WO2007119015A1 - Procede et dispositif de controle de la regeneration d'un systeme de depollution - Google Patents
Procede et dispositif de controle de la regeneration d'un systeme de depollution Download PDFInfo
- Publication number
- WO2007119015A1 WO2007119015A1 PCT/FR2007/051047 FR2007051047W WO2007119015A1 WO 2007119015 A1 WO2007119015 A1 WO 2007119015A1 FR 2007051047 W FR2007051047 W FR 2007051047W WO 2007119015 A1 WO2007119015 A1 WO 2007119015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel
- temperature
- engine
- exhaust
- exhaust line
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/025—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
- F01N3/0253—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/36—Arrangements for supply of additional fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
- F01N9/002—Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
- F01N9/005—Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
- F02D41/405—Multiple injections with post injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/02—Combinations of different methods of purification filtering and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/12—Combinations of different methods of purification absorption or adsorption, and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/08—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/06—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1602—Temperature of exhaust gas apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/021—Engine temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
- F02D41/025—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
- F02D41/028—Desulfurisation of NOx traps or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1445—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
- F02D41/182—Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention is in the field of internal combustion engines and more particularly diesel type engines, since they reject particles. Indeed, this invention relates in particular to the management of f ilt res except icules or FAP.
- NOxTrap nitrogen oxide trap
- these systems operate discontinuously or alternatively, that is, in normal operation they trap the pollutants, to treat them only during regeneration phases.
- these filters, or traps require specific combustion modes, in order to guarantee the necessary thermal and / or richness levels.
- the regeneration of a particulate filter can use the heat produced by an oxidation catalyst generally placed upstream of the particulate filter, and that of the catalytic phase which is coated with the catalytic particle filter.
- the latter performs the oxidation function of hydrocarbons and carbon monoxide untreated by the oxidation catalyst. It can also use the heat produced by the oxidation phase of the catalytic particle filter, when there is no oxidation catalyst upstream thereof.
- the activation of the various regeneration aid means is generally controlled by the engine control computer, which determines, as a function of several parameters, including the soot loading of the particulate filter, the instant of the regeneration, as well as its duration and injection parameters during this phase.
- the heat required for the regeneration of the particle storage elements is generated by means of additional injections, either during the expansion phase of the cylinder, either directly in the exhaust line.
- the adjustment of the injection is generally carried out by a loop on the temperature at the outlet of the oxidation catalyst T SD ocau by a Pl D (Proportional, Integrator, Derivator), which applies a correction calculated to regulate this temperature .
- the two actuators available to achieve the expected exotherm in the catalytic phase of the exhaust line, are not equal before the fuel dilution criterion in the lubricating oil.
- the object of the present invention is to maximize the regeneration performance of the particulate filter, by favoring the injection of reducers into the exhaust line at the post-injection, in order to limit the dilution cost associated with the use of the post-injection.
- the fuel flow introduced be assigned to direct injections into the exhaust line and / or delayed injections in the combustion chambers, depending on the value of the wall temperature.
- the injection of fuel into the exhaust line is limited to a zone of the lowest loads, and to a zone of the highest loads of the engine, and the fuel flow injected into the exhaust line is limited to a maximum flow, beyond which the fuel injected would not be completely oxidized therein.
- the invention also proposes a device comprising a first temperature sensor upstream of the turbine, an oxidation catalyst, a second temperature sensor measuring the inlet temperature of a heating system. depollution, the pollution control system, and means for determining the wall temperature of the exhaust line.
- FIG. 1 shows an example of application of the invention
- FIG. 2 shows the distribution of the injections as a function of exhaust conditions
- FIG. 3 presents the method for determining the wall temperature
- FIG. 4 is a block diagram of the command
- FIG. 5 shows saturation traces of the quantity of fuel injected into the exhaust line (fifth injector) for three times per hour.
- Figure 1 illustrates in a non-limiting manner the application of the invention to a vehicle engine. It reveals a four-cylinder engine 1, the turbine 2 and the compressor 3 of a turbocharger, as well as an EGR loop and its cooler 4.
- DOC oxidation catalyst 7
- FAP particulate filter 8
- An exhaust fuel injector 9, called the fifth injector is placed upstream of the catalyst 7.
- the various associated sensors are a front turbine temperature sensor (T avt ) 11, a filter inlet temperature sensor.
- the additional inj ector positioned in the exhaust line, or fifth inj ector 9, can however be placed, either upstream or downstream of the turbine, without this location having any incidence. on the proposed strategy.
- the device concerned by the invention therefore comprises the following elements: an injector at the exhaust 9, a first temperature sensor 11 upstream of the turbine, an oxidation catalyst 8, a second temperature sensor 12 measuring the temperature
- the wall temperature means may be a calculation model integrated in the computer, or a wall temperature sensor (not shown).
- the pollution control system 8 may be either a particulate filter or another system such as a nitrogen oxide trap, and the exhaust nozzle 9 may be positioned upstream or downstream. , of the turbine.
- the invention provides for distributing the quantity of fuel Q re d, making it possible to reach the desired temperature at the inlet of the particle filter, between an additional injector implanted in the passage of the exhaust gases, and the post-injection.
- the quantity of gear reducers Q red controlled by the input filter temperature control strategy of the particulate filter will be assigned to the additional injector, Q 5 ,,,, first and / or to the post injection Q p0 , , according to the instantaneous value of the temperature of the wall T par0 ⁇ , of the exhaust line.
- the invention assumes that the exhaust injector can not be used over the entire operating range of the engine. Indeed, the area characterized by a low exhaust gas flow rate and a low wall temperature, does not allow a satisfactory vaporization of the fuel injected. For safety, it may also be preferable not to use the exhaust injector in areas characterized by high exhaust gas flow and high wall temperature, due to the residence time of the reducers.
- the injection of fuel into the exhaust line is therefore used only in certain operating ranges of the engine, and limited for example to a zone of the lowest loads, and to a zone of the highest loads of the engine. engine.
- the wall thickness can be determined either by a sensor or by a model integrated in the engine computer, according to different parameters.
- a sensor or a calculation model integrated for example in the engine control computer, which makes it possible to give an instantaneous value of T parol .
- This temperature is a function of various parameters mentioned in FIG. 3, including the temperature of the exhaust gases before the turbine of a turbocharger T avt , the water temperature T water of the engine, the flow of the exhaust gases Q eCh , and Q alr airflow
- the model can use all or only some of these parameters depending on the engine operating point.
- the quantity of fuel to be injected Q red depends on the temperature of the wall, the temperature at the outlet of the oxidation catalyst DOC or the inlet temperature of the FAP T efap , and the operating point of the engine. (exhaust gas flow).
- the quantity of fuel Q re d is calculated by means of a module integrated in the engine control computer. This module, illustrated in FIG. 4, is composed of a basic setting of the injector gearing rate (assumed to be independent of the actuator), mapping by operating point governed by the motor torque, and a correction generated by a corrector of PID type (Proportional Integrator Derivator) dependent on the deviation of the input temperature measurement of the particulate filter at the set temperature T cons .
- PID type Proportional Integrator Derivator
- the conversion capacity of the DOC which depends on the temperature of the wall and the flow rate of the gases passing therethrough, defines a maximum flow rate for the fifth injector, beyond which part of the reducers injected into the exhaust will not be oxidized.
- the invention provides that the flow rate of fuel Q 5mj injected into the exhaust line is limited to a maximum flow Q ⁇ nJ max, beyond which the injected fuel would not be completely oxidized therein .
- the fuel is injected in priority in the exhaust line, as long as the injected flow rate Q mj is lower than the maximum flow oxidizable completely in it Q lnJ max-
- FIG. 5 illustrates the principle of high throughput saturation of the fifth injector, for different wall temperatures T parol i, T parol 2,
- the fifth injector When the use of the fifth injector is allowed, it is saturated first, so as to favor its use until saturation, by postponing the surplus ordered on the post-injection:
- the excess fuel Q p0 is introduced by delayed injections into the combustion chambers of the engine.
- the computer 22 of the motor controls the fuel flow Q re d in the dedicated injector of the exhaust line 9, to a saturation level of the oxidation catalyst 7, before transferring the surplus controlled by the regeneration of the filter 8 on delayed fuel injections into the combustion chambers of the engine.
- the latot ality of the injected fuel follows a progression ramp, to reach the setpoint, so as to avoid that a part injected fuel passes through the catalyst without reacting. With such an injection profile, the reducers passing through the catalyst, in the event of high exhaust gas flow and high wall temperature, are more likely to oxidize.
- the present invention proposes to vary firstly the flow rate of the injector to the exhaust in response to a variation of the overall flow rate.
- the post - injection is insensitive to the variation of the set point.
- the invention provides for restoring equilibrium (that is to say, to have the maximum flow of possible reducers to the exhaust and the minimum in the combustion chambers of the engine) by progressively increasing the flow of exhaust reducers.
- the strategy model of injection of reducers in the exhaust line is integrated into the vehicle ECU.
- the main steps of the strategy are: • the model first determines an additional quantity of fuel to be injected (Q red ) for the operating point under consideration, based on a map.
- control then manages the distribution of the additional fuel between the fifth injector (Q 51n ) and the post injection (Q po n) according to the characteristics of the exhaust gases (T parol and Q E C H ) - It is possible that only the fifth injector, or only the late injection, does not work.
- the accuracy of the wall temperature calculation model may limit the use of the proposed strategy. Indeed, it is important to be able to use the additional injector over the highest possible load speed range, but it is also important not to use it when the wall temperature is too low. The margin taken on the value of the parcel, will directly impact the field regime / load accessible.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009504788A JP2009533597A (ja) | 2006-04-14 | 2007-03-30 | 汚染防止システムの再生をモニタする方法および装置 |
US12/297,005 US20100132334A1 (en) | 2006-04-14 | 2007-03-30 | Method and device for monitoring the regeneration of a pollution-removal system |
EP07731851A EP2007976A1 (fr) | 2006-04-14 | 2007-03-30 | Procede et dispositif de controle de la regeneration d'un systeme de depollution |
CN2007800176007A CN101443534B (zh) | 2006-04-14 | 2007-03-30 | 用于监控除污染系统的再生的方法和设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0651361 | 2006-04-14 | ||
FR0651361A FR2899932A1 (fr) | 2006-04-14 | 2006-04-14 | Procede et dispositif de controle de la regeneration d'un systeme de depollution |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007119015A1 true WO2007119015A1 (fr) | 2007-10-25 |
Family
ID=36933565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2007/051047 WO2007119015A1 (fr) | 2006-04-14 | 2007-03-30 | Procede et dispositif de controle de la regeneration d'un systeme de depollution |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100132334A1 (ja) |
EP (1) | EP2007976A1 (ja) |
JP (1) | JP2009533597A (ja) |
CN (1) | CN101443534B (ja) |
FR (1) | FR2899932A1 (ja) |
RU (1) | RU2435043C2 (ja) |
WO (1) | WO2007119015A1 (ja) |
Families Citing this family (140)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4998326B2 (ja) * | 2008-02-27 | 2012-08-15 | いすゞ自動車株式会社 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
US8265852B2 (en) * | 2008-09-19 | 2012-09-11 | GM Global Technology Operations LLC | Temperature control system and method for particulate filter regeneration using a hydrocarbon injector |
FR2937080A3 (fr) * | 2008-10-15 | 2010-04-16 | Renault Sas | Suppression de methane lors de la regeneration d'un piege des oxydes d'azote |
US8327621B2 (en) * | 2009-04-22 | 2012-12-11 | GM Global Technology Operations LLC | Oxidation catalyst outlet temperature correction systems and methods |
US9574483B2 (en) * | 2010-01-14 | 2017-02-21 | GM Global Technology Operations LLC | System and method for controlling exhaust gas temperature during particulate matter filter regeneration |
US20110271657A1 (en) * | 2010-05-04 | 2011-11-10 | Gm Global Technology Operations, Inc. | Control system and method for improved efficiency of particulate matter filter regeneration |
WO2012047192A1 (en) * | 2010-10-04 | 2012-04-12 | International Engine Intellectual Property Company, Llc | Controlling hydrocarbon injection for filter regeneration |
SE537854C2 (sv) * | 2011-01-31 | 2015-11-03 | Scania Cv Ab | Förfarande och system för avgasrening |
JP5510749B2 (ja) * | 2011-02-17 | 2014-06-04 | 株式会社デンソー | 排気浄化装置 |
US9371763B2 (en) * | 2011-03-21 | 2016-06-21 | GM Global Technology Operations LLC | Method of operating an exhaust gas treatment system to prevent quenching during regeneration |
JP2013044238A (ja) * | 2011-08-22 | 2013-03-04 | Toyota Industries Corp | 排気ガス浄化装置 |
GB2496876B (en) * | 2011-11-24 | 2017-12-06 | Ford Global Tech Llc | Detection of soot burn in a vehicle |
JP2013122182A (ja) * | 2011-12-09 | 2013-06-20 | Yanmar Co Ltd | エンジン |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
WO2014016635A1 (en) * | 2012-07-26 | 2014-01-30 | Renault Trucks | System and method for cleaning a particulate filter |
JP6136994B2 (ja) * | 2014-03-05 | 2017-05-31 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
FR3030620B1 (fr) * | 2014-12-22 | 2018-03-09 | Renault S.A.S | Procede de purge d'un piege a oxydes d'azote et dispositif de motorisation associe |
DE112016002717T5 (de) | 2015-08-03 | 2018-03-08 | Cummins Emission Solutions Inc. | Sensorkonfiguration für ein Nachbehandlungssystem umfassend einen SCR mit Filter |
US10066575B2 (en) * | 2016-07-15 | 2018-09-04 | Ford Global Technologies, Llc | Method and system for gasoline particulate filter operations |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11529187B2 (en) * | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
JP7124536B2 (ja) * | 2018-08-07 | 2022-08-24 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1298291A2 (en) | 2001-10-01 | 2003-04-02 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying apparatus for internal combustion engine and control method thereof |
US6615580B1 (en) * | 1999-06-23 | 2003-09-09 | Southwest Research Institute | Integrated system for controlling diesel engine emissions |
WO2004079168A1 (fr) * | 2003-01-31 | 2004-09-16 | Jean Claude Fayard | Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d'echappement de moteur diesel |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6293096B1 (en) * | 1999-06-23 | 2001-09-25 | Southwest Research Institute | Multiple stage aftertreatment system |
EP1167707B1 (en) * | 2000-06-29 | 2004-12-15 | Toyota Jidosha Kabushiki Kaisha | A device for purifying the exhaust gas of an internal combustion engine |
DE10064481A1 (de) * | 2000-12-22 | 2002-07-04 | Mann & Hummel Filter | Brennkraftmaschine mit Sekundärluftaufladung und Verfahren zur Regelung des Sekundärluftladers |
US6848439B2 (en) * | 2001-11-08 | 2005-02-01 | Hitachi Unisia Automotive, Ltd. | Air-fuel ratio control apparatus, air-fuel ratio detecting apparatus and methods thereof for engine |
JP4135495B2 (ja) * | 2002-12-20 | 2008-08-20 | いすゞ自動車株式会社 | 燃料噴射制御装置 |
JP2005016394A (ja) * | 2003-06-25 | 2005-01-20 | Toyota Motor Corp | 内燃機関の排気浄化システム |
JP2005048678A (ja) * | 2003-07-30 | 2005-02-24 | Nissan Motor Co Ltd | 内燃機関の燃焼制御装置 |
JP4075755B2 (ja) * | 2003-09-22 | 2008-04-16 | トヨタ自動車株式会社 | 内燃機関のフィルタ過昇温抑制方法 |
FR2863008B1 (fr) * | 2003-12-02 | 2006-01-21 | Renault Sas | Procede de regulation de temperature a convergence rapide pour la regeneration d'un filtre a particules, et dispositif pour sa mise en oeuvre |
JP4908759B2 (ja) * | 2004-01-14 | 2012-04-04 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 排気ガス温度調節のための方法及び制御装置 |
JP4049113B2 (ja) * | 2004-03-11 | 2008-02-20 | トヨタ自動車株式会社 | 内燃機関排気浄化装置の粒子状物質再生制御装置 |
JP4244841B2 (ja) * | 2004-03-29 | 2009-03-25 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4161932B2 (ja) * | 2004-04-09 | 2008-10-08 | いすゞ自動車株式会社 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
JP4151630B2 (ja) * | 2004-08-04 | 2008-09-17 | トヨタ自動車株式会社 | 内燃機関の排気浄化方法 |
JP4311316B2 (ja) * | 2004-09-21 | 2009-08-12 | 三菱自動車工業株式会社 | 内燃機関の排気浄化装置 |
JP2006090260A (ja) * | 2004-09-27 | 2006-04-06 | Toyota Motor Corp | ディーゼルエンジンの排気浄化システム |
-
2006
- 2006-04-14 FR FR0651361A patent/FR2899932A1/fr active Pending
-
2007
- 2007-03-30 US US12/297,005 patent/US20100132334A1/en not_active Abandoned
- 2007-03-30 CN CN2007800176007A patent/CN101443534B/zh not_active Expired - Fee Related
- 2007-03-30 EP EP07731851A patent/EP2007976A1/fr not_active Withdrawn
- 2007-03-30 WO PCT/FR2007/051047 patent/WO2007119015A1/fr active Application Filing
- 2007-03-30 RU RU2008144967/06A patent/RU2435043C2/ru not_active IP Right Cessation
- 2007-03-30 JP JP2009504788A patent/JP2009533597A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6615580B1 (en) * | 1999-06-23 | 2003-09-09 | Southwest Research Institute | Integrated system for controlling diesel engine emissions |
EP1298291A2 (en) | 2001-10-01 | 2003-04-02 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying apparatus for internal combustion engine and control method thereof |
WO2004079168A1 (fr) * | 2003-01-31 | 2004-09-16 | Jean Claude Fayard | Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d'echappement de moteur diesel |
Also Published As
Publication number | Publication date |
---|---|
FR2899932A1 (fr) | 2007-10-19 |
JP2009533597A (ja) | 2009-09-17 |
RU2008144967A (ru) | 2010-05-20 |
CN101443534B (zh) | 2011-02-09 |
US20100132334A1 (en) | 2010-06-03 |
RU2435043C2 (ru) | 2011-11-27 |
CN101443534A (zh) | 2009-05-27 |
EP2007976A1 (fr) | 2008-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007119015A1 (fr) | Procede et dispositif de controle de la regeneration d'un systeme de depollution | |
EP2106498B1 (fr) | Procede de controle de la temperature des gaz d'echappement d'un moteur thermique | |
FR2901839A1 (fr) | Systeme de purification de gaz d'echappement et procede de purification de gaz d'echappement | |
EP2855902A1 (fr) | Moteur a combustion interne muni d'un systeme de recirculation des gaz d'echappement (egr) et procede de commande de la recirculation des gaz associe | |
FR2907162A3 (fr) | Procede et dispositif de controle d'un systeme de depollution et vehicule muni du dispositif | |
EP3535483A1 (fr) | Système d'injection d'air dans un circuit d'échappement de gaz d'un moteur thermique suralimenté | |
EP1650420B1 (fr) | Système et procédé de régularisation de la régénération d'un filtre à particules de moteur à combustion interne | |
EP1314875B2 (fr) | Système de contrôle du fonctionnement d'un moteur diesel de véhicule automobile | |
EP2066882B1 (fr) | Procede et dispositif de controle d'un systeme de depollution et vehicule muni du dispositif | |
WO2009101316A2 (fr) | Procede et dispositif pour la regeneration d'un dispositif de post-traitement de gaz d'echappement | |
FR2813098A1 (fr) | Dispositif pour detecter un mauvais fonctionnement du systeme d'echappement d'un moteur | |
FR3088957A1 (fr) | Dispositif et procédé de commande de la régénération d'un filtre à particules d'une ligne d'échappement d'un moteur à combustion interne | |
WO2019058040A1 (fr) | Procede de regeneration d'un filtre a particules de moteur thermique | |
EP1759100B1 (fr) | Procede de controle de la regeneration d'un filtre a particules | |
FR2943095A1 (fr) | Procede de regeneration d'un filtre a particules | |
EP2299094A1 (fr) | Procédé de commande d'un moteur diesel suralimenté à recirculation de gaz d'échappement à basse pression | |
EP2444640A1 (fr) | Procédé de commande de la régéneration d'un filtre à particules | |
EP1411228A1 (fr) | Procédé de régénération d'un filtre à particules et dispositif de mise en oeuvre | |
FR2907846A1 (fr) | Dispositif et procede de regulation d'une quantite de carburant a injecter tardivement pour la regeneration d'un filtre a particules de moteur a combustion interne | |
EP2078839A1 (fr) | Strategie de chauffage rapide pour compenser le vieillissement d'un catalyseur d'oxydation d'un moteur diesel | |
FR2921122A3 (fr) | Systeme de regulation de temperature des gaz d'admission d'un moteur a combustion interne, et procede associe | |
EP1413720A2 (fr) | Procédé de détermination de la température interne d'un filtre à particules, procédé de commande de la génération du filtre à particules, système de commande et filtre à particules correspondant | |
EP4163484A1 (fr) | Procédé de contrôle du couple délivré par un moteur à combustion interne de véhicule automobile à cycle asymétrique | |
JP2022090200A (ja) | ディーゼルエンジン | |
FR2983531A1 (fr) | Alimentation en mode riche d'un moteur a combustion interne a double pre-injection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07731851 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007731851 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009504788 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008144967 Country of ref document: RU Ref document number: 200780017600.7 Country of ref document: CN Ref document number: 9495/DELNP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12297005 Country of ref document: US |