WO2007117007A1 - ポリアミドマスターバッチの製造方法 - Google Patents

ポリアミドマスターバッチの製造方法 Download PDF

Info

Publication number
WO2007117007A1
WO2007117007A1 PCT/JP2007/057868 JP2007057868W WO2007117007A1 WO 2007117007 A1 WO2007117007 A1 WO 2007117007A1 JP 2007057868 W JP2007057868 W JP 2007057868W WO 2007117007 A1 WO2007117007 A1 WO 2007117007A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
polyamide
parts
copper
production example
Prior art date
Application number
PCT/JP2007/057868
Other languages
English (en)
French (fr)
Inventor
Masaaki Aramaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to CN2007800133251A priority Critical patent/CN101421339B/zh
Priority to EP07741304.5A priority patent/EP2017298B1/en
Priority to US12/296,452 priority patent/US7960451B2/en
Publication of WO2007117007A1 publication Critical patent/WO2007117007A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to a polyamide master batch that can solve the problems of metal precipitation and corrosion during extrusion and molding, and can provide a polyamide molded article having excellent toughness, heat aging resistance, appearance, and color tone. .
  • Polyamide resin has been used in many applications in the fields of automobiles and electric / electronics, taking advantage of its excellent mechanical properties, heat resistance, chemical resistance, flame retardancy, and the like. Among them, polyamide resin is excellent in long-term heat aging resistance as is not seen in other resins, and is therefore used in parts where heat at extremely high temperatures is applied, such as in an automobile engine room. In recent years, with the increase in the density of parts in the engine compartment and the increase in engine output, the environmental temperature in the engine room has become higher, and higher long-term heat aging resistance than ever has been required of polyamide resin. It was.
  • polyamide resin compositions containing copper halide compounds such as polyamide resin compositions containing copper halide compounds, aromatic amines, hindered phenolic acid deterioration inhibitors.
  • examples thereof include a blended polyamide resin composition.
  • the technical ability to improve heat aging resistance by using a mixture of a copper compound and a halogen compound is the most excellent in terms of cost and is still widely used today.
  • a method of blending a copper compound or a halogen compound into a polyamide resin a method of preparing an aqueous solution containing a copper compound or a halogen compound and adding it before or during the polymerization of the polyamide, There is a method of adding at any time after polymerization (blending with polyamide resin, melt kneading, etc.).
  • the method of addition in the polymerization process is a desirable method for uniformly dispersing copper compounds and halogen compounds. Production efficiency decreases due to the generation of intermediate products at the time of switching brands and the need to clean the polymerization equipment. Cause.
  • the dispersibility is lowered as compared with the method of adding in the polymerization step.
  • the molded product After the water was gradually absorbed, the appearance of the molded product was deteriorated by changing the color from white to green in the process, and the degree of discoloration increased as the copper concentration increased.
  • Patent Document 1 contains a higher fatty acid such as lauric acid, a higher fatty acid metal salt of a higher fatty acid and aluminum, a higher fatty acid amide such as ethylenebisstearylamide, and a wax such as polyethylene wax as a lubricant. It is mentioned. According to the technique, it is not preferable to cover the hygroscopic polyamide resin with an aqueous solution, or it is preferable that the polyamide resin composition capable of providing a molded product does not contain water. From the idea, it is proposed to add the halogen compound in the form of fine powder. In addition, halogen compounds are very easy to agglomerate and solidify when they are just finely powdered. Therefore, by adding a lubricant to the halogenated compound in advance, aggregation and solidification can be suppressed and added in a fine powder state. Propose to improve.
  • a higher fatty acid such as lauric acid
  • Patent Document 2 describes stabilizer 1 (Cul, CuBr, etc.) having an average particle size of 2 m or less, stabilizer 2 (CuI, CuBr, KI, KBr, etc.) having a particle size range of 2 to 200 ⁇ m, and carbon.
  • Stabilizer tablets for polyamides having 15 or more alkyl groups and mixed with a wax having one or more functional groups selected from acids, amides, esters, and arylca in the molecular chain have been proposed. . It is disclosed that a tablet is obtained in which the powder does not easily fall off due to friction or the like.
  • Patent Document 1 JP-A-50-148461
  • Patent Document 2 U.S. Pat.No. 5,686,513 Disclosure of the invention
  • the present invention improves the dispersibility of a copper compound and a halogen compound by adding a copper compound and a halogen compound after polyamide polymerization, thereby improving the dispersibility of the copper compound and the halogen compound in an extruder or molding machine. It is an object of the present invention to provide a polyamide masterbatch having improved heat-resisting aging resistance in which the mechanical properties of the product are deteriorated and the appearance color changes due to water absorption.
  • the present invention is as follows.
  • the present invention uses a polyamide in which moisture that dissolves copper compounds and halogen compounds is present in or on the surface, thereby dissolving the copper compound and the halogen compound in the moisture.
  • a masterbatch containing a copper compound or a halogen compound produced by the method of the present invention is Compared to the master batch produced by adding a copper compound or halogen compound after conventional polyamide polymerization, the dispersibility of the halogen compound and copper compound is improved. In addition to being able to suppress metal corrosion and excellent stability during processing, it can improve the heat aging resistance without deteriorating the mechanical properties of the product, and suppress the appearance color change due to water absorption.
  • the addition of a copper compound or a halogen compound to a polyamide resin is performed by melt kneading with high production efficiency, and the production efficiency is increased, and at least equal to or greater than the amount of addition in the polymerization process. It became possible to obtain products with high heat aging resistance and high appearance.
  • the polyamide used in the present invention is a polymer having an amide bond (—NHCO) in the main chain, and is not particularly limited, but examples thereof include poly-force prolatatum (nylon 6), polytetramethyladipamide (nylon 46), and polyhexene.
  • Xamethylene adipamide (nylon 66), polyhexamethylene sebamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polycalactam (nylon 12), polytrimethylhexamethylene terephthalamide (nylon TMHT), Polyhexamethylene isophthalamide (Nylon 61), Polynonanemethylene terephthalamide (9T), Polyhexamethylene terephthalamide (6T), Polybis (4 aminocyclohexyl) methane dodecamide (Nylon PACM12), Polybis ( 3-methyl-aminocyclohexyl) methane dodecamide (nylon di) Methyl PACM12), polymetaxylylene adipamide (nylon MXD6), and polydecamethylenehexahydroterephthalamide (nylon 1 IT (H)).
  • a polyamide copolymer containing two or more different polyamide components or a mixture thereof may be used. The presence or absence of an amide bond is determined
  • the raw material of the polyamide used in the present invention is not particularly limited as long as it is a known raw material used for producing a polymer having an amide bond (one NHCO-) in the main chain described above. May include polymerizable amino acids, polymerizable ratatams, or salts or mixtures of polymerizable diamines and dicarboxylic acids, and polymerizable oligomers. These raw materials may be used as the raw material itself or as an aqueous solution.
  • the carboxyl group concentration ratio of the polyamide used in the present invention is preferably 0.55 to 0.80, more preferably 0.60 to 0.75.
  • the carboxyl group concentration ratio is calculated as [COOH] / ([COOH] + [NH]), where the carboxyl group concentration and amino group concentration in the polyamide are [COOH] and [NH], respectively.
  • the carboxyl group concentration ratio can be adjusted by adding a terminal conditioner to the polyamide raw material.
  • the terminal modifier is not particularly limited as long as it is a compound containing a carboxylic acid in the molecular structure, but dicarboxylic acids and monocarboxylic acids are preferably used.
  • dicarboxylic acid include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2 dimethyldaltaric acid, and 3,3-jetylsuccinic acid.
  • the monocarboxylic acid is an aliphatic monocarboxylic acid such as acetic acid, propionic acid, butyric acid, valeric acid, cabronic acid, strong prillic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, bivalic acid, and isobutyric acid.
  • alicyclic monocarboxylic acids such as cyclohexane carboxylic acid, aromatic monocarboxylic acids such as benzoic acid, toluic acid, naphthalene carboxylic acid, ⁇ naphthalene carboxylic acid, methyl naphthalene carboxylic acid, and phenol acetic acid. Can do.
  • carboxylic acid compounds may be used alone or in combination of two or more.
  • a known method can be used as a method for producing the polyamide. For example, a ring-opening polycondensation method using ratatas such as ⁇ -turnover ratatam as a polyamide raw material, a thermal melting method using diamine 'dicarboxylate such as hexamethylene azinimide or a mixture thereof, etc. can be used. .
  • a solid salt of a polyamide raw material or a solid phase polymerization method performed at a temperature lower than the melting point of the polyamide a solution method using a dicarboxylic acid, a ride component and a diamine component can be used.
  • the polymerization form may be notch type or continuous type.
  • the polymerization apparatus is not particularly limited, and a known apparatus such as an autoclave type reactor, a tumbler type reactor, an extruder type reactor such as a kneader can be used.
  • the moisture content of the polyamide is 0.05-2. 0% by weight, more preferably 0.1-1.5% by weight, and still more preferably 0.1-1.0% by weight.
  • the moisture content can be measured by using a moisture vaporizer (VA-06 model manufactured by Mitsubishi Chemical Corporation) with 0.7 g of polyamide by a coulometric titration method (Karl's Fischer method).
  • the moisture in the polyamide may exist as moisture in the polyamide bonded to the polyamide molecules, or may be moisture attached to the polyamide surface such as polyamide pellets or polyamide powder surface. From the viewpoint of suppressing the presence of water, it is better to exist as moisture in the polyamide bonded to the polyamide molecule.
  • the dispersed particle size of the copper compound or halogen compound in the masterbatch can be made smaller than the particle size before blending and aggregation can be suppressed. This improves the mechanical properties such as toughness and heat aging resistance of the manufactured product with the masterbatch force, and makes it possible to suppress copper precipitation and metal corrosion.
  • the moisture content of the polyamide can be adjusted by controlling the degree of decompression in the latter half of the polymerization, the immersion time in water when the polymer is discharged and cooled, the immersion length, or the amount of water spray.
  • the molecular weight of the polyamide is preferably a relative viscosity of 1% at 98% sulfuric acid and a relative viscosity at 25 ° C measured according to JIS-K6810, preferably 1.5-6. .5, more preferably 1.7 to 6.0, and even more preferably 2.0 to 5.5.
  • a relative viscosity of 1% at 98% sulfuric acid and a relative viscosity at 25 ° C measured according to JIS-K6810 preferably 1.5-6. .5, more preferably 1.7 to 6.0, and even more preferably 2.0 to 5.5.
  • Examples of the copper compound used in the present invention include copper halide, copper acetate, copper propionate, copper benzoate, copper adipate, copper terephthalate, copper isophthalate, copper salicylate, copper nicotinate, and copper stearate. And copper complex salts coordinated to chelating agents such as ethylenediamine (en) and ethylenediamine tetraacetic acid. These copper compounds may be used alone or in combination of two or more. Among these, preferred are copper iodide, cuprous bromide, cupric bromide, cuprous chloride, and copper acetate.
  • the compounding amount of the copper compound is preferably 0.1 to 5 parts by weight, more preferably 0.25 to 4 parts by weight, and still more preferably 0.40 to 3 parts by weight with respect to 100 parts by weight of the polyamide. Part. By setting it within this range, sufficient heat aging resistance is improved, and copper precipitation and corrosion inhibition can be suppressed.
  • halogen compound used in the present invention examples include potassium iodide, sodium iodide, potassium bromide, potassium salt, and sodium salt. These halogen compounds may be used alone or in combination of two or more.
  • the compounding amount of the halogen compound is preferably 1 to 50 parts by weight, more preferably 10 to 40 parts by weight, more preferably 1 to 50 parts by weight of the halogen compound with respect to 100 parts by weight of the polyamide. By setting it within this range, sufficient heat aging resistance is improved, and copper precipitation and corrosion can be suppressed.
  • the maximum particle size of the copper compound and the halogen compound to be blended is preferably 50 ⁇ m or less, more preferably 20 m or less, and further preferably 10 / zm or less. is there.
  • the particle diameter means a biaxial average diameter, that is, an average value of a short diameter and a long diameter.
  • the minor axis and the major axis are the short side and the long side of the circumscribed rectangle that minimizes the area circumscribing the particle, respectively.
  • the maximum particle size of copper compounds and halogen compounds can be determined by observing at least 50 particles using a scanning electron microscope (SEM).
  • the maximum particle size By setting the maximum particle size to 50 m or less, copper compounds and halogen compounds can be finely dispersed in the polyamide even when the moisture content in the polyamide is low.
  • the problems are further improved, and the toughness, heat-resistant aging property, appearance, and color tone of the resulting polyamide resin composition are further improved.
  • a copper compound and a halogen compound are effective even if they are blended singly, both in the present invention in order to improve the performance of the obtained polyamide resin composition. Also blended.
  • the molar ratio of halogen to copper in the masterbatch is preferably 4 to 25, more preferably 5 to 23, more preferably 30 to 30. In the case where the molar ratio of metal, rogen and copper is 3 or more, it is preferable because copper precipitation and metal corrosion can be suppressed. If the molar ratio of halogen to copper is 30 or less, corrosion problems can be suppressed if the screws of the molding machine are corroded without damaging mechanical properties such as toughness.
  • an organic compound having at least one amide group it is necessary for an organic compound having at least one amide group to be present during melt kneading. This is because an organic compound having at least one amide group is complexed with a copper compound or a halogen compound dissolved in moisture in the polyamide during the melt kneading, thereby preventing adverse effects on the polyamide. This is presumed to stabilize the dispersion of the halogen compound in the polyamide and prevent precipitation and alteration.
  • the organic compound having at least one amide group used in the present invention is a compound having at least one amide group in the molecular chain. Specific examples include monoamides, substituted amides, methylol amides, and bisamides.
  • Monoamides are represented by the general formula R—CONH (where R is saturated with 8 to 30 carbon atoms)
  • Specific examples include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxystearic acid amide, oleic acid amide, erucic acid amide, linoleic acid amide and the like.
  • Substituted amides are represented by the general formula R 2 -CONH-R (where R and R are
  • Examples include yl stearic acid amide, N-stearyl oleic acid amide, N-oleyl baltimine acid amide, N-stearyl 12 hydroxystearic acid amide, N-olyl 12 hydroxystearic acid amide, and the like.
  • Methylolamides are represented by the general formula R—CONHCH OH (where R is the number of carbon atoms)
  • n Saturated aliphatic, unsaturated aliphatic, aromatic, or a part of their H substituted with OH. n is 1-8).
  • organic compounds having at least one amide group may be used alone or in combination of two or more.
  • bisamides are preferable.
  • the blending amount of the organic compound having at least one amide group is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5.0 parts by weight with respect to 100 parts by weight of the polyamide. More preferably, it is 1.0 to 4.0 parts by weight.
  • the copper compound, the halogen compound, and the organic compound having at least one amide group may be blended alone in the polyamide, or at least two of the three types may be mixed in advance. It may be blended with the polyamide, or at least two of the three compounds may be premixed and pulverized and blended with the polyamide, or at least two of the three These compounds are premixed, pulverized, tableted, and mixed with polyamide.
  • the mixing of the compounds may be any known method such as tumbler, Henschel, Prosha mixer, Nauter mixer, flow jet mixer and the like.
  • the method for pulverizing the compound may be any known method such as a nonmmer mill, knife mill, ball minor, jaw crusher, cone crusher, roller minole, jet minole, or mortar.
  • the method for making the compound into a tablet may be any known method such as compression granulation, tableting, dry extrusion granulation, melt extrusion granulation and the like.
  • a device for performing melt kneading a known device that is not particularly limited can be used.
  • a melt kneader such as a single screw or twin screw extruder, a Banbury mixer, and a mixing tool is preferably used.
  • a twin screw extruder is preferably used.
  • the melt kneader may be equipped with a deaeration mechanism (vent) device and a side feeder.
  • the melt kneading temperature of the present invention is preferably about 1 to 100 ° C higher than the melting point or soft point determined by differential scanning calorimetry (DSC) measurement of polyamide according to JISK7121.
  • the shear rate in the kneader is preferably 100 (SEC or higher is preferred.
  • the average residence time during kneading is preferably about 1 to 15 minutes.
  • the moisture content of the master batch produced by the production method of the present invention is preferably 0.06 to: L 0% by weight, more preferably 0.1 to 0.75% by weight, and still more preferably 0.15%. And 0. 75 weight 0/0.
  • the water in the master notch may exist as water in a state of being bonded to the polyamide molecule, or may be water attached to the surface of the master batch, for example, the master batch pellet or the master batch powder.
  • the moisture content of the masterbatch can be adjusted by controlling the degree of decompression of the extruder, the immersion time in the strand bath during cooling, the immersion length, or the water spray amount.
  • a polyamide resin composition can be produced by mixing 0.1 to: LOO parts by weight of LOO, preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the second polyamide.
  • LOO parts by weight of LOO preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the second polyamide.
  • the method of mixing the second polyamide and the masterbatch may be a blend or a melt-kneading method.
  • the same polyamide as exemplified as the polyamide that can be used in the production of the masterbatch can be used.
  • water content of the thus polyamide ⁇ composition obtained is 0.01 to 1 wt% Dearuko and force transducer preferred, more preferably 0.5 03-0. 5 wt 0/0, further Preferably it is 0.05 to 0.30% by weight.
  • the water in the polyamide resin composition may exist as water bonded to the polyamide molecule, or may be water attached to the surface of the polyamide resin composition, such as pellets or powder. From the standpoint that the effects of the invention are more remarkably exhibited, it is more preferable to make it exist as moisture bonded to the polyamide molecule. By setting the moisture content within this range, aggregation of copper compounds and halogen compounds can be suppressed. This makes it possible to further suppress copper precipitation and metal corrosiveness, which are highly effective in improving mechanical properties such as toughness and heat aging resistance.
  • the moisture content of the polyamide resin composition is determined by the degree of decompression of the extruder and the strand bath during cooling. It can be adjusted by controlling the immersion time, the immersion length, or the water spray amount.
  • additives conventionally used for polyamide such as pigments and dyes, flame retardants, lubricants, fluorescent bleaches, plasticizers, to the extent that the object of the present invention is not impaired.
  • Organic antioxidants, heat stabilizers, UV absorbers, nucleating agents, rubbers, and reinforcing agents such as sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite
  • the polyamide resin composition obtained in this way eliminates the problems of metal precipitation and corrosion during extrusion and molding, it has excellent toughness, heat aging resistance, appearance, and color tone.
  • Various molded products can be obtained by using known molding methods such as press molding, injection molding, gas assist injection molding, welding molding, extrusion molding, blow molding, film molding, hollow molding, multilayer molding, melt spinning and the like.
  • the obtained molded products are useful in many molding applications (automobile parts, industrial parts, electronic parts, gears, etc.) and extrusion applications (tubes, rods, filaments, films, blows, etc.).
  • the carboxyl group concentration was measured by dissolving pellets and pulverized molded articles in benzyl alcohol. More specifically, about 4. Og of the sample, 50 ml of benzyl alcohol was prepared and heated to 1700C to prepare phenolphthalein. After dissolution, the solution was titrated with 0.1 N NaOH aqueous solution to determine the carboxyl group concentration.
  • the amino group concentration was measured by dissolving pellets or pulverized molded articles in a phenol aqueous solution. More specifically, after dissolving about 3.0 of the sample in 100 ml of 90% aqueous phenol, 1Z40N hydrochloric acid was added dropwise to neutralize and the amount of hydrochloric acid required up to the neutralization point was determined. The same measurement was performed with no sample added, and a blank was obtained.
  • Carboxyl group concentration ratio [COOH] / ([COOH] + [NH]).
  • the copper concentration was determined by adding sulfuric acid to the sample, dropping nitric acid while heating to decompose the organic component, and lysing the solution with pure water by a constant volume UCP emission analysis (high frequency plasma emission analysis).
  • Vista-Pro manufactured by SEIKO ELECTRONIC INDUSTRY CO., LTD. was used as the ICP emission spectrometer.
  • the sample when iodine is used as an example, the sample is burned in a flask substituted with high-purity oxygen, and the generated gas is collected in an absorbing solution.
  • the iodine in the collected solution is collected into a 1Z100N silver nitrate solution Quantified using a potentiometric titration method.
  • the molar ratio of halogen to copper was calculated by converting the molecular weight force into moles using the above quantitative values.
  • the masterbatch and the test carbon steel were brought into contact with each other and placed in an autoclave apparatus, and after being filled, the atmosphere was sufficiently replaced with nitrogen. Then, after holding at 280 ° C. for 6 hours and cooling, the copper deposition state was evaluated in the part of the masterbatch that came into contact with the test carbon steel.
  • the part in contact with the master batch of test carbon steel (6-1) was evaluated for corrosion.
  • the following corrosion coefficients were calculated and judged as follows. If this value is small, it will be difficult to corrode.
  • Corrosion coefficient Corrosion frequency (pieces Zcm 2 ) X Average diameter of corrosion m) X Average depth of corrosion ( ⁇ mj
  • the appearance of the master batch pellet was visually observed to determine its appearance.
  • the difference in copper concentration between the molded product (a) obtained by standard molding and the molded product (b) obtained by retention molding was defined as copper deposited in the molding machine, and the copper precipitation during residence in the molding machine was evaluated by the following formula. .
  • Copper precipitation during retention in molding machine (copper concentration of standard molded product (a)-copper concentration of retained molded product (b)) X copper concentration of 100Z standard molded product (a)
  • the standard molded product (a) and the stay molded product (b) were manufactured under the following conditions.
  • (a) Standard molded product The injection molding machine is PS-40E made by Nissei Sewa, and the mold is ASTM-D638. Using. Cylinder temperature is 280 ° C, mold temperature is 80 ° C, plasticizing stroke is 63mm, screw rotation speed is 200rpm, injection time is 10 seconds, and cooling time is 15 seconds. It was. The residence time during plasticization was 1 minute.
  • (b) Retained molded product Nissei Sebushi PS-40E was used as the injection molding machine and ASTM D638 as the mold. Cylinder temperature is 280 ° C, mold temperature is 80 ° C, plasticizing stroke is 63mm, screw rotation speed is 200rpm, injection time is 10 seconds, cooling time is 15 seconds, and injection molded products are obtained. It was. The residence time during plasticization was 60 minutes.
  • the standard molded product (a) of (7) was treated in a hot air oven at 180 ° C for a predetermined time, and then the tensile strength was measured according to AS TM-D638.
  • the bow I tension strength after heat treatment relative to the tensile strength measured before heat treatment was calculated as the bow I tension strength retention rate, and the heat treatment time at which the tensile strength retention rate was 50% was defined as the half-life.
  • Examples 1 to 13 were prepared using a mixture of the polyamide produced in the following Production Examples 1 to 13, a copper compound, a halogen compound, and an organic compound having at least one amide group.
  • the polyamide 66 (1) had a relative viscosity of 46, a moisture content of 0.25% by weight, and a carboxyl group concentration ratio of 0.625.
  • pellets of the polyamide 66 (2) were obtained by using hexa equimolar salt aqueous solution of methylene di ⁇ Min and adipic acid (50 wt 0/0 concentration), to obtain a melt polymerization publicly known line , pellets of the polyamide 66 (2).
  • the polyamide 66 (2) had a relative viscosity of 46, a moisture content of 0.07% by weight, and a carboxyl group concentration ratio of 0.625.
  • pellet form polyamide 66 obtained.
  • the relative viscosity of the polyamide 66 (5) was 46, the water content was 0.25% by weight, and the carboxyl group concentration ratio was 0.522.
  • Polyamide 66 (1) of Production Example 1 was dried in a nitrogen stream at about 80 ° C. until the moisture content was below the detection limit (0.01 wt% or less) to obtain polyamide 66 (7).
  • the relative viscosity of the polyamide 66 (7) was 46, the water content was less than 0.01% by weight, and the carboxyl group concentration ratio was 0.625.
  • a mixture of rilamide was obtained. 15 parts by weight of Cul (average particle size 2 m) was well mixed with the mixture, and granulated with a disk pelleter (F5-11-175 manufactured by Fuji Pudal) to obtain granules (3).
  • Polyamide 66 of Production Example 2 (2) 24 parts by weight of granule (1) of Production Example 8 is blended with 100 parts by weight, and a master batch is obtained by melt-kneading with a twin screw extruder as in Example 1. It was. The evaluation results are shown in Table 1.
  • Polyamide 66 of Production Example 3 (3) 24 parts by weight of Granule (1) of Production Example 8 is blended with 100 parts by weight, and a master batch is obtained by melt-kneading with a twin screw extruder as in Example 1. It was. The evaluation results are shown in Table 1.
  • Polyamide 66 in Production Example 4 (4) 24 parts by weight of Granule (1) in Production Example 8 is blended with 100 parts by weight, and melt-kneaded with a twin screw extruder as in Example 1 to obtain a master batch. It was. The evaluation results are shown in Table 1.
  • Polyamide 66 in Production Example 5 24 parts by weight of granule (1) in Production Example 8 is blended with 100 parts by weight, and melt-kneaded in a twin screw extruder as in Example 1 to obtain a master batch. It was. Melting and kneading in a twin screw extruder could be carried out stably. Table 1 shows the evaluation results.
  • Polyamide 66 of Production Example 6 24 parts by weight of Granule (1) of Production Example 8 is blended with 100 parts by weight, and melt-kneaded with a twin screw extruder as in Example 1 to obtain a master batch. It was. Melting and kneading in a twin screw extruder could be carried out stably. Table 1 shows the evaluation results.
  • Polyamide 66 in Production Example 7 100 parts by weight of Granule (1) in Production Example 8 24 parts by weight
  • the mixture was blended and melt kneaded with a twin screw extruder in the same manner as in Example 1 to obtain a master batch. Melting and kneading in a twin screw extruder could be carried out stably. Table 1 shows the evaluation results.
  • Polyamide 66 of Production Example 1 (1) 50 parts by weight of Granule (1) of Production Example 8 is blended with 100 parts by weight, and a master batch is obtained by melt-kneading with a twin screw extruder as in Example 1. It was. Melting and kneading in a twin screw extruder could be carried out stably. Table 2 shows the evaluation results.
  • Example 2 The master batch obtained in Example 1 was dried in a nitrogen stream at 80 ° C, and the water content was adjusted to 0.10. % By weight. Table 2 shows the evaluation results.
  • Polyamide 66 of Production Example 1 (1) 24 parts by weight of granule (2) of Production Example 9 is blended with 100 parts by weight, and a master batch is obtained by melt-kneading with a twin screw extruder as in Example 1. It was. Melting and kneading in a twin screw extruder could be carried out stably. Table 2 shows the evaluation results.
  • Polyamide 66 of Production Example 1 (1) 24 parts by weight of granule (3) of Production Example 10 is blended with 100 parts by weight, and melt-kneaded with a twin screw extruder as in Example 1 to obtain a master batch. It was. Melting and kneading in a twin screw extruder could be carried out stably. Table 2 shows the evaluation results.
  • Polyamide 66 in Production Example 1 (1) 100 parts by weight of Granules (4) in Production Example 11 (4) is blended in 24 parts by weight and melt-kneaded in a twin-screw extruder as in Example 1 to obtain a master batch. It was. Melting and kneading in a twin screw extruder could be carried out stably. Table 2 shows the evaluation results.
  • Polyamide 66 of Production Example 1 (1) 24 parts by weight of Granule (5) of Production Example 12 is blended with 100 parts by weight, and a master batch is obtained by melt-kneading with a twin screw extruder as in Example 1. It was. The evaluation results are shown in Table 2.
  • Polyamide 66 of Production Example 1 (1) 2 parts by weight of the master batch of Example 1 was blended with 100 parts by weight. As in Example 1, a polyamide resin composition was melt-kneaded with a twin-screw extruder. Obtained. Polyamide 66 force S 100 parts by weight Cul force SO. 0235 parts by weight, KI force SO. 396 parts by weight, ethylenebisstearylamide is 0.0470 parts by weight. The evaluation results are shown in Table 3.
  • Polyamide 66 of Production Example 1 (1) 2 parts by weight of the master batch of Example 8 is blended with 100 parts by weight of the polyamide batch, and melt-kneaded with a twin screw extruder as in Example 1 to obtain a polyamide resin composition. Obtained. The compounding amount of each compound is the same as in Example 11. Table 3 shows the evaluation results.
  • Polyamide 66 of Production Example 1 (1) 2 parts by weight of the masterbatch of Comparative Example 2 is blended with 100 parts by weight, and melt-kneaded with a twin-screw extruder in the same manner as in Example 1 to obtain a polyamide resin composition. Obtained. The compounding amount of each compound is the same as in Example 11. Table 3 shows the evaluation results.
  • the melt polymerization was performed publicly known. In the course of the polymerization, a mixed aqueous solution of Cul and KI was added. Ethylene bisstearylamide was added to the surface of the obtained polyamide 66 pellets. The compounding amount of each compound was added so as to be the same as in Comparative Example 2-1.
  • the polyamide 66 resin composition had a relative viscosity of 46, a moisture content of 0.10% by weight, and a carboxyl group concentration ratio of 0.625. Table 3 shows the evaluation results.
  • the molded product of the polyamide resin composition obtained by the master batch force produced by the production method of the present invention has improved copper precipitation, long-term heat aging resistance, and color tone.
  • Example A 1 A23 and Comparative Example A1 A17 were carried out using a mixture of the polyamide produced according to Production Example A1 A28 shown below, a copper compound, a halogen compound, and an organic compound having at least one amide group.
  • Polymerization was carried out by the Tsuchi method to produce a polyamide.
  • an equimolar salt of hexamethylene diamine and adipic acid was used as a raw material for polyamide 66.
  • An aqueous solution containing 50% by weight of the raw material is charged into a polymerization tank and sufficiently purged with nitrogen and heated. The temperature was raised at about 150 ° C., the water was removed and the solution was concentrated to about 85%, and the polymerization tank was sealed. Next, while raising the temperature of the polymerization tank to about 210 ° C., the pressure of the polymerization tank was increased to about 1.77 MPa using the gauge pressure. Thereafter, the temperature of the polymerization vessel was increased to about 250 ° C while the pressure was maintained at about 1.77 MPa while draining water.
  • polymerization tank was pressurized with nitrogen, the die at the bottom of the polymerization tank was opened, the pellet-shaped polymer was discharged, cooled and cut to obtain polyamide 66 (A1).
  • the relative viscosity of the polyamide 6 6 (A1) was 2.7, the water content was 0.75% by weight, and the carboxyl group concentration ratio was 0.620.
  • Polyamide 66 (A1) of Production Example A1 was dried in a nitrogen stream at about 140 ° C. for about 0.5 hours to obtain Polyamide 66 (A2).
  • the relative viscosity of the polyamide 66 (A2) was 2.8, the water content was 0.25% by weight, and the carboxyl group concentration ratio was 0.625.
  • Polyamide 66 (A1) of Production Example A1 was dried in a nitrogen stream at about 90 ° C. for 1.5 hours to obtain polyamide 66 (A3).
  • the relative viscosity of the polyamide 66 (A3) was 2.8, the water content was 0.10% by weight, and the carboxyl group concentration ratio was 0.625.
  • Polyamide 66 (A1) of Production Example 1 was dried in a nitrogen stream at about 90 ° C. for about 30 hours to obtain Polyamide 66 (A6).
  • Polyamide 66 (A6) has a relative viscosity of 2.8 and a moisture content of 0.03 wt%.
  • the carboxyl group concentration ratio was 0.625.
  • Polymerization was carried out in the same manner as in Production Example A1 except that adipic acid was added as a terminal conditioner to an equimolar aqueous salt solution (50% strength by weight) of hexamethylenediamine and adipic acid, followed by drying as in Production Example A2.
  • the pellets of polyamide 66 (A8) were obtained.
  • the polyamide 66 (A8) had a relative viscosity of 2.5, a moisture content of 0.25% by weight, and a carboxyl group concentration ratio of 0.80.
  • Polymerization was conducted in the same manner as in Production Example A1, except that hexamethylenediamine was added as a terminal conditioner to an equimolar aqueous salt solution (50% strength by weight) of hexamethylenediamine and adipic acid.
  • Production Example A2 Drying was performed in the same manner as above to obtain polyamide 66 (A9) in the form of pellets.
  • the relative viscosity of the polyamide 6 6 (A9) was 3.0, the water content was 0.25% by weight, and the carboxyl group concentration ratio was 0.522.
  • Polymerization was carried out in a continuous process to produce a polyamide.
  • equimolar salt of hexamethylenediamine and adipic acid as a raw material for polyamide 66 o
  • Acetic acid is added as an end adjuster to an aqueous solution containing 50% by weight of the raw material, and a concentration tank is added at a rate of about 3000 KgZhr. Poured into a Z reactor and concentrated to about 90%. Next, the reaction solution was discharged to a flasher, and the pressure was slowly reduced to atmospheric pressure. The reaction solution was transferred to the next container and maintained at a temperature of about 280 ° C and under atmospheric pressure. The polyamide was extruded into strands, which were cooled and cut, and further dried in a nitrogen stream at about 140 ° C.
  • polyamide 66 (A10) had a relative viscosity of 2.7, a moisture content of 0.25% by weight, and a carboxyl group concentration ratio of 0.650.
  • polyamide 66 (All).
  • the polyamide 66 (Al l) had a relative viscosity of 2.8, a moisture content of 0.11%, and a carboxyl group concentration ratio of 0.650.
  • equimolar salts of hexamethylenediamine and adipic acid and equimolar salts of hexamethylenediamine and isophthalic acid were used at a weight ratio of 80Z20, and the mixture was adjusted to a mixed aqueous solution containing 50% by weight of the raw material.
  • Polymerization was carried out in the same manner as in Production Example A1 except that adipic acid was added as an agent, and drying was carried out in the same manner as in Production Example A2, to obtain pellet-like polyamide 66Z6I (A12).
  • the polyamide 66Z6I (A12) had a relative viscosity of 2.3, a moisture content of 0.25% by weight, and a carboxyl group concentration ratio of 0.735.
  • the mixture (A2) was obtained by pulverizing with a pulverizer having a screen of about 130 ⁇ m).
  • KI having a particle size of 20-200 ⁇ m
  • substituted amides N-Stearyl L acid acid amide average particle size 100 m
  • the mixture was pulverized to a size of ⁇ m or less to obtain a mixture of KI and N-stearyl ylacid amide.
  • Cul average particle size 2 m
  • a disk pelleter F5-11-175 manufactured by Fuji Baudal
  • KI having a particle size of 20-200 ⁇ m
  • monoamide stearic acid amide average particle size 20 ⁇ m
  • Cul average particle size 2 ⁇ m
  • KI having a particle size of 20-200 ⁇ m
  • 10 parts by weight of stearyl stearate average particle size of 30 m
  • a higher fatty acid ester a higher fatty acid ester
  • the mixture was pulverized as follows to obtain a mixture of KI and stearyl stearate. 5 parts by weight of Cul (average particle size 2 ⁇ m) was mixed well with the mixture, and granulated with a disk pelleter (F5-11-175 manufactured by Fuji Pudal) to obtain granules (A12).
  • Example A1 The same procedure as in Example A1 was carried out except that polyamide 66 (A2) of Production Example A2 was used instead of polyamide 66 (A1). Melt kneading with a twin screw extruder could be carried out stably. Master The color tone of one batch was white and good. Table 4 shows the evaluation results.
  • Example A3 The same procedure as in Example A1 was conducted except that polyamide 66 (A3) of Production Example A3 was used instead of polyamide 66 (A1). Melt kneading with a twin screw extruder could be carried out stably. The color tone of the master batch was white and good. Table 4 shows the evaluation results.
  • Example A4 The same procedure as in Example A1 was conducted except that polyamide 66 (A4) of Production Example A4 was used instead of polyamide 66 (A1). Melt kneading with a twin screw extruder could be carried out stably. The color tone of the master batch was white and good. Table 4 shows the evaluation results.
  • Example A5 The same procedure as in Example A1 was carried out except that polyamide 66 (A5) of Production Example A5 was used instead of polyamide 66 (A1). Melt kneading with a twin screw extruder could be carried out stably. The color tone of the master batch was white and good. Table 4 shows the evaluation results.
  • Example 1 The same procedure as in Example 1 was conducted except that polyamide 66 (A6) of Production Example A6 was used instead of polyamide 66 (A1). Melt kneading with a twin screw extruder could be carried out stably. The color of the master batch turned yellow. Table 4 shows the evaluation results.
  • Example 7 The same procedure as in Example 1 was conducted except that polyamide 66 (A7) of Production Example A7 was used instead of polyamide 66 (A1). Melt kneading with a twin screw extruder could be carried out stably. The color of the master batch turned slightly yellow. Table 4 shows the evaluation results.
  • Example A1 The same procedure as in Example A1 was carried out except that polyamide 66 (A9) of Production Example A9 was used instead of polyamide 66 (A1). Melt kneading with a twin screw extruder could be carried out stably. The color tone of the master batch was white and good. Table 5 shows the evaluation results.
  • Example A1 The same procedure as in Example A1 was conducted except that polyamide 66 (A10) of Production Example A10 was used instead of polyamide 66 (A1). Melt kneading with a twin screw extruder could be carried out stably. The color of the master batch was white and good. Table 5 shows the evaluation results.
  • Example A1 Production Example The same procedure as in Example A1 was conducted except that polyamide 66 (Al 1) of Al 1 was used instead of polyamide 66 (A 1). Melt kneading with a twin screw extruder could be carried out stably. The color of the master batch was white and good. Table 5 shows the evaluation results.
  • Example A1 The same procedure as in Example A1 was conducted except that polyamide 66Z6I (1) of Production Example A12 was used instead of polyamide 66 (A1). Melt kneading with a twin screw extruder could be carried out stably. The color of the master batch was white and good. Table 5 shows the evaluation results.
  • Moisture content of polyamide used in manufacturing is specified in the present invention Improved tar-batch color, copper precipitation, and metal corrosivity [0061 3 to A10
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with Production Example A16 granule (A4) 24 parts by weight and melt-kneaded in a twin screw extruder as in Example A1 to obtain a masterbatch. It was. Melt kneading with a twin screw extruder could be carried out stably. The color of the masterbatch was white and good. Table 6 shows the evaluation results.
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with Production Example A16 granules (A4) 50 parts by weight and melt-kneaded in a twin screw extruder as in Example A1 to obtain a master batch. It was. Although it was very rare, some strand breaks occurred, but the operation was possible without any problems. The color tone of the masterbatch was white and good. Table 6 shows the evaluation results.
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with Production Example A16 granule (A4) 75 parts by weight and melt-kneaded in a twin screw extruder as in Example A1 to obtain a masterbatch. It was. Melt kneading with a twin-screw extruder could not produce many strand breaks. The evaluation results are shown in Table 6.
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with Production Example A18 granule (A5) 24 parts by weight and melt-kneaded in a twin-screw extruder as in Example A1 to obtain a masterbatch. It was. Melt kneading with a twin screw extruder could be carried out stably. The color of the masterbatch was white and good. Table 7 shows the evaluation results.
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with Production Example A20 granule (A7) 24 parts by weight, and melt-kneaded in a twin screw extruder as in Example 1 to obtain a master batch. It was. The melt-kneading in the twin-screw extruder was powerful enough to operate with many strand breaks. Table 7 shows the evaluation results.
  • Manufacture example A2 polyamide 66 (A2) 100 parts by weight is mixed with preparation example A21 mixture (A2) 2 4 parts by weight and melt-kneaded in a twin screw extruder as in Example A1 to prepare a master batch. Obtained. The melt-kneading in the twin-screw extruder was unstable with many strand breaks. Table 7 shows the evaluation results.
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with Production Example A22 granule (A8) 24 parts by weight and melt-kneaded in a twin screw extruder as in Example A1 to obtain a masterbatch. It was. Melt kneading with a twin screw extruder could be carried out stably. The color of the masterbatch was white and good. Table 8 shows the evaluation results.
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with Production Example A23 granules (A9) 24 parts by weight, and melt-kneaded in a twin screw extruder as in Example A1 to obtain a masterbatch. It was. Melt kneading with a twin screw extruder could be carried out stably. The color of the masterbatch was white and good. Table 8 shows the evaluation results.
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with Production Example A24 Granules (A10) 24 parts by weight and melt-kneaded in a twin screw extruder as in Example A1 to obtain a masterbatch. It was. Melt kneading with a twin screw extruder could be carried out stably. The color of the master batch is It was white and good. Table 8 shows the evaluation results.
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with 24 parts by weight of Production Example A25 granules (Al l), and melt-kneaded in a twin screw extruder as in Example A1 to prepare a master batch. Obtained. Melt kneading with a twin screw extruder could be carried out stably. The color of the master batch turned slightly yellow. Table 8 shows the evaluation results.
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with Production Example A26 Granules (A12) 24 parts by weight and melt-kneaded with a twin screw extruder as in Example A1 to obtain a masterbatch. It was. Melt kneading with a twin screw extruder could be carried out stably. The color of the master batch turned slightly yellow. Table 8 shows the evaluation results.
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with Production Example A27 granules (A13) 24 parts by weight, and melt-kneaded in a twin screw extruder as in Example A1 to obtain a masterbatch. It was. Melt kneading with a twin screw extruder could be carried out stably. The color of the master batch turned slightly yellow. Table 8 shows the evaluation results.
  • Production Example A2 Polyamide 66 (A2) 100 parts by weight is blended with Production Example A28 Granules (A14) 24 parts by weight and melt-kneaded with a twin screw extruder as in Example A1 to obtain a masterbatch. It was. Melt kneading with a twin screw extruder could be carried out stably. The color of the master batch turned slightly yellow. Table 8 shows the evaluation results.
  • a polyamide resin composition formed by mixing the second polyamide and the masterbatch was produced.
  • Example A2 2 parts by weight of the master batch of Example A1 was blended with 100 parts by weight of polyamide 66 (A2) of Production Example A2.
  • polyamide 66 (A2) of Production Example A2.
  • a polyamide resin composition was obtained by melt-kneading with a twin-screw extruder.
  • polyamide 66 is 100 parts by weight
  • Cul is 0.0235 wt.
  • KI power SO. 396 wt.% Ethylene bis stearinoreamide, force 0.0470 parts by weight.
  • Table 9 shows the evaluation results.
  • Example A21 Production Example A2 polyamide 66 (A2) 100 parts by weight is blended with 2 parts by weight of the master batch of Example A16 and melt-kneaded in a twin screw extruder as in Example A1 to form a polyamide resin composition. Got. The compounding amount of each compound is the same as that of the polyamide resin composition of Example A20. Table 9 shows the evaluation results.
  • Manufacture example A1 polyamide 66 (A1) 100 parts by weight is mixed with 2 parts by weight of the masterbatch of Example A1, and melt-kneaded with a twin-screw extruder in the same manner as in Example A1 to obtain a polyamide resin composition. Obtained.
  • the compounding amount of each compound is the same as that of the polyamide resin composition of Example A20. Table 9 shows the evaluation results.
  • polyamide 66 (A2) 100 parts by weight, Example Al l master batch 0.667 parts by weight was blended and melt-kneaded in a twin-screw extruder in the same manner as Example A1 to obtain a polyamide resin. A composition was obtained.
  • polyamide resin composition polyamide 66 has 100 parts by weight of Cul force SO. 0240 parts by weight, KI force SO. 120 parts by weight, ethylene bis stearylene amide, force 0.0160 parts by weight. Table 9 shows the evaluation results.
  • Manufacture example A2 polyamide 66 (A2) 100 parts by weight is mixed with 2 parts by weight of the masterbatch of Comparative Example A1, and melt-kneaded with a twin screw extruder in the same manner as in Example A1 to obtain a polyamide resin composition. Obtained.
  • the compounding amount of each compound is the same as that of the polyamide resin composition of Example A20. Table 10 shows the evaluation results.
  • Manufacture example A2 polyamide 66 (A2) 100 parts by weight is mixed with 2 parts by weight of the masterbatch of Comparative Example A2, and melt-kneaded with a twin-screw extruder in the same manner as in Example A1 to obtain a polyamide resin composition. Obtained.
  • the compounding amount of each compound is the same as that of the polyamide resin composition of Example A20. Table 10 shows the evaluation results.
  • Manufacture example A2 polyamide 66 (A2) 100 parts by weight is mixed with 2 parts by weight of the masterbatch of Comparative Example A4 and melt kneaded with a twin screw extruder in the same manner as in Example A1 to form a polyamide resin composition. I got a thing.
  • the compounding amount of each compound is the same as that of the polyamide resin composition of Example A20. Table 10 shows the evaluation results.
  • Manufacture example A2 polyamide 66 (A2) 100 parts by weight is mixed with 2 parts by weight of master batch of Comparative Example A6, and melt-kneaded with a twin screw extruder in the same manner as in Example A1 to obtain a polyamide resin composition. Obtained.
  • the compounding amount of each compound is the same as that of the polyamide resin composition of Example A20. Table 10 shows the evaluation results.
  • Manufacture example A2 polyamide 66 (A2) 100 parts by weight is mixed with 2 parts by weight of the master batch of Comparative Example A9, and melt-kneaded with a twin screw extruder in the same manner as in Example A1 to obtain a polyamide resin composition. Obtained.
  • the compounding amount of each compound is the same as that of the polyamide resin composition of Example A20. Table 10 shows the evaluation results.
  • the blend (A2) of Production Example A21 was blended with 100 parts by weight of polyamide 66 (A3) of Production Example A3 and dry blended.
  • the blending amount of each compound was blended so as to be the same as that of the polyamide resin composition of Example A20. Table 10 shows the evaluation results.
  • the molded product of the polyamide resin composition obtained from the masterbatch produced by the production method of the present invention has improved copper precipitation, long-term heat aging resistance, and color tone. I was able to confirm.
  • the masterbatch produced by the production method of the present invention can be suitably used in the field of polyamide resin used for heat resistance.

Abstract

 押出機や成形機内での金属銅析出、金属腐食、製品の機械物性の低下、吸水による外観色変化がなく、耐熱エージング耐性の向上したポリアミドマスターバッチを、a)水分率が0.05~2.0重量%であるポリアミド100重量部、b)少なくとも1つのアミド基を有する有機化合物0.1~10重量部、c)最大粒子径が50μm以下の銅化合物0.1~5重量部、及びd)最大粒子径が50μm以下のハロゲン化合物(ただし、ハロゲン化銅を除く)1~50重量部を溶融混練法により混合することにより製造する。

Description

明 細 書
ポリアミドマスターバッチの製造方法
技術分野
[0001] 本発明は、押出、成形加工中の金属析出、腐食の問題点を解消し、靭性、耐熱ェ 一ジング性、外観、色調が優れたポリアミド成形品を提供し得るポリアミドマスターバッ チに関する。
背景技術
[0002] ポリアミド榭脂は、その優れた機械的特性、耐熱性、耐薬品性、難燃性などを活か して、 自動車、電気電子分野用途に数多く使用されている。中でもポリアミド榭脂は、 他の樹脂に見られな 、ほど長期耐熱エージング性が優れて 、るため、自動車ェンジ ンルーム内等の極めて高温度の熱が印加される部分の部品に使用されている。近年 、 自動車エンジンルームの部品の高密度化とエンジン出力の増加にともない、ェンジ ンルーム内の環境温度は増々高くなり、これまで以上の高い長期耐熱エージング性 がポリアミド榭脂に求められるようになつてきた。
これに応えて、これまで数々の技術的な改良が試みられ、例えば、銅ハロゲンィ匕合 物を配合したポリアミド榭脂組成物、芳香族ァミン、ヒンダードフエノール系の酸ィ匕劣 化防止剤を配合したポリアミド榭脂組成物等が挙げられる。これらの中でも、特に銅 化合物とハロゲン化合物の混合物による耐熱エージング性向上技術力 Sコスト的に最 も優れ、現在でも広範囲に使用されている。
[0003] 銅化合物やハロゲン化合物をポリアミド榭脂に配合する方法としては、銅化合物や ハロゲンィ匕合物を含有する水溶液を調整し、ポリアミドの重合前または重合中の重合 工程で添加する方法や、重合後の任意の時期(ポリアミド榭脂とのブレンド、溶融混 練など)に添加する方法が挙げられている。重合工程で添加する方法は、銅化合物 やハロゲンィ匕合物を均一に分散させる上では望ましい方法である力 銘柄切替時に 中間品が発生したり、重合装置を洗浄する必要が生じるなどの生産効率低下の原因 となる。一方、重合後に添加する方法では、重合工程で添加する方法に比べ分散性 が低下するため、機械的物性を低下させるという問題が生じる。さらに、成形品がそ の後徐々に吸水して 、く過程で白色系から緑色系に変色することにより成形品の外 観を損ねる上、その変色度も銅濃度を高めるに従い大きくなるという問題があった。
[0004] 重合後に添加する方法において銅化合物やハロゲンィ匕合物の分散性を向上させ るために、種々の化合物を併用することが提案されてきた (例えば、特許文献 1及び 2 参照)。
特許文献 1には、滑剤としてラウリル酸等の高級脂肪酸、あるいは高級脂肪酸とァ ルミ-ゥム等との高級脂肪酸金属塩、エチレンビスステアリルアミド等の高級脂肪酸 アミド、ポリエチレンワックス等ワックス類を配合することが挙げられている。該技術は、 吸湿性のポリアミド榭脂に、水溶液状のものをカ卩えることは好ましくない、あるいは成 形品を提供しうるポリアミド榭脂組成物に水を含有させないことが好条件であるという 考えから、ハロゲンィ匕合物を微粉状にして添加することを提案したものである。またハ ロゲン化合物は単に微粉ィ匕した場合、非常に凝集固化しやすいため、ハロゲンィ匕合 物に予め滑剤を加えることにより、凝集固化を抑制し、微粉末状態で添加することが でき、外観を向上させることを提案している。
また、特許文献 2は、平均粒子径 2 m以下の安定剤 1 (Cul、 CuBr等)、粒子径範 囲が 2〜200 μ mの安定剤 2 (CuI、 CuBr, KI、 KBr等)及び炭素数が 15以上のァ ルキル基を有し、かつ、酸、アミド、エステル、ァリルカ 選ばれる官能基を分子鎖に 1つ以上有するワックスとを混合したポリアミド用の安定剤のタブレットが提案されてい る。該技術により摩擦などで粉が脱落しにくいタブレットが得られることが開示されて いる。
[0005] これらの技術は、 、ずれも、銅化合物やハロゲン化合物を水等の溶媒を使わずポリ アミドに配合する技術であるが、銅析出、金属腐食、ハロゲンィ匕合物の凝集の改良は 十分でない。
このように、ポリアミド重合後に銅化合物やハロゲン化合物を添加する方法にぉ 、 ては、銅化合物やハロゲンィ匕合物の均一かつ微細な分散が達成できておらず、満足 される性能を有するポリアミド榭脂組成物を得ることは出来て 、な 、。
特許文献 1 :特開昭 50— 148461号公報
特許文献 2 :米国特許第 5, 686, 513号明細書 発明の開示
発明が解決しょうとする課題
[0006] 本発明は、ポリアミド重合後に銅化合物やハロゲン化合物を添加する方法にぉ 、 て、銅化合物やハロゲン化合物の分散性を向上させ、押出機や成形機内での金属 銅析出、金属腐食、製品の機械物性の低下、吸水による外観色変化がなぐ耐熱ェ 一ジング耐性の向上したポリアミドマスターバッチを提供することを目的とする。
課題を解決するための手段
[0007] 本発明者等は、前記課題を解決するため鋭意検討を重ねた結果、ポリアミドとして 水分を含有するものを用い、かつ、特定の有機化合物の存在下で溶融混鍊すること により、前記課題を解決できることを見出し、本発明をなすに至った。
すなわち、本発明は、以下のとおりである。
a)水分率が 0. 05-2. 0重量%であるポリアミド 100重量部、
b)少なくとも 1つのアミド基を有する有機化合物 0. 1〜: LO重量部、
c)最大粒子径が 50 m以下の銅化合物 0. 1〜5重量部、及び
d)最大粒子径が 50 μ m以下のハロゲン化合物(ただし、ハロゲン化銅を除く) 1〜5 0重量部
を溶融混練法により混合するマスターバッチの製造方法。
[0008] 従来技術では、マスターバッチ中の銅化合物及びハロゲンィ匕合物の分散性の向上 を、滑剤の最適化や、銅化合物及びハロゲン化合物の粒子径の調整により達成しよ うというものであった。
これに対し、本発明は、ポリアミドとして銅化合物やハロゲンィ匕合物を溶解する水分 を中あるいはその表面に存在させたものを用いることにより、該水分に銅化合物ゃノヽ ロゲン化合物を溶解させ、これにより均一かつ微細にポリアミド中に分散させると共に 、このように微細に分散したィ匕合物をアミド基を有する有機化合物によって安定ィ匕す ると 、う全く新 、技術思想により達成しえたものである。
発明の効果
[0009] 本発明の方法で製造した銅化合物やハロゲン化合物を含有するマスターバッチは 、従来のポリアミド重合後に銅化合物やハロゲンィ匕合物を添加する方法で製造した マスターバッチに比べ、ハロゲン化合物、銅化合物の分散性が向上しており、押出機 や成形機内での金属銅析出、金属腐食を抑制でき、加工時の安定性が優れることに 加え、製品の機械物性を低下させることなぐ耐熱エージング性の向上、吸水による 外観色変化の抑制を解決できる。
さらに驚くべきことに、重合工程で銅化合物やハロゲンィ匕合物を添加する方法で製 造したマスターバッチと比べても、金属銅析出が抑制され、耐熱エージング性と外観 に優れた成形品を得ることができる。また、加工時の銅析出を大幅に低減する効果を 有する。
本発明の方法によれば、ポリアミド榭脂への銅化合物やハロゲン化合物の添加を、 生産効率の高い溶融混鍊により行うことで生産効率を上げ、かつ、重合工程での添 カロと同等以上の高耐熱エージング性と高外観を持つ製品を得ることが可能となった。 発明を実施するための最良の形態
本発明について、以下具体的に説明する。
まず、ポリアミドについて説明する。
本発明で用いるポリアミドは、主鎖中にアミド結合( -NHCO )を有する重合体で あり、特に限定されないが、例えば、ポリ力プロラタタム (ナイロン 6)、ポリテトラメチレ ンアジパミド (ナイロン 46)、ポリへキサメチレンアジパミド(ナイロン 66)、ポリへキサメ チレンセバカミド(ナイロン 610)、ポリへキサメチレンドデカミド(ナイロン 612)、ポリウ カラクタム(ナイロン 12)、ポリトリメチルへキサメチレンテレフタルアミド(ナイロン TMH T)、ポリへキサメチレンイソフタルアミド(ナイロン 61)、ポリノナンメチレンテレフタルァ ミド(9T)、ポリへキサメチレンテレフタルアミド(6T)、ポリビス(4 アミノシクロへキシ ル)メタンドデカミド(ナイロン PACM12)、ポリビス(3—メチルーアミノシクロへキシル )メタンドデカミド(ナイロンジメチル PACM12)、ポリメタキシリレンアジパミド(ナイロン MXD6)、ポリゥンデカメチレンへキサヒドロテレフタルアミド(ナイロン 1 IT (H) )が挙 げられる。また、これらのうち 2種類以上の異なるポリアミド成分を含むポリアミド共重 合体、あるいは、混合物などであってもよい。アミド結合の有無は、赤外吸収スぺタト ル (IR)で確認することができる。
[0011] 本発明で用いるポリアミドの原料は、上記記載の主鎖中にアミド結合(一 NHCO— )を有する重合体を製造するために用いられている周知の原料であれば特に限定さ れないが、重合可能なアミノ酸、重合可能なラタタム、あるいは重合可能なジァミンと ジカルボン酸との塩あるいは混合物、および重合可能なオリゴマーを挙げることがで きる。これら原料は、原料そのもので用いてもよいし、水溶液として用いてもよい。
[0012] 本発明で用いるポリアミドのカルボキシル基濃度比率は 0. 55〜0. 80であることが 好ましく、より好ましくは 0. 60〜0. 75である。
カルボキシル基濃度比率とは、ポリアミド中のカルボキシル基濃度とアミノ基濃度を それぞれ〔COOH〕、〔NH〕として、〔COOH〕 / ( [COOH] +〔NH〕 )で計算される
2 2
値をいう。カルボキシル基濃度比率をこの範囲にすることにより、成形機内で銅析出 や金属腐食を抑制できる。カルボキシル基濃度比率は、前記ポリアミド原料に末端調 整剤を添加することにより調整できる。
この末端調整剤は、分子構造内にカルボン酸を含有する化合物であれば特に限 定されないが、ジカルボン酸とモノカルボン酸が好ましく用いられる。前記ジカルボン 酸は、例えば、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、 2- メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、 2, 2 ジメチルダルタル酸、 3, 3—ジェチルコハク酸、ァゼライン酸、セバシン酸、スベリン酸、ドデカン二酸、エイコ ジオン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、 2—クロロテレフタル 酸、 2—メチルテレフタル酸、 5—メチルイソフタル酸、 5 ナトリウムスルホイソフタル 酸、へキサヒドロテレフタル酸、へキサヒドロテレフタル酸、ジグリコール酸などを挙げ ることができる。前記モノカルボン酸は、酢酸、プロピオン酸、酪酸、吉草酸、カブロン 酸、力プリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、 ビバリン酸、イソブチル酸などの脂肪族モノカルボン酸、シクロへキサンカルボン酸な どの脂環式モノカルボン酸、安息香酸、トルィル酸、 ナフタレンカルボン酸、 β ナフタレンカルボン酸、メチルナフタレンカルボン酸、フエ-ル酢酸などの芳香族 モノカルボン酸などを挙げることができる。これらのカルボン酸ィ匕合物は、単独で用い てもよいし、 2種類以上組み合わせて用いてもよい。 [0013] ポリアミドを製造する方法は、周知の方法を用いることができる。例えば、 ε—カブ 口ラタタムなどのラタタム類をポリアミド原料とする開環重縮合法、へキサメチレンアジ ノミドなどのジァミン'ジカルボン酸塩あるいはその混合物を原料とする熱溶融法など を用いることができる。また、ポリアミド原料の固体塩あるいはポリアミドの融点以下の 温度で行う固相重合法、ジカルボン酸ノ、ライド成分とジァミン成分を用いた溶液法な ども用いることができる。これらの方法は必要に応じて組み合わせてもよい。中でも熱 溶融法、熱溶融法と固相重合を組み合わせた方法が最も効率的である。また、重合 形態としては、ノ ツチ式でも連続式でもよい。また、重合装置も特に制限されるもので はなぐ公知の装置、例えば、オートクレープ型の反応器、タンブラ一型反応器、ニー ダーなどの押出機型反応器などを用いることができる。
[0014] ポリアミドの水分率は 0. 05-2. 0重量%、より好ましくは 0. 1〜1. 5重量%、さら に好ましくは 0. 1〜1. 0重量%である。水分率の測定は水分気化装置 (三菱化学( 株)製 VA— 06型)を用いて、ポリアミド 0. 7gで電量滴定法 (カール'フィッシャー法) により測定し求めることができる。
ポリアミド中の水分は、ポリアミド分子に結合した状態のポリアミド内水分として存在 してもよいし、ポリアミド表面例えばポリアミドペレット、ポリアミドパウダー表面に付着し た水分であってもよいが、銅析出、金属腐食を抑制できる観点から、ポリアミド分子に 結合した状態のポリアミド内水分として存在した方がよりよい。
[0015] ポリアミドの水分率を本発明の範囲にすることにより、マスターバッチ中の銅化合物 やハロゲンィ匕合物の分散粒子径を、配合前の粒子径より小さくし、かつ、凝集を抑制 できる。このことにより、マスターバッチ力も製造された製品の靭性等の機械特性、耐 熱エージング性が改良され、銅析出、金属腐食性の抑制が可能となる。
ポリアミドの水分率は、重合後半の減圧度、ポリマー排出冷却時の水中での浸漬時 間、浸漬長さあるいは水噴霧量の制御により調整できる。
[0016] ポリアミドの分子量は、本発明の課題を達成するという観点から、 JIS— K6810に従 つて測定した 98%硫酸中濃度 1%、 25°Cの相対粘度が、好ましくは 1. 5〜6. 5、より 好ましくは 1. 7〜6. 0、さらに好ましくは 2. 0〜5. 5である。該範囲にすることにより、 マスターバッチを作成する時の溶融混練の生産性が良好となる。 [0017] 次に、銅化合物とハロゲンィ匕合物について説明する。
本発明で用いられる銅化合物としては、ハロゲン化銅、酢酸銅、プロピオン酸銅、 安息香酸銅、アジピン酸銅、テレフタル酸銅、イソフタル酸銅、サリチル酸銅、ニコチ ン酸銅、ステアリン酸銅などや、エチレンジァミン(en)、エチレンジァミン四酢酸など のキレート剤に配位した銅錯塩等が挙げられる。これら銅化合物は、単独で用いても よぐ 2種以上を混合してもよい。この中でも、好ましいものとしてはヨウ化銅、臭化第 一銅、臭化第二銅、塩化第一銅、酢酸銅を挙げることができる。
[0018] 銅化合物の配合量は、ポリアミド 100重量部に対して銅化合物 0. 1〜5重量部が好 ましぐより好ましくは 0. 25〜4重量部、さらに好ましくは 0. 40〜3重量部である。こ の範囲にすることにより、十分な耐熱エージング性が向上し、銅析出、腐食抑制を抑 制できる。
[0019] 本発明で用いられるハロゲンィ匕合物(ただし、ハロゲン化銅を除く)としては、ヨウィ匕 カリウム、ヨウ化ナトリウム、臭化カリウム、塩ィ匕カリウム、塩ィ匕ナトリウム等が挙げられる 。これらハロゲンィ匕合物は、単独で用いてもよぐ 2種以上を混合してもよい。
[0020] ハロゲン化合物の配合量はポリアミド 100重量部に対してハロゲン化合物 1〜50重 量部が好ましぐより好ましくは 5〜45重量部、さらに好ましくは 10〜40重量部である 。この範囲にすることにより、十分な耐熱エージング性が向上し、銅析出、腐食を抑 制できる。
[0021] また、配合する銅化合物、ハロゲンィ匕合物の最大粒子径は、共に、 50 μ m以下で あることが好ましぐより好ましくは 20 m以下であり、さらに好ましくは 10 /z m以下で ある。
本発明において、粒子径とは、二軸平均径、すなわち、短径と長径の平均値をいう 。ここで、短径、長径とは、それぞれ、粒子に外接する面積が最小となる外接長方形 の短辺、長辺である。銅化合物、ハロゲン化合物の最大粒子径の測定は、少なくとも 50個の粒子に関して走査型電子顕微鏡 (SEM)を用いて観察することにより求める ことができる。
最大粒子径を 50 m以下にすることにより、ポリアミド中の水分率が低くても銅化合 物、ハロゲン化合物を微細にポリアミド中に分散させることができ、金属析出、腐食の 問題点がより改善され、得られるポリアミド榭脂組成物の靭性、耐熱性エージング性、 外観、色調がより改良される。
[0022] 銅化合物とハロゲン化合物 (ただし、ハロゲン化銅を除く)は、それぞれ単独で配合 しても効果はある力 得られるポリアミド榭脂組成物の性能向上のため本発明にお ヽ ては両方とも配合する。マスターバッチ中のハロゲンと銅とのモル比(ノヽロゲン Z銅) 力^〜 30であることが好ましぐより好ましくは 4〜25、さらに好ましくは 5〜23である。 ノ、ロゲンと銅のモル比が 3以上の場合には銅析出、金属腐食の抑制することができ て好ま ヽ。またハロゲンと銅のモル比が 30以下であれば靭性などの機械物性を損 なうことなく、成形機のスクリューなどを腐食すると 、う問題を抑制することができる。
[0023] 次に、少なくとも 1つのアミド基を有する有機化合物について説明する。
本発明においては、溶融混鍊中に少なくとも 1つのアミド基を有する有機化合物を 存在させることが必要である。これは、少なくとも 1つのアミド基を有する有機化合物 が、溶融混鍊中にポリアミド中の水分に溶解した銅化合物やハロゲン化合物と錯形 成し、これにより、ポリアミドに悪影響を与えることなぐ銅化合物やハロゲン化合物の ポリアミド中での分散を安定化させ、析出や変質を防ぐためであると推定される。
[0024] 本発明で用いられる少なくとも 1つのアミド基を有する有機化合物は、分子鎖に少 なくとも一つのアミド基を有する化合物である。具体的には、モノアマイド類、置換ァ マイド類、メチロールアマイド類、ビスアマイド類が挙げられる。
モノアマイド類は、一般式 R—CONHで表される(但し、 Rは炭素数 8〜30の飽和
2
脂肪族、不飽和脂肪族、芳香族あるいはそれらの—Hの一部が—OHに置換された ものである)。具体的には、例えばラウリル酸アマイド、パルチミン酸アマイド、ステアリ ン酸アマイド、ベヘン酸アマイド、ヒドロキシステアリン酸アマイド等、ォレイン酸ァマイ ド、エル力酸アマイド等、リノシール酸アマイド等が挙げられる。
置換アマイド類は、一般式 R -CONH-Rで表される(但し、 R及び Rは、それぞ
1 2 1 2 れ独立して、炭素数 8〜30の飽和脂肪族、不飽和脂肪族、芳香族あるいはそれらの —Hの一部が OHに置換されたものである)。具体的には、例えば N—ラウリルラウ リル酸アマアド、 N—パルチミルバルチミン酸アマイド、 N—ステアリルステアリン酸ァ マイド、 N ォレイルォレイン酸アマイド、 N—ステアリルォレイン酸アマイド、 N ォレ ィルステアリン酸アマイド、 N—ステアリルエル力酸アマイド、 N ォレイルバルチミン 酸アマイド、 N—ステアリル 12ヒドロキシステアリン酸アマイド、 N ォレイル 12ヒドロキ システアリン酸アマイド等が挙げられる。
メチロールアマイド類は、一般式 R— CONHCH OHで表される(但し、 Rは炭素数
2
8〜30の飽和脂肪族、不飽和脂肪族、芳香族あるいはそれらの Hの一部が OH に置換されたものである)。具体的には、例えばメチロールステアリン酸アマイド、メチ ロールべヘン酸アマイド等が挙げられる。 ビスアマイド類は、一般式 (R— CONH) (CH )表される(但し、 Rは炭素数 8〜30
2 2 n
の飽和脂肪族、不飽和脂肪族、芳香族あるいはそれらの Hの一部が OHに置換 されたものである。 nは 1〜8である)。具体的には、メチレンビスラウリン酸アマイド、メ チレンビスラウリン酸アマイド、メチレンビスヒドロキシステアリン酸アマイド、エチレンビ スカプリノレ酸アマイド、エチレンビスラウリン酸アマイド、エチレンビスステアリン酸アマ イド、エチレンビスイソステアリン酸アマイド、エチレンビスヒドロキシステアリン酸ァマイ ド、エチレンビスべヘン酸アマイド、へキサメチレンビスステアリン酸アマイド、へキサメ チレンビスべヘン酸アマイド、へキサメチレンビスヒドロキシステアリン酸アマイド、ブチ レンビスヒドロキシステアリン酸アマイド、 N, N,—ジステアリルアジピン酸アマイド、 N , N, 一ジステアリルセバシン酸アマイド、メチレンビスォレイン酸アマイド、エチレンビ ス才レイン酸アマイド、エチレンビスエノレカ酸アマイド、へキサメチレンビス才レイン酸 アマイド、 N, N,—ジォレイルアジピン酸アマイド、 N, N,—ジォレイルセバシン酸ァ マイド、 m キシリレンビスステアリン酸アマイド、 N, N,一ジステアリルイソフタル酸ァ マイド等が挙げられる。
これらの少なくとも 1つのアミド基を有する有機化合物は、単独で用いてもよぐ 2種 以上を混合してもよい。この中でも好ましいものとしてはビスアマイド類を挙げることが できる。
少なくとも 1つのアミド基を有する有機化合物の配合量は、ポリアミド 100重量部に 対して、 0. 1〜10重量部であることが好ましぐより好ましくは 0. 5〜5. 0重量部であ り、さらに好ましくは 1. 0〜4. 0重量部である。この範囲にすることにより、銅化合物、 ハロゲンィ匕合物のポリアミド中での分散性がより向上し、十分な耐熱エージング性の 向上、銅析出、腐食抑制の抑制を達成することができる。
[0026] 次に、銅化合物、ハロゲンィ匕合物、少なくとも 1つのアミド基を有する有機化合物と、 ポリアミドの溶融混鍊につ 、て説明する。
本発明において、銅化合物、ハロゲンィ匕合物、少なくとも 1つのアミド基を有する有 機化合物は、それぞれ単独でポリアミドに配合してもよいし、 3種類のうち少なくとも 2 種類の化合物を予め混合してカゝらポリアミドに配合してもよいし、 3種類のうち少なくと も 2種類の化合物を予め混合し粉砕してカゝらポリアミドに配合してもよいし、また 3種類 のうち少なくとも 2種類の化合物を予め混合し粉砕しタブレット状にしてポリアミドに配 合してちょい。
化合物を混合する混合は、公知の方法、例えばタンブラ一、ヘンシェル、プロシェ ァミキサー、ナウターミキサー、フロージェットミキサー等のいずれでもよい。
化合物を粉砕する方法は、公知の方法、例えばノヽンマーミル、ナイフミル、ボールミ ノレ、ジョークラッシャー、コーンクラッシャー、ローラミノレ、ジェットミノレ、碾臼などの何れ でもよい。
化合物をタブレット状にする方法は、公知の方法、例えば圧縮造粒法、打錠成形法 、乾式押出造粒法、溶融押出造粒法などの何れでもよい。
[0027] 溶融混練を行う装置としては、特に制限されるものではなぐ公知の装置を用いるこ とができる。例えば、単軸あるいは 2軸押出機、バンバリ一ミキサーおよびミキシング口 ールなどの溶融混練機が好ましく用いられる。中でも 2軸押出機が好ましく用いられ る。また溶融混練機には、脱気機構 (ベント)装置ならびにサイドフィーダ一設備を装 備してちよい。
[0028] 本発明の溶融混練の温度は、ポリアミドの JISK7121に準じた示差走査熱量 (DS C)測定で求められる融点あるいは軟ィ匕点より 1〜100°C程度高 、温度が好ま 、。 混練機での剪断速度は 100 (SEC 以上程度であることが好ましぐ混練時の平均 滞留時間は 1〜 15分程度が好ま ヽ。
[0029] 次に、本発明の製造方法により製造されるマスターバッチについて説明する。
本発明の製造方法により製造されるマスターバッチの水分率は 0. 06〜: L 0重量 %であることが好ましぐより好ましくは 0. 10〜0. 75重量%、さらに好ましくは 0. 15 〜0. 75重量0 /0である。マスターノツチ中の水分は、ポリアミド分子に結合した状態の 水分として存在してもよ 、し、マスターバッチ表面例えばマスターバッチペレットやマ スターバッチパウダー表面に付着した水分であってもよい。水分率をこの範囲にする ことにより、銅化合物やハロゲンィ匕合物の凝集を抑制することができる。このことにより 、靭性等の機械特性、耐熱エージング性の改良効果が高ぐ銅析出、金属腐食性の 抑制がより可能となる。
マスターバッチの水分率は、押出機の減圧度、冷却時のストランドバス中の浸漬時 間、浸漬長さの制御、あるいは水噴霧量の制御により調整できる。
[0030] 次に、マスターバッチ力もポリアミド榭脂組成物を製造することについて説明する。
第 2のポリアミド 100重量部に対して、マスターバッチ 0. 1〜: LOO重量部、好ましく は 0. 5〜20重量部を混合してポリアミド榭脂組成物を製造することができる。この範 囲で混合することにより、本発明の目的である、押出機や成形機内での金属銅析出 、金属腐食を抑制することにより加工時の安定性が優れることに加え、製品の機械物 性を低下させることなぐ耐熱エージング性の向上、吸水による外観色変化の抑制を 解決することができる。第 2のポリアミドとマスターバッチを混合する方法はブレンドで もよいし、溶融混練法を用いてもよい。
第 2のポリアミドとしては、マスターバッチの製造において用いることができるポリアミ ドとして例示したものと同じものを用いることができる。
[0031] このようにして得られるポリアミド榭脂組成物の水分率は、 0. 01〜1重量%であるこ と力 子ましく、より好ましくは 0. 03-0. 5重量0 /0、さらに好ましくは 0. 05-0. 30重 量%である。ポリアミド榭脂組成物中の水分は、ポリアミド分子に結合した状態の水分 として存在してもよいし、ポリアミド榭脂組成物表面、例えばペレットやパウダー表面 に付着した水分であってもよいが、本発明の効果をより顕著に発現するという観点か ら、ポリアミド分子に結合した水分として存在させたほうがより好ましい。水分率を該範 囲にすることにより、銅化合物やハロゲンィ匕合物の凝集を抑制することができる。この ことにより、靭性等の機械特性、耐熱エージング性の改良効果が高ぐ銅析出、金属 腐食性の抑制がより可能となる。
ポリアミド榭脂組成物の水分率は、押出機の減圧度、冷却時のストランドバス中の 浸漬時間、浸漬長さの制御、あるいは水噴霧量の制御により調整できる。
[0032] ポリアミド榭脂組成物には、本発明の目的を損なわない程度で、ポリアミドに慣用的 に用いられる添加剤、例えば顔料および染料、難燃剤、潤滑剤、蛍光漂白剤、可塑 ィ匕剤、有機酸化防止剤、熱安定剤、紫外線吸収剤、核剤、ゴム、並びに強化剤を含 有することちでさる。
[0033] このようにして得られたポリアミド榭脂組成物は、押出、成形加工中の金属析出、腐 食の問題点を解消し、靭性、耐熱エージング性、外観、色調が優れているため、周知 の成形方法、例えばプレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出 成形、吹込成形、フィルム成形、中空成形、多層成形、溶融紡糸などを用いて各種 成形品を得ることができる。また、得られた成形品は、多くの成形用途(自動車部品、 工業用途部品、電子部品、ギアなど)や押出用途 (チューブ、棒、フィラメント、フィル ム、ブローなど)において有用である。
実施例
[0034] 本発明を実施例に基づいて説明する。実施例および比較例において以下の方法 により測定し評価した。
(1)ポリアミドの相対粘度
JIS—K6810に準じて実施した。具体的には、 98%硫酸を用いて、 1%の濃度の 溶解液 ( (ポリアミド榭脂 lg) / (98%硫酸 lOOml)の割合)を作成し、 25°Cの温度条 件下で測定した。
(2)ポリアミド、マスターバッチ、ポリアミド榭脂組成物の水分率
水分気化装置 (三菱ィ匕学 (株)製 VA— 06型)を用いて、ポリアミド 0. 7gで電量滴 定法 (カール'フィッシャー法)により測定した。
[0035] (3)ポリアミドのカルボキシル基濃度比率
カルボキシル基濃度は、ペレットや粉砕した成形品等を、ベンジルアルコールに溶 解して測定した。より具体的には、試料約 4. Ogにべンジルアルコール 50mlをカロえ 1 70°Cに加熱しフエノールフタレインをカ卩えた。溶解させた後、 0. 1規定 NaOH水溶 液で滴定し、カルボシキル基濃度を求めた。
カルボキシル基濃度 [COOH] = (f X 0. 1 XA/S) X 100f ここで、 f = 0. 1規定 NaOH水溶液のファクター
A=0. 1規定 NaOH水溶液の消費量 (ml)
S =試料質量 (g)
一方、アミノ基濃度は、ペレットや粉砕した成形品等を、フエノール水溶液に溶解し て測定した。より具体的には、試料約 3. 0を 90%フエノール水溶液 100mlに溶解さ せた後、 1Z40N塩酸を滴下し中和し中和点までに要した塩酸の量を求めた。試料 を加えない状態で同様の測定をし、ブランクとした。
アミノ基濃度 [NH ] = {F X (1/40) X (A-B) /S} X 1000F
2
ここで、 F= lZ40N塩酸のファクター
A= 1Z40N塩酸の消費量(ml)
B= lZ40N塩酸の消費量(ブランク時)(ml)
S =試料質量 (g)
このようにして測定した [COOH]と [NH ]とを用いて
2
カルボキシル基濃度比率 = [COOH] / ( [COOH] +〔NH〕)で算出した。
2
[0036] (4)銅化合物およびハロゲンィ匕合物の最大粒子径
日立製作所 (株)製 S— 5000用いて、最適な倍率にあわせて、明視野像を撮影し、 100個の粒子を任意に選択して、最大粒子径を求めた。
(5)マスターバッチの銅濃度、ハロゲン濃度及びハロゲンと銅のモル比(ノ、ロゲン ZC u)
銅濃度は、試料に硫酸を加え、加熱しながら硝酸を滴下し有機分を分解し、該分 解液を純水にて定容 UCP発光分析 (高周波プラズマ発光分析)法により定量した。 I CP発光分析装置は、 SEIKO電子工業社製 Vista— Proを用いた。
ノ、ロゲン濃度は、ヨウ素を例にとると、試料を高純度酸素で置換したフラスコ中で燃 焼し、発生したガスを吸収液に捕集し、該捕集液中のヨウ素を 1Z100N硝酸銀溶液 による電位差滴定法を用いて定量した。
ハロゲンと銅のモル比(ノヽロゲン ZCu)は、上記それぞれの定量値を用いて分子量 力もモルに換算し算出した。
[0037] (6)マスターバッチの銅析出、金属腐食性及び表面状態 (6— 1)銅析出性
マスターバッチと試験用炭素鋼を接触させてオートクレープ装置にいれ封入後、十 分に窒素置換した。その後 280°Cで 6時間保持し冷却後、マスターバッチの試験用 炭素鋼と接触して ヽた部分にっ ヽて銅析出状態を評価した。
〇 銅析出がないあるいはごく軽度である。
△ 銅析出が軽度である。
X 銅析出が頻度高く観測される。
(6— 2)金属腐食性
上記 (6— 1)の試験用炭素鋼のマスターバッチと接触した部分につ!、て腐食状態 を評価した。腐食の程度を定量的に示すため、以下の腐食係数を算出し以下のよう に判定した。この値が小さければ腐食しにくいことになる。
腐食係数 =腐食の発生頻度 (個 Zcm2) X腐食の平均径 m) X腐食の平均深さ( μ mj
〇 腐食係数 500未満
△ 腐食係数 500〜2500
X 腐食係数 > 2500
(6— 3)ペレット表面状態
マスターバッチペレット表面を目視により、その外観状態を判定した。
〇 表面がつるつるであり、良好な状態
△ 表面の一部に、添加剤の分散不良による凹凸があり、一部不良な状態
X 表面の全面に、添加剤の分散不良による凹凸があり、不良な状態
(7)ポリアミド榭脂組成物の成形機内滞留時の銅析出性
標準成形で得た成形品 (a)と滞留成形で得た成形品 (b)の銅濃度の差異を成形機 内で析出した銅とし、下記式で成形機内滞留時の銅析出性を評価した。
成形機内滞留時の銅析出性 = (標準成形品 (a)の銅濃度-滞留成形品 (b)の銅 濃度) X 100Z標準成形品 (a)の銅濃度
なお、標準成形品(a)と滞留成形品 (b)は以下の条件で製造した。
(a)標準成形品:射出成形機は日精榭脂製 PS— 40E、金型は ASTM— D638型を 用いた。シリンダー温度は 280°C、金型温度は 80°C、可塑化ストロークは 63mm、ス クリュー回転数は 200rpm、射出時間は 10秒、冷却時間は 15秒の条件で実施し射 出成形品を得た。可塑化時の滞留時間は 1分とした。
(b)滞留成形品:射出成形機は日精榭脂製 PS— 40E、金型は ASTM— D638型を 用いた。シリンダー温度は 280°C、金型温度は 80°C、可塑化ストロークは 63mm、ス クリュー回転数は 200rpm、射出時間は 10秒、冷却時間は 15秒の条件で実施し射 出成形品を得た。可塑ィ匕時の滞留時間は 60分とした。
[0039] (8)ポリアミド榭脂組成物成形品の長期耐熱エージング性
上記(7)の標準成形品(a)を熱風オーブン中で 180°C、所定時間処理した後、 AS TM— D638に準じて引張強度を測定した。そして熱処理前に測定した引張強度に 対する熱処理後の弓 I張強度を弓 I張強度保持率として算出し、引張強度保持率が 50 %となる熱処理時間を半減期とした。
(9)ポリアミド榭脂組成物成形品の色調
上記 (7)の標準成形品 (a)の色調を色差計(日本電色 (株)製 ND— K6B型)で測 し 7こ。
[0040] [実施例 1〜13、比較例 1〜5]
以下に示す製造例 1〜13によって製造したポリアミドと、銅化合物、ハロゲンィ匕合 物及び少なくとも 1つのアミド基を有する有機化合物の混合物を用いて、実施例 1〜
13、比較例 1〜5を行った。
[0041] [製造例 1]
へキサメチレンジァミンとアジピン酸の等モル塩水溶液(50重量0 /0濃度)を用い、公 知の溶融重合を行い、ペレット状のポリアミド 66 (1)を得た。該ポリアミド 66 (1)の相 対粘度は 46、水分率は 0. 25重量%、カルボキシル基濃度比率は 0. 625であった。
[製造例 2]
へキサメチレンジァミンとアジピン酸の等モル塩水溶液(50重量0 /0濃度)を用い、公 知の溶融重合を行 、、ペレット状のポリアミド 66 (2)を得た。該ポリアミド 66 (2)の相 対粘度は 46、水分率は 0. 07重量%、カルボキシル基濃度比率は 0. 625であった。
[製造例 3] へキサメチレンジァミンとアジピン酸の等モル塩水溶液(50重量0 /0濃度)を用い、味 ピン酸で末端調整をし、公知の溶融重合を行い、ペレット状のポリアミド 66 (3)を得た 。該ポリアミド 66 (3)の相対粘度は 36、水分率は 0. 25重量%、カルボキシル基濃度 比率は 0. 80であった。
[製造例 4]
製造例 1のポリアミド 66 (1)にスプレーで水を均一に噴霧し、ポリアミド 66 (4)を得た 。該ポリアミド 66 (4)の相対粘度は 46、水分率は 0. 50重量%、カルボキシル基濃度 比率は 0. 625であった。
[製造例 5]
へキサメチレンジァミンとアジピン酸の等モル塩水溶液(50重量0 /0濃度)を用い、へ キサメチレンジァミンで末端調整をし、公知の溶融重合を行い、ペレット状のポリアミド 66 (5)を得た。該ポリアミド 66 (5)の相対粘度は 46、水分率は 0. 25重量%、カルボ キシル基濃度比率は 0. 522であった。
[製造例 6]
製造例 1のポリアミド 66 (1)にスプレーで水を均一に噴霧し、ポリアミド 66 (6)を得た 。該ポリアミド 66 (6)の相対粘度は 46、水分率は 2. 50重量%、カルボキシル基濃度 比率は 0. 625であった。
[製造例 7]
製造例 1のポリアミド 66 (1)を約 80°Cの窒素気流中で、水分率を検出限界以下 (0 . 01重量%以下)まで乾燥し、ポリアミド 66 (7)を得た。該ポリアミド 66 (7)の相対粘 度は 46、水分率は 0. 01重量%未満、カルボキシル基濃度比率は 0. 625であった。
[製造例 8]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、エチレンビスステアリルアミド 10 重量部を混合し、最大粒子径を 20 m以下になるように粉砕し、 KIとエチレンビスス テアリルアミドの混合物を得た。該混合物に Cul (平均粒子径 2 μ m) 5重量部をよく 混合し、ディスクペレツター(不二パゥダル社製 F5 - 11 - 175)で顆粒ィ匕し、顆粒 ( 1 )を得た。
[製造例 9] KI (20〜200 μ mの粒子径を有する) 85重量部、エチレンビスステアリルアミド 10 重量部を混合し、最大粒子径を 50 m以下になるように粉砕し、 KIとエチレンビスス テアリルアミドの混合物を得た。該混合物に Cul (平均粒子径 2 μ m) 5重量部をよく 混合し、ディスクペレツター(不二パゥダル社製 F5— 11—175)で顆粒ィ匕し、顆粒(2 )を得た。
[製造例 10]
ΚΙ (20〜200 μ mの粒子径を有する) 75重量部、エチレンビスステアリルアミド 10 重量部を混合し、最大粒子径を 20 m以下になるように粉砕し、 KIとエチレンビスス テア
リルアミドの混合物を得た。該混合物に Cul (平均粒子径 2 m) 15重量部をよく混合 し、ディスクペレツター(不二パゥダル社製 F5— 11—175)で顆粒化し、顆粒(3)を 得た。
[製造例 11]
ΚΙ (20〜200 μ mの粒子径を有する) 88重量部、エチレンビスステアリルアミド 10 重量部を混合し、最大粒子径を 20 m以下になるように粉砕し、 KIとエチレンビスス テアリルアミドの混合物を得た。該混合物に Cul (平均粒子径 2 μ m) 2重量部をよく 混合し、ディスクペレツター(不二パゥダル社製 F5 - 11 - 175)で顆粒ィ匕し、顆粒 (4 )を得た。
[製造例 12]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、ジステアリン酸アルミニウム(平均 粒子径 30 μ m) 10重量部を混合し、最大粒子径を 20 μ m以下になるように粉砕し、 KIとジステアリン酸アルミニウムの混合物を得た。該混合物に Cul (平均粒子径 2 m ) 5重量部をよく混合し、ディスクペレツター(不二パゥダル社製 F5 - 11 - 175)で顆 粒化し、顆粒 (5)を得た。
[製造例 13]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、エチレンビスステアリルアミド 10 重量部を粉砕せず最大粒径 200 μ mのまま Cul (平均粒子径 2 μ m) 5重量部と混合 し、ディスクペレツター(不二パゥダル社製 F5— 11—175)で顆粒化し、顆粒(6)を 得た。
[0043] [実施例 1]
製造例 1のポリアミド 66 (1) 100重量部に対して、製造例 8の顆粒(1) 24重量部を 配合し、二軸押出機 (プラスチック工学研究所 (株)製、 2軸同方向スクリュー回転型、 LZD = 60 (D = 30 (i) ) )を用いて、スクリュー回転数 100rpm、シリンダー温度 280 °Cで溶融混練してマスターバッチを得た。評価結果を表 1に示す。
[実施例 2]
製造例 2のポリアミド 66 (2) 100重量部に対して、製造例 8の顆粒(1) 24重量部を 配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得た。評価 結果を表 1に示す。
[実施例 3]
製造例 3のポリアミド 66 (3) 100重量部に対して、製造例 8の顆粒(1) 24重量部を 配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得た。評価 結果を表 1に示す。
[実施例 4]
製造例 4のポリアミド 66 (4) 100重量部に対して、製造例 8の顆粒(1) 24重量部を 配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得た。評価 結果を表 1に示す。
[実施例 5]
製造例 5のポリアミド 66 (5) 100重量部に対して、製造例 8の顆粒(1) 24重量部を 配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得た。二軸 押出機での溶融混練は、安定して実施できた。評価結果を表 1に示す。
[0044] [比較例 1]
製造例 6のポリアミド 66 (6) 100重量部に対して、製造例 8の顆粒(1) 24重量部を 配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得た。二軸 押出機での溶融混練は、安定して実施できた。評価結果を表 1に示す。
[比較例 2]
製造例 7のポリアミド 66 (7) 100重量部に対して、製造例 8の顆粒(1) 24重量部を 配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得た。二軸 押出機での溶融混練は、安定して実施できた。評価結果を表 1に示す。
[0045] [表 1]
Rsiま. tH
Figure imgf000020_0001
[0046] 表 1より、本発明の製造方法で製造したマスターバッチは、銅析出性、金属腐食性 が改善されてレ、ることが分かる。
[0047] [実施例 6]
製造例 1のポリアミド 66 ( 1) 100重量部に対して、製造例 8の顆粒(1) 50重量部を 配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得た。二軸 押出機での溶融混練は、安定して実施できた。評価結果を表 2に示す。
[実施例 7]
実施例 1で得られたマスターバッチを 80°Cの窒素気流中で乾燥し、水分率を 0. 10 重量%にした。評価結果を表 2に示す。
[実施例 8]
製造例 1のポリアミド 66 (1) 100重量部に対して、製造例 9の顆粒(2) 24重量部を 配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得た。二軸 押出機での溶融混練は、安定して実施できた。評価結果を表 2に示す。
[実施例 9]
製造例 1のポリアミド 66 (1) 100重量部に対して、製造例 10の顆粒(3) 24重量部を 配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得た。二軸 押出機での溶融混練は、安定して実施できた。評価結果を表 2に示す。
[実施例 10]
製造例 1のポリアミド 66 (1) 100重量部に対して、製造例 11の顆粒 (4) 24重量部を 配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得た。二軸 押出機での溶融混練は、安定して実施できた。評価結果を表 2に示す。
[比較例 2— 1]
製造例 1のポリアミド 66 (1) 100重量部に対して、製造例 13の顆粒 (6) 24重量部を 配合した。得られたマスターバッチの評価結果を表 2に示す。
[比較例 3]
製造例 1のポリアミド 66 (1) 100重量部に対して、製造例 12の顆粒(5) 24重量部を 配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得た。評価 結果を表 2に示す。
[表 2]
Figure imgf000022_0001
[0049] 表 2より、本発明の製造方法で製造したマスターバッチは、銅析出性、金属腐食性 が改善されていることが分かる。これに対して、最大粒子径が 200 /z mのハロゲンィ匕 合物を用いた比較例 2— 1においては、銅析出性の改善効果は認められるものの、 その効果は不十分であった。このことから本発明の効果をより発揮させるためには、 銅化合物、ハロゲン化合物として最大粒子径の小さいものを用いた方が効果的であ ることが分力ゝる。
[0050] [実施例 12]
製造例 1のポリアミド 66 (1) 100重量部に対して、実施例 1のマスターバッチ 2重量 部を配合した。実施例 1と同様に二軸押出機で溶融混練してポリアミド樹脂組成物を 得た。ポリアミド 66力 S 100重量咅に対して、 Cul力 SO. 0235重量咅、 KI力 SO. 396重 量部、エチレンビスステアリルアミドが 0. 0470重量部になる。評価結果を表 3に示す
[実施例 13]
製造例 1のポリアミド 66 (1) 100重量部に対して、実施例 8のマスターバッチ 2重量 部を配合し、実施例 1と同様に二軸押出機で溶融混練してポリアミド榭脂組成物を得 た。各化合物の配合量は実施例 11と同様となる。評価結果を表 3に示す。
[比較例 4]
製造例 1のポリアミド 66 (1) 100重量部に対して、比較例 2のマスターバッチ 2重量 部を配合し、実施例 1と同様に二軸押出機で溶融混練してポリアミド榭脂組成物を得 た。各化合物の配合量は実施例 11と同様となる。評価結果を表 3に示す。
[比較例 5]
へキサメチレンジァミンとアジピン酸の等モル塩水溶液(50重量0 /0濃度)を用い、公 知の溶融重合を行った。重合途中の工程で、 Culと KIの混合水溶液を添加した。得 られたポリアミド 66ペレット表面にエチレンビスステアリルアミドを添加した。各化合物 の配合量は比較例 2— 1と同様となるように添加した。該ポリアミド 66榭脂組成物の相 対粘度は 46、水分率は 0. 10重量%、カルボキシル基濃度比率は 0. 625であった。 評価結果を表 3に示す。
[表 3]
8
震 g
I m
s
ar
¾
S
[0052] 表 3より、本発明の製造方法で製造したマスターバッチ力 得られたポリアミド榭脂 組成物の成形品は、銅析出性、長期耐熱エージング性、色調が改善されていること が分かる。
[0053] [実施例 A1 A23、比較例 A1 A17]
以下に示す製造例 A1 A28によって製造したポリアミドと、銅化合物、ハロゲンィ匕 合物及び少なくとも 1つのアミド基を有する有機化合物の混合物を用いて、実施例 A 1 A23、比較例 A1 A17を行った。
[0054] 1.ポリアミドの調製
[製造例 A1]
ツチ法で重合を実施してポリアミドを製造した。
ポリアミド 66の原料として、へキサメチレンジァミンとアジピン酸との等モル塩を用い た。該原料を 50重量%含有する水溶液を重合槽に仕込み、十分窒素置換し加熱し て約 150°Cで上昇させ、水分を除去し約 85%まで濃縮し、重合槽を密閉した。次に 、重合槽の温度を約 210°Cまで上昇させながら、重合槽の圧力をゲージ圧にして約 1. 77MPaまで上昇させた。その後、重合槽カも水を抜きながら圧力を約 1. 77MPa で保ちつつ温度を約 210°C力も約 250°Cに上昇させた。その後、約 1時間で温度を 約 280°Cまで上昇させながら、重合槽の圧力を大気圧まで戻した後、約 10分間約 7 OOtorrで減圧した。重合槽を窒素で加圧し、重合槽下部のダイスを開放し、ペレット 状のポリマーを排出し、冷却、カッティングし、ポリアミド 66 (A1)を得た。該ポリアミド 6 6 (A1)の相対粘度は 2. 7、水分率は 0. 75重量%、カルボキシル基濃度比率は 0. 620であった。
[製造例 A2]
製造例 A1のポリアミド 66 (A1)を窒素気流中、約 140°Cで約 0. 5時間乾燥し、ポリ アミド 66 (A2)を得た。該ポリアミド 66 (A2)の相対粘度は 2. 8、水分率は 0. 25重量 %、カルボキシル基濃度比率は 0. 625であった。
[製造例 A3]
製造例 A1のポリアミド 66 (A1)を窒素気流中、約 90°Cで 1. 5時間乾燥し、ポリアミ ド 66 (A3)を得た。該ポリアミド 66 (A3)の相対粘度は 2. 8、水分率は 0. 10重量%、 カルボキシル基濃度比率は 0. 625であった。
[製造例 A4]
製造例 A1のポリアミド 66 (A1)にスプレーで水を均一に噴霧し、ポリアミド 66 (A4) を得た。噴霧する水の量を調整することにより、該ポリアミド (A4)の水分率を 1. 45重 量%にした。
[製造例 A5]
製造例 A1のポリアミド 66 (A1)にスプレーで水を均一に噴霧し、ポリアミド 66 (A5) を得た。噴霧する水の量を調整することにより、該ポリアミド (A5)の水分率を 1. 80重 量%にした。
[製造例 A6]
製造例 1のポリアミド 66 (A1)を窒素気流中で、約 90°Cで約 30時間乾燥し、ポリア ミド 66 (A6)を得た。該ポリアミド 66 (A6)の相対粘度は 2. 8、水分率は 0. 03重量% 、カルボキシル基濃度比率は 0. 625であった。
[製造例 A7]
製造例 A1のポリアミド 66 (A1)にスプレーで水を均一に噴霧し、ポリアミド 66 (A7) を得た。噴霧する水の量を調整することにより、ポリアミド (A7)の水分率を 2. 25重量 o/oにした。
[製造例 A8]
へキサメチレンジァミンとアジピン酸の等モル塩水溶液(50重量%濃度)に末端調 整剤としてアジピン酸を添加した以外は製造例 A1と同様に重合を行い、製造例 A2 と同様に乾燥を行 、、ペレット状のポリアミド 66 (A8)を得た。該ポリアミド 66 (A8)の 相対粘度は 2. 5、水分率は 0. 25重量%、カルボキシル基濃度比率は 0. 80であつ た。
[製造例 A9]
へキサメチレンジァミンとアジピン酸の等モル塩水溶液(50重量%濃度)に末端調 整剤としてへキサメチレンジァミンを添加した以外は製造例 A1と同様に重合を行い、 製造例 A2と同様に乾燥を行い、ペレット状のポリアミド 66 (A9)を得た。該ポリアミド 6 6 (A9)の相対粘度は 3. 0、水分率は 0. 25重量%、カルボキシル基濃度比率は 0. 522であった。
[製造例 A10]
連続法で重合を実施してポリアミドを製造した。
ポリアミド 66の原料としてへキサメチレンジァミンとアジピン酸との等モル塩を用いた o該原料を 50重量%含有する水溶液に末端調整剤として酢酸を添加し、約 3000K gZhrの速度で濃縮槽 Z反応器に注入し、約 90%まで濃縮した。次いで、反応液を フラッシャーに排出し、圧力をゆっくり大気圧まで降圧した。反応液を次の容器に移 送し、約 280°Cの温度、大気圧以下の条件下で保持した。ポリアミドは押し出されて ストランドとなり、このストランドを冷却、カッティングし、更に窒素気流中で、約 140°C で約 0. 5時間乾燥し、ペレット状のポリアミド 66 (A10)を得た。該ポリアミド 66 (A10) の相対粘度は 2. 7、水分率は 0. 25重量%、カルボキシル基濃度比率は 0. 650で あった。 [製造例 Al l]
末端調整剤の酢酸の量を増加した以外は製造例 A10と同様に重合及び乾燥を実 施して、ポリアミド 66 (Al l)を得た。該ポリアミド 66 (Al l)の相対粘度は 2. 8、水分 率は 0. 11%、カルボキシル基濃度比率は 0. 650た。
[製造例 A12]
原料として、へキサメチレンジァミンとアジピン酸の等モル塩と、へキサメチレンジァ ミンとイソフタル酸の等モル塩とを重量比 80Z20で用い、該原料を 50重量%含有す る混合水溶液に末端調整剤としてアジピン酸を添加した以外は製造例 A1と同様に 重合を行い、製造例 A2と同様に乾燥を行い、ペレット状のポリアミド 66Z6I (A12) を得た。該ポリアミド 66Z6I (A12)の相対粘度は 2. 3、水分率は 0. 25重量%、カル ボキシル基濃度比率は 0. 735であった。
2.銅化合物、ハロゲン化合物及び少なくとも 1つのアミド基を有する有機化合物の混 合物の調製
[製造例 A13]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、ビスアマイド類であるエチレンビ スステアリルァアマイド 10重量部を混合し、 KIの最大粒子径が 20 mになるように粉 砕し、 KIとエチレンビスステアリルアマイドの混合物を得た。該混合物に Cul (平均粒 子径 2 μ m) 5重量部をよく混合し、ディスクペレツター(不二パゥダル社製 F5 - 11 - 175)で顆粒ィ匕し、顆粒 (A1)を得た。
[製造例 A14]
ΚΙ (20〜200 μ mの粒子径を有する) 75重量部、エチレンビスステアリルアマイド 1 0重量部を混合し、 KIの最大粒子径が 20 mになるように粉砕し、 KIとエチレンビス ステアリルアマイドの混合物を得た。該混合物に Cul (平均粒子径 2 m) 15重量部 をよく混合し、ディスクペレツター(不二パゥダル社製 F5— 11—175)で顆粒ィ匕し、顆 粒 (A2)を得た。
[製造例 A15]
ΚΙ (20〜200 μ mの粒子径を有する) 88重量部、エチレンビスステアリルアマイド 1 0重量部を混合し、 KIの最大粒子径が 20 mになるように粉砕し、 KIとエチレンビス ステアリルアマイドの混合物を得た。該混合物に Cul (平均粒子径 2 μ m) 2重量部を よく混合し、ディスクペレツター(不二パゥダル社製 F5— 11—175)で顆粒ィ匕し、顆粒 (A3)を得た。
[製造例 A16]
ΚΙ (20〜200 μ mの粒子径を有する) 70重量部、エチレンビスステアリルアマイド 2 0重量部を混合し、 KIの最大粒子径が 20 mになるように粉砕し、 KIとエチレンビス ステアリルアマイドの混合物を得た。該混合物に Cul (平均粒子径 2 m) 10重量部 をよく混合し、ディスクペレツター(不二パゥダル社製 F5— 11—175)で顆粒ィ匕し、顆 粒 (A4)を得た。
[製造例 A17]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、エチレンビスステアリルアマイド( 平均粒子径 30 μ m) 10重量部、 Cul (平均粒子径 2 μ m) 5重量部とを混合し、 KIの 最大粒子径が 20 μ mになるようによく粉砕し混合物 (A1)を得た。
[製造例 A18]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、エチレンビスステアリルアマイド 1 0重量部を混合し、 KIの最大粒子径が 50 mになるように粉砕し、 KIとエチレンビス ステアリルアマイドの混合物を得た。該混合物に Cul (平均粒子径 2 μ m) 5重量部を よく混合し、ディスクペレツター(不二パゥダル社製 F5— 11—175)で顆粒ィ匕し、顆粒 (A5)を得た。
[製造例 A19]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、エチレンビスステアリルアマイド 1 0重量部を混合し、 KIの最大粒子径が 75 mになるように粉砕し、 KIとエチレンビス ステアリルアマイドの混合物を得た。該混合物に Cul (平均粒子径 2 μ m) 5重量部を よく混合し、ディスクペレツター(不二パゥダル社製 F5— 11—175)で顆粒ィ匕し、顆粒 (A6)を得た。
[製造例 A20]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、エチレンビスステアリルアマイド 1 0重量部を粉砕せず最大粒径 200 μ mのまま Cul (平均粒子径 2 μ m) 5重量部と混 合し、ディスクペレツター(不二パゥダル社製 F5— 11—175)で顆粒化し、顆粒 (A7) を得た。
[製造例 A21]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、エチレンビスステアリルアマイド 1 0重量部、 Cul (平均粒子径 2 μ m) 5重量部とを混合し、最大 100メッシュ(最大粒径 にして約 130 μ m)のスクリーンを有する粉砕機で粉砕し、混合物 (A2)を得た。
[製造例 A22]
KI (20-200 μ mの粒子径を有する) 85重量部、置換アマイド類である N—ステア リルエル力酸アマイド(平均粒子径 100 m) 10重量部を混合し、 KIの最大粒子径 が 20 μ m以下になるように粉砕し、 KIと N—ステアリルエル力酸アマイドの混合物を 得た。該混合物に Cul (平均粒子径 2 m) 5重量部をよく混合し、ディスクペレツター (不二バウダル社製 F5 - 11 - 175)で顆粒ィ匕し、顆粒 (A8)を得た。
[製造例 A23]
KI (20-200 μ mの粒子径を有する) 85重量部、モノアマイド類であるステアリン酸 アマイド(平均粒子径 20 μ m) 10重量部を混合し、 KIの最大粒子径が 20 μ m以下 になるように粉砕し、 KIとステアリン酸アマイドの混合物を得た。該混合物に Cul (平 均粒子径 2 μ m) 5重量部をよく混合し、ディスクペレツター(不二パゥダル社製 F5— 11 - 175)で顆粒化し、顆粒 (A9)を得た。
[製造例 A24]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、メチロールアマイド類であるメチ ロールステアリン酸アマイド(平均粒子径 30 m) 10重量部を混合し、 KIの最大粒子 径が 20 m以下になるように粉砕し、 KIとメチロールステアリン酸アマイドの混合物 を得た。該混合物に Cul (平均粒子径 2 m) 5重量部をよく混合し、ディスクペレツタ 一 (不二バウダル社製 F5 - 11 - 175)で顆粒ィ匕し、顆粒 (A10)を得た。
[製造例 A25]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、高級脂肪酸であるステアリン酸( 平均粒子径 30 μ m) 10重量部を混合し、 KIの最大粒子径が 20 μ m以下になるよう に粉砕し、 KIとステアリン酸の混合物を得た。該混合物に Cul (平均粒子径 2 m) 5 重量部をよく混合し、ディスクペレツター(不二パゥダル社製 F5 - 11 - 175)で顆粒 化し、顆粒 (Al l)を得た。
[製造例 A26]
KI (20-200 μ mの粒子径を有する) 85重量部、高級脂肪酸エステルであるステ ァリルステアレート(平均粒子径 30 m) 10重量部を混合し、 KIの最大粒子径が 20 μ m以下になるように粉砕し、 KIとステアリルステアレートの混合物を得た。該混合物 に Cul (平均粒子径 2 μ m) 5重量部をよく混合し、ディスクペレツター(不二パゥダル 社製 F5 - 11 - 175)で顆粒化し、顆粒 (A12)を得た。
[製造例 A27]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、高級脂肪酸金属塩であるモンタ ン酸カルシウム(平均粒子径 30 μ m) 10重量部を混合し、 KIの最大粒子径が 20 μ m以下になるように粉砕し、 KIとモンタン酸カルシウムの混合物を得た。該混合物に Cul (平均粒子径 2 μ m) 5重量部をよく混合し、ディスクペレツター(不二パゥダル社 製 F5— 11— 175)で顆粒化し、顆粒 (A13)を得た。
[製造例 A28]
ΚΙ (20〜200 μ mの粒子径を有する) 85重量部、高級脂肪酸金属塩であるステア リン酸アルミニウム(平均粒子径 30 m) 10重量部を混合し、 KIの最大粒子径が 20 μ m以下になるように粉砕し、 KIとステアリン酸アルミニウムの混合物を得た。該混合 物に Cul (平均粒子径 2 μ m) 5重量部をよく混合し、ディスクペレツター(不二パウダ ル社製 F5 - 11 - 175)で顆粒化し、顆粒 (A14)を得た。
3.実施例 A1〜A10、比較例 Al、 A2
ポリアミドの種類を変えて、実施例 A1〜A10、比較例 Al、 A2のマスターバッチを 製造した。
[実施例 A1]
製造例 A1のポリアミド 66 (A1) 100重量部に対して、製造例 13の顆粒 (A1) 24重 量部を配合し、二軸押出機 (プラスチック工学研究所 (株)製、 2軸同方向スクリュー 回転型、 LZD = 60 (D = 30 (i) ) )を用いて、スクリュー回転数 100rpm、シリンダー 温度 280°Cで溶融混練してマスターバッチを得た。二軸押出機での溶融混練は、安 定して実施できた。マスターバッチの色調は白く良好であった。評価結果を表 4に示 す。
[実施例 A2]
ポリアミド 66 (A1)に代えて製造例 A2のポリアミド 66 (A2)を用いる以外は、実施例 A1と同様にし実施した。二軸押出機での溶融混練は、安定して実施できた。マスタ 一バッチの色調は白く良好であった。評価結果を表 4に示す。
[実施例 A3]
ポリアミド 66 (A1)に代えて製造例 A3のポリアミド 66 (A3)を用いる以外は、実施例 A1と同様に実施した。二軸押出機での溶融混練は、安定して実施できた。マスター バッチの色調は白く良好であった。評価結果を表 4に示す。
[実施例 A4]
ポリアミド 66 (A1)に代えて製造例 A4のポリアミド 66 (A4)を用いる以外は、実施例 A1と同様に実施した。二軸押出機での溶融混練は、安定して実施できた。マスター バッチの色調は白く良好であった。評価結果を表 4に示す。
[実施例 A5]
ポリアミド 66 (A1)に代えて製造例 A5のポリアミド 66 (A5)を用いる以外は、実施例 A1と同様に実施した。二軸押出機での溶融混練は、安定して実施できた。マスター バッチの色調は白く良好であった。評価結果を表 4に示す。
[比較例 A1]
ポリアミド 66 (A1)に代えて製造例 A6のポリアミド 66 (A6)を用いる以外は、実施例 1と同様に実施した。二軸押出機での溶融混練は、安定して実施できた。マスターバ ツチの色調は黄色に変色した。評価結果を表 4に示す。
[比較例 A2]
ポリアミド 66 (A1)に代えて製造例 A7のポリアミド 66 (A7)を用いる以外は、実施例 1と同様に実施した。二軸押出機での溶融混練は、安定して実施できた。マスターバ ツチの色調は少し黄色に変色した。評価結果を表 4に示す。
[実施例 A6]
ポリアミド 66 (A1)に代えて製造例 A8のポリアミド 66 (A8)を用いる以外は、実施例 Alと同様に実施した。二軸押出機での溶融混練は、安定して実施できた。マスター バッチの色調は白く良好であった。評価結果を表 4に示す。
[実施例 A7]
ポリアミド 66 (A1)に代えて製造例 A9のポリアミド 66 (A9)を用いる以外は、実施例 A1と同様に実施した。二軸押出機での溶融混練は、安定して実施できた。マスター バッチの色調は白く良好であった。評価結果を表 5に示す。
[実施例 A8]
ポリアミド 66 (A1)に代えて製造例 A10のポリアミド 66 (A10)を用いる以外は、実 施例 A1と同様に実施した。二軸押出機での溶融混練は、安定して実施できた。マス ターバッチの色調は白く良好であった。評価結果を表 5に示す。
[実施例 A9]
のポリアミド 66 (A1)に代えて製造例 Al 1のポリアミド 66 (Al 1)を用いる以外は、 実施例 A1と同様に実施した。二軸押出機での溶融混練は、安定して実施できた。マ スターバッチの色調は白く良好であった。評価結果を表 5に示す。
[実施例 A10]
ポリアミド 66 (A1)に代えて製造例 A12のポリアミド 66Z6I (1)を用いる以外は、実 施例 A1と同様に実施した。二軸押出機での溶融混練は、安定して実施できた。マス ターバッチの色調は白く良好であった。評価結果を表 5に示す。
[表 4]
Figure imgf000033_0001
954 1 Ji
Figure imgf000033_0002
エチレンビ;^テアル ィド
d O I O I O
5 - 羅 I I I OOO
|〇
0 8BS o
[006 造に用いるポリアミドの水分率を本発明で規定する ターバッチの色調、銅析出性、金属腐食性が改善 [0061 3〜A10
少なくとも 1つのアミド基を有する有機化合物の混
Figure imgf000034_0001
合物の種類を 例八11〜八19、比較例 A3〜A10のマスターバッチを製 laレ /こ。
得た。二軸押出機での溶融混練は、安定して実施できた。マスターバッチの色調は 白く良好であった。評価結果を表 6に示す。
[実施例 A13]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A16の顆粒 (A4) 24 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、安定して実施できた。マスターバッチの色調は 白く良好であった。評価結果を表 6に示す。
[実施例 A14]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A16の顆粒 (A4) 50 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。非常に稀であるが一部ストランド切れが発生したが、運転には支障がなく実施 できた。マスターバッチの色調は白く良好であった。評価結果を表 6に示す。
[比較例 A3]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A16の顆粒 (A4) 75 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、ストランド切れが非常に多く生産できなつた。評 価結果を表 6に示す。
[実施例 A15]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A17の混合物 (A1) 2 4重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、安定して実施できた。マスターバッチの色調は 白く良好であった。評価結果を表 7に示す。
[実施例 A16]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A18の顆粒 (A5) 24 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、安定して実施できた。マスターバッチの色調は 白く良好であった。評価結果を表 7に示す。
[比較例 A4] 製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A19の顆粒 (A6) 24 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、ストランド切れが一部発生し、不安定であった。 マスターバッチの色調は少し黄色に変色した。評価結果を表 7に示す。
[比較例 A5]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A20の顆粒 (A7) 24 重量部を配合し、実施例 1と同様に二軸押出機で溶融混練してマスターバッチを得 た。二軸押出機での溶融混練は、ストランド切れが非常に多く運転が出来な力つた。 評価結果を表 7に示す。
[比較例 A6]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A21の混合物 (A2) 2 4重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、ストランド切れが多ぐ不安定であった。評価結 果を表 7に示す。
[実施例 A17]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A22の顆粒 (A8) 24 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、安定して実施できた。マスターバッチの色調は 白く良好であった。評価結果を表 8に示す。
[実施例 A18]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A23の顆粒 (A9) 24 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、安定して実施できた。マスターバッチの色調は 白く良好であった。評価結果を表 8に示す。
[実施例 A19]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A24の顆粒 (A10) 24 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、安定して実施できた。マスターバッチの色調は 白く良好であった。評価結果を表 8に示す。
[比較例 A7]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A25の顆粒 (Al l) 24 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、安定して実施できた。マスターバッチの色調は 少し黄色に変色した。評価結果を表 8に示す。
[比較例 A8]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A26の顆粒 (A12) 24 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、安定して実施できた。マスターバッチの色調は 少し黄色に変色した。評価結果を表 8に示す。
[比較例 A9]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A27の顆粒 (A13) 24 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、安定して実施できた。マスターバッチの色調は 少し黄色に変色した。評価結果を表 8に示す。
[比較例 A10]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、製造例 A28の顆粒 (A14) 24 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してマスターバッチを 得た。二軸押出機での溶融混練は、安定して実施できた。マスターバッチの色調は 少し黄色に変色した。評価結果を表 8に示す。
[表 6] マスターパ';^ ¾6マスターパ
Figure imgf000038_0001
Figure imgf000038_0002
EBS":ェチレ テ 7Uル TVィ H E6Sエチレンビ ^テ 71カレ 7ィド
Figure imgf000039_0001
[0065] 表 6〜表 8より、本発明で規定する数値範囲内の水分率のポリアミドを用いたマスタ バッチの製造方法においては、ハロゲン化合物の最大粒子径、有機化合物の種 類の最適化することにより、マスターバッチの生産安定性、色調、銅析出性、金属腐 食性や、マスターバッチペレットの表面状態が改善されることが確認できた。
[0066] 5.実施例 A20 A23、比較例 A11 A17
第 2のポリアミドとマスターバッチとを混合してなるポリアミド樹脂組成物を製造した。
[実施例 A20]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、実施例 A1のマスターバッチ 2 重量部を配合した。実施例 A1と同様に二軸押出機で溶融混練してポリアミド樹脂組 成物を得た。該ポリアミド榭脂組成物は、ポリアミド 66が 100重量部に対して、 Culが 0. 0235重量 KI力 SO. 396重量咅 ^エチレンビスステアリノレアミド、力 0. 0470重量 部になる。評価結果を表 9に示す。
[実施例 A21] 製造例 A2のポリアミド 66 (A2) 100重量部に対して、実施例 A16のマスターバッチ 2重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してポリアミド榭脂組 成物を得た。各化合物の配合量は実施例 A20のポリアミド榭脂組成物と同様となる。 評価結果を表 9に示す。
[実施例 A22]
製造例 A1のポリアミド 66 (A1) 100重量部に対して、実施例 A1のマスターバッチ 2 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してポリアミド榭脂組成 物を得た。各化合物の配合量は実施例 A20のポリアミド榭脂組成物と同様となる。評 価結果を表 9に示す。
[実施例 A23]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、実施例 Al lのマスターバッチ 0. 67重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してポリアミド榭 脂組成物を得た。該ポリアミド榭脂組成物は、ポリアミド 66が 100重量部に対して、 C ul力 SO. 0240重量咅、 KI力 SO. 120重量咅^エチレンビスステアリノレアミド、力 0. 0160 重量部になる。評価結果を表 9に示す。
[比較例 Al l]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、比較例 A1のマスターバッチ 2 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してポリアミド榭脂組成 物を得た。各化合物の配合量は実施例 A20のポリアミド榭脂組成物と同様となる。評 価結果を表 10に示す。
[比較例 A12]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、比較例 A2のマスターバッチ 2 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してポリアミド榭脂組成 物を得た。各化合物の配合量は実施例 A20のポリアミド榭脂組成物と同様となる。評 価結果を表 10に示す。
[比較例 A13]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、比較例 A4のマスターバッチ 2 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してポリアミド榭脂組成 物を得た。各化合物の配合量は実施例 A20のポリアミド榭脂組成物と同様となる。評 価結果を表 10に示す。
[比較例 A14]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、比較例 A6のマスターバッチ 2 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してポリアミド榭脂組成 物を得た。各化合物の配合量は実施例 A20のポリアミド榭脂組成物と同様となる。評 価結果を表 10に示す。
[比較例 A15]
製造例 A2のポリアミド 66 (A2) 100重量部に対して、比較例 A9のマスターバッチ 2 重量部を配合し、実施例 A1と同様に二軸押出機で溶融混練してポリアミド榭脂組成 物を得た。各化合物の配合量は実施例 A20のポリアミド榭脂組成物と同様となる。評 価結果を表 10に示す。
[比較例 A16]
製造例 A3のポリアミド 66 (A3) 100重量部に対して、製造例 A21の混合物 (A2)を 配合し、ドライブレンドを実施した。各化合物の配合量は実施例 A20のポリアミド榭脂 組成物と同様となるようにブレンドした。評価結果を表 10に示す。
[比較例 A17]
へキサメチレンジァミンとアジピン酸の等モル塩水溶液(50重量0 /0濃度)を用い、公 知の溶融重合を行った。重合途中の工程で、 Culと KIの混合水溶液を添加した。得 られたポリアミド 66ペレット表面にエチレンビスステアリルアミドを添加した。各化合物 の配合量は実施例 A20のポリアミド榭脂組成物と同様となるように添加した。該ポリア ミド 66榭脂組成物の相対粘度は 2. 8、水分率は 0. 10重量%、カルボキシル基濃度 比率は 0. 625であった。評価結果を表 10に示す。
[表 9] o
m α.ιο m
bfi
SI
闘v:
比糊比比棚細比 J
ポポポドポポアミドドリドポリアミリリアミミドリアミリミドアア
ポ第ドリアミの
I »£例較例例j比糊較例の比の比比較例のの比
バタ ^マス'- パ浪合物パタチパタチタチマスタタバチスマスママススッマッッーー—ーー
·重%
ο リ
S
成《滞《時《析出性形の
ジヴ性期射長エンー
8 お &f ae 犖
[0069] 表 9及び表 10より、本発明の製造方法で製造したマスターバッチから得られたポリ アミド榭脂組成物の成形品は、銅析出性、長期耐熱エージング性、色調が改善され ていることが確認できた。
産業上の利用可能性
[0070] 本発明の製造方法で製造されたマスターバッチは、耐熱用途で使用されるポリアミ ド榭脂の分野で好適に利用できる。

Claims

請求の範囲
[I] a)水分率が 0. 05-2. 0重量%であるポリアミド 100重量部、
b)少なくとも 1つのアミド基を有する有機化合物 0. 1〜: LO重量部、
c)最大粒子径が 50 m以下の銅化合物 0. 1〜5重量部、及び
d)最大粒子径が 50 μ m以下のハロゲン化合物(ただし、ハロゲン化銅を除く) 1〜5 0重量部
を溶融混練法により混合するマスターバッチの製造方法。
[2] 製造されるマスターバッチのハロゲンと銅のモル比(ノヽロゲン Z銅)が、 3〜30にな るように原料を配合する請求項 1記載のマスターバッチの製造方法。
[3] 銅化合物及び Z又はハロゲンィ匕合物 (ただし、ハロゲン化銅を除く)の最大粒子径
1S 20 m以下である請求項 1又は 2に記載のマスターバッチの製造方法。
[4] ポリアミドのカルボキシル基濃度比率( [COOH] / ( [COOH] + [NH ] ) )が、 0.
2
55〜0. 80である請求項 1から 3の!、ずれかに記載のマスターバッチの製造方法。
[5] ポリアミドの水分率力 0. 1〜1. 5重量%である請求項 1から 4のいずれ力 1項に記 載のマスターノツチの製造方法。
[6] 少なくとも 1つのアミド基を有する有機化合物が、モノアマイド類、置換アマイド類、メ チロールアマイド類及びビスアマイド類力もなる群力 選ばれる少なくとも 1つの化合 物である請求項 1から 5のいずれか 1項に記載のマスターバッチの製造方法。
[7] 銅化合物及び Z又はハロゲンィ匕合物(ただし、ハロゲン化銅を除く)と少なくとも 1つ のアミド基を有する有機化合物を予め混合し、粉砕する請求項 1から 6の 、ずれか 1 項に記載のマスターバッチの製造方法。
[8] 請求項 1から 7のいずれ力 1項に記載の製造方法により製造されるマスターバッチ。
[9] 水分率が 0. 06〜1重量%である請求項 8に記載のマスターバッチ。
[10] 第 2のポリアミド 100重量部に対して、請求項 8又は 9に記載のマスターバッチ 0. 1
〜 100重量部を混合してなるポリアミド榭脂組成物。
[II] 水分率が 0. 01〜1重量%である請求項 10に記載のポリアミド榭脂組成物。
PCT/JP2007/057868 2006-04-11 2007-04-10 ポリアミドマスターバッチの製造方法 WO2007117007A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800133251A CN101421339B (zh) 2006-04-11 2007-04-10 聚酰胺母料的制造方法
EP07741304.5A EP2017298B1 (en) 2006-04-11 2007-04-10 Method for producing polyamide masterbatch
US12/296,452 US7960451B2 (en) 2006-04-11 2007-04-10 Method for producing polyamide masterbatch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-108518 2006-04-11
JP2006108518 2006-04-11

Publications (1)

Publication Number Publication Date
WO2007117007A1 true WO2007117007A1 (ja) 2007-10-18

Family

ID=38581279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057868 WO2007117007A1 (ja) 2006-04-11 2007-04-10 ポリアミドマスターバッチの製造方法

Country Status (4)

Country Link
US (1) US7960451B2 (ja)
EP (1) EP2017298B1 (ja)
CN (1) CN101421339B (ja)
WO (1) WO2007117007A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321931A (zh) * 2021-06-11 2021-08-31 上海珐工材料科技有限公司 一种添加在pa66连续聚合中具有耐热稳定特征的铜母粒及制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100115796A (ko) 2008-03-12 2010-10-28 아사히 가세이 케미칼즈 가부시키가이샤 폴리아미드, 폴리아미드 조성물 및 폴리아미드의 제조 방법
CN101613527B (zh) * 2009-07-29 2011-02-09 东莞市意普万工程塑料有限公司 一种耐醇解尼龙复合材料及其制备方法
WO2011030742A1 (ja) 2009-09-11 2011-03-17 旭化成ケミカルズ株式会社 ポリアミド及びポリアミド組成物
KR101530464B1 (ko) 2011-01-07 2015-06-19 아사히 가세이 케미칼즈 가부시키가이샤 공중합 폴리아미드
WO2012115171A1 (ja) 2011-02-24 2012-08-30 三菱瓦斯化学株式会社 マスターバッチ、およびマスターバッチを利用したポリアミド樹脂組成物の製造方法
US9090739B2 (en) 2011-03-15 2015-07-28 Asahi Kasei Chemicals Corporation Polyamide and polyamide composition
US20160032180A1 (en) * 2012-11-26 2016-02-04 Agienic, Inc. Antimicrobial Resin Coated Proppants
US10316171B2 (en) * 2013-09-23 2019-06-11 Agienic, Inc. Thermal stabilization of polymers using functionalized particles of transition metal compounds
US9951202B2 (en) * 2014-10-15 2018-04-24 Asahi Kasei Kabushiki Kaisha Polyamide resin composition and molded article
CN105754331B (zh) * 2014-12-18 2019-01-11 旭化成株式会社 聚酰胺树脂组合物及成型体
JP2017190405A (ja) * 2016-04-14 2017-10-19 旭化成株式会社 ポリアミド樹脂組成物及び成形体
TW201811976A (zh) 2016-08-08 2018-04-01 美商堤康那責任有限公司 用於散熱器之導熱聚合物組合物
US10309901B2 (en) * 2017-02-17 2019-06-04 International Business Machines Corporation Water-sensitive fluorophores for moisture content evaluation in hygroscopic polymers
US10385477B2 (en) * 2018-01-23 2019-08-20 Flourish Innovative Textile Co., Ltd. Method for preparing nylon yarns
CN111771019B (zh) * 2018-02-26 2022-10-28 东丽株式会社 聚酰胺610复丝
CN110283311B (zh) * 2019-06-26 2021-09-24 平顶山神马帘子布发展有限公司 一种尼龙66工业丝生产中减少铜析出的生产系统及生产方法
CN115427481A (zh) * 2020-02-18 2022-12-02 艾德凡斯化学公司 基于聚酰胺的母料制剂
CN113248703B (zh) * 2021-06-11 2022-07-01 上海珐工材料科技有限公司 一种碘化亚铜悬浮液及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148461A (ja) 1974-05-21 1975-11-28
JPH0718176A (ja) * 1993-06-29 1995-01-20 Asahi Chem Ind Co Ltd ポリアミド樹脂組成物
US5686513A (en) 1996-09-09 1997-11-11 Zimmer Aktiengesellschaft Process for the production of stabilizer concentrate for polyamide
JP2000154472A (ja) * 1998-11-19 2000-06-06 Unitika Ltd 耐疲労性が良好なポリカプラミド繊維
JP2004211083A (ja) * 2002-12-20 2004-07-29 Asahi Kasei Chemicals Corp 高分子量ポリアミド樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3600890A1 (de) * 1986-01-15 1987-07-16 Bayer Ag Verfahren zur herstellung stabilisierter polyamide
CA2013049A1 (en) * 1989-03-28 1990-09-28 Pieter Gijsman Polyamide 4.6 composition
DE19847626B4 (de) * 1998-10-15 2004-08-19 L. Brüggemann KG Mit Kupfersalz und aliphatischem halogeniertem Phosphat stabilisierte Polyamidzusammensetzung
JP2001186199A (ja) 1999-12-24 2001-07-06 Fujitsu Ltd 伝送速度検出回路及び光受信装置
AU3229901A (en) * 2000-02-16 2001-08-27 Asahi Kasei Kabushiki Kaisha Polyamide resin composition
JP4526911B2 (ja) * 2004-09-28 2010-08-18 旭化成ケミカルズ株式会社 ポリアミドマスターバッチペレット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148461A (ja) 1974-05-21 1975-11-28
JPH0718176A (ja) * 1993-06-29 1995-01-20 Asahi Chem Ind Co Ltd ポリアミド樹脂組成物
US5686513A (en) 1996-09-09 1997-11-11 Zimmer Aktiengesellschaft Process for the production of stabilizer concentrate for polyamide
JP2000154472A (ja) * 1998-11-19 2000-06-06 Unitika Ltd 耐疲労性が良好なポリカプラミド繊維
JP2004211083A (ja) * 2002-12-20 2004-07-29 Asahi Kasei Chemicals Corp 高分子量ポリアミド樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2017298A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321931A (zh) * 2021-06-11 2021-08-31 上海珐工材料科技有限公司 一种添加在pa66连续聚合中具有耐热稳定特征的铜母粒及制备方法

Also Published As

Publication number Publication date
EP2017298A4 (en) 2011-06-22
US20090281210A1 (en) 2009-11-12
CN101421339B (zh) 2012-04-11
CN101421339A (zh) 2009-04-29
EP2017298A1 (en) 2009-01-21
US7960451B2 (en) 2011-06-14
EP2017298B1 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2007117007A1 (ja) ポリアミドマスターバッチの製造方法
JP4854977B2 (ja) ポリアミド樹脂組成物の製造方法
JP5497921B2 (ja) 共重合ポリアミド
JP4693435B2 (ja) ポリアミド樹脂組成物およびその製造方法
JP5183030B2 (ja) ポリアミド樹脂組成物およびその製造方法
JP2004091778A (ja) ポリアミド樹脂組成物およびその製造方法
JP2007246583A (ja) ポリアミド樹脂組成物およびその製造方法
JP4162252B2 (ja) ポリアミドマスターバッチの製造方法
JP4963850B2 (ja) ポリアミド樹脂組成物およびその製造方法
JP5621449B2 (ja) ポリアミド樹脂組成物ペレットの製造方法
JP2007246581A (ja) ポリアミド樹脂組成物およびその製造方法
JP4526911B2 (ja) ポリアミドマスターバッチペレット
JP5013764B2 (ja) 難燃性ポリアミド樹脂組成物及び製造方法
JP2015129243A (ja) ポリアミド組成物及び成形品
JP5742287B2 (ja) パージ方法
JP6678424B2 (ja) ポリアミド樹脂組成物及び成形体
JP2008063512A (ja) ポリ乳酸アイオノマー樹脂及びその製造法、ポリ乳酸アイオノマー樹脂組成物。
JP2007246582A (ja) ポリアミド樹脂組成物およびその製造方法
JP2016138256A (ja) ポリアミド樹脂組成物を含む成形体
JP6042114B2 (ja) 共重合ポリアミド及び共重合ポリアミド組成物
JP2007246647A (ja) ポリアミド樹脂組成物およびその製造方法
JP2006225592A (ja) ポリアミド樹脂組成物及びその製造方法
JP4235878B2 (ja) 耐熱ポリアミド樹脂組成物の製造方法
JP2004307589A (ja) 難燃性ポリアミド樹脂組成物
JP2016079274A (ja) ポリアミド樹脂組成物及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741304

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12296452

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780013325.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007741304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007741304

Country of ref document: EP