WO2007119015A1 - Procede et dispositif de controle de la regeneration d'un systeme de depollution - Google Patents

Procede et dispositif de controle de la regeneration d'un systeme de depollution Download PDF

Info

Publication number
WO2007119015A1
WO2007119015A1 PCT/FR2007/051047 FR2007051047W WO2007119015A1 WO 2007119015 A1 WO2007119015 A1 WO 2007119015A1 FR 2007051047 W FR2007051047 W FR 2007051047W WO 2007119015 A1 WO2007119015 A1 WO 2007119015A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
temperature
engine
exhaust
exhaust line
Prior art date
Application number
PCT/FR2007/051047
Other languages
English (en)
French (fr)
Inventor
Jean-Marc Duclos
Frédéric LIPPENS
Mohammed Ouazzani-Chahdi
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Priority to JP2009504788A priority Critical patent/JP2009533597A/ja
Priority to US12/297,005 priority patent/US20100132334A1/en
Priority to EP07731851A priority patent/EP2007976A1/fr
Priority to CN2007800176007A priority patent/CN101443534B/zh
Publication of WO2007119015A1 publication Critical patent/WO2007119015A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1445Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is in the field of internal combustion engines and more particularly diesel type engines, since they reject particles. Indeed, this invention relates in particular to the management of f ilt res except icules or FAP.
  • NOxTrap nitrogen oxide trap
  • these systems operate discontinuously or alternatively, that is, in normal operation they trap the pollutants, to treat them only during regeneration phases.
  • these filters, or traps require specific combustion modes, in order to guarantee the necessary thermal and / or richness levels.
  • the regeneration of a particulate filter can use the heat produced by an oxidation catalyst generally placed upstream of the particulate filter, and that of the catalytic phase which is coated with the catalytic particle filter.
  • the latter performs the oxidation function of hydrocarbons and carbon monoxide untreated by the oxidation catalyst. It can also use the heat produced by the oxidation phase of the catalytic particle filter, when there is no oxidation catalyst upstream thereof.
  • the activation of the various regeneration aid means is generally controlled by the engine control computer, which determines, as a function of several parameters, including the soot loading of the particulate filter, the instant of the regeneration, as well as its duration and injection parameters during this phase.
  • the heat required for the regeneration of the particle storage elements is generated by means of additional injections, either during the expansion phase of the cylinder, either directly in the exhaust line.
  • the adjustment of the injection is generally carried out by a loop on the temperature at the outlet of the oxidation catalyst T SD ocau by a Pl D (Proportional, Integrator, Derivator), which applies a correction calculated to regulate this temperature .
  • the two actuators available to achieve the expected exotherm in the catalytic phase of the exhaust line, are not equal before the fuel dilution criterion in the lubricating oil.
  • the object of the present invention is to maximize the regeneration performance of the particulate filter, by favoring the injection of reducers into the exhaust line at the post-injection, in order to limit the dilution cost associated with the use of the post-injection.
  • the fuel flow introduced be assigned to direct injections into the exhaust line and / or delayed injections in the combustion chambers, depending on the value of the wall temperature.
  • the injection of fuel into the exhaust line is limited to a zone of the lowest loads, and to a zone of the highest loads of the engine, and the fuel flow injected into the exhaust line is limited to a maximum flow, beyond which the fuel injected would not be completely oxidized therein.
  • the invention also proposes a device comprising a first temperature sensor upstream of the turbine, an oxidation catalyst, a second temperature sensor measuring the inlet temperature of a heating system. depollution, the pollution control system, and means for determining the wall temperature of the exhaust line.
  • FIG. 1 shows an example of application of the invention
  • FIG. 2 shows the distribution of the injections as a function of exhaust conditions
  • FIG. 3 presents the method for determining the wall temperature
  • FIG. 4 is a block diagram of the command
  • FIG. 5 shows saturation traces of the quantity of fuel injected into the exhaust line (fifth injector) for three times per hour.
  • Figure 1 illustrates in a non-limiting manner the application of the invention to a vehicle engine. It reveals a four-cylinder engine 1, the turbine 2 and the compressor 3 of a turbocharger, as well as an EGR loop and its cooler 4.
  • DOC oxidation catalyst 7
  • FAP particulate filter 8
  • An exhaust fuel injector 9, called the fifth injector is placed upstream of the catalyst 7.
  • the various associated sensors are a front turbine temperature sensor (T avt ) 11, a filter inlet temperature sensor.
  • the additional inj ector positioned in the exhaust line, or fifth inj ector 9, can however be placed, either upstream or downstream of the turbine, without this location having any incidence. on the proposed strategy.
  • the device concerned by the invention therefore comprises the following elements: an injector at the exhaust 9, a first temperature sensor 11 upstream of the turbine, an oxidation catalyst 8, a second temperature sensor 12 measuring the temperature
  • the wall temperature means may be a calculation model integrated in the computer, or a wall temperature sensor (not shown).
  • the pollution control system 8 may be either a particulate filter or another system such as a nitrogen oxide trap, and the exhaust nozzle 9 may be positioned upstream or downstream. , of the turbine.
  • the invention provides for distributing the quantity of fuel Q re d, making it possible to reach the desired temperature at the inlet of the particle filter, between an additional injector implanted in the passage of the exhaust gases, and the post-injection.
  • the quantity of gear reducers Q red controlled by the input filter temperature control strategy of the particulate filter will be assigned to the additional injector, Q 5 ,,,, first and / or to the post injection Q p0 , , according to the instantaneous value of the temperature of the wall T par0 ⁇ , of the exhaust line.
  • the invention assumes that the exhaust injector can not be used over the entire operating range of the engine. Indeed, the area characterized by a low exhaust gas flow rate and a low wall temperature, does not allow a satisfactory vaporization of the fuel injected. For safety, it may also be preferable not to use the exhaust injector in areas characterized by high exhaust gas flow and high wall temperature, due to the residence time of the reducers.
  • the injection of fuel into the exhaust line is therefore used only in certain operating ranges of the engine, and limited for example to a zone of the lowest loads, and to a zone of the highest loads of the engine. engine.
  • the wall thickness can be determined either by a sensor or by a model integrated in the engine computer, according to different parameters.
  • a sensor or a calculation model integrated for example in the engine control computer, which makes it possible to give an instantaneous value of T parol .
  • This temperature is a function of various parameters mentioned in FIG. 3, including the temperature of the exhaust gases before the turbine of a turbocharger T avt , the water temperature T water of the engine, the flow of the exhaust gases Q eCh , and Q alr airflow
  • the model can use all or only some of these parameters depending on the engine operating point.
  • the quantity of fuel to be injected Q red depends on the temperature of the wall, the temperature at the outlet of the oxidation catalyst DOC or the inlet temperature of the FAP T efap , and the operating point of the engine. (exhaust gas flow).
  • the quantity of fuel Q re d is calculated by means of a module integrated in the engine control computer. This module, illustrated in FIG. 4, is composed of a basic setting of the injector gearing rate (assumed to be independent of the actuator), mapping by operating point governed by the motor torque, and a correction generated by a corrector of PID type (Proportional Integrator Derivator) dependent on the deviation of the input temperature measurement of the particulate filter at the set temperature T cons .
  • PID type Proportional Integrator Derivator
  • the conversion capacity of the DOC which depends on the temperature of the wall and the flow rate of the gases passing therethrough, defines a maximum flow rate for the fifth injector, beyond which part of the reducers injected into the exhaust will not be oxidized.
  • the invention provides that the flow rate of fuel Q 5mj injected into the exhaust line is limited to a maximum flow Q ⁇ nJ max, beyond which the injected fuel would not be completely oxidized therein .
  • the fuel is injected in priority in the exhaust line, as long as the injected flow rate Q mj is lower than the maximum flow oxidizable completely in it Q lnJ max-
  • FIG. 5 illustrates the principle of high throughput saturation of the fifth injector, for different wall temperatures T parol i, T parol 2,
  • the fifth injector When the use of the fifth injector is allowed, it is saturated first, so as to favor its use until saturation, by postponing the surplus ordered on the post-injection:
  • the excess fuel Q p0 is introduced by delayed injections into the combustion chambers of the engine.
  • the computer 22 of the motor controls the fuel flow Q re d in the dedicated injector of the exhaust line 9, to a saturation level of the oxidation catalyst 7, before transferring the surplus controlled by the regeneration of the filter 8 on delayed fuel injections into the combustion chambers of the engine.
  • the latot ality of the injected fuel follows a progression ramp, to reach the setpoint, so as to avoid that a part injected fuel passes through the catalyst without reacting. With such an injection profile, the reducers passing through the catalyst, in the event of high exhaust gas flow and high wall temperature, are more likely to oxidize.
  • the present invention proposes to vary firstly the flow rate of the injector to the exhaust in response to a variation of the overall flow rate.
  • the post - injection is insensitive to the variation of the set point.
  • the invention provides for restoring equilibrium (that is to say, to have the maximum flow of possible reducers to the exhaust and the minimum in the combustion chambers of the engine) by progressively increasing the flow of exhaust reducers.
  • the strategy model of injection of reducers in the exhaust line is integrated into the vehicle ECU.
  • the main steps of the strategy are: • the model first determines an additional quantity of fuel to be injected (Q red ) for the operating point under consideration, based on a map.
  • control then manages the distribution of the additional fuel between the fifth injector (Q 51n ) and the post injection (Q po n) according to the characteristics of the exhaust gases (T parol and Q E C H ) - It is possible that only the fifth injector, or only the late injection, does not work.
  • the accuracy of the wall temperature calculation model may limit the use of the proposed strategy. Indeed, it is important to be able to use the additional injector over the highest possible load speed range, but it is also important not to use it when the wall temperature is too low. The margin taken on the value of the parcel, will directly impact the field regime / load accessible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
PCT/FR2007/051047 2006-04-14 2007-03-30 Procede et dispositif de controle de la regeneration d'un systeme de depollution WO2007119015A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009504788A JP2009533597A (ja) 2006-04-14 2007-03-30 汚染防止システムの再生をモニタする方法および装置
US12/297,005 US20100132334A1 (en) 2006-04-14 2007-03-30 Method and device for monitoring the regeneration of a pollution-removal system
EP07731851A EP2007976A1 (fr) 2006-04-14 2007-03-30 Procede et dispositif de controle de la regeneration d'un systeme de depollution
CN2007800176007A CN101443534B (zh) 2006-04-14 2007-03-30 用于监控除污染系统的再生的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0651361 2006-04-14
FR0651361A FR2899932A1 (fr) 2006-04-14 2006-04-14 Procede et dispositif de controle de la regeneration d'un systeme de depollution

Publications (1)

Publication Number Publication Date
WO2007119015A1 true WO2007119015A1 (fr) 2007-10-25

Family

ID=36933565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051047 WO2007119015A1 (fr) 2006-04-14 2007-03-30 Procede et dispositif de controle de la regeneration d'un systeme de depollution

Country Status (7)

Country Link
US (1) US20100132334A1 (ja)
EP (1) EP2007976A1 (ja)
JP (1) JP2009533597A (ja)
CN (1) CN101443534B (ja)
FR (1) FR2899932A1 (ja)
RU (1) RU2435043C2 (ja)
WO (1) WO2007119015A1 (ja)

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998326B2 (ja) * 2008-02-27 2012-08-15 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
US8265852B2 (en) * 2008-09-19 2012-09-11 GM Global Technology Operations LLC Temperature control system and method for particulate filter regeneration using a hydrocarbon injector
FR2937080A3 (fr) * 2008-10-15 2010-04-16 Renault Sas Suppression de methane lors de la regeneration d'un piege des oxydes d'azote
US8327621B2 (en) * 2009-04-22 2012-12-11 GM Global Technology Operations LLC Oxidation catalyst outlet temperature correction systems and methods
US9574483B2 (en) * 2010-01-14 2017-02-21 GM Global Technology Operations LLC System and method for controlling exhaust gas temperature during particulate matter filter regeneration
US20110271657A1 (en) * 2010-05-04 2011-11-10 Gm Global Technology Operations, Inc. Control system and method for improved efficiency of particulate matter filter regeneration
WO2012047192A1 (en) * 2010-10-04 2012-04-12 International Engine Intellectual Property Company, Llc Controlling hydrocarbon injection for filter regeneration
SE537854C2 (sv) * 2011-01-31 2015-11-03 Scania Cv Ab Förfarande och system för avgasrening
JP5510749B2 (ja) * 2011-02-17 2014-06-04 株式会社デンソー 排気浄化装置
US9371763B2 (en) * 2011-03-21 2016-06-21 GM Global Technology Operations LLC Method of operating an exhaust gas treatment system to prevent quenching during regeneration
JP2013044238A (ja) * 2011-08-22 2013-03-04 Toyota Industries Corp 排気ガス浄化装置
GB2496876B (en) * 2011-11-24 2017-12-06 Ford Global Tech Llc Detection of soot burn in a vehicle
JP2013122182A (ja) * 2011-12-09 2013-06-20 Yanmar Co Ltd エンジン
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
WO2014016635A1 (en) * 2012-07-26 2014-01-30 Renault Trucks System and method for cleaning a particulate filter
JP6136994B2 (ja) * 2014-03-05 2017-05-31 トヨタ自動車株式会社 内燃機関の制御装置
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
FR3030620B1 (fr) * 2014-12-22 2018-03-09 Renault S.A.S Procede de purge d'un piege a oxydes d'azote et dispositif de motorisation associe
DE112016002717T5 (de) 2015-08-03 2018-03-08 Cummins Emission Solutions Inc. Sensorkonfiguration für ein Nachbehandlungssystem umfassend einen SCR mit Filter
US10066575B2 (en) * 2016-07-15 2018-09-04 Ford Global Technologies, Llc Method and system for gasoline particulate filter operations
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US10959744B2 (en) 2017-10-30 2021-03-30 Ethicon Llc Surgical dissectors and manufacturing techniques
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11026687B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Clip applier comprising clip advancing systems
US11058498B2 (en) 2017-12-28 2021-07-13 Cilag Gmbh International Cooperative surgical actions for robot-assisted surgical platforms
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11529187B2 (en) * 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US12096916B2 (en) 2017-12-28 2024-09-24 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US20190206569A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of cloud based data analytics for use with the hub
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US20190201139A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Communication arrangements for robot-assisted surgical platforms
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11612408B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Determining tissue composition via an ultrasonic system
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US20190201039A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Situational awareness of electrosurgical systems
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US12062442B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Method for operating surgical instrument systems
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11337746B2 (en) 2018-03-08 2022-05-24 Cilag Gmbh International Smart blade and power pulsing
US11399858B2 (en) 2018-03-08 2022-08-02 Cilag Gmbh International Application of smart blade technology
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11197668B2 (en) 2018-03-28 2021-12-14 Cilag Gmbh International Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
JP7124536B2 (ja) * 2018-08-07 2022-08-24 トヨタ自動車株式会社 内燃機関の制御装置
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11298129B2 (en) 2019-02-19 2022-04-12 Cilag Gmbh International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298291A2 (en) 2001-10-01 2003-04-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine and control method thereof
US6615580B1 (en) * 1999-06-23 2003-09-09 Southwest Research Institute Integrated system for controlling diesel engine emissions
WO2004079168A1 (fr) * 2003-01-31 2004-09-16 Jean Claude Fayard Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d'echappement de moteur diesel

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6293096B1 (en) * 1999-06-23 2001-09-25 Southwest Research Institute Multiple stage aftertreatment system
EP1167707B1 (en) * 2000-06-29 2004-12-15 Toyota Jidosha Kabushiki Kaisha A device for purifying the exhaust gas of an internal combustion engine
DE10064481A1 (de) * 2000-12-22 2002-07-04 Mann & Hummel Filter Brennkraftmaschine mit Sekundärluftaufladung und Verfahren zur Regelung des Sekundärluftladers
US6848439B2 (en) * 2001-11-08 2005-02-01 Hitachi Unisia Automotive, Ltd. Air-fuel ratio control apparatus, air-fuel ratio detecting apparatus and methods thereof for engine
JP4135495B2 (ja) * 2002-12-20 2008-08-20 いすゞ自動車株式会社 燃料噴射制御装置
JP2005016394A (ja) * 2003-06-25 2005-01-20 Toyota Motor Corp 内燃機関の排気浄化システム
JP2005048678A (ja) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP4075755B2 (ja) * 2003-09-22 2008-04-16 トヨタ自動車株式会社 内燃機関のフィルタ過昇温抑制方法
FR2863008B1 (fr) * 2003-12-02 2006-01-21 Renault Sas Procede de regulation de temperature a convergence rapide pour la regeneration d'un filtre a particules, et dispositif pour sa mise en oeuvre
JP4908759B2 (ja) * 2004-01-14 2012-04-04 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 排気ガス温度調節のための方法及び制御装置
JP4049113B2 (ja) * 2004-03-11 2008-02-20 トヨタ自動車株式会社 内燃機関排気浄化装置の粒子状物質再生制御装置
JP4244841B2 (ja) * 2004-03-29 2009-03-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4161932B2 (ja) * 2004-04-09 2008-10-08 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP4151630B2 (ja) * 2004-08-04 2008-09-17 トヨタ自動車株式会社 内燃機関の排気浄化方法
JP4311316B2 (ja) * 2004-09-21 2009-08-12 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP2006090260A (ja) * 2004-09-27 2006-04-06 Toyota Motor Corp ディーゼルエンジンの排気浄化システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6615580B1 (en) * 1999-06-23 2003-09-09 Southwest Research Institute Integrated system for controlling diesel engine emissions
EP1298291A2 (en) 2001-10-01 2003-04-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine and control method thereof
WO2004079168A1 (fr) * 2003-01-31 2004-09-16 Jean Claude Fayard Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d'echappement de moteur diesel

Also Published As

Publication number Publication date
FR2899932A1 (fr) 2007-10-19
JP2009533597A (ja) 2009-09-17
RU2008144967A (ru) 2010-05-20
CN101443534B (zh) 2011-02-09
US20100132334A1 (en) 2010-06-03
RU2435043C2 (ru) 2011-11-27
CN101443534A (zh) 2009-05-27
EP2007976A1 (fr) 2008-12-31

Similar Documents

Publication Publication Date Title
WO2007119015A1 (fr) Procede et dispositif de controle de la regeneration d'un systeme de depollution
EP2106498B1 (fr) Procede de controle de la temperature des gaz d'echappement d'un moteur thermique
FR2901839A1 (fr) Systeme de purification de gaz d'echappement et procede de purification de gaz d'echappement
EP2855902A1 (fr) Moteur a combustion interne muni d'un systeme de recirculation des gaz d'echappement (egr) et procede de commande de la recirculation des gaz associe
FR2907162A3 (fr) Procede et dispositif de controle d'un systeme de depollution et vehicule muni du dispositif
EP3535483A1 (fr) Système d'injection d'air dans un circuit d'échappement de gaz d'un moteur thermique suralimenté
EP1650420B1 (fr) Système et procédé de régularisation de la régénération d'un filtre à particules de moteur à combustion interne
EP1314875B2 (fr) Système de contrôle du fonctionnement d'un moteur diesel de véhicule automobile
EP2066882B1 (fr) Procede et dispositif de controle d'un systeme de depollution et vehicule muni du dispositif
WO2009101316A2 (fr) Procede et dispositif pour la regeneration d'un dispositif de post-traitement de gaz d'echappement
FR2813098A1 (fr) Dispositif pour detecter un mauvais fonctionnement du systeme d'echappement d'un moteur
FR3088957A1 (fr) Dispositif et procédé de commande de la régénération d'un filtre à particules d'une ligne d'échappement d'un moteur à combustion interne
WO2019058040A1 (fr) Procede de regeneration d'un filtre a particules de moteur thermique
EP1759100B1 (fr) Procede de controle de la regeneration d'un filtre a particules
FR2943095A1 (fr) Procede de regeneration d'un filtre a particules
EP2299094A1 (fr) Procédé de commande d'un moteur diesel suralimenté à recirculation de gaz d'échappement à basse pression
EP2444640A1 (fr) Procédé de commande de la régéneration d'un filtre à particules
EP1411228A1 (fr) Procédé de régénération d'un filtre à particules et dispositif de mise en oeuvre
FR2907846A1 (fr) Dispositif et procede de regulation d'une quantite de carburant a injecter tardivement pour la regeneration d'un filtre a particules de moteur a combustion interne
EP2078839A1 (fr) Strategie de chauffage rapide pour compenser le vieillissement d'un catalyseur d'oxydation d'un moteur diesel
FR2921122A3 (fr) Systeme de regulation de temperature des gaz d'admission d'un moteur a combustion interne, et procede associe
EP1413720A2 (fr) Procédé de détermination de la température interne d'un filtre à particules, procédé de commande de la génération du filtre à particules, système de commande et filtre à particules correspondant
EP4163484A1 (fr) Procédé de contrôle du couple délivré par un moteur à combustion interne de véhicule automobile à cycle asymétrique
JP2022090200A (ja) ディーゼルエンジン
FR2983531A1 (fr) Alimentation en mode riche d'un moteur a combustion interne a double pre-injection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07731851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007731851

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009504788

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008144967

Country of ref document: RU

Ref document number: 200780017600.7

Country of ref document: CN

Ref document number: 9495/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12297005

Country of ref document: US