WO2007123246A1 - 正極活物質粉末 - Google Patents

正極活物質粉末 Download PDF

Info

Publication number
WO2007123246A1
WO2007123246A1 PCT/JP2007/058890 JP2007058890W WO2007123246A1 WO 2007123246 A1 WO2007123246 A1 WO 2007123246A1 JP 2007058890 W JP2007058890 W JP 2007058890W WO 2007123246 A1 WO2007123246 A1 WO 2007123246A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
particles
powder
Prior art date
Application number
PCT/JP2007/058890
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Tanino
Reiko Sasaki
Takashi Yoshida
Yoshihiro Kawakami
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to EP07742325A priority Critical patent/EP2026389A4/en
Priority to CN200780013946XA priority patent/CN101427403B/zh
Priority to KR1020087027986A priority patent/KR101386330B1/ko
Priority to US12/297,455 priority patent/US8029928B2/en
Publication of WO2007123246A1 publication Critical patent/WO2007123246A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material powder. More specifically, the present invention relates to a positive electrode active material powder used for a non-aqueous electrolyte secondary battery. Background art
  • the positive electrode active material powder is used in non-aqueous electrolyte secondary batteries such as lithium secondary batteries.
  • Non-aqueous electrolyte secondary batteries have already been put to practical use as power sources for mobile phones and laptop computers, and are also being applied to medium and large applications such as automotive and power storage applications.
  • Japanese Patent Application Laid-Open No. 6-325791 discloses an average primary particle diameter of 0.54 ⁇ m to 2.02 m and an average secondary particle diameter of 3.6 ⁇ m to 10 m.
  • Japanese Patent Application Laid-Open No. 2005-141983 specifically describes powders having an average primary particle size of 0.17 m to 0.7 m and a secondary particle median size of 6 to 12 m. Has been. Disclosure of the invention
  • the conventional non-aqueous electrolyte secondary battery obtained by using the positive electrode active material powder has few problems with respect to the discharge capacity, but is required to have a high output at a high current rate, that is, an automobile application or a power tool.
  • the power tool application is not enough.
  • An object of the present invention is to provide a positive electrode active material powder useful for a non-aqueous electrolyte secondary battery that exhibits a high discharge capacity and can exhibit a high output at a high current level.
  • the present inventors have used specific positive electrode active material powders.
  • the present inventors have found that the nonaqueous electrolyte secondary battery obtained by using the battery can exhibit a high discharge capacity and a high output at a high current rate. That is, this invention is comprised from the following invention.
  • a positive electrode active material powder comprising primary particles and agglomerated particles of primary particles, wherein the volume-based average particle size of the primary particles and the agglomerated particles of the primary particles in the powder is 0.1 m or more and 3 m or less.
  • the sum of the volume of particles with a particle size of 5 nm or more] Z [sum of the volume of all particles] is less than 10% and the BET specific surface area of the powder is more than 2 m 2 g and less than 7 m 2 / g A certain positive electrode active material powder.
  • xl and yl are 0.9 ⁇ xl l. 2 and 0 ⁇ y 1 ⁇ 0.5, respectively, and M 1 is Co.
  • x2 and y2 are 0.9 ⁇ x2 ⁇ l. 2 and 0.3 ⁇ y 2 ⁇ 0.9, respectively, and M 2 is Co and Mn.
  • a positive electrode for a non-aqueous electrolyte secondary battery comprising the positive electrode active material powder according to any one of ⁇ 1> to ⁇ 3>.
  • the positive electrode for a non-aqueous electrolyte secondary battery according to ⁇ 4> which has a conductive material.
  • ⁇ 6> The positive electrode for a nonaqueous electrolyte secondary battery according to ⁇ 5>, wherein the conductive material contains a fibrous carbon material.
  • a nonaqueous electrolyte secondary battery comprising the positive electrode for a nonaqueous electrolyte secondary battery according to any one of ⁇ 4> to ⁇ 6>.
  • the positive electrode active material powder of the present invention is a positive electrode active material powder comprising primary particles and aggregated particles of primary particles, and the volume-based average particle size of the primary particles and the aggregated particles of the primary particles in the powder is 0.1 / m or more
  • the percentage of [sum of the volume of particles with a diameter of 5 or more] / [sum of the volume of all particles] is 10% or less
  • the BE T specific surface area of the powder is 2 m 2 Zg It is more than 7m 2 Zg.
  • the volume-based average particle size of the primary particles and the aggregated particles of the primary particles in the positive electrode active material powder is the cumulative particle size distribution of the aggregated particles obtained by agglomerating the primary particles and the primary particles.
  • the value of D 50 is used as a value measured by the particle size distribution analyzer of laser single diffraction scattering method.
  • primary particles and agglomerated particles of the primary particles are mixed.
  • the particle size of the positive electrode active material powder is measured using a laser diffraction scattering method particle size distribution measuring device, The particle size of the agglomerated particles of particles and primary particles is summed and measured, and the average value of the particle sizes is obtained as the value (D50). Further, in the present invention, by setting the average particle size to 0.1 111 or more and 3/111 or less, a non-aqueous electrolyte secondary that exhibits a high discharge capacity and can exhibit a high output at a high current rate. This can be used as a positive electrode active material powder for batteries.
  • the average particle size is preferably 0.1 m or more and 2 m or less, more preferably 0.1 or more and 1.5 / m or less.
  • the average particle size By setting the average particle size within the above range, a positive electrode active material powder for a nonaqueous electrolyte secondary battery exhibiting a higher discharge capacity can be obtained. Also, when the average particle size is less than 0.1 l ⁇ m, the compatibility between the positive electrode active material powder and the conductive material and binder described later is not good, and the binding property with the positive electrode current collector described later is reduced. As a result, the discharge capacity and cycle performance of the nonaqueous electrolyte secondary battery are reduced, which is not preferable. On the other hand, if the average particle size exceeds 3 m, it is not preferable because the obtained nonaqueous electrolyte secondary battery does not sufficiently exhibit high output at a high current rate.
  • the percentage of [the sum of the volume of particles having a particle size of 5 tm or more] [the sum of the volumes of all particles] is 10% or less, preferably 7% or less, more preferably 5% or less. It is below.
  • the percentage a value measured by a laser diffraction scattering method particle size distribution measuring apparatus similar to the above is used.
  • the particles refer to primary particles and aggregated particles of primary particles.
  • the BET specific surface area of the powder is more than 2 m 2 / g and 7 m 2 / g or less.
  • the BET specific surface area of the powder is preferably 2.5 m 2 Zg or more and 7 m 2 Zg or less, more preferably 3 m 2 / g or more. 4m 2 Zg or less.
  • the BET specific surface area of the powder is less than 2.0 m 2 Zg, it is not preferable in terms of the discharge capacity of the non-aqueous electrolyte secondary battery, and if it exceeds 7 m 2 Zg, the storage characteristics of the powder and the binding with the positive electrode current collector It is not preferable in terms of operability and the like.
  • examples of the composition of the positive electrode active material powder of the present invention include the following representative compositions, that is, a composition represented by the formula (1) and a composition represented by the formula (2).
  • xl and yl are 0.9 ⁇ xl ⁇ l. 2 and 0 ⁇ y 1 ⁇ 0.5, respectively, and M l is Co.
  • xl is preferably 1.0 or more and 1.1 or less, more preferably 1.0 or more and 1.05 or less.
  • y 1 is preferably 0.05 or more and 0.3 or less, more preferably 0.1 or more and 0.2 or less.
  • X 2 and y 2 are 0.9 ⁇ x 2 ⁇ 1.2 and 0.3 ⁇ y 2 ⁇ 0.9, respectively, and M 2 is Co and Mn.
  • x 2 is preferably 1.0 or more and 1.1 or less, more preferably 1.0 or more and 1.05 or less.
  • y 2 is preferably 0.4 or more and 0.8 or less, and more preferably 0.5 or more and 0.7 or less.
  • M 2 is preferably in the range of 50:50 to 20:80, and more preferably in the range of 40:60 to 30:70, with Co: Mn being a molar ratio.
  • M 1 and M 2 may be substituted with B, A l, Ga, In, Si, Ge, Sn, Mg, Sc, Y, T within a range not impairing the effect of the present invention.
  • i, Zr, ⁇ , V, Nb, Ta, C] :, Mo, W, Tc, Fe, Ru, Rh, Ir, Pd, Cu, Ag, Zn, etc. may be substituted.
  • crystal structure identified by powder X-ray diffraction measurement usually NaFe0 2 type crystal structure.
  • the positive electrode active material powder of the present invention is used as a core material, and one or more kinds selected from B, A 1, Ga, In, Si, Ge, Sn, Mg, and a transition metal element are further formed on the particle surface. You may make it adhere with the compound containing these elements.
  • one or more selected from B, A 1, Mg, Co, Cr, Mn and Fe are preferable, and A 1 is more preferable from the viewpoint of operability.
  • the compound include oxides, hydroxides, oxyhydroxides, carbonates, nitrates, organic acid salts, and mixtures thereof of the above elements. Of these, oxides, hydroxides, oxyhydroxides, carbonates or mixtures thereof are preferred.
  • the BET specific surface area of the powder after the deposition heat treatment is equal to the BET specific surface area of the positive electrode active material powder of the present invention described above, depending on the temperature of the heat treatment.
  • the range of the BET specific surface area of the positive electrode active material powder in the present invention is that before deposition.
  • the positive electrode active material powder of the present invention can be produced by firing a metal compound mixture that can be converted into a positive electrode active material powder of the present invention by firing. That is, after a compound containing the corresponding metal element is weighed so as to have a predetermined composition and mixed. It can manufacture by baking the metal compound mixture obtained. For example, after a compound containing the corresponding metal element is weighed so as to have a predetermined composition and mixed. It can manufacture by baking the metal compound mixture obtained.
  • L i us is one of composition [N i 0, 35 Mn 0 . 44 Co 0. 21] ⁇ composite oxide you express in 2, lithium hydroxide, trioxide nickel, manganese carbonate, oxide The cobalt is weighed so that the molar ratio of Li: Ni: Mn :(: 0 is 1.08: 0.35: 0.44: 0.21, and the resulting metal compound mixture is fired. Can be obtained.
  • the compound containing the metal element for example, a compound containing a metal element of Li, Al, Ni, Mn, Co, or Fe, an oxide is used, or a hydroxide or oxygen water. Oxides, carbonates, nitrates, acetates, halides, oxalates, alkoxides, and the like that can decompose and / or oxidize at high temperatures can be used.
  • a hydroxide and Z or carbonate are preferable, and as the compound containing A1, a hydroxide and / or an oxide are preferable, and a compound containing Ni.
  • the compound containing Mn carbonates and / or oxides are preferable, and as the compound containing Co, oxides and Z or hydroxides are preferable.
  • the compound containing Fe hydroxides and / or oxides are preferable.
  • a composite compound containing two or more of the above metal elements may be used as a compound containing a metal element.
  • the metal compound mixture before firing may further contain a compound containing boron.
  • the content of the boron-containing compound is usually 0.000001 mol% or more and 5 mol% or less in terms of boron with respect to the total mol of the metal element excluding lithium in the metal compound mixture. Good. Preferably, it is 0.0001 mol% or more and 3 mol% or less in terms of boron.
  • the compound containing boron include boron oxide and boric acid, and boric acid is preferable.
  • the boron further contained in the metal compound mixture here may remain in the positive electrode active material powder of the present invention after firing, or may be removed by washing, evaporation, or the like.
  • Mixing of the compound containing the metal element may be either dry mixing or wet mixing, but simpler dry mixing is preferable.
  • the dry mixing apparatus include a V-type mixer, a W-type mixer, This can be done with a Ripon mixer, drum mixer, dry pole mill, etc.
  • the volume-based average particle diameter of the metal compound mixture is preferably a value in the range of 1 or more and 20 or less.
  • the volume-based average particle diameter of the metal compound mixture is measured by a laser diffraction scattering particle size distribution measuring apparatus similar to the above.
  • the fired product is obtained by, for example, maintaining and firing for 2 to 30 hours in a temperature range of 70 to 12,000 nC or less. obtain. In firing, it is preferable to rapidly reach the holding temperature within a range where the firing container containing the metal compound mixture is not damaged.
  • the firing atmosphere air, oxygen, nitrogen, argon or a mixed gas thereof can be used depending on the composition, but an atmosphere containing oxygen is preferable.
  • the fired product can be pulverized using a pulverizer to obtain the positive electrode active material powder of the present invention.
  • a jet mill as the dusting machine.
  • the particles constituting the fired product are accelerated by a jet stream and powdered by collision between the particles, so that the distortion of the crystal structure due to the collision is small, and powdering in a short time is easy. Generation of particles other than the intended purpose can be suppressed.
  • jet mill instead of a jet mill, you may use a vibration mill or a dry pole mill for pulverization, but in that case, the process may become complicated, such as requiring further air classification. Further, it is more preferable to use a fluid bed type jet mill with a built-in classifier as the jet mill. Examples of the jet mill include a counter jet mill (manufactured by Hosokawa Micron Corporation, product name).
  • the positive electrode can be produced by supporting a positive electrode mixture containing the positive electrode active material powder of the present invention, a conductive material and a binder on a positive electrode current collector, and the positive electrode for a non-aqueous electrolyte secondary battery comprises a conductive material. Have.
  • a carbonaceous material can be used, and examples of the carbonaceous material include graphite powder, carbon black, acetylene black, and fibrous carbon material. Since carbon black and acetylene black are fine and have a large surface area, adding a small amount to the positive electrode mixture can increase the conductivity inside the positive electrode and improve the charge / discharge efficiency and rate characteristics. As a result, the binding property between the positive electrode mixture by the binder and the positive electrode current collector is lowered, and the internal resistance is increased.
  • the proportion of the conductive material in the positive electrode mixture is 5 parts by weight or more and 20 parts by weight or less by * f to 100 parts by weight of the positive electrode active material powder. When a fibrous carbon material is used as the conductive material, this ratio can be lowered.
  • the conductive material preferably contains a fibrous carbon material.
  • a fibrous carbon material when the fibrous carbon material is contained, when the length of the fibrous carbon material is a and the diameter of the cross section perpendicular to the length direction of the material is b, a / b is usually 20 to 100 is there. Further, when the length of the fibrous carbon material is a, and the volume-based average particle diameter (D 50) of the primary particles and the aggregated particles of the primary particles in the positive electrode active material powder of the present invention is c, a / c The value is usually 2 to 10 and preferably 2 to 5.
  • the conductivity between particles in the positive electrode active material powder may not be sufficient, and when it exceeds 10, the binding between the positive electrode mixture and the positive electrode current collector may be insufficient. May decrease.
  • the electrical conductivity of the fibrous carbon material should be high.
  • the electrical conductivity of the fibrous carbon material is measured on a sample obtained by molding the fibrous carbon material so as to have a density of 1.0 to 1.5 g Z cm 3. In that case, the electrical conductivity is usually 1 S / cm or more, preferably 2 SZ cm or more.
  • Specific examples of the fibrous carbon material include graphitized carbon fiber and carbon nanotube.
  • the bonbon nanotubes may be either single wall or multiwall.
  • For the fibrous carbon material use a commercially available one.
  • the powder can be either dry or wet.
  • the dry powder include pulverization using a pole mill, a locking mill, and a planetary pole mill.
  • wet pulverization include ball milling and pulverization using a disperser.
  • Dispersers include disperser mats (product name, manufactured by Eihiro Seiki Co., Ltd.).
  • the proportion of the fibrous carbon material is 100 parts by weight of the positive electrode active material powder in the sense of increasing the conductivity of the positive electrode. On the other hand, it is preferably 0.1 parts by weight or more and 10 parts by weight or less.
  • a fibrous carbon material and other carbonaceous materials may be used in combination as the conductive material.
  • the other carbonaceous material is preferably spherical and fine.
  • the proportion of the material is 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of the positive electrode active material powder.
  • thermoplastic resin As the binder, a thermoplastic resin can be used. Specifically, polyvinylidene fluoride (hereinafter sometimes referred to as PVDF) or polytetrafluoroethylene (hereinafter sometimes referred to as PTFE). Fluorine such as tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, propylene hexafluoride / vinylidene fluoride copolymer, tetrafluoroethylene / perfluorovinyl ether copolymer, etc. Examples thereof include polyolefin resins such as resins, polyethylene, and polypropylene. Also, a mixture of two or more of these may be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Fluorine such as tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride cop
  • the ratio of the fluororesin to the positive electrode mixture is 1 to 10% by weight, and the ratio of the polyolefin resin is 0.1 to 2% by weight. It is preferable because a positive electrode mixture excellent in binding property with the positive electrode current collector can be obtained.
  • the positive electrode current collector Al, Ni, stainless steel or the like can be used, but A 1 is preferable in that it is easy to process into a thin film and is inexpensive.
  • a method of supporting the positive electrode mixture on the positive electrode current collector a method of pressure molding or an organic solvent is used. A method of pasting it, applying it on the positive electrode current collector, drying it and pressing it, etc., can be mentioned.
  • a slurry composed of a positive electrode active material, a conductive material, a binder, and an organic solvent is prepared.
  • organic solvents examples include amine solvents such as N, N-dimethylaminopropylamine, diethylenetriamine, ether solvents such as tetrahydrofuran, ketone solvents such as methyl ethyl ketone, ester solvents such as methyl acetate, dimethylacetamide, Examples thereof include amide solvents such as 1-methyl-2-pyrrolidone.
  • Examples of the method of applying the positive electrode mixture to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • the positive electrode for nonaqueous electrolyte secondary batteries in this invention can be manufactured.
  • non-aqueous electrolyte secondary battery having the positive electrode for a non-aqueous electrolyte secondary battery of the present invention will be described by taking a lithium secondary battery as an example of the battery.
  • Lithium secondary batteries contain separators, a negative electrode in which a negative electrode mixture is supported on a negative electrode current collector, and an electrode group obtained by stacking and winding the above-described positive electrode in a battery can. Then, it can be manufactured by impregnating an electrolytic solution composed of an organic solvent containing an electrolyte.
  • the shape of the electrode group for example, a shape in which a cross section when the electrode group is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, a rectangle with rounded corners, or the like is used. Can be mentioned.
  • the shape of the battery include a paper shape, a coin shape, a cylindrical shape, and a square shape.
  • a negative electrode mixture containing a material capable of doping and detaching lithium ions supported on a negative electrode current collector, lithium metal, a lithium alloy, or the like can be used.
  • materials that can be removed include carbonaceous materials such as natural graphite, artificial graphite, cox, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds. Oxides, sulfides, etc. that can be doped or desorbed with lithium ions at a lower potential than the positive electrode It can be made with this Kakarurukokogengen compound. .
  • carbonaceous carbon material materials there are various points such as a point with high electric potential level flatness and a point with low average average discharge electric potential level.
  • Carbonaceous carbonaceous materials that contain black graphite lead, such as natural natural black graphite lead and artificial black lead graphite, as the main main component, may be preferred.
  • the shape and shape of the carbonaceous carbon material material is a thin flake, such as natural natural black graphite lead, for example, Memesoso Carbobon Mamai. Spherical shape, like chlorobee beads, like black graphite leaded charcoal carbon fiber fiber
  • It can be any type of fiber, such as a fine fiber fiber, or a coagulated aggregate of fine powder. .
  • the negative and negative electrode electrode mixture described above may contain a baby binder according to necessity.
  • the Babuy Indahder 1100 can be divided into the thermo-thermoplastic plastic-plastic resin, and the specific details are as follows: PP VVDD FF, Thermo-thermoplastic plasticity Polypolyimido, Kacarul Popoxime Methytyl Lucerul Loose, Poporilier Ethylene, Popolylip Propyrylene, etc. It is possible to complete this and this. .
  • the lithium ion contained in the negative and negative electrode mixture is not necessary to use as a material material that can be removed.
  • a chemical compound such as the above-mentioned acid oxides, sulfurous sulfides, etc., as described above, 1155 11 33, 11 44, 1 1 55 Crystalline crystalline or amorphous acid oxides mainly composed of elemental elements of group 55 Examples of such compounds include sulfal sulfides, and the like.
  • a tin oxide oxide is mainly used as a main component.
  • Amorphous amorphous compounds and the like mentioned above are listed. . Depending on the necessity, they can be made to contain carbonaceous carbon material as a conductive material. .
  • CC uu is preferred because it is difficult to make gold alloy alloy with Lilithidiumum 2200, and it is easy to process thin film. Leave it okay. .
  • the negative and negative electrode current collector As a method for causing the negative and negative electrode current collector to carry a negative and negative electrode mixture on the positive and negative electrode electrodes, It is the same as above, and is a method of using a pressurizing and pressing mold, using a solvent solvent, etc., and converting it into a paper-stomped negative current collector Examples of the method include a coating cloth on the top, a method of press-pressing after press-drying and dry-drying, and press-fitting. .
  • cepa pareley evening is, for example, popoririechichirenren
  • a material having a form such as a porous film, a nonwoven fabric or a woven fabric made of a material such as an olefin resin, a fluororesin, or a nitrogen-containing aromatic polymer can be used. It may be a separate evening using two or more materials.
  • the separator include a separator overnight described in, for example, Japanese Patent Laid-Open No. 2000-300686, Japanese Patent Laid-Open No. 10-324758, and the like.
  • the thickness of the separator evening is preferably as thin as possible as long as the mechanical strength is maintained in that the density of the volume energy of the battery is increased and the internal resistance is reduced, and is preferably about 10 to 20 mm, more preferably 1 0-3
  • the electrolyte In the electrolyte, the electrolyte, L i C 1_Rei 4, L i PF 6, L i As F 6, L i SbF 6, LI BF 4 L i CF 3 S0 3, L i N (S0 2 CF 3 ) L i C (S0 2 CF 3 ) 3 , L i 2 B 1Q C.
  • lithium salts such as lower aliphatic carboxylic acid lithium salt and LiAlCl 4, and a mixture of two or more of these may be used.
  • lithium salt among these, fluorine containing Li Li PF 6 , LiAs F and L
  • the organic solvent may be, for example, propylene power monoponate, ethylene carbonate, dimethyl carbonate, jetyl carbonate, ethyl metacarbonate, 4-trifluoromethyl_1,3-dioxolane, 2- ON, 1,2-di (methoxycarbonyloxy) ethane and other carbonates; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2, 2, 3, Ethers such as 3-tetrafluoropropyldifluoromethyl ether, terahydrofuran and 2-methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and aptilolactone; N, N-dimethylformamide, N, N-dimethylacetamide Which amides; Powerful bamates such as 3-methyl-2-oxazolidone; Sulfur-containing compounds such as sulfolane, dimethyl sulfox
  • a mixed solvent of cyclic carbonate and acyclic carbonate As a mixed solvent of cyclic carbonate and acyclic carbonate, it has a wide operating temperature range, excellent load characteristics, and is hardly decomposable even when a graphite material such as natural graphite or artificial graphite is used as the negative electrode active material.
  • a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferred.
  • an electrolytic solution containing a lithium salt containing fluorine such as Li PF 6 and an organic solvent having a fluorine substituent because a particularly excellent safety improvement effect can be obtained.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • solid electrolyte for example, a polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • a so-called gel type in which a nonaqueous electrolyte solution is held in a polymer can also be used.
  • L i 2 S— S i S 2 — L i 3 P0 4 L i 2 SS i S 2
  • the use of an inorganic compound electrolyte containing a sulfide such as Li 2 S0 4 may further increase safety.
  • the present invention will be described in more detail with reference to examples.
  • the measurement was performed using a master sizer 2000 manufactured by Malvern as a laser diffraction / scattering particle size distribution measuring apparatus.
  • the dispersion medium is 0.2 wt% sodium hexametaphosphate.
  • An aqueous solution of lithium was used.
  • As the volume-based average particle size the value of the particle size at the point of 50% of the total particle volume (D50 value) was used.
  • NMP PVDF 1-methyl-2
  • the obtained positive electrode electrolytes of ethylene carbonate (hereinafter sometimes referred to as EC), dimethyl carbonate (hereinafter sometimes referred to as DMC) and ethyl methyl carbonate (hereinafter sometimes referred to as EMC) ) And 30:35:35 (volume ratio) of Li Li PF 6 dissolved to 1 molar ratio (hereinafter referred to as Li PF 6 ZEC + DMC + EMC)
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • a separator a polyethylene porous membrane was used, and metallic lithium was used as a counter electrode and a reference electrode.
  • Nickel hydroxide manufactured by Kansai Catalytic Chemical Co., Ltd.
  • manganese oxide manufactured by Sakai Pure Chemical
  • lithium carbonate manufactured by Honjo Chemical Co., Ltd.
  • cobalt oxide manufactured by Shodo Chemical Co., Ltd.
  • This powder was powdered to obtain powdered powder, and the coarse powder was removed from the powdered powder with a sieve having an opening of 45 / m to obtain a positive electrode active material powder.
  • 3 m [Sum of volumes of particles with a particle size of 5 m or more]
  • Z [Sum of volume of all particles] is 3%, specific surface area is 3.3 m 2 / g, powder packing density is 1. lgZc c It was.
  • a flat battery was prepared using the obtained positive electrode active material powder, and a charge / discharge test was conducted under constant current and constant voltage charge and constant current discharge under the following conditions. The results obtained are shown in Table 1. Charging / discharging conditions:
  • Charging is performed under the conditions of a maximum charging voltage of 4.3 V, a charging time of 8 hours, and a charging current of 0.2 C, and discharging is performed with a minimum discharging voltage of 3.0 V and a discharging current of 0.2 C, 1 C, 5 C, and 10 C. Performed under conditions. In addition, it charged on the same conditions before each discharge test.
  • Example 2
  • Example 1 and Example 1 except that the molar ratio of each element was Li: Ni: Mn: Co: B l. 10: 0. 36: 0.4. 2: 0.21: 0.03
  • the positive electrode active material powder obtained in the same manner the average particle size, [sum of the volume of particles having a particle size of 5 m or more] Z [sum of the volume of all particles], specific surface area, and powder packing density were measured.
  • the same results as in Example 1 were obtained.
  • a flat battery was produced using the positive electrode active material powder, and a charge / discharge test using constant current and constant voltage charge and constant current discharge was conducted in the same manner as in Example 1. As a result, the same results as in Example 1 were obtained. was gotten. Comparative Example 1
  • Nickel hydroxide manufactured by Kansai Catalytic Chemical Co., Ltd.
  • manganese oxide manufactured by Sakai Pure Chemical
  • lithium carbonate manufactured by Honjo Chemical Co., Ltd.
  • cobalt oxide manufactured by Shodo Chemical Co., Ltd.
  • boric acid Yamamoto Chemical
  • This powder was placed in a tunnel-type continuous furnace and fired in air at 1040 ° C for 4 hours to obtain a fired product.
  • the fired product is pulverized for 7 hours (peripheral speed 0.7 m / s) with a dry pole mill using 15 mmd) alumina pole as a medium, coarse particles are removed with a 45 m sieve, and the positive electrode active material powder is Obtained.
  • the average particle diameter of the positive electrode active material powder is 3.2 m, [sum of the volume of particles having a particle diameter of 5 am or more] Z [sum of the volume of all particles] is 43%, and the specific surface area is 1.
  • the powder packing density was 7 m 2 / g and 1.8 gZc c.
  • a fired product was obtained in the same manner as in Example 1, and the fired product was milled for 13 hours (peripheral speed 0.7 m / s) with a dry pole mill using 15 ⁇ alumina pole as a medium, and sieved with a 45 m opening. Coarse particles were removed with to obtain a positive electrode active material powder.
  • the average particle size of the positive electrode active material powder is 2.5 m, and the percentage of [sum of the volume of particles having a particle size of 5 / in or more] / [sum of the volume of all particles] is 39%, and the specific surface area is 1. 7 m 2 Zg, powder packing density was 1.8 g / cc.
  • the battery using the positive electrode active material powder of Example 1 has a large discharge capacity and high output even if the discharge current is high (for example, 10 C).
  • the positive electrode active material powder of the present invention is a nonaqueous electrolyte secondary battery. It can be used for batteries, especially for applications requiring high output at high current rates, that is, for non-aqueous electrolyte secondary batteries for power tools such as automobiles and power tools.
  • the present invention is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の正極活物質粉末は、一次粒子および一次粒子の凝集粒子からなる正極活物質粉末であって、該粉末における一次粒子および一次粒子の凝集粒子の体積基準の平均粒径が0.1μm以上3μm以下であり、[粒径5μm以上の粒子の体積の和]/[全ての粒子の体積の和]の百分率が10%以下であり、粉末のBET比表面積が2m2/gを超え7m2/g以下である。この正極活物質粉末を非水電解質二次電池に使用すると、高い放電容量を示し、かつ高い電流レートにおいて高出力を示すことが可能となる。

Description

明細書
' 正極活物質粉末 技術分野
本発明は正極活物質粉末に関する。 さらに詳しくは非水電解質二次電池に用い られる正極活物質粉末に関する。 背景技術
正極活物質粉末は、 リチウム二次電池などの非水電解質二次電池に用いられて いる。 非水電解質二次電池は、 既に携帯電話やノートパソコン等の電源として実 用化されており、 更に自動車用途や電力貯蔵用途などの中 ·大型用途においても 、 適用が試みられている。
従来の正極活物質粉末として、 特開平 6— 325791号公報には平均一次粒 子径が 0. 54^m〜2. 02 mでかつ平均二次粒子径が 3. 6^m〜10 mの粉末が、 特開 2005— 141983号公報には平均一次粒子径が 0. 17 m〜0. 7 mでかつ二次粒子のメジアン径が 6〜 12 mの粉末が、 それぞ れ具体的に記載されている。 発明の開示
しかしながら、 従来の正極活物質粉末を用いて得られる非水電解質二次電池は 、 放電容量については問題の少ないものの、 高い電流レートにおける高出力を要 求される用途、 すなわち自動車用途や電動工具等のパワーツール用途においては 、 十分なものではない。 本発明の目的は、 高い放電容量を示し、 かつ高い電流レ 一卜において高出力を示すことが可能な非水電解質二次電池に有用な正極活物質 粉末を提供することにある。
本発明者らは上記事情に鑑み、 種々検討した結果、 特定の正極活物質粉末を使 用して得られる非水電解質二次電池が、 高い放電容量を示し、 かつ高い電流レー トにおいて高出力を示すことが可能であることを見出し、 本発明に至った。 すなわち本発明は、 下記の発明から構成される。
< 1>一次粒子および一次粒子の凝集粒子からなる正極活物質粉末であって、 該 粉末における一次粒子および一次粒子の凝集粒子の体積基準の平均粒径が 0.1 m以上 3 m以下であり、 [粒径 5 n m以上の粒子の体積の和] Z [全ての粒子 の体積の和]の百分率が 10 %以下であり、粉末の B E T比表面積が 2 m2 gを 超え 7 m2 / g以下である正極活物質粉末。
< 2 >正極活物質の組成が、 式 (1) で表される前記 <1>記載の正極活物質粉 末。
L ixlN i1.ylM1 yl02 (1)
(式 (1) 中、 x l、 y lはそれぞれ 0. 9≤x l l. 2、 0≤y 1≤0. 5 であり、 M1は Coである。 )
< 3 >正極活物質の組成が、 式 (2) で表される前記 <1>記載の正極活物質粉 末。
L ix2N iい y2M2 y22 (2)
(式 (2) 中、 x2、 y 2はそれぞれ 0. 9≤x2≤l. 2、 0. 3≤y 2≤0 . 9であり、 M2は C oおよび Mnである。 )
<4>前記 <1>〜< 3 >のいずれかに記載の正極活物質粉末を有する非水電解 質二次電池用正極。
く 5 >導電材を有する前記ぐ 4 >記載の非水電解質二次電池用正極。
< 6 >導電材が繊維状炭素材料を含有する前記ぐ 5 >記載の非水電解質二次電池 用正極。
< 7 >前記 < 4 >〜< 6 >のいずれかに記載の非水電解質二次電池用正極を有す る非水電解質二次電池。 発明を実施するための最良の形態 本発明の正極活物質粉末は、 一次粒子および一次粒子の凝集粒子からなる正極 活物質粉末であって、 該粉末における一次粒子および一次粒子の凝集粒子の体積 基準の平均粒径が 0.1 / m以上 3 以下であり、 [$立径 5 以上の粒子の体 積の和] / [全ての粒子の体積の和] の百分率が 10%以下であり、 粉末の BE T比表面積が 2 m2Zgを超え 7m2 Zg以下であることを特徴とする。
本発明において、 正極活物質粉末における一次粒子および一次粒子の凝集粒子 の体積基準の平均粒径とは、 一次粒子および一次粒子が凝集してなる凝集粒子の 体積基準の累積粒度分布に於いて、 50%累積時の微小粒子側から見た粒径 (D 50) のことを意味し、 レーザ一回折散乱法粒度分布測定装置により測定される 値で D 50の値を用いる。 本発明の正極活物質粉末においては、 一次粒子と一次 粒子の凝集粒子とが混在しているため、 レーザー回折散乱法粒度分布測定装置を 用いて、 正極活物質粉末について粒径を測定すると、 一次粒子および一次粒子の 凝集粒子の粒径が合計されて測定され、 それらの粒径の平均値が値 (D50) と して得られる。 また、 本発明においては、 上記の平均粒径を 0.1 111以上3 /111 以下とすることで、 高い放電容量を示し、 かつ高い電流レートにおいて高出力を 示すことが可能である非水電解質二次電池用の正極活物質粉末とすることができ るのである。 また、 平均粒径は、 0. 1 m以上 2 m以下が好ましく、 より好 ましくは 0. 以上 1. 5 /m以下である。 平均粒径を上記の範囲とするこ とで、 より高い放電容量を示す非水電解質二次電池用の正極活物質粉末とするこ とができる。 また、 平均粒径が 0. l^mを下回ると、 正極活物質粉末と後述の 導電材、 バインダーとの相性が良くなく、 後述の正極集電体との結着性が低下す ることにより、 結果的に非水電解質二次電池の放電容量低下、 サイクル性低下を 招くことから好ましくない。 また、 平均粒径が 3 mを上回ると、 得られる非水 電解質二次電池が、 高い電流レートにおいて高出力を示すことが十分でないこと から、 好ましくない。
本発明において、 [粒径 5 t m以上の粒子の体積の和] [全ての粒子の体積の 和] の百分率は 10%以下であり、 好ましくは 7%以下、 より好ましくは 5%以 下である。 ここで、 該百分率は、 前記と同様のレーザー回折散乱法粒度分布測定 装置により測定される値を用いる。 ここで粒子とは、 一次粒子および一次粒子の 凝集粒子のことをいう。 該百分率が 10%を超えると、 得られる非水電解質二次 電池が、 高い電流レートにおいて高出力を示すことが十分でないことから、 好ま しくない。 また、 該百分率を 7%以下、 5%以下と小さくしていくことで、 より 高出力の非水電解質二次電池とすることができる傾向にある。
本発明において、 粉末の BET比表面積は、 2m2/gを超え 7m2/g以下で ある。 粉末の BET比表面積を上記の範囲とすることで、 高い放電容量を示し、 かつ高い電流レートにおいて高出力を示すことが可能である非水電解質二次電池 用の正極活物質粉末とすることができる。 さらに、 高い放電容量、 高出力を示す 非水電解質二次電池を得る意味で、 粉末の BET比表面積は、 好ましくは 2. 5 m2Zg以上 7m2Zg以下、 より好ましくは 3m2/g以上 4m2Zg以下である 。粉末の BET比表面積が 2. 0m2Zg以下では、非水電解質二次電池の放電容 量の点で好ましくなく、 7m2Zgを超えると、粉末の保存特性、 正極集電体との 結着性等、 操作性の点で好ましくない。
また、 本発明の正極活物質粉末の組成としては、 以下の代表組成、 すなわち、 式 (1) で表される組成、 式 (2) で表される組成を挙げることができる。
L ixlN i1.ylM'yl02 (1)
(式 (1) 中、 x l、 y lはそれぞれ 0. 9≤x l≤l. 2、 0≤ y 1≤ 0. 5 であり、 Mlは Coである。 )
ここで、 放電容量をより高くする意味で、 x lは 1. 0以上 1. 1以下が好ま しく、 より好ましくは 1. 0以上 1. 05以下である。 また、 同様の意味で、 y 1は 0. 05以上 0. 3以下が好ましく、 より好ましくは 0. 1以上 0. 2以下 あ 。
L ix2N — y2M2 y22 (2)
(式 (2) 中、 X 2、 y 2はそれぞれ 0. 9≤x 2≤ 1. 2、 0. 3≤y 2≤0 . 9であり、 M2は C oおよび Mnである。 ) ここで、 放電容量をより高くする意味で、 x 2は 1. 0以上 1. 1以下が好ま しく、 より好ましくは 1. 0以上 1. 05以下である。 また、 同様の意味で、 y 2は 0. 4以上 0. 8以下が好ましく、 より好ましくは 0. 5以上 0. 7以下で ある。 また、 M2は、 Co: Mnがモル比で 50 : 50〜20 : 80の範囲である ことが好ましく、 より好ましくは 40 : 60〜30 : 70の範囲である。
また、 本発明の効果を損なわない範囲で、 上記の M1, M2の元素の一部を B、 A l、 Ga、 I n、 S i、 Ge、 Sn、 Mg、 S c、 Y、 T i、 Z r、 Ηί、 V 、 Nb、 Ta、 C ]:、 Mo、 W、 Tc、 F e、 Ru、 Rh、 I r、 Pd、 Cu、 Ag、 Zn等の元素で置換してもよい。
また本発明の正極活物質粉末について、 粉末 X線回折測定により特定される結 晶構造は、 通常、 NaFe02型結晶構造である。
また、 本発明の正極活物質粉末をコア材として、 その粒子の表面に、 さらに B , A 1 , Ga, I n, S i, Ge, Sn, M gおよび遷移金属元素から選ばれる 1種以上の元素を含有する化合物で被着させてもよい。 上記元素の中でも、 B, A 1 , Mg, Co, C r, Mnおよび F eから選ばれる 1種以上が好ましく、 操 作性の観点から A 1がより好ましい。 化合物としては、 例えば上記元素の酸化物 、 水酸化物、 ォキシ水酸化物、 炭酸塩、 硝酸塩、 有機酸塩またはこれらの混合物 が挙げられる。 中でも、 酸化物、 水酸化物、 ォキシ水酸化物、 炭酸塩またはこれ らの混合物が好ましい。 また、 上記の被着処理後、 熱処理する場合においては、 その熱処理の温度にもよるが、 被着熱処理後の粉末の BET比表面積が、 上記の 本発明の正極活物質粉末における B E T比表面積の範囲より小さくなる場合があ るが、 その場合、 本発明における正極活物質粉末の BET比表面積の範囲は被着 前のものとする。
次に本発明の正極活物質粉末を製造する方法について説明する。
本発明の正極活物質粉末は、 焼成により本発明の正極活物質粉末となり得る金 属化合物混合物を焼成することにより製造することができる。 すなわち、 対応す る金属元素を含有する化合物を、 所定の組成となるように秤量し、 混合した後に 得られる金属化合物混合物を焼成することにより製造することができる。 例えば
、 好ましい組成の一つである L i us [N i0,35Mn0.44Co0.21] 〇2で表され る複合酸化物は、 水酸化リチウム、 三酸化二ニッケル、 炭酸マンガン、 酸化コバ ルトを L i : N i : Mn : (:0のモル比が1. 08 : 0. 35 : 0. 44 : 0. 21となるように秤量し、 混合した後に得られる金属化合物混合物を焼成するこ とにより得ることができる。
前記の金属元素を含有する化合物としては、 例えば L i、 A l、 N i、 Mn、 Co、 F eの金属元素を含有する化合物で、 酸化物を用いるか、 または、 水酸化 物、 ォキシ水酸化物、 炭酸塩、 硝酸塩、 酢酸塩、 ハロゲン化物、 シユウ酸塩、 ァ ルコキシドなど高温で分解および/または酸化して酸化物になり得るものを用い ることができる。 これらの中でも、 L iを含有する化合物としては水酸化物およ び Zまたは炭酸塩が好ましく、 A 1を含有する化合物としては水酸化物および/ または酸化物が好ましく、 N iを含有する化合物としては水酸化物および Zまた は酸化物が好ましく、 M nを含有する化合物としては炭酸塩および/または酸化 物が好ましく、 C oを含有する化合物としては酸化物および Zまたは水酸化物が 好ましく、 F eを含有する化合物としては水酸化物および/または酸化物が好ま しい。 また、 上記の金属元素の 2種以上を含有する複合化合物を、 金属元素を含 有する化合物として用いてもよい。
また、 正極活物質粉末の結晶性を高めるため、 焼成前の前記の金属化合物混合 物が、 さらにホウ素を含有する化合物を含有していてもよい。 ホウ素を含有する 化合物の含有量としては、 通常、 前記金属化合物混合物中のリチウムを除く金属 元素の総モルに対して、 ホウ素換算で 0. 00001モル%以上 5モル%以下含 有していてもよい。 好ましくは、 ホウ素換算で 0. 0001モル%以上 3モル% 以下である。 ホウ素を含有する化合物としては、 酸化ホウ素、 ホウ酸が挙げられ 、 好ましくはホウ酸である。 また、 ここで金属化合物混合物にさらに含有された ホウ素は、 焼成後の本発明の正極活物質粉末に残留していてもよいし、 洗浄、 蒸 発等により除去されていてもよい。 前記金属元素を含有する化合物の混合は、 乾式混合、 湿式混合のいずれによつ てもよいが、 より簡便な乾式混合が好ましく、 乾式混合装置としては、 V型混合 機、 W型混合機、 リポン混合機、 ドラムミキサー、 乾式ポールミル等によって行 うことができる。
また、 焼成時の固相反応を促進させる観点から、 金属化合物混合物の体積基準 の平均粒径は、 1 以上 2 0 以下の範囲の値であることが好ましい。 ここ で、 金属化合物混合物の体積基準の平均粒径は、 上記と同様のレーザー回折散乱 法粒度分布測定装置により測定する。
前記金属化合物混合物を、 必要に応じて圧縮成形した後、 例えば、 7 0 0 以 上 1 2 0 0 nC以下の温度範囲にて、 2〜3 0時間保持して焼成することにより焼 成品を得る。 焼成の際には、 金属化合物混合物を入れた焼成容器が破損しない範 囲で、 急速に保持温度まで到達させることが好ましい。 また焼成の雰囲気として は、 組成にもよるが、 空気、 酸素、 窒素、 アルゴンまたはそれらの混合ガスを用 いることができるが、 酸素が含まれている雰囲気が好ましい。
次に焼成品を、 粉碎機を用いて粉碎して、 本発明の正極活物質粉末を得ること ができる。 本発明における [粒径 5 m以上の粒子の体積の和] / [全ての粒子 の体積の和] の百分率を 1 0 %以下とする観点で、 粉碎機としては、 ジェットミ ルを用いることが好ましい。 ジェットミルの場合、 ジェット気流により焼成物を 構成する粒子を加速させ粒子同士の衝突により粉碎を行い、 衝突による結晶構造 の歪みが少なく、 また短時間での粉碎が容易であることから、 本発明における目 的以外の粒子の発生が抑えることができる。 ジェットミルに換えて、 振動ミルや 乾式ポ一ルミルを用いて、 粉砕してもよいが、 その際には、 さらに風力分級操作 を要する等、 工程が複雑になる場合がある。 また、 ジェットミルとして、 分級機 が内蔵された流動層式ジエツトミルを用いることがより好ましい。 該ジエツトミ ルとしては、 カウンタジェットミル (ホソカワミクロン株式会社製、 製品名) を 挙げることができる。
次に、 本発明の正極活物質粉末を有する非水電解質二次電池用正極を製造する 方法について説明する。 該正極は、 本発明の正極活物質粉末、 導電材およびバイ ンダーを含む正極合剤を正極集電体に担持させて製造することができ、 非水電解 質二次電池用正極は導電材を有する。
前記導電材としては炭素質材料を用いることができ、 炭素質材料として黒鉛粉 末、 カーボンブラック、 アセチレンブラック、 繊維状炭素材料などを挙げること ができる。 カーボンブラックやアセチレンブラックは、 微粒で表面積が大きいた め、 少量正極合剤中に添加することにより正極内部の導電性を高め、 充放電効率 及びレート特性を向上させることができるが、 多く入れすぎるとバインダ一によ る正極合剤と正極集電体との結着性を低下させ、 かえつて内部抵抗を増加させる 原因となる。 通常、 正極合剤中の導電材の割合は、 正極活物質粉末 1 0 0重量部 に *fして 5重量部以上 2 0重量部以下である。 導電材として繊維状炭素材料を用 いる場合には、 この割合を下げることも可能である。
非水電解質二次電池用正極の導電性をより高める意味で、 導電材は、 繊維状炭 素材料を含有することが好ましい。 繊維状炭素材料 含有する場合、 繊維状炭素 材料の長さを a、 該材料の長さ方向に垂直な断面の径を bとしたとき、 a /bは 、 通常 2 0〜1 0 0 0である。 また、 繊維状炭素材料の長さを a、 本発明の正極 活物質粉末における一次粒子および一次粒子の凝集粒子の体積基準の平均粒径 ( D 5 0 ) を cとしたとき、 a / cの値は、 通常 2〜1 0であり、 好ましくは 2〜 5である。 a/ cが 2を下回る場合には、 正極活物質粉末における粒子間の導電 性が十分でないことがあり、 1 0を超える場合には、 正極合材と正極集電体との 結着性が低下する場合がある。 また、 繊維状炭素材料において、 その電気伝導度 は高い方がよい。 繊維状炭素材料の電気伝導度は、 繊維状炭素材料を密度を 1 . 0〜1 . 5 g Z c m3となるように成形した試料について測定され、その場合の電 気伝導度は、 通常 1 S / c m以上であり、 好ましくは 2 S Z c m以上である。 繊維状炭素材料として、 具体的には、 黒鉛化炭素繊維、 カーボンナノチューブ を挙げることができる。 力一ボンナノチューブは、 シングルウォール、 マルチウ オールのいずれでもよい。 繊維状炭素材料は、 市販されているものを、 粉碎して 、 上記の a Z bおよび a / cの範囲となるように調製して用いればよい。 粉碎は 、 乾式、 湿式のいずれによってもよく、 乾式粉碎としては、 ポールミル、 ロッキ ングミル、 遊星ポールミルによる粉砕が挙げられ、 湿式粉砕としては、 ボールミ ル、 分散機による粉砕が挙げられる。 分散機としては、 ディスパ一マット (英弘 精機株式会社製、 製品名) を挙げることができる。
本発明の非水電解質二次電池用正極において、 繊維状炭素材料を用いる場合は 、 正極の導電性をより高める意味で、 繊維状炭素材料の割合は、 正極活物質粉末 1 0 0重量部に対して 0 . 1重量部以上 1 0重量部以下であることが好ましい。 また、 導電材として、 繊維状炭素材料とそれ以外の炭素質材料 (黒鉛粉末、 カー ポンプラック、 アセチレンブラックなど) を併用してもよい。 この場合、 それ以 外の炭素質材料は、 球状で微粒であることが好ましい。 それ以外の炭素質材料を 併用する際には、 該材料の割合は、 正極活物質粉末 1 0 0重量部に対して 0 . 1 重量部〜 1 0重量部である。
前記バインダ一としては、 熱可塑性樹脂を用いることができ、 具体的には、 ポ リフッ化ビニリデン (以下、 P VD Fということがある。 ) 、 ポリテトラフルォ 口エチレン (以下、 P T F Eということがある。 ) 、 四フッ化工チレン ·六フッ 化プロピレン ·フッ化ビニリデン系共重合体、 六フッ化プロピレン ·フッ化ビニ リデン系共重合体、 四フッ化工チレン ·パーフルォロビニルエーテル系共重合体 などのフッ素樹脂、 ポリエチレン、 ポリプロピレンなどのポリオレフイン樹脂等 が挙げられる。 また、 これらの二種以上を混合して用いてもよい。
また、 バインダーとしてフッ素樹脂およびポリオレフイン樹脂を用い、 正極合 剤に対する該フッ素樹脂の割合が 1〜1 0重量%、 該ポリオレフイン樹脂の割合 が 0 . 1〜2重量%となるように含有させることによって、 正極集電体との結着 性に優れた正極合剤を得ることができるので好ましい。
前記正極集電体としては、 A l、 N i、 ステンレスなどを用いることができる が、 薄膜に加工しやすく、 安価であるという点で A 1が好ましい。 正極集電体に 正極合剤を担持させる方法としては、 加圧成型する方法、 または有機溶媒などを 用いてペースト化し、 正極集電体上に塗布、 乾燥後プレスするなどして固着する 方法が挙げられる。 ペースト化する場合、 正極活物質、 導電材、 バインダー、 有 機溶媒からなるスラリーを作製する。 有機溶媒としては、 N, N—ジメチルアミ ノプロピルァミン、 ジエチレントリアミン等のアミン系溶媒、 テトラヒドロフラ ン等のエーテル系溶媒、 メチルェチルケトン等のケトン系溶媒、 酢酸メチル等の エステル系溶媒、 ジメチルァセトアミド、 1ーメチルー 2—ピロリドン等のアミ ド系溶媒等が挙げられる。
正極合剤を正極集電体へ塗布する方法としては、 例えば、 スリットダイ塗工法 、 スクリーン塗工法、 カーテン塗工法、 ナイフ塗工法、 グラビア塗工法、 静電ス プレー法等が挙げられる。 以上に挙げた方法により、 本発明における非水電解質 二次電池用正極を製造することができる。
次に、 本発明の非水電解質二次電池用正極を有する非水電解質二次電池につい て、 該電池の例としてリチウム二次電池を挙げて説明する。
リチウム二次電池は、 セパレー夕、 負極集電体に負極合剤が担持されてなる負 極、 および上述の正極を、 積層および巻回することにより得られる電極群を、 電 池缶内に収納した後、 電解質を含有する有機溶媒からなる電解液を含浸させて製 造することができる。
前記の電極群の形状としては、 例えば、 該電極群を卷回の軸と垂直方向に切断 したときの断面が、 円、 楕円、 長方形、 角がとれたような長方形等となるような 形状を挙げることができる。 また、 電池の形状としては、 例えば、 ペーパー型、 コイン型、 円筒型、 角型などの形状を挙げることができる。
前記負極としては、 リチウムイオンをドープ ·脱ド一ブ可能な材料を含む負極 合剤を負極集電体に担持したもの、 リチウム金属またはリチウム合金などを用い ることができ、 リチウムイオンをドープ'脱ドーブ可能な材料としては、 具体的 には、 天然黒鉛、 人造黒鉛、 コ一クス類、 カーボンブラック、 熱分解炭素類、 炭 素繊維、 有機高分子化合物焼成体などの炭素質材料が挙げられ、 正極よりも低い 電位でリチウムイオンのド一プ,脱ド一プを行うことができる酸化物、 硫化物等 ののカカルルココゲゲンン化化合合物物をを用用いいるるここととももででききるる。。 炭炭素素質質材材料料ととししててはは、、 電電位位平平坦坦性性がが 高高いい点点、、 平平均均放放電電電電位位がが低低いい点点ななどどかからら、、 天天然然黒黒鉛鉛、、 人人造造黒黒鉛鉛等等のの黒黒鉛鉛をを主主成成分分 ととすするる炭炭素素質質材材料料がが好好ままししいい。。 炭炭素素質質材材料料のの形形状状ととししててはは、、 例例ええばば天天然然黒黒鉛鉛ののよよ ううなな薄薄片片状状、、 メメソソカカーーボボンンママイイククロロビビーーズズののよよううなな球球状状、、 黒黒鉛鉛化化炭炭素素繊繊維維ののよようう
55 なな繊繊維維状状、、 ままたたはは微微粉粉末末のの凝凝集集体体ななどどののいいずずれれででももよよいい。。
前前記記のの電電解解液液がが後後述述ののエエチチレレンンカカーーボボネネーートトをを含含有有ししなないい場場合合ににおおいいてて、、 ポポリリ エエチチレレンン力力一一ポポネネーートトをを含含有有ししたた負負極極合合剤剤をを用用いいるるとと、、 得得らられれるる電電池池ののササイイククルル 特特性性とと大大電電流流放放電電特特性性がが向向上上すするるここととががあありり好好ままししいい。。
前前記記のの負負極極合合剤剤はは、、 必必要要にに応応じじてて、、 ババイインンダダーーをを含含有有ししててももよよいい。。 ババイインンダダーー 1100 ととししててはは、、 熱熱可可塑塑性性樹樹脂脂をを挙挙げげるるここととががでできき、、 具具体体的的ににはは、、 PP VVDD FF、、 熱熱可可塑塑性性 ポポリリイイミミドド、、 カカルルポポキキシシメメチチルルセセルルロローースス、、 ポポリリエエチチレレンン、、 ポポリリププロロピピレレンンななどど をを挙挙げげるるここととががででききるる。。
ままたた負負極極合合剤剤にに含含有有さされれるるリリチチウウムムイイオオンンををドドーーププ ··脱脱ドドーーブブ可可能能なな材材料料ととしし てて用用いいらられれるる前前記記のの酸酸化化物物、、 硫硫化化物物等等ののカカルルココゲゲンン化化合合物物ととししててはは、、 周周期期率率表表のの 1155 11 33、、 11 44、、 11 55族族のの元元素素をを主主体体ととししたた結結晶晶質質ままたたはは非非晶晶質質のの酸酸化化物物、、 硫硫化化物物等等 ののカカルルココゲゲンン化化合合物物がが挙挙げげらられれ、、 具具体体的的ににはは、、 ススズズ酸酸化化物物をを主主体体ととししたた非非晶晶質質化化 合合物物等等がが挙挙げげらられれるる。。 ここれれららはは必必要要にに応応じじてて導導電電材材ととししててのの炭炭素素質質材材料料をを含含有有すす るるここととががででききるる。。
前前記記のの負負極極集集電電体体ととししててはは、、.. CC uu、、 NN ii、、 スステテンンレレススななどどをを挙挙げげるるここととががでできき 2200 、、 リリチチウウムムとと合合金金をを作作りり難難いい点点、、 薄薄膜膜にに加加工工ししややすすいいとといいうう点点でで、、 CC uuがが好好まましし いい。。
該該負負極極集集電電体体にに負負極極合合剤剤をを担担持持ささせせるる方方法法ととししててはは、、 正正極極のの場場合合とと同同様様でであありり 、、 加加圧圧成成型型にによよるる方方法法、、 溶溶媒媒ななどどをを用用いいててペペーースストト化化しし負負極極集集電電体体上上にに塗塗布布、、 乾乾 燥燥後後ププレレススしし圧圧着着すするる方方法法等等がが挙挙げげらられれるる。。
2255 前前記記セセパパレレーー夕夕ととししててはは、、 例例ええばば、、 ポポリリエエチチレレンン、、
Figure imgf000012_0001
ォレフィン樹脂、 フッ素樹脂、 含窒素芳香族重合体などの材質からなる、 多孔質 膜、 不織布、 織布などの形態を有する材料を用いることができ、 また、 これらの 材質を 2種以上用いたセパレー夕としてもよい。 該セパレ一ターとしては、 例え ば特開 2 0 0 0— 3 0 68 6号公報、 特開平 1 0— 3 247 5 8号公報等に記載 のセパレ一夕を挙げることができる。 該セパレー夕の厚みは電池の体積エネルギ 一密度が上がり、 内部抵抗が小さくなるという点で、 機械的強度が保たれる限り 薄いほど好ましく、 1 0〜20 Ο ΠΙ程度が好ましく、 より好ましくは 1 0〜3
0 m程度である。
前記電解液において、 電解質としては、 L i C 1〇4、 L i PF6、 L i As F6 、 L i SbF6、 L I BF4 L i CF3S03、 L i N (S02CF3) い L i C ( S〇2CF3) 3、 L i2B1QC 。、 低級脂肪族カルボン酸リチウム塩、 L iA l C 14などのリチウム塩が挙げられ、これらの 2種以上の混合物を使用してもよい 。 リチウム塩として、 これらの中でもフッ素を含む L i PF6、 L iAs Fい L
1 S b F6、 L i BF4、 L i CF3 S03、 L i N (S02 CF3) 2および L i C ( S 02 C F 3 ) 3からなる群から選ばれた少なくとも 1種を含むものを用いることが 好ましい。
また前記電解液において、 有機溶媒としては、 例えばプロピレン力一ポネート 、 エチレンカーボネート、 ジメチルカーポネート、 ジェチルカーポネート、 ェチ ルメテルカーボネート、 4一トリフルォロメチル _ 1, 3—ジォキソラン一 2— オン、 1, 2—ジ (メトキシカルポニルォキシ) ェタンなどのカーポネ一ト類; 1, 2—ジメトキシェタン、 1, 3—ジメトキシプロパン、 ペンタフルォロプロ ピルメチルエーテル、 2, 2, 3, 3ーテトラフルォロプロピルジフルォロメチ ルエーテル、 テ卜ラヒドロフラン、 2—メチルテトラヒドロフランなどのエーテ ル類;ギ酸メチル、 酢酸メチル、 ァ—プチロラクトンなどのエステル類;ァセト 二トリル、 プチロニトリルなどの二トリル類; N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミドなどのアミド類; 3—メチルー 2—ォキサゾリド ンなどの力一バメート類;スルホラン、 ジメチルスルホキシド、 1, 3_プロパ ンサルトンなどの含硫黄化合物、 または上記の有機溶媒にさらにフッ素置換基を 導入したものを用いることができるが、 通常はこれらのうちの二種以上を混合し て用いる。 中でもカーボネート類を含む混合溶媒が好ましく、 環状カーボネート と非環状カーボネート、 または環状カーボネー卜とエーテル類の混合溶媒がさら に好ましい。
環状カーボネートと非環状カーボネートの混合溶媒としては、 動作温度範囲が 広く、 負荷特性に優れ、 かつ負極の活物質として天然黒鉛、 人造黒鉛等の黒鉛材 料を用いた場合でも難分解性であるという点で、 エチレンカーボネート、 ジメチ ルカ一ポネ一トおよびェチルメチルカーボネートを含む混合溶媒が好ましい。 また、特に優れた安全性向上効果が得られる点で、 L i PF6等のフッ素を含む リチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好 ましい。 ペンタフルォロプロピルメチルエーテル、 2, 2, 3, 3—テトラフル ォロプロピルジフルォ口メチルエーテル等のフッ素置換基を有するエーテル類と ジメチルカ一ポネートとを含む混合溶媒は、 大電流放電特性にも優れており、 さ らに好ましい。
また、 上記の電解液の代わりに固体電解質を用いてもよい。
固体電解質としては、 例えばポリエチレンオキサイド系の高分子化合物、 ポリ オルガノシロキサン鎖もしくはポリオキシアルキレン鎖の少なくとも一種以上を 含む高分子化合物などの高分子電解質を用いることができる。 また、 高分子に非 水電解質溶液を保持させた、 いわゆるゲルタイプのものを用いることもできる。 よ Lェ
Figure imgf000014_0001
jり、 1_/丄 2 J " 1り O 5、 L 1 1_> j g などの硫化物電解質、 または L i2 S— S i S2— L i3P04、 L i2 S-S i S2 一 L i2S04などの硫化物を含む無機化合物電解質を用いると、 安全性をより高 めることができることがある。 以下、 本発明を実施例によりさらに詳細に説明する。
(1) 正極活物質粉末の粒度分布測定
レーザー回折散乱法粒度分布測定装置として、 マルバーン社製マスターサイザ 一 2000を用いて測定した。 分散媒には、 0. 2wt %へキサメタりん酸ナト リウム水溶液を使用した。 体積基準の平均粒径として、 粒子全体積の 50%の点 の粒径の値 (D50の値) を用いた。
(2) 正極活物質粉末の BET比表面積の測定
粉末 1 gを窒素気流中 150°C、 15分間乾燥した後、 マイクロメリティック ス社製フローソープ I I 2300を用いて測定した。
(3) 正極活物質粉末の粉体充填密度の測定
正極活物質粉末 10 gを 10m 1のガラス製メスシリンダーに入れ、 200回 タップして、 粉体充填密度 (タップ密度) を測定した。 該測定を 2回繰り返して 、 その測定値の平均値を粉体充填密度とした。
(4) 充放電試験用の平板型電池の作製
正極活物質粉末と導電材となる鱗片状天然黒鉛とアセチレンブラックの混合物 とバインダーとして PVDFの 1—メチルー 2—ピロリドン (以下、 NMPとい うことがある。 ) 溶液とを、 活物質:鱗片黒鉛:アセチレンブラック: PVDF が重量比で 87 : 9 : 1 : 3となるように混合 ·混練することにより正極合剤べ —ストとし、 正極集電体となる厚さ 20 の A 1箔に該ペーストを塗布して 6 0°Cで熱風乾燥機にて 1時間乾燥後、 50°Cで 8時間真空乾燥を行い、 ロールプ レスにて圧密化処理を行い、 1. 5 cmx 2 cmのサイズに切り出し正極を得た 。 得られた正極の重量を測定し、 正極の重量から A 1箔の重量を減じ、 正極合剤 重量を算出し、 さらに、 上記のペースト状正極合剤の重量比から正極活物質粉末 重量を算出した。
得られた正極と、 電解液としてエチレンカーボネート (以下、 ECということ がある。 ) とジメチルカ一ポネート (以下、 DMCということがある。 ) とェチ ルメチルカーポネート (以下、 EMCということがある。 ) との 30 : 35 : 3 5 (体積比)混合液に L i PF6を 1モルノリツトルとなるように溶解したもの( 以下、 L i PF6ZEC+DMC + EMCと表すことがある。 ) と、 セパレ一夕と してポリエチレン多孔質膜と、 また対極および参照極電極として金属リチウムと を用い、 これらを組み合わせて平板型電池を作製した。 実施例 1
(1) 正極活物質粉末の合成
水酸化ニッケル (関西触媒化学株式会社製) 、 酸化マンガン (髙純度化学製) 、 炭酸リチウム (本荘ケミカル株式会社製) 、 酸化コバルト (正同化学社製) 、 ホウ酸 (米山化学) を各元素のモル比が L i : N i : Mn : Co : B= 1. 07 : 0. 35 : 0. 44 : 0. 21 : 0. 03となるように秤取した後、 15 mm
Φのアルミナポールをメディアとした乾式ポールミルにより 4時間 (周速 0. 7 m/s) 粉砕混合し粉体を得た。 この粉体をトンネル型の連続炉に入れ、 空気中 にて 1040°Cで 4時間保持して焼成し、 焼成品を得た。 該焼成品をロールクラ ッシヤーにて粗粉砕を行った後、 ジェットミル (日本ニューマチック社製スパイ ラルジェットミル NPK100型) を用いて、 粉末供給量 2 kg "h、 圧力 4k gZ cm2の条件で本粉碎し、粉碎粉末を得た。該粉碎粉末を 45 / mの目開きの 篩にて粗粒子を除去し、 正極活物質粉末を得た。 該正極活物質粉末における平均 粒径は 1. 3 m、 [粒径 5 m以上の粒子の体積の和] Z [全ての粒子の体積 の和] は 3%、 比表面積は 3. 3m2/g 粉体充填密度は 1. lgZc cであつ た。
( 2 ) リチウムニ次電池の正極活物質とした場合の充放電性能評価
得られた正極活物質粉末を用い平板型電池を作製し、 以下の条件で定電流定電 圧充電、 定電流放電による充放電試験を実施した。 得られた結果を表 1に示す。 充放電条件:
正極活物質単位重量当りの電流値を 1 C = 150 mA/ gとして、 上記により 得られた正極活物質粉末重量を乗ずることにより、 1 Cの電流値を算出する。 充電は、 充電最大電圧 4. 3V、 充電時間 8時間、 充電電流 0. 2 Cの条件で 行い、 放電は、 放電最小電圧 3. 0V、 放電電流 0. 2C、 1 C、 5C、 10 C の条件で行った。 尚、 それぞれの放電試験前には同じ条件で充電を行った。 実施例 2
(1) 正極活物質粉末の合成
各元素のモル比が L i : N i : Mn: Co : B=l. 10 : 0. 36 : 0. 4 2 : 0. 21 : 0. 03となるようにした以外は、 実施例 1と同様にして得られ た正極活物質粉末について、 平均粒径、 [粒径 5 m以上の粒子の体積の和] Z [全ての粒子の体積の和] 、 比表面積、 粉体充填密度につき測定したところ、 実 施例 1と同様の結果が得られた。 また、 該正極活物質粉末を用い平板型電池を作 製し、 実施例 1と同様にして、 定電流定電圧充電、 定電流放電による充放電試験 を実施したところ、 実施例 1と同様の結果が得られた。 比較例 1
(1) 正極活物質粉末の合成
水酸化ニッケル (関西触媒化学株式会社製) 、 酸化マンガン (髙純度化学製) 、 炭酸リチウム (本荘ケミカル株式会社製) 、 酸化コバルト (正同化学社製) 、 ホウ酸 (米山化学) を各元素のモル比が L i : N i : Mn: Co : B=l. 08 : 0. 35 : 0. 44 : 0. 21 : 0. 03となるように秤取した後、 1 5 mm Φのアルミナポールをメディアとした乾式ポールミルにより 4時間 (周速 0. 7 m/s) 粉碎混合し粉体を得た。 この粉体をトンネル型の連続炉に入れ、 空気中 にて 1040°Cで 4時間保持して焼成し、 焼成品を得た。 該焼成品を 15mmd) のアルミナポールをメディアとした乾式ポールミルにより 7時間 (周速 0. 7m /s) 粉碎し、 45 mの目開きの篩にて粗粒子を除去し、 正極活物質粉末を得 た。 該正極活物質粉末の平均粒径は 3. 2 m, [粒径 5 a m以上の粒子の体積 の和] Z [全ての粒子の体積の和] の百分率は 43%、 比表面積は、 1. 7m2 /g、 粉体充填密度は 1. 8 gZc cであった。
(2) リチウム二次電池の正極活物質とした場合の充放電性能評価
得られた正極活物質を用い平板型電池を作製し、 実施例 1と同一の条件にて定 電流定電圧充電、 定電流放電による充放電試験を実施した。 得られた結果を表 1 に示す。 比較例 2
(1) 正極活物質粉末の合成
実施例 1と同様の方法により焼成品を得、 該焼成品を 15πιπιφのアルミナポ ールをメディアとした乾式ポールミルにより 13時間 (周速 0. 7m/s) 粉碎 し、 45 mの目開きの篩にて粗粒子を除去し、 正極活物質粉末を得た。
該正極活物質粉末の平均粒径は 2. 5 m, [粒径 5 /in以上の粒子の体積の 和] / [全ての粒子の体積の和] の百分率は 39%で、 比表面積は、 1. 7 m2 Zg、 粉体充填密度は 1. 8g/c cであった。
( 2 ) リチウムニ次電池の正極活物質とした場合の充放電性能評価
得られた正極活物質を用い平板型電池を作製し、 実施例 1と同一の条件にて定 電流定電圧充電、 定電流放電による充放電試験を実施した。 得られた結果を表 1 に示す。 表 1
Figure imgf000018_0001
* [粒径 5 jum以上の粒子の体積の和]ノ [全ての粒子の体積の和]の百分率 表 1に示される実施例 1、 比較例 1、 比較例 2における放電容量のデータと 0 . 2 C対レート特性のデ一夕から、 実施例 1の正極活物質粉末を用いた電池は、 放電電流を高くしても (例えば 10 C) 、 放電容量が大きく、 高出力であること がわかる。 本発明の正極活物質粉末を非水電解質二次電池に使用すると、 高い放電容量を 示し、 力 高い電流レートにおいて高出力を示すことから、 本発明の正極活物質 粉末は、 非水電解質二次電池用として使用することができ、 特に、 高い電流レー トにおける高出力を要求される用途、 すなわち自動車用途や電動工具等のパワー ツール用途の非水電解質二次電池用として好適に使用することができ、 本発明は 工業的に極めて有用である。

Claims

請求の範囲
1. 一次粒子および一次粒子の凝集粒子からなる正極活物質粉末であって、 該粉 末における一次粒子および一次粒子の凝集粒子の体積基準の平均粒径が 0.1 nm 以上 3 m以下であり、 [粒径 5 m以上の粒子の体積の和] / [全ての粒子の 体積の和]の百分率が 10%以下であり、粉末の BET比表面積が 2m2Zgを超 え 7 m2 Z g以下である正極活物質粉末。
2. 正極活物質の組成が、 式 (1) で表される請求項 1記載の正極活物質粉末 。
L ixlN iい ' 〇2 (1)
(式 (1) 中、 x l、 y lはそれぞれ 0. 9≤x l≤l. 2、 0≤y 1≤0. 5 であり、 M1は Coである。 ) 3. 正極活物質の組成が、 式 (2) で表される請求項 1記載の正極活物質粉末
L ix2N iI.y2M2 y202 (2)
(式 (2) 中、 x2、 y 2はそれぞれ 0. 9≤x2≤l. 2、 0.
3≤y 2≤0 . 9であり、 M2は C oおよび Mnである。 )
4. 請求項 1〜 3のいずれかに記載の正極活物質粉末を有する非水電解質二次 電池用正極。
5. 導電材を有する請求項 4記載の非水電解質二次電池用正極。
6. 導電材が繊維状炭素材料を含有する請求項 5記載の非水電解質二次電池用 正極。 7 - 請求項 4〜 6のいずれかに記載の非水電解質二次電池用正極を有する非水 電解質二次電池。
PCT/JP2007/058890 2006-04-21 2007-04-18 正極活物質粉末 WO2007123246A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07742325A EP2026389A4 (en) 2006-04-21 2007-04-18 POSITIVE ELECTRODE ACTIVE MATERIAL POWDER
CN200780013946XA CN101427403B (zh) 2006-04-21 2007-04-18 正极活物质粉末
KR1020087027986A KR101386330B1 (ko) 2006-04-21 2007-04-18 정극 활물질 분말
US12/297,455 US8029928B2 (en) 2006-04-21 2007-04-18 Positive electrode active material powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006117614 2006-04-21
JP2006-117614 2006-04-21
JP2006233386 2006-08-30
JP2006-233386 2006-08-30

Publications (1)

Publication Number Publication Date
WO2007123246A1 true WO2007123246A1 (ja) 2007-11-01

Family

ID=38625143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058890 WO2007123246A1 (ja) 2006-04-21 2007-04-18 正極活物質粉末

Country Status (6)

Country Link
US (1) US8029928B2 (ja)
EP (1) EP2026389A4 (ja)
KR (1) KR101386330B1 (ja)
CN (1) CN101427403B (ja)
TW (1) TW200803018A (ja)
WO (1) WO2007123246A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401233B (zh) * 2006-03-15 2011-05-11 住友化学株式会社 正极活性物质粉末
US8420264B2 (en) * 2007-03-30 2013-04-16 Altairnano, Inc. Method for preparing a lithium ion cell
JP5381330B2 (ja) * 2009-05-27 2014-01-08 住友化学株式会社 電極合剤、電極および非水電解質二次電池
CN102639443B (zh) * 2009-12-07 2015-04-15 住友化学株式会社 锂复合金属氧化物的制造方法、锂复合金属氧化物及非水电解质二次电池
JP5531602B2 (ja) 2009-12-18 2014-06-25 住友化学株式会社 電極活物質、電極および非水電解質二次電池
KR101103606B1 (ko) * 2010-12-22 2012-01-09 한화케미칼 주식회사 전극 활물질인 전이금속화합물과 섬유형 탄소물질의 복합체 및 이의 제조방법
CN106532005B (zh) 2016-12-16 2020-06-09 贵州振华新材料有限公司 球形或类球形锂电池正极材料、电池及制法和应用
KR20230136968A (ko) * 2022-03-21 2023-10-04 에스케이온 주식회사 리튬 이차 전지용 양극 조성물 및 이를 사용해 제조된 리튬 이차 전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325791A (ja) 1993-05-14 1994-11-25 Fuji Photo Film Co Ltd 非水二次電池
JPH10162825A (ja) * 1996-11-27 1998-06-19 Denso Corp リチウム二次電池用正極活物質およびその製造方法、並びにリチウム二次電池用正極
JPH10324758A (ja) 1997-03-26 1998-12-08 Sumitomo Chem Co Ltd パラアラミド系多孔質フィルムおよびそれを用いた電池用セパレーターとリチウム二次電池
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2002015735A (ja) * 2000-06-29 2002-01-18 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム鉄複合酸化物、その製造方法およびそれを用いたリチウム二次電池
JP2002117845A (ja) * 2000-10-06 2002-04-19 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム鉄複合酸化物
JP2002184392A (ja) * 2000-12-08 2002-06-28 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005141983A (ja) 2003-11-05 2005-06-02 Mitsubishi Chemicals Corp リチウム二次電池正極材料用層状リチウムニッケル系複合酸化物粉体及びその製造方法、リチウム二次電池用正極並びにリチウム二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1211741A (en) * 1914-07-10 1917-01-09 Karl O Muehlberg Pipe-coupling.
JPH0660887A (ja) * 1992-08-06 1994-03-04 Sanyo Electric Co Ltd 非水系電池
DE69700735T2 (de) * 1996-08-29 2000-03-02 Murata Manufacturing Co Lithium-Sekundärbatterie
JP4022937B2 (ja) * 1997-04-24 2007-12-19 宇部興産株式会社 リチウムイオン非水電解質二次電池
TW460505B (en) 1998-04-27 2001-10-21 Sumitomo Chemical Co Separator for nonaqueous electrolyte battery and lithium secondary battery made from the same
KR100412188B1 (ko) * 1998-08-27 2003-12-24 닛본 덴끼 가부시끼가이샤 비수성 전해액 이차 전지
JP2000208147A (ja) 1999-01-11 2000-07-28 Toyota Motor Corp リチウムイオン2次電池
US20060263690A1 (en) * 2002-09-26 2006-11-23 Seimi Chemical Co., Ltd. Positive electrode active material for lithium secondary battery and process for producing the same
JP2004265806A (ja) * 2003-03-04 2004-09-24 Canon Inc リチウム金属複合酸化物粒子、前記リチウム金属複合酸化物粒子の製造方法、前記リチウム金属複合酸化物粒子を含有す電極構造体、前記電極構造体の製造方法、及び前記電極構造体を有するリチウム二次電池
TWI459616B (zh) 2004-08-16 2014-11-01 Showa Denko Kk Lithium batteries with positive and the use of its lithium batteries
JP4031009B2 (ja) 2004-08-16 2008-01-09 昭和電工株式会社 リチウム系電池用正極及びそれを用いたリチウム系電池
JP4784085B2 (ja) * 2004-12-10 2011-09-28 新神戸電機株式会社 リチウム二次電池用正極材料とその製造法及びリチウム二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325791A (ja) 1993-05-14 1994-11-25 Fuji Photo Film Co Ltd 非水二次電池
JPH10162825A (ja) * 1996-11-27 1998-06-19 Denso Corp リチウム二次電池用正極活物質およびその製造方法、並びにリチウム二次電池用正極
JPH10324758A (ja) 1997-03-26 1998-12-08 Sumitomo Chem Co Ltd パラアラミド系多孔質フィルムおよびそれを用いた電池用セパレーターとリチウム二次電池
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2002015735A (ja) * 2000-06-29 2002-01-18 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム鉄複合酸化物、その製造方法およびそれを用いたリチウム二次電池
JP2002117845A (ja) * 2000-10-06 2002-04-19 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム鉄複合酸化物
JP2002184392A (ja) * 2000-12-08 2002-06-28 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005141983A (ja) 2003-11-05 2005-06-02 Mitsubishi Chemicals Corp リチウム二次電池正極材料用層状リチウムニッケル系複合酸化物粉体及びその製造方法、リチウム二次電池用正極並びにリチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2026389A4

Also Published As

Publication number Publication date
EP2026389A1 (en) 2009-02-18
CN101427403A (zh) 2009-05-06
US20090104531A1 (en) 2009-04-23
CN101427403B (zh) 2011-03-23
KR101386330B1 (ko) 2014-04-17
KR20090005186A (ko) 2009-01-12
US8029928B2 (en) 2011-10-04
EP2026389A4 (en) 2012-05-02
TW200803018A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
JP4318313B2 (ja) リチウム二次電池用の正極活物質粉末
JP4276442B2 (ja) リチウム二次電池用正極活物質粉末
JP4280012B2 (ja) リチウム遷移金属複合酸化物
JP5450284B2 (ja) チタン酸リチウム粒子およびその製造方法、リチウムイオン電池用負極、ならびにリチウム電池
JP2018107145A (ja) リチウム二次電池用複合活物質およびその製造方法
JP6531041B2 (ja) 改善された電気化学性能を有するlmfpカソード材料
WO2004082046A1 (ja) リチウム二次電池用正極活物質粉末
TWI705606B (zh) 負極活性物質、混合負極活性物質材料、非水電解質二次電池用負極、鋰離子二次電池、負極活性物質的製造方法、以及鋰離子二次電池的製造方法
WO2007123246A1 (ja) 正極活物質粉末
WO2007105818A1 (ja) 正極活物質粉末
JP5842596B2 (ja) 非水電解液二次電池用正極組成物及び非水電解液二次電池用正極スラリーの製造方法
JP6543428B1 (ja) 二次電池用負極活物質および二次電池
WO2021201127A1 (ja) リチウム硫黄電池用正極組成物、リチウム硫黄電池用正極及びリチウム硫黄電池
KR101393982B1 (ko) 정극용 분말 및 정극 합제
JP2004182564A (ja) コバルト酸リチウム、その製造方法及び非水電解質二次電池
JP2007053081A (ja) 非水電解質二次電池用正極活物質
JP2007280943A (ja) 正極活物質粉末
JP5332121B2 (ja) 正極活物質粉末
WO2007011053A1 (ja) 非水電解質二次電池用正極活物質
JP4209646B2 (ja) 二次電池正極用のリチウムコバルト複合酸化物の製造方法
JP5176356B2 (ja) 正極用粉末および正極合剤
JP2004119221A (ja) リチウム二次電池用の正極活物質の製造方法
JP4994725B2 (ja) リチウム複合金属酸化物の製造方法
JP2008159300A (ja) 非水二次電池用正極活物質の製造方法
JP5168757B2 (ja) 非水二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742325

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12297455

Country of ref document: US

Ref document number: 200780013946.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087027986

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007742325

Country of ref document: EP