側の面において緯糸の上側に浮いた状態 で織り込まれている浮き糸を含む本発明のラビング布材の一形態を示す図である。 なお、図 1中には「1完全組織」として明示するように、 1完全組織とは布材を構成する 組織の最小の一構成単位を意味し、この一構造単位内の経糸、緯糸およびパイル 糸の構成が繰り返されることにより一定組織の布材が構成される。そして、本発明に おいては、この 1完全組織内に少なくとも一本の浮き糸を含むことにより優れた効果を 奏するものである。
[0025] 図 1は、図 10に示されたベルベット織物組織図に、浮き糸として 21、 22をカ卩えた組 織図である。浮き糸 22は、緯糸 1、 2、 3、 4、 5の上にあり、緯糸 6の下に織られている 。浮き糸 21は、緯糸 1、 2、 4、 5、 6の上にあり、緯糸 3の下に織られている。以下、こ の浮き糸 21、 22を「5/1の浮き糸」と称す。経糸 11、 12と緯糸 1、 2、 3、 4、 5、 6は、 いわゆる平織りの関係にあり、交互に上下方向の凹凸を繰返す。地経糸 11と浮き糸 21は地緯糸 3の下にあり、地緯糸 3は地経糸 12の下になるため、地緯糸 3は地経糸 11と浮き糸 21を下に挟んだ状態で凸状になつて 、る。浮き糸 21と地経糸 11は緯糸 3の下に接する位置に寄せられている。図 2はこの組織図の一部を拡大し、立体的に 描いたものである。地緯糸 6は地経糸 11によって押さえられているため、浮き糸 22は 絞り込まれるようにして経糸 12の方に寄せられる。図 1 (ィ)は地緯糸 3を地緯糸 2の 方向から見たところである。経糸 11と浮き糸 21が地緯糸 3の下で寄り合つている。こ のため浮き糸 22はパイル糸 C、 Dの根元部分に対して斜め上力も締め付ける形となり パイル糸 C、 Dを地経糸 12の方向に押すようなる。この結果、パイル C、 Dが地経糸 1 2の方向に強制的に傾斜させられるわけである。
[0026] 図 3は図 10の構造で織られたベルベット織物の組織図中の地緯糸 2にそって切断 した面の顕微鏡写真である。パイル糸(A等)は、地布緯糸方向にわずかに傾斜して いるが、地経糸に圧迫されているわけではない。
[0027] 図 4は図 1の織物組織で織られたベルベット織物のパイル糸を部分的に除去した後 の地布とパイル糸を経糸方向の斜め上力 写した顕微鏡写真であり、浮き糸 21、 22 が経糸 11、 12の方向によせられ、パイル糸(A、 B等)が左側に傾斜している。
[0028] 図 5は図 1で示されたベルベット織物の組織図中の緯糸 2にそって切断した面の顕 微鏡写真である。浮き糸 21、 22がそれぞれパイル糸 (A、 C等)を画面右方向に圧迫 していることがわ力る。
[0029] 図 6は図 4と同様にパイル糸を部分的に除去した後、緯糸方向の斜め上から写した 顕微鏡写真で、ここでは浮き糸 22は 5本の緯糸 1、 2、 3、 4、 5の上にあり、 1本の緯 糸 6に上から押さえられている。
[0030] 図 7は、図 11に示された織物組織図の地経糸に、 3Z1の浮き糸 21、 22をカ卩えた 組織図である。浮き糸 21、 22はそれぞれパイル糸 A、 Bを緯糸方向に圧迫することで 、 ノィルに緯糸方向の傾斜を安定に与えることができる。こうすることによって、従来 型の図 11の組織に比べ、ラビング筋の少ないラビング布を提供できる。
[0031] 図 8は、 1本当たりのパイル糸が緯糸 5本以上に亘つて織り込まれており(緯糸が 5 本の場合はパイル糸は W状である)、ベルベット織物の 1完全組織において各緯糸 間に含まれるパイル糸の突出する端部の数が等しい構造を有する本発明のラビング 布材を示す図である。浮き糸 21、 22、 23、 24によってパイル A, B, C, Dを圧迫して 傾斜を与えている。図 10のベルベット組織の 1完全組織においては緯糸 1、 2、及び 緯糸 4、 5の間にはパイル糸が存在しない。緯糸 2、 3、緯糸 3、 4、緯糸 5、 6及び緯糸 6、 1の間にはそれぞれ 2本のパイルが存在する。すなわち緯糸の方向から見ると、パ ィル糸がな 、列と 2本のパイル糸が存在する列が周期的に存在する。これに対して 図 8においては、 1完全組織の中で、全ての緯糸の間隙には 2本のパイル糸が存在 する。即ち緯糸の間隙の列のどこにもパイルの抜けが無い。そこで、まず図 10の組 織で作られたベルベット生地を縦取りで切断したラビング布をラビングロ一ラーの巾 方向に合わせて貼り付け、緯糸方向をラビングの方向に合わせてラビング処理を行 つた場合、配向膜に対するパイルの当りの強さ力 緯糸列の間隙毎のパイルの有無 に対応して強弱の影響を受ける傾向がある。この当りの強弱の分布は、配向膜表面 の配向規制力の強弱の筋状の分布に変換され、最終的に液晶パネルのラビング筋 の原因となる可能性がある。即ち、図 10の組織では、比較的にラビング筋が発生し 易い。これに対して図 8の組織で製織されたラビング布では、上述のようにどの緯糸 列の間隙にも 2本ずつのパイルが存在するので、上記同様に縦取りしたラビング布を ラビングロ一ラーに貼り付けて緯糸方向でラビングした場合、配向膜に対するパイル 当りに不均一が発生しにくぐ面内の配向規制力の分布が均一となってラビング筋が 発生しにくい。
[0032] 浮き糸によってパイルが緯糸方向に圧迫され、パイルに強制的に緯糸方向の傾斜 が付与されたラビング布は、布搬送のガイドロールとの摩擦のためにパイルがー且は 生地の長さ方向 (経糸方向)に傾斜した場合でも、後から生地の横方向 (緯糸方向) にブラシで擦ることにより、元の生地の緯糸方向の傾斜に戻すことができる。これは、 織物の製織構造として、パイルに緯糸方向の傾斜を付与してあるからである。このよう に、図 1、図 7、図 8以外の従来のベルベット織物組織の地経糸に浮き糸をカ卩えること によってパイル糸に傾斜を付与できることが容易に理解される。このような浮きの多!ヽ 地経糸は、組織によっては 2本以上入れることも可能(図 9)である。
[0033] ラビング布のパイル単繊維の繊度が小さい場合には、単位面積当りのパイル繊維 本数を増大することができる。このことは配向膜の単位面積当りをラビングするパイル の本数を増大させることになるので、配向膜を擦る摩擦ラインの密度を増大させ、配 向の均一化に有利である。しかし、繊度を細くし過ぎるとパイル繊維の剛性が低下し て配向膜にパイル先端を押しつける力が弱くなるため、配向規制力が低下するという 問題が発生する。また、パイルを形成する単繊維繊度が大きいと、配向膜にパイル先 端を押しつける力が強くなり、強い配向規制を与えることはできるが、単位面積当りの パイル繊維本数の多いベルベット織物を作ることが困難で、配向の均一性向上の観 点から不利であると同時に、押しつけ力が強すぎると配向膜に傷を付ける可能性もあ る。以上のようなトレードオフ関係から、パイル糸の単繊維繊度は 0. 88-5. 5デシテ ックスであることが望まし!/、。
[0034] 織物にお!、て、単位面積に入る繊維本数の総数は限られて 、る。単位面積当たり のパイル繊維本数の多いベルベット織物を製造するには、パイル糸を太くし、繊度を 大きぐ繊維本数を多くすると、地経糸、浮き糸の繊度は小さくせざるを得ない。繊度 の大きいパイル糸は繊維の剛性が高く変形しにくいため、パイルを十分に傾斜させる ことが困難である。単位面積当りのパイル繊維本数が少ない場合には、傾斜が大きく なり、ラビングに適切な 60〜80度の傾斜を得ることが困難で、配向規制力も弱くなり 、ラビング布としての寿命も短い。 1平方センチに含まれる単繊維の総本数は、 1. 5 デシテックスに換算し、 20000〜80000本力 S良く、好ましく ίま 40000〜75000本程 度が適当である。
[0035] ベルベット織物の地布組織は平織りである。平織りの経糸の織縮に対して経糸の浮 き糸の織縮は少ない。浮き糸の織縮が少ない場合には、浮き糸がノィル糸の根本近 くに存在するため、傾斜が少なくなる。織縮が大きい場合には、浮き糸は地布より離 れたところに位置し、ノィル糸の根本より上部に存在する。このため傾斜が大きくなる 。ラビングに適したパイルの傾斜角を得るには浮き糸の織縮は 1〜8%が望ましい。 実施例
[0036] <実施例 1 >
図 1の織組織を用いて、ラビング布を試作した。結果を表 1に纏める。パイル糸には 綿糸 60番双糸を用 Vヽ、地経糸としてポリエステル 56デシテックス双糸を 5Ζ 1の浮き 糸および平織り組織の地経糸として使用し、 1センチあたり 30. 6本のノィル糸密度と した。緯糸は 165デシテックス、 110デシテックス、 84デシテックス、 33デシテックス双 糸の 4種類を用い、表中に記述した如き条件で製織した。傾斜角度はバックコートの 際擦られて変化するため、ノ ックコートしない生機を木枠で固定し、裏から酢酸ビ- ル榭脂をアセトンとエチルアルコールで溶解させた液を塗り、乾燥してパイルを固定 し、緯糸方向の傾斜角度を測定した。傾斜角度は図 15に示すように、ラビング布材 に対する角度 0 として定義し、 Θ は地経糸方向からのずれである。パイル傾斜角 0
1 2
は顕微鏡写真カゝら測定した。繊維総本数が少なぐ浮き糸の繊縮が大きくなると傾 斜角は減少することが理解できる。
[0037] <実施例 2>
図 8の織組織を用いて、実施例 1と同様のパイル糸、地経糸を用いて製織した。緯 糸は 33デシテックス双糸で 1平方センチ当りの繊維総本数は 74600本である。浮き 糸の織縮は 2. 2%であった。実施例 1と同様に生機のパイルを固定し、傾斜角度を 測定した。この場合の緯糸方向の傾斜角度は 74度であった。この生地の残りの生機 を乾熱 150°Cでセットし、シャーリング'洗浄'乾燥後、ブラシで横方向にパイル糸を 傾斜させ、生地の裏にアクリル系榭脂を約 50gZm2コーティングし、乾燥後べ一キン グした。仕上がり後の生地巾はパイルのある部分が 112cmである。 [0038] <比較例 1 >
図 10の組織を用い、パイル糸にレーヨン 110デシテックスを用い、地経糸にはポリ エステル 56デシテックス双糸、地緯糸にはポリエステル 110デシテックスを用いて製 織した。密度は経糸が 1センチあたり 27本、パイルは 54本で、緯糸が 1センチあたり 4 2本である。生機を 150°Cで乾熱セット後洗浄し乾燥したあとダリオキザール系榭脂 2 0%、尿素樹脂 15%、メラミン系榭脂 8%からなる榭脂液に含浸し、マンダルで絞った あとブラシによりパイル糸を横方向(緯糸方向)に傾斜させ、乾燥した後べ一キングし た。その後生地の裏にアクリル系榭脂をナイフコーターでコーティングして仕上げた。 榭脂の付着量は約 50gZm2であり、生地巾はパイルのある部分が 112cmである。
[0039] 実施例 2、比較例 1の生地を、それぞれブラシにより緯糸方向に傾斜させた直後及 びコーティング後各 50cmの長さに切断し、右側の耳端から 6cmのところに印を付け 、それより 10cm間隔で 11箇所印を付けた。
[0040] 振動する板の上に生地を置き、それぞれの印の上に 1円玉を置き、振動させ 1円玉 力 SlOcm動いたときの地経糸に対する角度を測定した。ブラシにより傾斜させた直後 に採取した生地と榭脂コーティング後の生地の 1円玉の移動角度を表 2に示した。ブ ラシにより傾斜させた直後の移動角度は、いずれも 90度に近い。コーティング後の移 動角度は ヽずれも低下する。また比較例 1の従来の組織によるラビング布の角度低 下が見られるが、パイルにダリオキザール系等の榭脂がついているため、移動角度 の低下は少なぐ実施例 2は単繊維繊度が低ぐ榭脂含浸処理を行っていないため 移動角度の低下は大きぐ部分によってバラツキがある。実施例 2、比較例 1はいず れもコーティングの際、ガイドロールに強く摩擦され生地が移動し、コーティング機械 より外れそうになったので、生地の両耳端に人が立ち、生地を戻しながらコーティング した。両耳部分を引張ったので、コーティング後、両耳部分の 1円玉の移動角度が低 下した。移動しょうとする力は、比較例 1が実施例 2より強力つた。
[0041] 次に、実施例 2、比較例 1のラビング布を手持ちのブラシで、ほぼ同じ力で緯糸方 向に擦った。その結果が表 2の「再ブラシ後」の値である。ブラシで緯糸方向に擦りパ ィルを傾斜させたラビング布は実施例 2は 90度近くに戻るが、榭脂で含浸した比較 例 1の角度は完全には戻らない。またバラツキも大きい。ガイドロールに擦られ、パイ ル繊維の表面についた含浸榭脂の皮膜が破壊された後地経糸によって抑えられる ことがないため、完全には回復しないと推測される。
[表 1]
Figure imgf000015_0001
[0043] [表 2]
Figure imgf000015_0002
[0044] <テスト液晶セノレ >
上記実施例 2、比較例 1で作製したベルベット布をラビング布に用いてテスト液晶セ ルを作製し、液晶配向品質を比較した。実験詳細を下記する。
[0045] 先ず、 ΙΤΟ薄膜付きのガラス基板(100mm X 100mm X O. Tmm*)に配向膜を印 刷により塗布した。配向膜塗布エリヤは、約 70mm角である。これを 70°CZl分で乾 燥'レべリングし、次いで 230°CZ3分で焼成した。これらの作業は、いずれもホットプ レートで実施した。次に、実施例 2または比較例 1のベルベット布を、 50mm φのステ ンレス製ラビングローラに、両面テープで貼り付けた。このとき、パイルの傾斜方向( 緯糸方向)がラビングローラの回転の後方に向くように固定した。このラビングローラ を用いて、上記配向膜付きガラス基板をラビングした。ラビング条件は、ローラ回転数
1500rpm、切り込み量 0. 4mm、基板送り速度 30mmZ分、とした。ここで切り込み 量とは、ローラと基板表面の接触状態を規定する。ローラ表面、即ちラビング布パイ ル先端が基板表面に接触した位置をゼロとして、さらにローラを基板側にどれだけ押 し付けたかをローラの移動距離で測り、切り込み量と表現する。切り込み量が大きす ぎれば、配向膜へのパイルの摩擦が強すぎて配向膜を傷つける。また切り込み量が 小さすぎると、配向膜とパイルの摩擦が不十分であるために、配向膜の分子配向が 十分に達成できない。ここで用いた布については、切り込み量 0. 4mmが適正である ことを別途確認している。
[0046] 上記のラビング処理の済んだ基板 2枚を用意し、一方の基板に直径 4 μ mのビーズ をスピンコーティングにより散布した。もう一方の基板には液晶を滴下した。これら 2枚 のガラス板を、ラビング方向がアンチパラレルになるように重ね合わせ、大気圧を利 用してガラス板同士を押し付け、ギャップ規定を行なって簡易的にテスト液晶セルを 作製した。
[0047] 出来上がったテスト液晶セルを裏面から白色蛍光灯のバックライトで照明しながら、 正面力 CCDカメラによって画像を取り込み、画像に対してシェーディング補正、コ ントラスト強調を行って液晶配向状態の均一性を比較した。その画像データを、図 16 、図 17に示す。ラビング方向は、図面の上下方向である。比較例 1のレーヨン布でラ ビングした場合は(図 17)、かなり明確なラビング筋が認められる。このレベルは、実 用パネルで問題となる。一方、実施例 2のラビング布を用いた場合は、ラビング筋が 顕著に薄くなつており、配向均一性が大幅に向上した。
[0048] 以上のように、地布経糸に浮き糸を追カ卩して織り込んだベルベット織物では、パイ ルが整然と緯糸方向に自発的に傾斜する。そしてこの布を縦取りに切ってラビング布 に用いると、ラビング筋の発生が大幅に低減し、均一な液晶配向が達成できるため、 高い表示品質の液晶パネルの製造に好適であることが確認できた。

Claims

請求の範囲
[1] 経糸及び緯糸からなる地布組織と、該地布組織の経糸方向に織り込まれたパイル 糸とを有するベルベット織物の液晶パネル製造用ラビング布材であって、
前記ベルベット織物の 1完全組織の中で前記経糸が、平織り組織を形成するものと
、前記パイル糸の端部が突出して 、る側の面にぉ 、て前記緯糸の上側に浮 、た状 態で織り込まれている浮き糸とからなることを特徴とする液晶パネル製造用ラビング 材。
[2] 1本当たりのパイル糸が緯糸 5本以上に亘つて織り込まれており、ベルベット織物の 1完全組織において各緯糸間に含まれるパイル糸の突出する端部の数が等しい請 求項 1記載の液晶パネル製造用ラビング布材。
[3] 1平方センチ面内に含まれるパイル糸を形成する単繊維の総本数が 1. 5デシテツ タスに換算して 20000〜80000本であり、ノ ィノレ糸の単繊維繊度力 0. 88〜5. 5デ シテックスである請求項 1又は 2記載の液晶パネル製造用ラビング布材。
[4] 織り込まれている浮き糸の織縮が 1〜8%である請求項 1〜3の何れか一項記載の 液晶パネル製造用ラビング布材。
PCT/JP2007/059368 2006-05-10 2007-05-02 液晶パネル製造用ラビング布材 WO2007129656A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800167760A CN101443496B (zh) 2006-05-10 2007-05-02 液晶板制造用摩擦布料
KR1020087029935A KR101087007B1 (ko) 2006-05-10 2007-05-02 액정패널 제조용 러빙포재(布材)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-131408 2006-05-10
JP2006131408A JP4657975B2 (ja) 2006-05-10 2006-05-10 液晶パネル製造用ラビング布材

Publications (1)

Publication Number Publication Date
WO2007129656A1 true WO2007129656A1 (ja) 2007-11-15

Family

ID=38667765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059368 WO2007129656A1 (ja) 2006-05-10 2007-05-02 液晶パネル製造用ラビング布材

Country Status (5)

Country Link
JP (1) JP4657975B2 (ja)
KR (1) KR101087007B1 (ja)
CN (1) CN101443496B (ja)
TW (1) TW200801269A (ja)
WO (1) WO2007129656A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925024B1 (ja) * 2011-08-31 2012-04-25 妙中パイル織物株式会社 液晶パネル基板用ラビング材

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346695B2 (ja) * 2009-06-10 2013-11-20 富士フイルム株式会社 ラビング方法及び装置並びに配向膜及び光学部材の製造方法
TWI384100B (zh) * 2010-01-25 2013-02-01 Tai Yuen Textile Co Ltd 配向布及配向裝置
CN102243393B (zh) * 2010-05-14 2013-10-16 台元纺织股份有限公司 配向装置及方法
CN201962465U (zh) * 2010-12-17 2011-09-07 江苏格玛斯特种织物有限公司 一种马海毛雪橇底布
TW201637464A (zh) * 2015-04-09 2016-10-16 Haka Ohara 喇叭振動片布材及其製作方法
CN105200627B (zh) * 2015-10-16 2017-01-04 浙江英诺威纺织有限公司 一种绒背可磨毛的丝绒面料及其织造方法
TWI578803B (zh) * 2016-01-20 2017-04-11 正崴精密工業股份有限公司 喇叭音膜及其製作方法
CN105629586A (zh) * 2016-03-17 2016-06-01 京东方科技集团股份有限公司 摩擦布及摩擦取向设备
CN106637579B (zh) * 2016-11-22 2018-10-26 浙江英诺威纺织有限公司 一种绒毛可沿纬向倾斜的丝绒及其织造方法
CN114541012B (zh) * 2022-02-23 2023-03-31 义乌市嘉享服饰有限公司 一种绒毛可纬向倾斜的阴影提花纬割绒及其织造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545800A (ja) * 1991-01-18 1993-02-26 Fuji Photo Film Co Ltd 写真フイルムパトローネ
JP2002148628A (ja) * 2000-11-10 2002-05-22 Agehara Orimono Kogyo Kk ラビング用布材
JP2005308886A (ja) * 2004-04-19 2005-11-04 Hayashi Telempu Co Ltd 液晶パネル製造用ラビング布材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445800A (ja) * 1990-06-08 1992-02-14 Toshiba Corp 遺伝子固定化方法
CA2122981C (en) * 1993-05-10 2003-06-17 Ronald Bland Holland Film cartridge and method to produce light-lock fabric therefor
JP4139732B2 (ja) 2003-05-15 2008-08-27 株式会社日立製作所 液晶パネル製造用ラビング布材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545800A (ja) * 1991-01-18 1993-02-26 Fuji Photo Film Co Ltd 写真フイルムパトローネ
JP2002148628A (ja) * 2000-11-10 2002-05-22 Agehara Orimono Kogyo Kk ラビング用布材
JP2005308886A (ja) * 2004-04-19 2005-11-04 Hayashi Telempu Co Ltd 液晶パネル製造用ラビング布材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925024B1 (ja) * 2011-08-31 2012-04-25 妙中パイル織物株式会社 液晶パネル基板用ラビング材

Also Published As

Publication number Publication date
JP4657975B2 (ja) 2011-03-23
TWI347382B (ja) 2011-08-21
KR20090010106A (ko) 2009-01-28
CN101443496B (zh) 2011-12-14
JP2007303018A (ja) 2007-11-22
TW200801269A (en) 2008-01-01
CN101443496A (zh) 2009-05-27
KR101087007B1 (ko) 2011-11-24

Similar Documents

Publication Publication Date Title
WO2007129656A1 (ja) 液晶パネル製造用ラビング布材
US7300692B2 (en) Rubbing cloth for use in manufacturing liquid crystal display panels
JP3400424B2 (ja) ラビング用布材
KR100886755B1 (ko) 코팅 기능이 향상된 지오그리드 제조장치
JP2006241638A (ja) 液晶パネル基板ラビング材
CN109478031B (zh) 由割绒织物构成的密封材料
JP2004332136A (ja) ラビング用布材
JP4840709B2 (ja) 液晶パネル基板ラビング材
US20030108712A1 (en) Rubbing cloth for aligning treatment
JP2009015278A (ja) 液晶表示装置用のラビング布及びこれを有するラビング装置
JP4426366B2 (ja) 液晶パネル製造用ラビング布材
JP4861348B2 (ja) ラビング布の製造方法及びラビング布製織用の筬
CN102251333B (zh) 配向布及配向装置
TWI384100B (zh) 配向布及配向裝置
KR100624400B1 (ko) 액정표시장치의 러빙포 제조방법 및 그 방법에 의해 제조된 러빙포.
JP2014047439A (ja) 液晶パネル製造用ラビング布材
JP3045464U (ja) 液晶パネル製造用ラビング布材
JP5097623B2 (ja) ラビング処理方法および光学フィルムの製造方法
JP2005308885A (ja) 液晶パネル製造用ラビング布材
JP2011100130A (ja) ラビング布剪毛システム及び剪毛方法
KR20090015377A (ko) 액정표시장치용 러빙천 및 그 제조방법
KR20080072384A (ko) 액정 표시 장치용 러빙 장치 및 그 러빙 장치에 구비된러빙포의 제조 방법
KR20100013744A (ko) 액정표시장치용 러빙포의 제직방법
WO2013051278A1 (ja) ラビング用布の製造方法、ラビング用布、及び液晶表示装置の製造方法
CN115890851A (zh) 纸帘的油漆方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780016776.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4982/KOLNP/2008

Country of ref document: IN

Ref document number: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07742803

Country of ref document: EP

Kind code of ref document: A1