WO2007114413A1 - 靭性と溶接性に優れた機械構造用高強度シームレス鋼管及びその製造方法 - Google Patents

靭性と溶接性に優れた機械構造用高強度シームレス鋼管及びその製造方法 Download PDF

Info

Publication number
WO2007114413A1
WO2007114413A1 PCT/JP2007/057360 JP2007057360W WO2007114413A1 WO 2007114413 A1 WO2007114413 A1 WO 2007114413A1 JP 2007057360 W JP2007057360 W JP 2007057360W WO 2007114413 A1 WO2007114413 A1 WO 2007114413A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
toughness
less
weldability
cooling
Prior art date
Application number
PCT/JP2007/057360
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Shinohara
Tetsuo Ishizuka
Kazuhiro Inoue
Bunshi Kato
Teruhisa Takamoto
Junichi Okamoto
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP07740796A priority Critical patent/EP2028284B1/en
Priority to US12/225,579 priority patent/US20090065102A1/en
Priority to CN200780011122.9A priority patent/CN101410542B/zh
Publication of WO2007114413A1 publication Critical patent/WO2007114413A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a machine structural member, in particular, a seamless steel pipe suitable for a structural member such as a cylinder, a bush, and a boom, and a mechanical member such as a shaft, and a manufacturing method thereof.
  • Machine parts used in automobiles and industrial machines are given predetermined mechanical properties by tempering and heat treatment after steel bars are forged and cut into a predetermined shape.
  • steel pipes having the required mechanical properties are used as raw materials, and there are increasing cases of reducing manufacturing costs by shortening the forging process and omitting the heat treatment process.
  • steel pipes are more expensive than bar steels, and since seamless steel pipes are particularly expensive to manufacture, even if steel pipes are used as the material for hollow-shaped parts, the cost reduction effect may not be sufficient. .
  • the steel pipes described in Japanese Patent No. 4 9 4 6, Japanese Patent Laid-Open No. 1 1 1 3 6 0 1 7, and Japanese Patent Laid-Open No. 2 0 4-2 9 2 8 5 7 all have high C content, A large amount of nitride-forming elements are added to improve the hardenability and precipitation strengthening ability and to obtain a predetermined strength.
  • the present invention has been made in view of the current situation as described above, and is particularly suitable for structural members such as cylinders, bushes, booms, and mechanical members such as shafts, and has high strength, high toughness, and
  • the present invention provides a seamless steel pipe for machine structural members that requires weldability, and provides a method for producing the steel pipe at low cost without tempering.
  • the present inventors have found that an optimum structure capable of achieving both high strength and high toughness across the entire plate thickness direction even in an environment where the cooling rate differs between the outer surface and the inner surface due to accelerated cooling only from the outer surface. We examined the combination of chemical components that generate water and the cooling rate and stop temperature of accelerated cooling.
  • the present invention has been made based on the knowledge obtained by such studies, and the gist thereof is as follows.
  • the average particle size of cementite is 40 O nm or less, and the density is 2 XI 0 5 particles / mm 2 or more, (1) or (2) High-strength seamless steel pipe for machine structures with excellent toughness and weldability as described in 1.
  • a steel slab made from the above is pierced and rolled hot, and is formed by a drawing process.
  • the obtained steel pipe is heated from 75 ° C or higher to a temperature T [ Toughness and weldability, characterized by accelerated cooling from the outer surface of the steel pipe and air cooling while rotating in the circumferential direction at a cooling rate V [° CZ s] of 5 to 50 ° CZ s
  • V [° CZ s] 5 to 50 ° CZ s
  • the inventors first examined the metal structure and cementite morphology of the seamless steel pipe for machine structures manufactured by the conventional quenching and tempering process, and the effects on strength and toughness, and obtained the following knowledge.
  • cementite precipitates in the matrix during quenching, and residual austenite ⁇ decomposes into cementite and ferrite ⁇ during tempering.
  • the resulting tempered martensite cocoon structure has an average particle size of cementite cocoons of 50 O nm or more, and a balance between strength and toughness (hereinafter referred to as strength-toughness balance). Also called. )
  • the present inventors assume a process of producing a seamless steel pipe by accelerated cooling without performing tempering treatment, and a metal structure that improves both strength and toughness, and production for obtaining the same. The conditions were examined.
  • the average particle size is 40 O nm or less and the density is 2 X 10 5 pieces / mm 2 or more. It was found that a strength-toughness balance can be obtained.
  • the average grain size of the region surrounded by the large-angle grain boundaries with a misorientation of 15 ° or more is 30. It was found that the strength-toughness balance was improved in the following cases.
  • M n is an essential element for improving the balance between strength and low temperature toughness, and its lower limit is 0.8%. However, if it exceeds 2.5%, the low temperature toughness deteriorates rather, so 2.5% was made the upper limit.
  • T i forms fine T i N and not only refines the structure, but also increases hardenability and contributes to toughness. This effect is small at less than 0.05%, so the lower limit was set to 0.05%. However, if it exceeds 0.035%, coarse TiN and TiC precipitate and the low-temperature toughness deteriorates remarkably, so the upper limit was made 0.035%.
  • Nb not only suppresses recrystallization of austenite during rolling and refines the structure, but also increases hardenability and strengthens the steel. Since this effect is small at less than 0.03%, the lower limit is set to 0.03%. However, if it exceeds 0.04%, the toughness deteriorates due to the formation of coarse Nb precipitates, so the upper limit was made 0.04%.
  • B is an element that increases hardenability and strengthens, and the lower limit for obtaining the effect is 0.0 0 0 3%.
  • the upper limit is set to 0.0 33%.
  • deoxidizing elements Si and A 1 and impurities P, S, and N are limited as follows.
  • S i is a deoxidizing element, but if added in excess, the low temperature toughness is impaired, so the upper limit was made 0.5%. Add A 1 as deoxidizing element In this case, it is not necessary to add S i, and the lower limit may be 0%.
  • a 1 is a deoxidizing element, but if added excessively, coarse A 1 oxides are formed, resulting in low temperature toughness and poor weldability. Therefore, the upper limit is set to 0.05%. did. When Si is added as a deoxidizing element, it is not necessary to add A 1, and the lower limit may be 0%.
  • P is an impurity and lowers toughness, so the upper limit was made 0.015%. From the viewpoint of securing toughness, the P content is preferably 0.0 1% or less.
  • S is an impurity and lowers the toughness, so the upper limit was made 0.08%. From the viewpoint of securing toughness, the S content is preferably not more than 0.005%.
  • N is an impurity, and if it exceeds 0.08%, the toughness is impaired by the formation of coarse TiN and the formation of upper veinite, so the upper limit was made 0.08%. Note that N may contain 0.01% or more because it forms fine nitrides such as TiN and contributes to the refinement of the structure.
  • Ni, Cr, Cu, and Mo may be added.
  • Ni is an element that improves the strength, and is added at 0.1% or more. However, if it exceeds 1.5%, the prayer may be uneven and the structure may become uneven, and the toughness may deteriorate, so the upper limit is set to 1.5%.
  • C r is an element that improves the strength, and is added at 0.1% or more. However, if it exceeds 1.5%, the toughness may deteriorate due to the formation of Cr precipitates, so the upper limit is set to 1.5%.
  • Cu is an element that improves the strength, and is added at 0.1% or more. However, if it exceeds 1.0%, the upper bainite may be generated, and the toughness may be impaired, and the weldability may be deteriorated. Therefore, the upper limit is set to 1.0%.
  • Mo is an element that contributes to increasing the strength. To obtain the effect of improving hardenability, 0.05% or more is added. However, if it exceeds 0.5%, weldability may be impaired, so the upper limit is made 0.5%. Next, the metal structure will be described.
  • the metal structure of the steel of the present invention is a single structure of self-tempered martensite or a mixed structure of self-tempered martensite and lower bainite. Self-tempered martensite and lower bainite are structures obtained by accelerated cooling, and these structures can improve the balance between strength and toughness without tempering.
  • the cooling speed is slower on the inner surface than on the outer surface, so that a high-temperature transformation phase such as bainite is easily generated.
  • the plate when the plate is thick, the steel pipe may be deformed if it is cooled so that the cooling speed of the inner surface is increased. Therefore, it is necessary to control the cooling speed to such an extent that the steel pipe does not deform.
  • the bainitic transformation may occur on the inner surface of the steel pipe, but if it is the lower one, there is no particular problem because the balance of strength and toughness can be secured.
  • steel pipes for machine structures in order to make the entire surface in the plate thickness direction lower, it is necessary to add a large amount of Mo, which may impair the economy.
  • the steel microstructure must be a single structure of self-tempered martensite or a mixed structure of self-tempered martensite and lower bainite.
  • the self-tempered martensite is a structure in which the austenite phase has undergone martensite transformation during accelerated cooling, and is cooled after the accelerated cooling is stopped, and fine cementite precipitates in the lath. is there.
  • the structure obtained by normal tempering is tempered martensi. Compared to this, the cementite of self-tempered martensite is extremely fine.
  • the lower veinite is defined as a structure in which a lath-shaped ferrite is generated during accelerated cooling and fine cementite is precipitated in the lath.
  • Self-tempered martensite and lower bainite are common in that there is no coarse cementite at the grain boundaries and fine cementite in the matrix.
  • the self-tempered martensite and the lower vein are both lath-shaped, but they can be distinguished by the precipitation form of cementite in the lath.
  • the self-tempering martensite has multiple long axis directions of cementite
  • the lower bainite has one long axis direction of cementite.
  • the upper veinite is a structure formed by a mixed structure of acicular cementite and martensite austenite at the lath boundary. Ferrite is not a lath like bainite but a lump. Pearlite is a plate-like cementite precipitated at grain boundaries.
  • the self-tempered martensite and the lower e are 20 0 0 0 0 times using a scanning electron microscope (Scanning Electron Microscope, SEM) Can be determined by observing at a magnification of 5 0 0 0 0 0.
  • SEM Scanning Electron Microscope
  • the average grain size of the region surrounded by large-angle grain boundaries with an orientation difference of 15 ° or more affects the propagation of cracks when fracture occurs. Since the toughness decreases when the large-angle grain boundary average diameter is 30 m or more, the large-angle grain boundary average diameter is preferably 30 m or less from the viewpoint of strength-toughness balance. The smaller the large-angle grain boundary average diameter, the better the balance between strength and toughness.
  • the large-angle grain boundary average diameter can be obtained from the crystal orientation map measured by E B S P.
  • the average particle size of cementite is preferably 400 nm or less. This is because when the average particle size of cementite exceeds 400 nm, toughness decreases. Although the average particle size of cementite is preferably smaller, cementite finer than 30 nm is difficult to discriminate with SEM. Therefore, in the present invention, cementite particles with a particle size of 30 nm or more are difficult to distinguish.
  • the upper limit of the average particle size of it is specified at 400 nm.
  • the density of cementite is 2 ⁇ 10 5 pieces Z mm 2 or more, there is almost no generation of coarse cementite, and a very good balance of strength and toughness can be obtained.
  • the upper limit of the density of cementite candy is not particularly limited, but is inevitably determined by the amount of C added and the average particle size.
  • the conditions for accelerated cooling of a steel pipe having the above chemical components from a temperature of 75 ° C. or higher are important.
  • the cooling rate is for the inner surface of the steel pipe.
  • the stop temperature of accelerated cooling is one of the basic technologies of the present invention. This is because it has a great influence on the precipitation behavior of cementite in the matrix, which is most effective in improving the balance of strength and toughness.
  • Accelerated cooling is performed at the cooling rate V [° C / s] described above, martensitic transformation is performed, and acceleration cooling is stopped at a temperature T [° C] shown by the following formula (1). Evening light precipitates in the matrix and self-tempered martensite can be obtained.
  • the lower limit was set to less than 1550 ° C. 1 5 0 ⁇ T ⁇ 8 2 1. 3 4 ⁇ v- 0 3 1 1 2 (1)
  • the range of the cooling rate in the accelerated cooling of the steel pipe will be described. If the cooling rate is less than 5 ° C // s, upper veins and ferrites are generated.On the other hand, if it exceeds 50 ° C / s, uniform cooling becomes difficult, and after cooling, the steel pipe deforms greatly. . Therefore, the accelerated cooling rate was limited to 5 to 50 ° C / s. Note that when the cooling rate is within the above range, it is easy to generate lower veins when the cooling rate is slow.
  • the temperature at which the accelerated cooling of the steel pipe is started is limited to 7500 ° C or more is that the metal structure at the start of the accelerated cooling is an austenite single phase. If the temperature of the steel pipe at the time of starting the accelerated cooling is too high, the austenite grains become coarse and the toughness may be lowered. Therefore, the accelerated cooling start temperature is preferably 9500 ° C. or lower.
  • the cooling start temperature and cooling stop temperature of the inner surface of the steel pipe can be measured before and after accelerated cooling, that is, by measuring the temperature of the inner surface of the steel pipe with a contact thermometer on the inlet side and outlet side of the cooling device.
  • the cooling rate can be calculated from the passing speed of.
  • the temperature of the outer surface of the steel pipe may be measured with a radiation thermometer, and the temperature of the inner surface of the steel pipe may be obtained by heat conduction calculation.
  • thermocouples are attached to the inner and outer surfaces of steel pipes having various outer diameters and wall thicknesses, and cooling curves corresponding to various heating temperatures, refrigerant ejection conditions, and cooling times are created. Can also be determined.
  • the steel pipe of the present invention is a seamless steel pipe, and the pipe making process is generally hot piercing, rolling, and drawing, but after cold piercing by machining, it is heated. It may be produced by a hot extrusion press. Further, it may be reduced in diameter.
  • the steel pipe may be heated by a heating furnace or induction heating, and the steel slab is hot pierced, rolled, and stretched. If the temperature of the steel pipe is 7500 ° C or higher after it is piped, it can be accelerated and cooled inline as it is.
  • the method of accelerated cooling was limited to the method of cooling only from the outer surface while rotating the steel pipe in the circumferential direction. Thereby, it is possible to cool uniformly in the circumferential direction and the longitudinal direction.
  • the cooling method can be selected arbitrarily, such as a method in which water is applied directly to the outer surface of the steel pipe, a method in which water is applied in the tangential direction of the outer circumference of the steel pipe, or mist cooling.
  • the applicable steel pipe shape is preferably a shape whose length is at least five times the outer diameter. This is because, when the length is less than 5 times the outer diameter, when accelerated cooling from the outer surface is performed by water cooling, the water also penetrates into the inner surface of the steel pipe, resulting in uneven cooling and bending of the steel pipe. Because there is.
  • the length of the steel pipe is preferably 10 times or more of the outer diameter.
  • Specimens are taken from any position in the circumferential direction, longitudinal direction, and thickness direction of the manufactured steel pipe, embedded in resin, mirror-polished, etched, and the maximum magnification is 50 by SEM.
  • the structure was observed as a 100-fold magnification, and the structure was classified into self-tempered martensite (M), lower bainite (LB), upper bainite (UB), and ferrite (F).
  • image analysis was performed using 10 SEM micrographs with a magnification of 100 000 to 500 000, and the average value of the equivalent circle radius and unit area (mm 2) ) The number of hits was obtained.
  • the metal structure was observed with an optical microscope, and Vickers hardness was measured at 10 kgf according to JISZ2244.
  • the surface of the sample embedded in the resin was electropolished and the crystal orientation was measured using EBSP mounted on the SEM to identify grain boundaries with an orientation difference of 15 ° or more.
  • the average value of the circle-equivalent radii in the enclosed area was determined by image analysis, and is shown in the column for the average diameter of large-angle grain boundaries in Table 2.
  • the tensile test was conducted according to JISZ 2 2 4 1 using No. 11 test piece of JISZ 2 2 0 1, and the yield strength and tensile strength were measured.
  • the toughness was evaluated by performing a Charpy impact test in accordance with JISZ 2 2 4 2 using a 2 mmV notch full-size test piece at 40 ° C and measuring the absorbed energy (v E_ 4 Q [J ]).
  • Weldability is achieved by welding steel pipes to each other at room temperature using a welding wire having a strength of 7800 MPa class, carbon dioxide gas welding, 2 After 4 hours, the presence of cracks was inspected by visual inspection, and those without cracks were accepted.
  • the shape (bending) of the steel pipe was measured at room temperature.
  • a steel pipe with a length of 6.5 m is placed in contact with the flat plate at three ends, one end, a distance from the end of 0.5 m, and a distance of 1 m.
  • the maximum amount of float at the opposite end of the steel pipe was measured while rotating the steel pipe.
  • the maximum float at the end of the steel pipe is the height from the bottom flat plate at the end of the steel pipe that has been lifted.
  • Steel pipes with a maximum float of 10 mm or less at the end of the steel pipe were accepted as steel pipe shapes.
  • Table 2 The results are shown in Table 2.
  • the underline in Table 2 means outside the scope of the present invention or outside the preferred range.
  • Nos. 1 to 13 as examples of the present invention were steel pipes manufactured under appropriate accelerated cooling conditions, and had an appropriate metal structure and strength and toughness required as a steel pipe for mechanical structures.
  • No. 14 is an example in which the amount of C, B, and Ni was high, and the accelerated cooling stop temperature was high, so that the upper vane microstructure was formed and the toughness was lowered and the weldability was also lowered. .
  • N o. 15 has a low C content, insufficient hardenability, and a high acceleration / cooling stop temperature, so that part of the upper vane structure is formed and the toughness is reduced. This is an example where the shape deteriorates due to the high cooling rate.
  • No. 16 is an example in which the amount of P is too high and the accelerated cooling start temperature is low, so that ferriting occurs and the toughness is lowered.
  • No. 17 is an example in which the Si content was too high, resulting in the formation of upper veinite and poor toughness.
  • No. 18 is an example in which the N content, Cu content, and S content are too high, and the cooling rate is slow, so that the upper vane is formed and the toughness is impaired and the weldability is also reduced. .
  • No. 19 is too high in A1 and Nb, and the accelerated cooling stop temperature is high, so the upper bainite is generated and the toughness is impaired, and because A 1 is excessively contained, the weldability is also low. This is a bad example.
  • No. 20 is an example where the cooling rate was too slow, and No. 2 1 and 25 were examples where the upper cooling was generated and the toughness was reduced because the accelerated cooling stop temperature was too high. .
  • No. 2 2 and 2 4 are examples in which the cooling rate was too high and the accelerated cooling stop temperature was high, resulting in a mixed structure of tempered martensite and upper bainite, low toughness, and poor shape. is there.
  • N o. 2 3 has an accelerated cooling start temperature that is too low to produce Ferai This is an example of poor toughness.
  • high-strength seamless steel pipes for machine structures excellent in toughness and weldability suitable for machine structural members, in particular, structural members such as cylinders, bushes, booms, and mechanical members such as shafts, And it becomes possible to provide the method of manufacturing this steel pipe cheaply. Therefore, the industrial contribution of the present invention is extremely remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

質量%で、C :0.03~0.1%未満、Mn:0.8~2.5%、Ti:0.005~0.035%、Nb:0.003~0.04%、B :0.0003~0.003%を含有し、Si:0.5%以下、Al:0.05%以下、P :0.015%以下、S :0.008%以下、N :0.008%以下に制限し、さらに、Ni:0.1~1.5%、Cr:0.1~1.5%、Cu:0.1~1.0%、Mo:0.05~0.5%の1種又は2以上を含有し、残部Fe及び不可避的不純物からなり、金属組織が、自己焼き戻しマルテンサイトの単独組織、又は、自己焼き戻しマルテンサイトと下部ベイナイトとの混合組織であることを特徴とする靭性と溶接性に優れた機械構造用高強度シームレス鋼管。

Description

靭性と溶接性に優れた機械構造用高強度シームレス鋼管及びその製 造方法
技術分野
本発明は、 機械構造部材、 特に、 シリンダー、 ブッシュ、 ブーム 等の構造部材、 及び、 シャフ明ト等の機械用部材に好適なシームレス 鋼管、 及び、 その製造方法に関する。
田 背景技術
自動車や産業機械に使用される機械部品には、 棒鋼を、 鍛造、 切 削加工して所定の形状とした後、 調質熱処理により、 所定の機械的 性質が付与される。 近年では、 中空形状部品ついては、 必要とされ る機械的性質を有する鋼管を素材として用い、 鍛造工程の短縮及び 熱処理工程の省略による製造コス トの低減を図る場合も増えてきて いる。
. しかし、 一般に、 棒鋼よりも鋼管の方が高価であり、 特にシーム レス鋼管は製造コス トが高いため、 中空形状部品の素材として鋼管 を用いても、 コス トダウンの効果が十分でないことがある。
そこで、 製造コス トを低減した安価な鋼管の提供が検討されてお り、 熱間製管後の調質熱処理を省略した、 いわゆる非調質型の機械 部品用鋼管及び構造用鋼管が提案されている (例えば、 特開平 5— 2 0 2 4 4 7号公報、 特開平 1 0 — 1 3 0 7 8 3号公報、 特開平 1 0 — 2 0 4 5 7 1号公報、 特開平 1 0 — 3 2 4 9 4 6号公報、 特開 平 1 1 一 3 6 0 1 7号公報、 特開 2 0 0 4— 2 9 2 8 5 7号公報、 特開 2 0 0 1 — 2 4 7 9 3 1号公報、 参照) 。 しかし、 特開平 5— 2 0 2 4 4 7号公報、 特開平 1 0— 1 3 0 7 8 3号公報、 特開平 1 0— 2 0 4 5 7 1号公報、 特開平 1 0 — 3 2 4 9 4 6号公報、 特開平 1 1一 3 6 0 1 7号公報、 特開 2 0 0 4— 2 9 2 8 5 7号公報に記載の鋼管は、 いずれも、 C量が高く、 炭窒 化物生成元素を多量に添加して、 焼入性や析出強化能を向上させ、 所定の強度を得ようとするものである。
そのため、 合金コストが高くなり、 また、 溶接時の割れ発生を防 止するための予熱などが必要になり、 生産性を損なうという問題が ある。
特開 2 0 0 1 — 2 4 7 9 3 1号公報に記載の方法は、 熱間圧延を 6 0 0〜 7 5 0 °Cという、 かなり低い温度で行う ことによって金属 組織を微細化し、 強度を向上させるものである。 低温圧延は、 厚板 圧延では一般的な技術となっているものの、 シームレス圧延を低温 で行うと、 工具との接触により疵ゃ焼き付きが発生しやすい等の問 題があることから、 現実には適用範囲が大きく制限されている。
また、 シームレス鋼管を熱間加工後、 加速冷却することにより強 度を向上させる技術が提案されている (例えば、 特許 3 5 0 3 2 1 1号公報、 及び、 特開平 7 — 4 1 8 5 6号公報、 参照) 。 特許 3 5 0 3 2 1 1号公報に記載の方法は、 最終仕上げ圧延後の鋼管の内表 面を放冷し、 外表面を Ar3点以上の温度から 5 0 0〜 4 0 0 °Cまで 1 0〜 6 0 °C/ sで冷却し、 その後放冷するものである。 特開平 7 — 4 1 8 5 6号公報に記載の方法は、 熱間圧延ままで、 直接、 焼入 れ、 又は、 加速冷却するものである。
しかし、 これらは油井管であり、 加速冷却後に焼戻しを行うため 製造コス トが高く、 溶接性を考慮する必要がないため、 0. 1 %以 上の炭素を含有するものである。 これに対して、 機械構造用鋼管の 中で、 シリンダーやブッシュなどに使用される鋼管は、 靭性及び溶 接性を求められることが多く、 炭素量を 0. 1 %未満に制限するこ とが好ましい。 発明の開示
本発明は、 上記のような現状に鑑みてなされたものであり、 特に 、 シリンダー、 ブッシュ、 ブーム等の構造部材、 及び、 シャフ ト等 の機械用部材に好適な、 高強度、 高靭性、 及び、 溶接性が要求され る機械構造部材用シームレス鋼管を提供し、 また、 該鋼管を、 焼戻 しを行う ことなく、 安価に製造する方法を提供するものである。 本発明者らは、 外面からのみの加速冷却により、 外面と内面で、 冷却速度の違いが生じる環境であつても、 板厚方向全面に渡って、 高強度と高靭性を両立できる最適な組織が生成するような化学成分 と、 加速冷却の冷却速度と停止温度の組み合わせを検討した。
本発明は、 このような検討によって得られた知見に基づいてなさ れたものであり、 その要旨とするところは、 以下の通りである。
( 1 ) 質量%で、 C : 0. 0 3〜 0. 1 %未満、 Μ η : 0 · 8 〜 2. 5 %、 T i : 0. 0 0 5〜 0. 0 3 5 %、 N b : 0. 0 0 3 〜 0. 0 4 %、 B : 0. 0 0 0 3〜 0 , 0 0 3 %を含有し、 S i : 0. 5 %以下、 A 1 : 0. 0 5 %以下、 P : 0. 0 1 5 %以下、 S : 0. 0 0 8 %以下、 N : 0. 0 0 8 %以下に制限し、 さらに、 N i : 0. 1〜 1. 5 %、 C r : 0. 1〜 1. 5 %、 C u : 0. 1〜 1. 0 % , M o : 0. 0 5〜 0. 5 %の 1種又は 2種以上を含有し 、 残部 F e及び不可避的不純物からなり、 金属組織が、 自己焼戻し マルテンサイ トの単独組織、 又は、 自己焼戻しマルテンサイ トと下 部べイナィ トとの混合組織あることを特徴とする靭性と溶接性に優 れた機械構造用高強度シームレス鋼管。
( 2 ) 前記金属組織において、 方位差が 1 5 ° 以上の大角粒界 で囲まれる領域の平均径が 3 0 m以下であることを特徴とする上 記 ( 1 ) に記載の靭性と溶接性に優れた機械構造用高強度シームレ ス鋼管。
( 3 ) 前記金属組織において、 セメン夕イ トの平均粒径が 4 0 O n m以下、 密度が 2 X I 05個/ mm2以上であることを特徴とす る上記 ( 1 ) 又は ( 2 ) に記載の靭性と溶接性に優れた機械構造用 高強度シームレス鋼管。
( 4 ) 上記 ( 1 ) 〜 ( 3 ) の何れかに記載の靭性と溶接性に優 れた機械構造用髙強度鋼管の製造方法であって、 上記 ( 1 ) に記載 の化学成分を有する鋼からなる鋼片を、 熱間で、 穿孔、 圧延し、 延 伸工程により造管し、 得られた鋼管を、 7 5 0 °C以上の温度から、 下記 ( 1 ) 式を満足する温度 T [°C] まで、 5〜 5 0 °CZ s の冷却 速度 V [°CZ s ] で、 円周方向に回転させながら、 鋼管の外面から 加速冷却し、 空冷することを特徴とする靭性と溶接性に優れた機械 構造用高強度鋼管の製造方法。
1 5 0 < T < 8 2 1. 3 4 X V -。.3 ) 1 2 … ( 1 ) 発明を実施するための最良の形態
本発明者らは、 まず、 従来技術である焼入れ一焼戻し処理で製造 した機械構造用シームレス鋼管の金属組織及びセメンタイ トの形態 と、 強度及び靭性への影響について検討を行い、 以下の知見を得た 焼入れ一焼戻し処理によって鋼管を製造する場合、 焼入れの際に セメンタイ トが母相内に析出し、 焼戻しの際に、 残留オーステナィ 卜がセメンタイ トとフェライ 卜に分解する。 これにより得られる焼 戻しマルテンサイ 卜組織は、 セメンタイ 卜の平均粒径が 5 0 O nm 以上になり、 強度と靭性とのバランス (以下、 強度ー靭性バランス ともいう。 ) に劣る。
次に、 本発明者らは、 シームレス鋼管を、 焼戻し処理を施すこと なく、 加速冷却して製造する工程を想定し、 強度及び靭性を共に向 上させる金属組織、 及び、 それを得るための製造条件について検討 を行った。
その結果、 鋼の金属組織を、 鋼組成と加速冷却の条件を最適化す ることにより、 セメンタイ トを粒内に微細に析出させた組織、 特に 、 自己焼戻しマルテンサイ ト、 又は、 下部べイナイ トを含む自己焼 戻しマルテンサイ トとすることにより、 強度ー靭性バランスが良好 になるという知見を得た。
さらに、 セメンタイ トの形態と、 強度及び靭性との関係を詳細に 調査した結果、 平均粒径が 4 0 O nm以下、 密度が 2 X 1 05個 / mm2以上であると、 極めて良好な強度ー靭性バランスが得られる ことがわかった。
また、 強度ー靭性バランスの観点から、 粒径制御も重要であるこ とがわかった。 本発明では、 自己焼戻しマルテンサイ トの単独組織 、 又は、 自己焼戻しマルテンサイ トと下部べイナイ トとの混合組織 を有する鋼の結晶方位マップを、 Electron Back Scattering Patte rn (E B S Pという。 ) によって作成し、 強度ー靭性バランスの関 係を調査した。
その結果、 方位差 1 5 ° 以上の大角粒界で囲まれる領域の平均粒 径 (以下、 大角粒界平均径ともいう。 ) が 3 0
Figure imgf000006_0001
以下の場合、 強 度ー靭性バランスが向上することが判明した。
以下、 本発明について、 詳細に説明する。
本発明において、 鋼管の化学成分を限定した理由を述べる。 なお 、 以下に示す 「%」 は、 特段の説明がない限り、 「質量%」 を意味 する。 c : cは、 強度向上に極めて有効な元素であり、 目標とする強度 を得るためには、 最低、 0. 0 3 %必要である。 しかし、 0. 1 % 以上の Cを含有すると、 低温靭性が著しく低下し、 また、 溶接時の 割れが問題となる。 したがって、 Cは、 0. 0 3〜 0. 1 %未満に 限定する。
M n : M nは、 強度と低温靭性のバランスを向上させるために必 須の元素であり、 その下限は 0. 8 %である。 しかし、 2. 5 %よ りも多いと、 かえって、 低温靭性が大幅に劣化するので、 2. 5 % を上限とした。
T i : T i は、 微細な T i Nを形成し、 組織を微細化するだけで なく、 焼入性を増大させ、 強靭化にも寄与する。 0. 0 0 5 %未満 では、 この効果が小さいので、 下限を 0. 0 0 5 %とした。 しかし ながら、 0. 0 3 5 %より多いと、 粗大な T i N及び T i Cが析出 し、 低温靭性が著しく低下するので、 上限を 0. 0 3 5 %とした。
N b : N bは、 圧延時のオーステナイ トの再結晶を抑制し、 組織 を微細化するだけでなく、 焼入性を増大させ、 鋼を強靭化する。 0 . 0 0 3 %未満では、 この効果が小さいので、 下限を 0. 0 0 3 % とした。 しかし、 0. 0 4 %より多いと、 粗大な N b析出物の生成 によって、 靭性が劣化するので、 上限を 0. 0 4 %とした。
B : Bは、 焼入性を増大し、 強靭化する元素であり、 その効果が 得られる下限は、 0. 0 0 0 3 %である。 一方、 0. 0 0 3 %より 多いと、 かえって、 焼入性が低下し、 一部、 フェライ トが生成して 、 目標強度を満足できないので、 上限を 0. 0 0 3 %とした。
脱酸元素である S i及び A 1 、 並びに、 不純物である P、 S、 及 び、 Nの上限は、 次のように制限する。
S i : S i は、 脱酸元素であるが、 過剰に添加すると低温靭性を 損なうので、 上限を 0. 5 %とした。 脱酸元素として A 1 を添加す る場合には、 S i を添加する必要はなく、 下限は 0 %でもよい。
A 1 : A 1 は、 脱酸元素であるが、 過剰に添加すると、 粗大な A 1酸化物が生成し、 低温靭性を招き、 また、 溶接性を損なうので、 上限を 0. 0 5 %とした。 脱酸元素として S i を添加する場合には 、 A 1 を添加する必要はなく、 下限は 0 %でもよい。
P : Pは、 不純物であり、 靭性を低下させるので、 その上限を 0 . 0 1 5 %とした。 靭性確保の観点から、 Pの含有量は 0. 0 1 % 以下が好ましい。
S : Sは、 不純物であり、 靭性を低下させるので、 その上限を 0 . 0 0 8 %とした。 靱性確保の観点から、 Sの含有量は 0. 0 0 5 %以下が好ましい。
N : Nは、 不純物であり、 0. 0 0 8 %より多いと、 粗大な T i Nの形成、 上部べイナイ トの生成により靭性を損なうので、 上限を 0. 0 0 8 %とした。 なお、 Nは、 T i N等の微細な窒化物を形成 し、 組織の微細化に寄与することがあるので、 0. 0 0 1 %以上を 含有してもよい。
さらに、 N i 、 C r、 C u、 M oの 1種又は 2種以上を添加して もよい。
N i : N i は、 強度を向上させる元素であり、 0. 1 %以上添加 する。 しかし、 1. 5 %を超えると、 偏祈して組織が不均一になり 、 靭性が劣化することがあるので、 上限を 1 . 5 %とする。
C r : C rは、 強度を向上させる元素であり、 0. 1 %以上添加 する。 しかし、 1 . 5 %を超えると、 かえって、 C r析出物の生成 で靭性が劣化することがあるので、 上限を 1 . 5 %とする。
C u : C uは、 強度を向上させる元素であり、 0. 1 %以上を添 加する。 しかし、 1. 0 %を超えると、 上部べイナイ トが生成して 、 靭性を損なう ことがあり、 また、 溶接性が劣化することがあるの で、 上限を 1 . 0 %とする。
M o : M oは、 高強度化に寄与する元素であり、 焼入性の向上効 果を得るには、 0 . 0 5 %以上添加する。 しかし、 0 . 5 %を超え ると、 溶接性を損なうことがあるので、 上限を 0 . 5 %とする。 次に、 金属組織について述べる。 本発明の鋼の金属組織は、 自己 焼戻しマルテンサイ トの単独組織か、 又は、 自己焼戻しマルテンサ イ トと下部べイナイ トの混合組織とする。 自己焼戻しマルテンサイ ト、 下部べイナイ トは、 加速冷却により得られる組織であり、 これ らの組織により、 焼戻しをすることなく、 強度と靭性のバランスを 良好にすることができる。
鋼管を外面から加速冷却する場合、 内面では、 外面よりも、 冷却 速度が遅くなるので、 ベイナイ ト等の高温変態相が生成し易くなる 。 また、 板厚が厚い場合、 内面の冷却速度が大きくなるように冷却 すると、 鋼管が変形することがあるので、 鋼管が変形しない程度に 冷却速度を制御する必要がある。
このような場合、 鋼管の内面側ではべイナイ ト変態が生じること があるが、 下部べイナイ トであれば、 強度ー靭性バランスを確保で きるので、 特に、 問題はない。 ただし、 機械構造用鋼管において、 板厚方向の全面を下部べィナイ トとするには、 M oを多量に添加す る必要があり、 経済性を損なうことがある。
したがって、 鋼の金属組織は、 自己焼戻しマルテンサイ トの単独 組織、 又は、 自己焼戻しマルテンサイ トと下部べイナイ トの混合組 織であることが必要である。
なお、 本発明において、 自己焼戻しマルテンサイ トとは、 加速冷 却中にオーステナイ ト相がマルテンサイ ト変態し、 加速冷却停止後 の放冷で、 微細なセメン夕ィ トがラス内に析出した組織である。 通 常の焼戻し処理によって得られる組織は、 焼戻しマルテンサイ 卜で あるが、 これと比較して、 自己焼戻しマルテンサイ トのセメンタイ 卜は、 極めて微細である。
また、 本発明において、 下部べイナイ トとは、 加速冷却中に、 ラ ス形態のフェライ トが生成し、 かつ、 ラス内に微細なセメンタイ ト がー方向に析出した組織と定義される。 自己焼戻しマルテンサイ 卜 と下部べイナイ トは、 粒界に粗大なセメン夕イ トがなく、 母相内に 、 微細なセメンタイ トを有する点で共通している。
自己焼戻しマルテンサイ トと下部べイナイ トは、 いずれも、 ラス 状の形態であるが、 それらは、 ラス内のセメンタイ トの析出形態に よって区別できる。 すなわち、 セメン夕イ トの長軸方向が複数ある のが、 自己焼戻しマルテンサイ トであり、 下部べイナイ トは、 セメ ンタイ 卜の長軸方向がひとつである。
本発明において定義される自己焼戻しマルテンサイ ト、 及び、 下 部べイナイ トと、 その他の組織との相違点について説明する。
上部べイナイ トは、 ラス境界に、 針状のセメン夕イ トやマルテン サイ トーオーステナイ トの混合組織が生成した組織である。 フェラ イ トは、 ベイナイ トのようなラス状ではなく、 塊状である。 パーラ イ トは、 粒界に板状のセメン夕イ トが析出したものである。
自己焼戻しマルテンサイ トと下部べィナイ トは、 走査型電子顕微 鏡 ( Scann i ng E l ec t ron M i c ro s cope, S E Mとレ う こと力 sある。 ) を用いて、 2 0 0 0倍から 5 0 0 0 0倍の倍率で観察すれば、 判別 可能である。 試料は、 観察面を鏡面研磨し、 ナイタールでエツチン グすればよい。
また、 方位差 1 5 ° 以上の大角粒界で囲まれる領域の平均粒径は 、 破壊が発生した際のき裂の伝播に影響を及ぼす。 大角粒界平均径 が 3 0 m以上になると、 靭性が低下するので、 強度ー靭性バラン スの観点から、 大角粒界平均径は 3 0 m以下が好ましい。 大角粒界平均径は、 小さいほど、 強度ー靭性バランスに優れるが
、 現状の技術では、 3 以下とすることは困難である。 なお、 大 角粒界平均径は、 E B S Pによって測定された結晶方位マップから 求めることができる。
セメンタイ トの平均粒径は、 4 0 0 n m以下が好ましい。 これは 、 セメン夕イ トの平均粒径が 4 0 0 n mを超えると、 靭性が低下す るからである。 セメン夕イ トの平均粒径は、 小さいほど好ましいが 、 3 0 n mよりも微細なセメンタイ トは、 S E Mでの判別が困難で あるので、 本発明では、 粒径が 3 0 n m以上のセメン夕イ トの平均 粒径の上限を、 4 0 0 n mに規定する。
また、 セメンタイ トの密度が、 2 X 1 0 5個 Z m m 2以上であれば 、 粗大なセメンタイ トの生成がほとんどなく、 極めて良好な強度一 靭性バランスを得ることができる。 セメンタイ 卜の密度の上限は、 特に限定しないが、 C添加量と平均粒径によって必然的に決まる。
次に、 製造方法について説明する。 本発明では、 上記化学成分を 有する鋼管を、 7 5 0 °C以上の温度から加速冷却する際の条件が重 要である。 なお、 冷却速度は、 鋼管の内面位置のものである。
加速冷却の停止温度は、 本発明の根幹技術の一つである。 なぜな ら、 強度一靭性バランスの向上に最も有効な、 母相内のセメンタイ トの析出挙動に、 大きく影響を及ぼすからである。
上記の冷却速度 V [ °C / s ] で加速冷却し、 マルテンサイ ト変態 をさせ、 下記式 ( 1 ) で示す温度 T [ °C ] で加速冷却を停止すると 、 その後の空冷によって、 微細なセメン夕イ トが母相内に析出し、 自己焼戻しマルテンサイ トを得ることができる。
一方、 加速冷却の停止温度が 1 5 0 °C以下になると、 その後の空 冷で、 セメン夕イ トが析出せず、 自己焼戻しマルテンサイ トが得ら れない。 したがって、 下限を 1 5 0 °C未満とした。 1 5 0 < T < 8 2 1 . 3 4 χ v - 0 · 3 1 1 2 ··· ( 1 )
次に、 鋼管の加速冷却における冷却速度の範囲について説明する 。 冷却速度が 5 °C // s未満では、 上部べイナイ ト、 フェライ トが生 成し、 一方、 5 0 °C / s を超えると、 均一冷却が困難となり、 冷却 後、 鋼管が大きく変形する。 したがって、 加速冷却速度を 5〜 5 0 °C / s に限定した。 なお、 冷却速度を上記の範囲内とする場合、 冷 却速度が遅い場合に、 下部べイナイ トが生成し易い。
鋼管の加速冷却を開始する温度を 7 5 0 °C以上に限定した理由は 、 加速冷却開始時の金属組織を、 オーステナイ ト単相とするためで ある。 加速冷却を開始する際の鋼管の温度が高すぎると、 オーステ ナイ ト粒が粗大化し、 靭性低下を招く ことがあるので、 加速冷却開 始温度は、 9 5 0 °C以下が好ましい。
鋼管内面の冷却開始温度及び冷却停止温度は、 加速冷却前後、 即 ち、 冷却装置の入側及び出側で、 鋼管内面の温度を接触温度計で測 定すればよく、 その温度差と冷却装置の通過速度から、 冷却速度を 算出することができる。 鋼管外面の温度を放射温度計によって測定 し、 鋼管内面の温度を熱伝導計算によって求めてもよい。
また、 種々の外径及び肉厚を有する鋼管の内面及び外面に熱電対 を取り付け、 種々の加熱温度、 冷媒の噴出条件、 冷却時間に対応す る冷却曲線を作成し、 本発明の範囲内となる条件を決定することも できる。
本発明の鋼管は、 シームレス鋼管であり、 その造管工程は、 熱間 での穿孔一圧延一延伸が、 一般的であるが、 冷間で機械加工によつ て穿孔した後、 加熱して、 熱間押出プレスにより製造してもよい。 また、 さらに、 縮径圧延してもよい。
鋼管は、 一旦、 鋼管製造工程を終了した後、 加熱炉又は誘導加熱 によって昇温してもよく、 鋼片を、 熱間で、 穿孔、 圧延し、 延伸ェ 程によって造管した後、 鋼管の温度が 7 5 0 °C以上であれば、 イン ラインで、 そのまま、 加速冷却することが可能である。
加速冷却の方法は、 鋼管を円周方向に回転させながら外面のみか ら冷却する方法に限定した。 これにより、 円周方向、 長手方向に渡 つて、 均一に冷却することができる。
一方、 鋼管を回転させなければ、 鋼管下面が過剰に冷え、 また、 内面側から冷却すると、 下面に水が貯まり、 冷却速度が均一になら ないという問題がある。
冷却方法については、 水を鋼管の外面に直接当てる方法、 鋼管外 周の接線方向に当てる方法、 ミス ト冷却など、 任意に選定できる。 本発明では、 適用できる鋼管形状を、 長さが外径の 5倍以上の形 状にすることが好ましい。 これは、 長さが外径の 5倍未満の場合、 外面からの加速冷却を水冷によって行う際、 水が鋼管の内面にも侵 入し、 冷却が不均一となって、 鋼管が曲がることがあるためである 。 なお、 確実に均一に加速冷却するためには、 鋼管の長さを、 外径 の 1 0倍以上とすることが好ましい。
(実施例)
表 1 に示す化学成分の鋼を溶製し、 転炉一連続铸造プロセスによ り、 直径 1 7 0 m mのブルームを铸造した。 表 1 において、 空欄は 成分の分析値が検出限界未満であったことを意味する。
これらブルームを 1 2 4 0 °Cに加熱し、 マンネスマン一プラグミ ル方式により穿孔一圧延した後、 9 5 0 °Cに再加熱し、 縮径圧延し た後、 直送で、 リング冷却により外面側から水冷した。
また、 一部の鋼管は、 縮径圧延したシームレス鋼管を室温まで冷 却した後、 9 5 0 °Cに再加熱し、 その後、 リング冷却により外面か ら水冷した。 縮径圧延後の鋼管サイズは 3サイズで、 外径 1 2 6 mm、 肉厚 1 2. 2 mm (小) 、 外径 1 3 8 mm、 肉厚 1 6. 4 mm (中) 、 及 び、 外径 1 4 6 mm、 肉厚 2 0. 6 mm (大) であった。 長さは、 いずれも、 6. 5 mであった。
製造した鋼管の、 円周方向、 長手方向、 及び、 肉厚方向の任意の 位置から試験片を採取して、 樹脂に埋め込み、 鏡面研磨、 エツチン グし、 S EMにより、 最大の倍率を 5 0 0 0 0倍として組織を観察 し、 組織を、 自己焼戻しマルテンサイ ト (M) 、 下部べィナイ ト ( L B) 、 上部べイナイ ト (UB) 、 フェライ ト (F) に分類した。 また、 倍率 1 0 0 0 0〜 5 0 0 0 0倍の S EM組織写真を 1 0枚 用いて画像解析し、 セメン夕イ トの円相当半径の平均値、 及び、 単 位面積 (mm2) 当たりの個数を求めた。
さらに、 金属組織を光学顕微鏡によって観察し、 J I S Z 2 2 4 4に準拠して、 1 0 k g f にてビッカース硬度を測定した。 また、 樹脂に埋め込んだ試料の表面を、 電解研磨し、 S E Mに搭 載された E B S Pを用い、 結晶方位測定を行い、 1 5 ° 以上の方位 差を有する粒界を同定し、 その粒界で囲まれる領域の円相当半径の 平均値を画像解析によって求め、 表 2の大角粒界平均径の欄に示し た。
引張試験は、 J I S Z 2 2 0 1の 1 1号試験片を用いて、 J I S Z 2 2 4 1に準拠して行い、 降伏強度と引張強度を測定し た。 靭性の評価は、 シャルピー衝撃試験を J I S Z 2 2 4 2に 準拠して、 2 mmVノ ッチフルサイズ試験片を用いて、 一 4 0 °Cに て実施し、 測定した吸収エネルギー (v E_4 Q [ J ] ) により評価 した。
溶接性は、 鋼管同士を、 室温にて、 7 8 0 M P a級の強度を有す る溶接ワイヤーを用いて、 炭酸ガス溶接して、 鋼管継手を作製し、 2 4時間後に、 目視検査にて、 割れの有無を検査して、 割れの無い ものを合格とした。
加速冷却後、 室温で、 鋼管の形状 (曲がり) を測定した。 長さ 6 . 5 mの鋼管を、 片側の端部、 端部からの距離が 0 . 5 mの箇所、 及び、 同距離が 1 mの箇所の計 3箇所が平面板に接するようにして 、 鋼管を回転させながら、 反対側の鋼管端部の最大浮き量を測定し た。
鋼管端部の最大浮き量は、 浮き上がった鋼管端部の最下部の平面 板からの高さである。 鋼管端部の最大浮き量が 1 0 m m以下のもの を、 鋼管形状として合格とした。
表 1
Figure imgf000016_0001
結果を表 2に示す。 表 2の下線は、 本発明の範囲外又は好ましい 範囲外であることを意味する。 本発明例である N o . 1〜 1 3は、 適正な加速冷却条件で製造された鋼管であり、 適正な金属組織と機 械構造用鋼管として必要な強度と靭性を備えていた。
N o . 1 4は、 C量、 B量、 及び、 N i 量が高く、 加速冷却停止 温度が高かったため、 上部べィナイ 卜組織が生じて靭性が低下し、 溶接性も低下した例である。
N o . 1 5は、 C量が低すぎて、 焼入性が十分でなく、 また、 加 速冷却停止温度が高いため、 一部、 上部べイナイ ト組織が生成して 、 靭性が低下し、 冷却速度が速いために、 形状も悪化した例である
N o . 1 6は、 特に、 P量が高すぎ、 また、 加速冷却開始温度が 低いために、 フェライ トが生じ、 靭性が低下した例である。
N o . 1 7は、 S i量が高すぎて、 上部べイナイ トが生成し、 靭 性が悪くなつた例である。 N o . 1 8は、 N量、 C u量、 及び、 S 量が高すぎて、 冷却速度が遅いため、 上部べイナイ トが生成して靭 性を損ない、 溶接性も低下した例である。
N o . 1 9 は、 A 1 量及び N b量が高すぎ、 加速冷却停止温度が 高いため、 上部べイナイ トが生成して靭性を損ない、 A 1 を過剰に 含有するため、 溶接性も悪かった例である。
N o . 2 0 は、 冷却速度が遅すぎたため、 また、 N o . 2 1及び 2 5は、 加速冷却停止温度が高すぎたため、 上部べイナイ トが生成 し、 靭性が低下した例である。
N o . 2 2及び 2 4は、 冷却速度が速すぎ、 かつ、 加速冷却停止 温度が高かったため、 焼戻しマルテンサイ トと上部べイナイ トの混 合組織となり、 靭性が低く、 形状も悪化した例である。
N o . 2 3は、 加速冷却開始温度が低すぎて、 フェライ 卜が生成 したため、 靭性が悪かった例である。
表 2
Figure imgf000019_0001
産業上の利用可能性
本発明により、 機械構造部材、 特に、 シリンダー、 ブッシュ、 ブ ーム等の構造部材、 及び、 シャフ ト等の機械用部材に好適な、 靭性 と溶接性に優れた機械構造用高強度シームレス鋼管、 及び、 該鋼管 を安価に製造する方法を提供することが可能になる。 したがって、 本発明は産業上の貢献が極めて顕著なものである。

Claims

請 求 の 範 囲
1 - 質量%で、 C : 0. 0 3〜 0. 1 %未満、 M n : 0. 8〜 2. 5 %、 T i : 0. 0 0 5〜 0. 0 3 5 %、 N b : 0. 0 0 3〜 0. 0 4 %、 B : 0. 0 0 0 3〜 0. 0 0 3 %を含有し、 S i : 0. 5 %以下、 A 1 : 0. 0 5 %以下、 P : 0. 0 1 5 %以下、 S : 0. 0 0 8 %以下、 N : 0. 0 0 8 %以下に制限し、 さら に、 N i : 0. 1〜 1. 5 %、 C r : 0. 1〜: L . 5 %、 C u : 0 . 1〜 1. 0 %、 M o : 0. 0 5〜 0. 5 %の 1種又は 2以上を含 有し、 残部 F e及び不可避的不純物からなり、 金属組織が、 自己焼 戻しマルテンサイ トの単独組織、 又は、 自己焼戻しマルテンサイ ト と下部べィナイ 卜との混合組織であることを特徴とする靭性と溶接 性に優れた機械構造用高強度シームレス鋼管。
2. 前記金属組織において、 方位差が 1 5 ° 以上の大角粒界で囲 まれる領域の平均径が 3 0 /im以下であることを特徴とする請求の 範囲 1 に記載の靭性と溶接性に優れた機械構造用高強度シームレス 鋼管。
3. 前記金属組織において、 セメンタイ トの平均粒径が 4 0 0 n m以下、 密度が 2 X 1 05個/ mm2以上であることを特徴とする請 求の範囲 1又は 2に記載の靭性と溶接性に優れた機械構造用高強度 シームレス鋼管。
4. 請求の範囲 1〜 3の何れかに記載の靭性と溶接性に優れた機 械構造用高強度鋼管の製造方法であって、 請求の範囲 1 に記載の化 学成分を有する鋼からなる鋼片を、 熱間で、 穿孔、 圧延し、 延伸ェ 程により造管し、 得られた鋼管を、 7 5 0 °C以上の温度から、 下記 . ( 1 ) 式を満足する温度 T [°C] まで、 5〜 5 0 °C/ s の冷却速度 V [°C/ s ] で、 円周方向に回転させながら、 鋼管の外面から加速 冷却し、 空冷することを特徴とする靭性と溶接性に優れた機械構造 用高強度鋼管の製造方法。
1 5 0 <Tく 8 2 1 . 3 4 XV 0 3 1 12 ·■· ( 1 )
PCT/JP2007/057360 2006-03-28 2007-03-27 靭性と溶接性に優れた機械構造用高強度シームレス鋼管及びその製造方法 WO2007114413A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07740796A EP2028284B1 (en) 2006-03-28 2007-03-27 High-strength seamless steel pipe for mechanical structure which has excellent toughness and weldability, and method for manufacture thereof
US12/225,579 US20090065102A1 (en) 2006-03-28 2007-03-27 High Strength Seamless Steel Pipe for Machine Structure Use Superior in Toughness and Weldability, and Method of Production of The Same
CN200780011122.9A CN101410542B (zh) 2006-03-28 2007-03-27 韧性和焊接性优异的机械结构用高强度无缝钢管及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-087723 2006-03-28
JP2006087723A JP4751224B2 (ja) 2006-03-28 2006-03-28 靭性と溶接性に優れた機械構造用高強度シームレス鋼管およびその製造方法

Publications (1)

Publication Number Publication Date
WO2007114413A1 true WO2007114413A1 (ja) 2007-10-11

Family

ID=38563676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057360 WO2007114413A1 (ja) 2006-03-28 2007-03-27 靭性と溶接性に優れた機械構造用高強度シームレス鋼管及びその製造方法

Country Status (4)

Country Link
EP (1) EP2028284B1 (ja)
JP (1) JP4751224B2 (ja)
CN (1) CN101410542B (ja)
WO (1) WO2007114413A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318128A (zh) * 2020-09-30 2022-04-12 宝山钢铁股份有限公司 一种自回火马氏体型高强韧性无缝钢管及其制造方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000300A1 (en) 2006-06-29 2008-01-03 Tenaris Connections Ag Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
JP5020690B2 (ja) * 2007-04-18 2012-09-05 新日本製鐵株式会社 機械構造用高強度鋼管及びその製造方法
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
JP4959471B2 (ja) * 2007-08-28 2012-06-20 新日本製鐵株式会社 靭性に優れた機械構造用高強度シームレス鋼管及びその製造方法
EP2238272B1 (en) 2007-11-19 2019-03-06 Tenaris Connections B.V. High strength bainitic steel for octg applications
JP2009235499A (ja) * 2008-03-27 2009-10-15 Nisshin Steel Co Ltd 中空スタビライザーの製造方法
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
CN102224268A (zh) 2008-11-26 2011-10-19 住友金属工业株式会社 无缝钢管及其制造方法
KR101364392B1 (ko) 2009-06-11 2014-02-17 신닛테츠스미킨 카부시키카이샤 고강도 강관 및 그 제조 방법
US20100319814A1 (en) * 2009-06-17 2010-12-23 Teresa Estela Perez Bainitic steels with boron
JP5287553B2 (ja) * 2009-07-02 2013-09-11 新日鐵住金株式会社 降伏強度885MPa以上の非調質高張力厚鋼板とその製造方法
EP2325435B2 (en) 2009-11-24 2020-09-30 Tenaris Connections B.V. Threaded joint sealed to [ultra high] internal and external pressures
KR101471730B1 (ko) * 2010-03-05 2014-12-10 신닛테츠스미킨 카부시키카이샤 인성이 우수한 기계 구조용 고강도 시임리스 강관과 그 제조 방법
US20110253265A1 (en) 2010-04-15 2011-10-20 Nisshin Steel Co., Ltd. Quenched and tempered steel pipe with high fatigue life, and its manufacturing method
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
IT1403688B1 (it) 2011-02-07 2013-10-31 Dalmine Spa Tubi in acciaio con pareti spesse con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensione da solfuri.
IT1403689B1 (it) 2011-02-07 2013-10-31 Dalmine Spa Tubi in acciaio ad alta resistenza con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensioni da solfuri.
US8636856B2 (en) 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
RU2457051C1 (ru) * 2011-03-23 2012-07-27 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Способ прокатки и прессования полых профилей и устройство для его осуществления
WO2013007729A1 (en) 2011-07-10 2013-01-17 Tata Steel Ijmuiden Bv Hot-rolled high-strength steel strip with improved haz-softening resistance and method of producing said steel
CN102560283A (zh) * 2012-02-21 2012-07-11 张芝莲 一种大口径无缝合金钢管
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
WO2014086799A1 (en) * 2012-12-03 2014-06-12 Tata Steel Nederland Technology Bv A cold-rolled and continuously annealed high strength steel strip or sheet having a good deep-drawability and a method for producing said steel strip or sheet
CN104903538B (zh) 2013-01-11 2018-05-08 特纳瑞斯连接有限公司 抗磨损钻杆工具接头和相应的钻杆
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
EP2789701A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789700A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
KR102197204B1 (ko) 2013-06-25 2021-01-04 테나리스 커넥션즈 비.브이. 고크롬 내열철강
CN104561813B (zh) * 2014-12-30 2017-06-16 中车戚墅堰机车车辆工艺研究所有限公司 一种中碳硅锰系高耐磨空冷钢
CN105463311B (zh) * 2015-12-14 2017-11-07 徐州徐工液压件有限公司 一种高精度冷拔管的制作方法
CN107516569A (zh) * 2016-06-15 2017-12-26 董晓程 电磁铁用导套和隔磁套一体成型套管及其制备工艺
CN105908097A (zh) * 2016-06-30 2016-08-31 合肥慧林建材有限公司 一种耐热钢管及其生产工艺
CN106216430B (zh) * 2016-07-29 2018-09-04 新昌县长城空调部件股份有限公司 燃气厨具用输气管制造工艺
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US10434554B2 (en) 2017-01-17 2019-10-08 Forum Us, Inc. Method of manufacturing a coiled tubing string

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202447A (ja) 1992-01-27 1993-08-10 Nkk Corp シリンダ用非調質高張力継目無鋼管
JPH0741856A (ja) 1993-07-28 1995-02-10 Nkk Corp 耐硫化物応力腐食割れ性に優れた高強度鋼管の製造法
JPH09287029A (ja) * 1996-04-19 1997-11-04 Sumitomo Metal Ind Ltd 靱性に優れた高強度継目無鋼管の製造方法
JPH10130783A (ja) 1996-10-28 1998-05-19 Kawasaki Steel Corp 非調質高強度継目無鋼管
JPH10204571A (ja) 1997-01-24 1998-08-04 Kawasaki Steel Corp 非調質高強度継目無鋼管
JPH10324946A (ja) 1997-05-27 1998-12-08 Komatsu Ltd 鋼管用高強度非調質鋼
JPH1136017A (ja) 1997-07-19 1999-02-09 Sanyo Special Steel Co Ltd 継目無鋼管用高強度非調質鋼の製造方法
JP2001247931A (ja) 2000-03-07 2001-09-14 Nippon Steel Corp 非調質高強度継目無し鋼管およびその製造方法
JP3503211B2 (ja) 1994-09-30 2004-03-02 住友金属工業株式会社 高強度シームレス鋼管の製造方法
JP2004292857A (ja) 2003-03-26 2004-10-21 Sumitomo Metal Ind Ltd 非調質継目無鋼管

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2230396C (en) * 1997-02-25 2001-11-20 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
JPH10237583A (ja) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd 高張力鋼およびその製造方法
BR9811059A (pt) * 1997-07-28 2000-09-19 Exxonmobil Upstream Res Co Aço de baixa liga
UA57797C2 (uk) * 1997-07-28 2003-07-15 Ексонмобіл Апстрім Рісерч Компані Низьколегована, боровмісна сталь
TW459052B (en) * 1997-12-19 2001-10-11 Exxon Production Research Co Ultra-high strength steels with excellent cryogenic temperature toughness
JP3927056B2 (ja) * 2002-03-20 2007-06-06 Jfeスチール株式会社 高強度高靭性ベンド管の製造方法
JP3968011B2 (ja) * 2002-05-27 2007-08-29 新日本製鐵株式会社 低温靱性および溶接熱影響部靱性に優れた高強度鋼とその製造方法および高強度鋼管の製造方法
CN1208143C (zh) * 2002-11-25 2005-06-29 宝山钢铁股份有限公司 一种高性能无缝钢管的制造方法
JP4475023B2 (ja) * 2004-06-10 2010-06-09 住友金属工業株式会社 低温靱性に優れた超高強度ベンド管

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202447A (ja) 1992-01-27 1993-08-10 Nkk Corp シリンダ用非調質高張力継目無鋼管
JPH0741856A (ja) 1993-07-28 1995-02-10 Nkk Corp 耐硫化物応力腐食割れ性に優れた高強度鋼管の製造法
JP3503211B2 (ja) 1994-09-30 2004-03-02 住友金属工業株式会社 高強度シームレス鋼管の製造方法
JPH09287029A (ja) * 1996-04-19 1997-11-04 Sumitomo Metal Ind Ltd 靱性に優れた高強度継目無鋼管の製造方法
JPH10130783A (ja) 1996-10-28 1998-05-19 Kawasaki Steel Corp 非調質高強度継目無鋼管
JPH10204571A (ja) 1997-01-24 1998-08-04 Kawasaki Steel Corp 非調質高強度継目無鋼管
JPH10324946A (ja) 1997-05-27 1998-12-08 Komatsu Ltd 鋼管用高強度非調質鋼
JPH1136017A (ja) 1997-07-19 1999-02-09 Sanyo Special Steel Co Ltd 継目無鋼管用高強度非調質鋼の製造方法
JP2001247931A (ja) 2000-03-07 2001-09-14 Nippon Steel Corp 非調質高強度継目無し鋼管およびその製造方法
JP2004292857A (ja) 2003-03-26 2004-10-21 Sumitomo Metal Ind Ltd 非調質継目無鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2028284A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318128A (zh) * 2020-09-30 2022-04-12 宝山钢铁股份有限公司 一种自回火马氏体型高强韧性无缝钢管及其制造方法

Also Published As

Publication number Publication date
CN101410542A (zh) 2009-04-15
JP4751224B2 (ja) 2011-08-17
EP2028284A1 (en) 2009-02-25
EP2028284A4 (en) 2010-12-22
JP2007262468A (ja) 2007-10-11
CN101410542B (zh) 2013-04-17
EP2028284B1 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4751224B2 (ja) 靭性と溶接性に優れた機械構造用高強度シームレス鋼管およびその製造方法
TWI679285B (zh) 熱軋鋼板及其製造方法
JP6132017B2 (ja) 熱延鋼板およびその製造方法
JP6048580B2 (ja) 熱延鋼板及びその製造方法
JP6008039B2 (ja) 焼き付け硬化性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板
JP5040197B2 (ja) 加工性に優れ、かつ熱処理後の強度靭性に優れた熱延薄鋼板およびその製造方法
JP6103165B1 (ja) 熱間プレス成形部材
KR101164470B1 (ko) 가공성이 우수하며 또한 열처리 후의 강도 인성이 우수한 후육 열연 강판 및 그 제조 방법
JP5245997B2 (ja) 靭性に優れた高強度熱間鍛造非調質鋼及びその製造方法
JP5433964B2 (ja) 曲げ加工性および低温靭性に優れる高張力鋼板の製造方法
WO2008013300A1 (fr) Procédé de fabrication d&#39;un rail perlitique présentant une excellente résistance à l&#39;usure et une excellente ductilité
JP5845674B2 (ja) 曲げ加工性および低温靱性に優れる高張力鋼板およびその製造方法
JP5181775B2 (ja) 曲げ加工性および低温靭性に優れる高張力鋼材ならびにその製造方法
JP7155702B2 (ja) 耐サワーラインパイプ用厚鋼板およびその製造方法
CN103924155B (zh) 韧性优异的机械结构用高强度无缝钢管及其制造方法
JPWO2020145325A1 (ja) 鋼材
JP4379085B2 (ja) 高強度高靭性厚鋼板の製造方法
JP4959471B2 (ja) 靭性に優れた機械構造用高強度シームレス鋼管及びその製造方法
US20090065102A1 (en) High Strength Seamless Steel Pipe for Machine Structure Use Superior in Toughness and Weldability, and Method of Production of The Same
CN102162061A (zh) 一种高强韧低碳贝氏体型厚钢板及其制造方法
JP5020690B2 (ja) 機械構造用高強度鋼管及びその製造方法
JP6028759B2 (ja) 鋼板表面における圧延方向のヤング率が高い高張力厚鋼板およびその製造方法
JP2012036499A (ja) 曲げ加工性および低温靱性に優れる高張力鋼板およびその製造方法
JP5870525B2 (ja) 曲げ加工性および低温靱性に優れる高張力鋼板およびその製造方法
JP3769146B2 (ja) 疲労特性に優れた高バーリング性熱延鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12225579

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780011122.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007740796

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE