WO2007114280A1 - 光ピックアップ及び情報機器 - Google Patents

光ピックアップ及び情報機器 Download PDF

Info

Publication number
WO2007114280A1
WO2007114280A1 PCT/JP2007/056927 JP2007056927W WO2007114280A1 WO 2007114280 A1 WO2007114280 A1 WO 2007114280A1 JP 2007056927 W JP2007056927 W JP 2007056927W WO 2007114280 A1 WO2007114280 A1 WO 2007114280A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
signal
optical pickup
stray
Prior art date
Application number
PCT/JP2007/056927
Other languages
English (en)
French (fr)
Inventor
Akira Kouno
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2008508625A priority Critical patent/JP4726254B2/ja
Priority to EP07740365A priority patent/EP2006850A4/en
Priority to US12/295,077 priority patent/US8072868B2/en
Publication of WO2007114280A1 publication Critical patent/WO2007114280A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0903Multi-beam tracking systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • G11B7/0909Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only by astigmatic methods

Definitions

  • the present invention relates to a technical field of an optical pickup that irradiates a laser beam when recording or reproducing an information signal on an information recording medium such as a DVD, and an information device including the optical pickup.
  • information recording media such as a multi-layer type optical disc that optically records or reproduces an information signal (data) using a laser beam or the like, such as a two-layer DVD, has been developed.
  • a multilayer optical disc if the distance between the recording layer and the recording layer is wide, the selected recording layer force signal may be deteriorated due to the influence of spherical aberration. There is a tendency to narrow the distance between the layers.
  • the return light from the multi-layer type optical disc is caused by so-called interlayer crosstalk, so that the desired recording layer (hereinafter referred to as “one recording”) is selected.
  • Reflected light (hereinafter referred to as “stray light” as appropriate) generated in another recording layer other than the one recording layer, which is composed of only the component of reflected light (hereinafter referred to as “signal light” where appropriate). ) Is also included at a high level. Therefore, for example, the SZN ratio of a signal component such as a reproduction signal is lowered, and it may be difficult to appropriately perform various controls such as tracking control.
  • the light diameter of the signal light applied to the light receiving element (photo detector) that is, the stability in the optical path in the optical pickup and the reliability in the control operation of the optical pickup
  • the stray It is known that light components are in a trade-off relationship.
  • the optical magnification is increased and the area of the light receiving element to be standardized is reduced, the influence of the stray light “Noise” on the signal level “Signal” is relatively reduced, and the signal-to-noise ratio (Signal to Noise ratio) can be improved.
  • the light diameter of the signal light applied to the light receiving element is inevitably small, and when various signals such as tracking error signals are generated in various divided regions constituting the light receiving element, the signal light The position shift is detected unnecessarily large as the signal light beam diameter is reduced. Therefore, each in the optical pickup It is necessary to control the irradiation position of the signal light with high accuracy by adjusting the mechanical, structural, and positional accuracy of each type of actuator highly. That is, there arises a technical problem that the stability in the optical path in the optical pickup and the reliability in the control operation of the optical pickup are lowered.
  • Patent Document 1 describes a technique for separating reflected light from each recording layer with high accuracy by utilizing the difference in the angle of the optical axis of the return light from each recording layer of a two-layer optical disc. Has been.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-228436
  • the present invention has been made in view of, for example, the above-described conventional problems.
  • an information signal can be transmitted with higher accuracy while reducing the influence of stray light. It is an object of the present invention to provide an optical pickup that enables reproduction or recording, and an information device including such an optical pickup.
  • the optical pickup of the present invention records or reproduces the information signal from an optical disc having a plurality of recording layers having a recording track in which information pits on which the information signal is recorded are arranged.
  • An optical system no, one mirror, objective lens
  • the laser light emitted from the light source is, for example, added to, for example, 0th-order light and diffracted light (so-called + first-order diffracted light) by diffractive means such as a diffraction grating. Alternatively, the first order diffracted light) is diffracted.
  • the light is guided to one of the plurality of recording layers and condensed by an optical system such as an objective lens, a beam splitter, or a prism.
  • the signal light generated in one recording layer is received by the light receiving means. Therefore, the focused laser beam guided to one recording layer can reproduce information pits and marks formed on the one recording layer. Therefore, it is possible to reproduce predetermined information from the optical disc.
  • the focused laser beam can form information pits and marks on one recording layer. Therefore, it is possible to record predetermined information on the optical disc.
  • an optical element by an optical element, (i) at least a part of polarization direction of signal light generated in one recording layer, or (ii) another recording layer of the plurality of recording layers
  • the polarization direction of at least part of the stray light generated in the odor is changed.
  • the polarization direction of at least a part of the signal light that passes through a part of the optical element is changed, for example, to the first direction.
  • the polarization direction of at least a part of the stray light is also changed to the first direction, for example.
  • the polarization direction of the other part of the signal light transmitted through the other part of the optical element is not changed, for example.
  • the polarization direction of the other part of the stray light is not changed, for example.
  • the light receiving means for example, at least a part of the signal light whose polarization direction is changed to the first direction, for example, for example, the polarization direction is not changed and the other part of the stray light is combined and received.
  • the effect of light interference on the polarization direction is different, (i) at least part of the signal light, and (ii) other parts of the stray light, excluding at least part of the stray light, for example. It is possible to reduce to a very low level. In particular, for example, signal light such as ⁇ 1st order diffracted light and stray light such as 0th order light have substantially the same light intensity level. Therefore, by changing the polarization direction, signal light such as ⁇ 1st order diffracted light can be changed. It is possible to more significantly reduce the influence of light interference caused by stray light in the light receiving means for receiving light.
  • the influence of stray light is effectively reduced, and the light intensity (or push-pull signal corresponding to the light intensity) is obtained.
  • the signal light can be received by the light receiving means under a state in which the level of (amplitude) is maintained at a higher level, and high-precision tracking control can be realized.
  • a part of the optical element causes a polarization direction in a part of the signal light and a part of the stray light to be a first direction ( ⁇ + 90 degrees).
  • the phase of the delay axis in the wavelength plate is set to the first phase ( ⁇ +180 degrees)
  • the other part of the optical element is configured to change the polarization direction in the other part of the signal light and the other part of the stray light in the second direction.
  • a degree for example, the phase of the delay axis of the wave plate is set to the second phase ( ⁇ degree)
  • the light receiving means combines a part of the signal light and the other part of the stray light. It is relatively arranged to receive light.
  • the polarization direction of part of the signal light and part of the stray light that is transmitted through a part of the optical element is, for example, the first phase difference based on birefringence (for example, j8 +180 degrees). It is changed in the first direction (for example, ⁇ +90 degrees) corresponding to.
  • the polarization direction of the other part of the signal light and the other part of the stray light transmitted through the other part of the optical element is, for example, the second direction (for example, ⁇ degree) based on the birefringence in the second direction ( For example, oc degree).
  • a part of the optical element causes a polarization direction in a part of the signal light and a part of the stray light to be a first direction ( ⁇ + 90 degrees)
  • the other part of the optical element causes the polarization direction of the other part of the signal light and the other part of the stray light to be a second direction ( ⁇ degree)
  • the light receiving means includes the other part of the signal light and the stray light.
  • the polarization direction of part of the signal light and part of the stray light that is transmitted through a part of the optical element is, for example, the first phase difference based on birefringence (for example, j8 +180 degrees). It is changed in the first direction (for example, ⁇ +90 degrees) corresponding to.
  • the polarization direction of the other part of the signal light and the other part of the stray light transmitted through the other part of the optical element is, for example, the second direction (for example, ⁇ degree) based on the birefringence in the second direction ( For example, oc degree). Then, in the light receiving means, the other part of the signal light whose polarization direction has been changed to the second direction and a part of the stray light whose polarization direction has been changed to the first direction are combined and received.
  • the other part of the signal light and the part of the stray light which have different polarization directions.
  • the other part of the signal light that is ⁇ first-order diffracted light and part of the zero-order stray light have substantially the same light intensity level. It is possible to more significantly reduce the influence of light interference due to stray light of the 0th order light in the light receiving means for receiving the signal light.
  • the signal light is a 0th-order signal light
  • the signal light is ⁇ first-order diffracted light
  • the stray light is zero-order stray light or ⁇ first-order diffracted light stray light.
  • the polarization direction is different, (i) at least a part of the signal light corresponding to the 0th order light, and (ii) at least the stray light corresponding to the ⁇ 1st order diffracted light. It is possible to effectively reduce the influence of light interference with other parts of the stray light, excluding some. Alternatively, the influence of light interference between at least part of the signal light corresponding to ⁇ 1st order diffracted light and the other part of stray light except for at least part of stray light corresponding to 0th order light. Effectively reduce It is possible.
  • the first direction and the second direction may be configured such that the polarization planes are relatively different by 90 degrees.
  • the polarization direction differs by 90 degrees, (i) at least part of the signal light, and (ii) other part of the stray light excluding at least part of the stray light, for example. It is possible to more effectively reduce the influence of light interference.
  • one of the part of the optical element and the other part of the optical element is a ⁇ 2 wavelength plate.
  • the polarization direction is relatively different by 90 degrees, (i) at least a part of the signal light, and (ii) the other part of the stray light excluding at least a part of the stray light, for example It is possible to reduce the effects of light interference more effectively.
  • the optical element is not a parallel light beam !, and the return light generated in the plurality of recording layers is guided to the light receiving means ( On the return path!
  • the light receiving unit it is possible to appropriately receive at least a part of the signal light and the other part of the stray light, which have different polarization directions, by the light receiving unit. Specifically, most or all of the signal light may be included in the other part of the stray light and received by the light receiving means. Therefore, the effects of light interference in different polarization directions (i) at least part of the signal light and (ii) other parts of the stray light, excluding at least part of the stray light, for example, are more effectively It is possible to reduce.
  • the light diameters of the plurality of stray lights generated in the plurality of other recording layers on the optical axis are all substantially equal! , Placed in position.
  • the “light diameter” means a physical length such as a diameter (or radius) that can be measured based on the optical axis of the laser light.
  • this “light diameter” is, for example, in other optical systems such as a condenser lens. It may be uniquely determined based on optical characteristics (for example, optical magnification, diffraction angle, principal point position, focal length, etc.).
  • the light receiving unit may receive most of the signal light or all of the signal light included in the other part of the stray light. Therefore, the effect of interference of light in (i) at least a part of the signal light and (ii) other parts of the stray light, excluding at least a part of the stray light, is more effective. Can be reduced.
  • the optical element has a position on the irradiation side (Coljens side) of the two focal lines based on the astigmatism method of the signal light on the optical axis. Arranged in the vicinity of.
  • the light receiving means to receive at least one part of the signal light and the other part of the stray light that are appropriately aligned in different polarization directions. Specifically, most or all of the signal light may be included in the other part of the stray light and received by the light receiving means. Therefore, the effects of light interference in different polarization directions (i) at least part of the signal light and (ii) other parts of the stray light, excluding at least part of the stray light, for example, are more effectively It is possible to reduce.
  • the shape of part and other parts of the optical element and the relative positional relationship between the part and the other part are (i-1) optical axis. And (i-2) the light diameter or optical magnification of the stray light and (ii-1) the optical power corresponding to the 0th order light in a plane perpendicular to In the plane perpendicular to the axis, the light diameter, light beam position, or optical magnification of the signal light, corresponding to ⁇ 1 next folding light, and (ii-2) the light diameter, light beam position, or optical magnification of the stray light, Configure it as specified on the basis of
  • the signal light and the other part of the stray light can be received in appropriate alignment by the light receiving unit.
  • most or all of the signal light may be included in the other part of the stray light and received by the light receiving means. Therefore, the effects of light interference in different polarization directions (i) at least part of the signal light and (ii) other parts of the stray light, excluding at least part of the stray light, for example, are more effective. It is possible to reduce it.
  • the shape of part and other parts of the optical element and the relative positional relationship between the part and the other part are determined by the light diameter of the signal light.
  • the influence of the stray light may be relatively large and defined based on the width of the region.
  • the light receiving means to receive at least a part of the signal light and the other part of the stray light, which have different polarization directions, appropriately matched based on the width of the region. is there. Specifically, most or all of the signal light may be contained in the other part of the stray light and received by the light receiving means. Therefore, the effects of light interference in different polarization directions (i) at least part of the signal light and (ii) other parts of the stray light, excluding at least part of the stray light, for example, are more effective. It is possible to reduce it.
  • the shape of part and other parts of the optical element and the relative positional relationship between the part and the other part are the signal light and the stray light. And may be configured based on the interference pattern on the light receiving means.
  • the light receiving means can receive at least a part of the signal light and the other part of the stray light, which have different polarization directions, appropriately matched based on the interference pattern. is there. Specifically, most or all of the signal light may be contained in the other part of the stray light and received by the light receiving means. Therefore, the effects of light interference in different polarization directions (i) at least part of the signal light and (ii) other parts of the stray light, for example excluding at least part of the stray light, are more effective. It is possible to reduce it.
  • the optical element further includes a cylindrical lens (multi-lens) for performing an astigmatism method, and the optical element is (i) a diffraction direction of the + first-order light component of the signal light. And (ii) based on the interference pattern on the light receiving means that can be specified by the diffraction direction and angle of the primary light component of the signal light, and (ii) the cylinder direction of the cylindrical lens. Do it! /
  • the light receiving unit it is possible to appropriately receive at least a part of the signal light and the other part of the stray light with different polarization directions by the light receiving unit. Specifically, most or all of the signal light may be included in the other part of the stray light and received by the light receiving means. Therefore, the polarization direction is different, (i) at least part of the signal light, and (ii) example For example, it is possible to more effectively reduce the influence of light interference with other parts of the stray light, excluding at least a part of the stray light.
  • the optical pickup further includes a cylindrical lens (multi-lens) for performing the astigmatism method, and the cylindrical lens has a cylinder direction of (i) + An angle of about 45 degrees with a plane formed by the diffraction direction of the signal light corresponding to the l-order diffracted light and the diffraction direction of the signal light corresponding to the 1st-order diffracted light, and (ii) the O-order light
  • the offset direction of the + first-order diffracted light with respect to the signal light corresponding to or the offset direction of the first-order diffracted light is arranged so that an interference pattern is formed in the opposite direction.
  • the light receiving unit it is possible to appropriately receive at least a part of the signal light and the other part of the stray light, which have different polarization directions, by the light receiving unit. Specifically, most or all of the signal light may be included in the other part of the stray light and received by the light receiving means. Therefore, the effects of light interference in different polarization directions (i) at least part of the signal light and (ii) other parts of the stray light, excluding at least part of the stray light, for example, are more effectively It is possible to reduce.
  • the optical element has a line-symmetric positional relationship with respect to the direction of the focal line corresponding to the zero-order light (focal line on the collecting lens side). It may be configured to have at least two of the parts or the other part.
  • At least a part of the signal light and the other part of the stray light which have different polarization directions depending on the light receiving means, are appropriately set based on, for example, the positional relationship of the focal line on the condenser lens side. It is possible to receive light in accordance with. Specifically, most or all of the signal light may be contained in the other part of the stray light and received by the light receiving means. Therefore, the effects of light interference in different polarization directions (i) at least part of the signal light and (ii) other parts of the stray light, excluding at least part of the stray light, for example, can be reduced more effectively. It is possible to do.
  • the optical element has at least two of the parts having a line-symmetric positional relationship with respect to a direction (Rad direction) for receiving a push-pull signal.
  • it may be configured to have the other part.
  • at least a part of the signal light and the other part of the stray light which have different polarization directions depending on the light receiving means, are in a positional relationship based on the direction for receiving the push-pull signal. Based on this, it is possible to receive light appropriately. Specifically, most or all of the signal light may be included in the other part of the stray light and received by the light receiving means.
  • the optical pickup further includes a hologram element that changes at least a focal position of the signal light or the stray light, and the hologram element is (i) one of the signal lights by the light receiving means. And the other part of the stray light, or (ii) the other part of the signal light and a part of the stray light may be combined to change the focal position.
  • the light receiving unit can receive at least a part of the signal light and the other part of the stray light, which have different polarization directions, in an appropriate manner. Specifically, most or all of the signal light may be included in the other part of the stray light and received by the light receiving means. Therefore, the effects of light interference in different polarization directions (i) at least part of the signal light and (ii) other parts of the stray light, excluding at least part of the stray light, for example, are more effective. It is possible to reduce it.
  • the optical element has a different polarization direction of the signal light corresponding to ⁇ first-order diffracted light and a polarization direction of the stray light corresponding to zero-order light.
  • the light receiving means includes a first light receiving unit (PD0) that receives the 0th-order light, a second light receiving unit (PDla) that receives + first-order diffracted light, and a third light-receiving unit that receives first-order diffracted light ( PDlb) includes at least the second light receiving unit and the third light receiving unit.
  • At least part of the signal light corresponding to ⁇ first-order diffracted light and the 0th-order light which have different polarization directions depending on the light-receiving means including the second light-receiving unit and the third light-receiving unit,
  • the other part of the stray light corresponding to can be received in appropriate alignment.
  • the optical system is configured to guide the laser beam to a recording track included in the one recording layer based on the received signal light! Control And a control means (tracking control Z focus control).
  • the effect of stray light in the multilayer information recording medium is effectively reduced, and the level of light intensity is further increased.
  • the light receiving means can receive the light, and it is possible to realize the focus control and tracking control with high accuracy.
  • an information device of the present invention is configured to irradiate the information signal by irradiating the optical disc with the above-described optical pickup (including various aspects thereof) of the present invention.
  • an information signal is recorded on the optical disc or an information signal recorded on the optical disc while enjoying the same benefits as the various benefits of the optical pickup of the present invention described above. Can be played.
  • the optical pickup of the present invention includes a light source, a diffracting means, an optical system, an optical element, and a light receiving means.
  • the signal light is effectively reduced under the condition that the influence of stray light is effectively reduced and the light intensity level is maintained higher. It is possible to realize high-precision tracking control by causing the light receiving means to receive light.
  • the information device of the present invention includes a light source, a diffraction unit, an optical system, an optical element, a light receiving unit, and a recording / reproducing unit.
  • a light source a diffraction unit, an optical system, an optical element, a light receiving unit, and a recording / reproducing unit.
  • FIG. 1 is a block diagram showing the basic configuration of an information recording / reproducing apparatus and a host computer according to an embodiment of the information recording apparatus of the present invention.
  • FIG. 2 More details of the optical pickup 100 included in the information recording / reproducing apparatus 300 according to the present embodiment. It is a block diagram which shows a detailed structure notionally.
  • [3] This is a schematic diagram conceptually showing light interference between signal light and stray light in a general optical pickup.
  • IV 4 Another schematic diagram conceptually showing light interference between signal light and stray light in a general optical pickup.
  • FIG. 5 A plan view (Fig. 5 (a)) showing the light intensity when light interference does not occur at the light diameter received by the light receiving unit in a general optical pickup (Fig. 5 (a)), and FIG. 5B is a plan view (FIG. 5 (b)) showing the light intensity when light interference occurs at the light diameter received by the light receiving unit in a general optical pickup, by the shading.
  • FIG. 6 A plan view schematically showing the light receiving surface of the first wave plate in the optical pickup according to the present embodiment (Fig. 6 (a)) and the arrangement of the first wave plate schematically.
  • FIG. 6 is a sectional view (FIG. 6 (b)).
  • FIG. 7 A plan view showing the light intensity when light interference occurs at the light diameter received by the light receiving unit in the optical pickup according to the present embodiment by shading (FIG. 7 (a)).
  • Fig. 7 (b) is a plan view showing the light diameter received by the light receiving unit in the optical pickup, the width of the dead band, and the relationship according to the present example, and the dead band according to the present example.
  • Fig. 7 (c) shows the relationship between width and noise level.
  • FIG. 8 is a cross-sectional view schematically showing the position of the focal line on the optical axis where the first wave plate is arranged according to the present embodiment.
  • FIG. 9 A plan view schematically showing the light receiving surface of the first wave plate according to the present embodiment (FIG. 9 (a)), the light diameter of the 0th order light irradiated on the light receiving surface of the first wave plate. And a plan view schematically showing the relative positional relationship between the light beam and the light diameter irradiated with the ⁇ 1st order light (FIG. 9 (b)), and the 0th order light is emitted on the light receiving surface of the light receiving unit. Is a plan view schematically showing the relative positional relationship between the light diameter irradiated with ⁇ 1st order light and the light diameter irradiated with 0th order stray light (Fig. 9 (c )).
  • FIG. 10 is a plan view (FIG. 10 (a) force is also (d)) schematically showing the relative positional relationship with the light diameter irradiated with the next light.
  • FIG. 11 shows the light diameter of the 0th order light and ⁇ 1st order light on the light receiving surface of the light receiving unit when the near-side recording layer is focused according to the present embodiment.
  • FIG. 3 is a plan view schematically showing a relative positional relationship with a light diameter.
  • FIG. 12 A plan view schematically showing the light-receiving surface of the second wave plate in the optical pickup according to another embodiment (FIG. 12 (a)) and the arrangement of the second wave plate. Sectional view (Fig. 12
  • FIG. 13 is a plan view schematically showing the light receiving surface of the second wavelength plate according to another embodiment (FIG. 13 (a)), and the 0th order light is irradiated on the light receiving surface of the second wavelength plate.
  • a plan view schematically showing the relative positional relationship between the light diameter and the light diameter irradiated with the ⁇ first-order light (FIG. 13 (b)), and the 0th-order light is
  • FIG. 13 is a plan view schematically showing the relative positional relationship between the irradiated light diameter, the light diameter irradiated with ⁇ first-order light, and the light diameter irradiated with zero-order stray light (FIG. 13).
  • FIG. 14 is a plan view schematically showing the light receiving surface of the third wavelength plate according to another embodiment (FIG. 14 (a)), and the 0th order light is irradiated on the light receiving surface of the third wavelength plate.
  • a plan view schematically showing the relative positional relationship between the light diameter and the light diameter irradiated with the ⁇ first-order light (Fig. 14 (b)), and the 0th-order light is reflected on the light-receiving surface of the light-receiving unit.
  • a plan view schematically showing the relative positional relationship between the irradiated light diameter, the light diameter irradiated with ⁇ first-order light, and the light diameter irradiated with zero-order stray light (FIG. 14 ( c)).
  • FIG. 15 Relative position of the light diameter irradiated with 0th order light, ⁇ 1st order light, and 0th order light, and the center of interference of light on the light receiving surface of the light receiving unit according to another embodiment. It is a top view which shows a relationship typically.
  • FIG. 16 is a plan view showing a relative positional relationship between a light receiving unit and a light diameter according to a comparative example. Explanation of symbols
  • the present embodiment is an example in which the information recording apparatus according to the present invention is applied to an information recording / reproducing apparatus for an optical disc.
  • FIG. 1 is a block diagram showing the basic configuration of the information recording / reproducing apparatus and the host computer according to the embodiment of the information recording apparatus of the present invention.
  • the information recording / reproducing apparatus 300 has a function of recording recording data on the optical disk 10 and a function of reproducing recording data recorded on the optical disk 10.
  • the information recording / reproducing apparatus 300 is an apparatus that records information on the optical disc 10 and reads information recorded on the optical disc 10 under the control of a CPU (Central Processing Unit) 314 for driving.
  • a CPU Central Processing Unit
  • the information recording / reproducing apparatus 300 includes an optical disc 10, an optical pickup 100, a signal recording / reproducing unit 302, an address detecting unit 303, a CPU (drive control unit) 314, a spindle motor 306, a memory
  • the memory 307, the data input / output control means 308, and the bus 309 are provided.
  • the host computer 400 includes a CPU (host control means) 401, a memory 402, an operation control means 403, an operation button 404, a display panel 405, a data input / output control means 406, and a bus 407.
  • the CPU host control means
  • the information recording / reproducing apparatus 300 may be configured to be communicable with an external network by housing the host computer 400 including a communication means such as a modem in the same housing.
  • the CPU (host control means) 401 of the host computer 400 provided with communication means such as i-link can directly connect the information recording / reproducing apparatus via the data input / output control means 308 and the bus 309.
  • the optical pickup 100 performs recording / reproduction with respect to the optical disc 10 and includes a semiconductor laser device and a lens. More specifically, the optical pickup 100 irradiates the optical disc 10 with a light beam such as a laser beam at a first power as read light during reproduction, and modulates with a second power as write light at the time of recording. Irradiate.
  • the signal recording / reproducing means 302 records or reproduces the optical disc 10 by controlling the optical pickup 100 and the spindle motor 306. More specifically, the signal recording / reproducing means 302 is constituted by, for example, a laser diode driver (LD dry type) and a head amplifier.
  • the laser diode driver drives a semiconductor laser (not shown) provided in the optical pickup 100.
  • the head amplifier amplifies the output signal of the optical pickup 100, that is, the reflected light of the light beam, and outputs the amplified signal.
  • the signal recording / reproducing means 302 determines the optimum laser power by the OPC pattern recording and reproduction processing together with a timing generator (not shown) under the control of the CPU 314 during the OPC (Optimum Power Control) processing.
  • a semiconductor laser (not shown) provided in the optical pickup 100 is driven so that it can be performed.
  • the signal recording / reproducing means 302, together with the optical pickup 100 constitutes an example of the “recording / reproducing means” according to the present invention.
  • the address detection unit 303 also detects an address (address information) on the optical disc 10 for the reproduction signal power output by the signal recording / reproducing means 302, for example, including a pre-format address signal.
  • a CPU (drive control means) 314 controls the entire information recording / reproducing apparatus 300 by giving instructions to various control means via the bus 309. Note that software or firmware for operating the CPU 314 is stored in the memory 307. In particular, the CPU 314 constitutes an example of “control means” according to the present invention.
  • the spindle motor 306 rotates and stops the optical disk 10 and operates when accessing the optical disk. More specifically, the spindle motor 306 is configured to rotate and stop the optical disc 10 at a predetermined speed while receiving spindle servo from a not-shown servo unit or the like.
  • the memory 307 includes general data processing and OPC in the information recording / reproducing device 300, such as a buffer area for recording / reproducing data and an area used as an intermediate buffer for conversion to data used by the signal recording / reproducing means 302. Used in processing.
  • the memory 307 has a program for operating as a recorder device, that is, a ROM area in which firmware is stored, a buffer for temporarily storing recording / playback data, a variable necessary for the operation of the firmware program, and the like.
  • the RAM area to be stored is configured.
  • the data input / output control means 308 controls external data input / output to / from the information recording / reproducing apparatus 300, and stores and retrieves data in / from the data buffer on the memory 307. Connected to the information recording / reproducing apparatus 300 via an interface such as SCSI or ATAPI!
  • the drive control command issued from the external host computer 400 (hereinafter referred to as a host as appropriate) is the data input / output control means. It is transmitted to CPU 314 via 308. Similarly, recording / reproduction data is transmitted / received to / from the host computer 400 via the data input / output control means 308.
  • the CPU (host control means) 401, the memory 402, the data input / output control means 406, and the bus 407 are substantially the same as the corresponding components in the information recording / reproducing apparatus 300. It is.
  • the operation control means 403 is for receiving and displaying an operation instruction for the host computer 400.
  • the operation control means 403 transmits an instruction by the operation button 404 to the CPU 401, for example, recording or reproduction.
  • the CPU 401 transmits a control command (command) to the information recording / reproducing device 300 via the data input / output unit 406 based on the instruction information from the operation control unit 403, and records the information.
  • the entire playback apparatus 300 may be controlled.
  • the CPU 401 can transmit a command requesting the information recording / reproducing apparatus 300 to transmit the operation state to the host.
  • the CPU 401 displays the operation state of the information recording / reproducing apparatus 300 on the display panel 405 such as a fluorescent tube or LCD via the operation control means 403. Can output
  • a household device such as a recorder device that records and reproduces video.
  • This recorder device is a device that records video signals from broadcast receiver tuners and external connection jacks on a disc, and outputs the video signals reproduced from the disc to an external display device such as a television.
  • the program stored in the memory 402 is executed by the CPU 401 to operate as a recorder device.
  • the information recording / reproducing apparatus 300 is a disk drive (hereinafter referred to as a drive as appropriate)
  • the host computer 400 is a personal computer workstation.
  • the host computer such as a personal computer and the drive are connected via SCSI / ATAPI data input / output control means 308 (406), and the application such as writing software installed in the host computer controls the disk drive. To do.
  • FIG. 2 is a block diagram conceptually showing a more detailed structure of the optical pickup 100 included in the information recording / reproducing apparatus 300 in the example.
  • the optical pickup 100 includes a semiconductor laser 101 (that is, a specific example of the light source according to the present invention) and a diffraction grating 102 (that is, a specific example of the diffractive means according to the present invention).
  • the laser beam LB is emitted from the semiconductor laser 101 in the following order, and is received by the light receiving unit PDO and the like through each element. That is, when the laser beam LB emitted from the semiconductor laser 101 is guided to one recording layer of the optical disk as a so-called optical path, the laser beam LB is emitted from the diffraction grating 102, the condensing lens 103, and the optical functional element. 104, the optical path branching element 105, the reflecting mirror 106, the 1Z4 wavelength plate 107, and the condensing lens 108 are guided to one recording layer.
  • the laser beam LB reflected on one recording layer as a so-called return path on the optical path is a condensing lens 108, a 1Z4 wavelength plate 107, a reflecting mirror 106, an optical path branching element 105, a condensing lens 109, Light is received by the light receiving unit PD0 through the cylindrical lens 110.
  • the condensing lenses 103, 108 and 109, the optical path branching element 105, the reflection mirror 106, the 1Z4 wavelength plate 107, and the cylindrical lens 110 constitute a specific example of the optical system according to the present invention.
  • a specific example of the light receiving means according to the present invention is constituted by the light receiving portions PD0, PDla, and PDlb.
  • the semiconductor laser 101 emits the laser light LB, for example, in an elliptical light emission pattern that spreads in the vertical direction compared to the horizontal direction.
  • the diffraction grating 102 diffracts laser light emitted from the semiconductor laser 101 into 0th-order light (so-called main beam), + first-order diffracted light, and ⁇ first-order diffracted light (so-called subbeam).
  • the condensing lens 103 makes the incident laser beam LB substantially parallel light and enters the optical functional element 104.
  • the optical path branching element 105 is an optical element that branches the optical path based on the polarization direction, such as a beam splitter (PBS). Specifically, the laser beam LB having a polarization direction of ⁇ is transmitted with little or no light loss, and is incident from the optical disc side, and the laser beam having a polarization direction of another direction is transmitted. The light LB (that is, the reflected light of the laser light LB from the optical disk 10) is reflected with little or no loss of light quantity. The reflected light reflected by the optical path branching element 105 is received by the light receiving parts PD0, PDla and PDlb via the condenser lens 109 and the cylindrical lens 110.
  • PBS beam splitter
  • the reflection mirror reflects the laser beam LB with little or no light loss.
  • the 1Z4 wavelength plate 107 can convert the linearly polarized laser light into circularly polarized light and convert the circularly polarized laser light into linearly polarized light by giving a 90-degree phase difference to the laser light. Is possible.
  • the condensing lens 108 condenses the incident laser beam LB and irradiates it on the recording surface of the optical disc 10.
  • the condensing lens 108 is configured to include, for example, an actuator unit, and has a drive mechanism for changing the arrangement position of the condensing lens 108. More specifically, the actuator unit moves the position of the objective lens 108 in the focus direction so that one recording layer (for example, L0 layer) and another recording layer (for example, L1 layer) in the optical disc are moved. It is possible to focus.
  • the condensing lens 109 condenses the reflected light reflected by the optical path branching element 105.
  • the cylindrical lens 110 generates an astigmatism in the light receiving unit PD for focus control based on the astigmatism method.
  • the light receiving unit PD includes the light receiving units PD0, PDla, and PDlb.
  • the light receiving unit P DO receives 0th order light
  • the light receiving unit PDla receives + first order diffracted light
  • the light receiving unit PDlb receives first order diffracted light.
  • FIG. 3 is a schematic diagram conceptually showing light interference between signal light and stray light in a general optical pickup.
  • FIG. 4 is another schematic diagram conceptually showing optical interference between signal light and stray light in a general optical pickup.
  • Figure 5 is a plan view ( Figure 5 (a)) showing the light intensity when light interference does not occur at the light diameter received by the light receiving unit in a general optical pickup.
  • FIG. 5B is a plan view (FIG. 5 (b)) showing the light intensity when light interference occurs at the light diameter received by the light receiving unit in a general optical pickup, by using light and shade.
  • the light intensity is relatively light (white) as the light intensity is relatively high, and the light intensity is dark (black) as the light intensity is relatively low.
  • the light receiving unit PD0 that receives the 0th-order light + Receive primary light
  • the 0th-order stray light is defocused (blurred) and irradiated.
  • the focal position of the 0th-order stray light is on the optical axis behind the light receiving part PD as seen from the side irradiated with the laser light.
  • the light receiving unit receives zero-order light.
  • the zero-order stray light is defocused (blurred) and emitted.
  • the focal position of the 0th-order stray light is on the optical axis on the front side of the light-receiving unit PD when viewed from the side force irradiated with the laser light.
  • the distribution of the light intensity of the laser light received on the light receiving surface of the light receiving unit shown in FIG. 5 is thin (white in FIG. 5A) when there is no light interference due to stray light.
  • the level of light intensity fluctuates finely within the light flux depending on the interference pattern (black and white in Fig. 5 (b)) (See striped area).
  • the main object of the present invention is to reduce the influence of stray light and maintain the quality (quality) of signal light at a high level.
  • FIG. 6 is a plan view (FIG. 6 (a)) schematically showing the light receiving surface of the first wave plate included in the optical pickup according to the present embodiment, and the arrangement of the first wave plate.
  • FIG. 6 is a cross-sectional view schematically showing (b) in FIG.
  • the first wavelength plate 111 included in the optical pickup according to the present embodiment includes (i) two polarization directions for changing the polarization direction of the transmitted laser light. Area (see area “EZ2” in Fig. 6 (a)) and (ii) three areas that do not change the polarization direction of the transmitted laser beam (area “0 ⁇ ” in Fig. 6 (a)) For example). Area "E / 2 ⁇ is double-bending On the basis of this, for example, a predetermined amount of phase difference (that is, a phase difference of 180 degrees) can be generated between the phase of the ordinary ray and the phase of the extraordinary ray. Therefore, the laser beam that has passed through the region “E Z2” can change the polarization direction by 90 degrees compared to the laser beam that does not pass through the region “E Z2”.
  • a predetermined amount of phase difference that is, a phase difference of 180 degrees
  • the two regions “ ⁇ 2” are arranged in line symmetry with respect to the central axis of the first wave plate 111.
  • the positional relationship between these two regions “E2” may be defined based on the width of the dead zone.
  • the width of the dead zone according to the present embodiment refers to the signal light and stray light by blocking (masking) the transmission of light on the basis of the diameter of the light diameter of the signal light irradiated to the light receiving unit.
  • this “dead zone” constitutes a specific example of “region having a relatively large influence on stray light” according to the present invention.
  • FIG. 7 is a plan view showing the light intensity when light interference occurs at the light diameter received by the light receiving unit in the optical pickup according to the present embodiment by using shading (FIG. 7).
  • (a)) a plan view showing the relationship between the diameter of the light received by the light receiving unit in the optical pickup, the width of the dead zone, and the relationship (FIG. 7 (b)) according to this example.
  • the dead zone width is set as shown in FIG. 7 (b) with respect to the light diameter irradiated to the light receiving unit shown in FIG. 7 (a). Therefore, as shown in Fig. 7 (c), it shows the change in the light intensity level (ie, push-pull signal level) and noise level using the dead band width (see horizontal axis) as a parameter. It is possible to obtain a graph.
  • the thick solid line indicates the amplitude level of the push-pull signal of, for example, a blue LD (Laser Diode), and the dotted line indicates the amplitude level of the SUM (Summary) output noise.
  • the chain line indicates the amplitude level of SP P (Signal Pre Pit) output noise. That is, as shown in Fig. 7 (c), the noise level suddenly increases as the dead band width increases from "2.0". Has been shown to decline. It is shown that when the dead zone width is “3.0”, the noise level can be reduced by about 70%.
  • the minimum value of the region in which the polarization directions are orthogonal (that is, the width of “the central portion of the light diameter of the signal light” in FIG. 11 described later) is the dead zone. Based on the width of the region in which the polarization directions are orthogonal (that is, the width of “the central portion of the light diameter of the signal light” in FIG. 11 described later) is the dead zone. Based on the width of the region in which the polarization directions are orthogonal (that is, the width of “the central portion of the light diameter of the signal light” in FIG. 11 described later) is the dead zone. Based on the width of
  • FIG. 8 is a cross-sectional view schematically showing the position of the focal line on the optical axis where the first wave plate is arranged according to the present embodiment.
  • the first wave plate 111 included in the optical pickup according to the present embodiment is disposed between the cylindrical lens 110 and the light receiving unit PD.
  • the first wave plate 111 may be disposed at the position of the focal line on the cylindrical lens 110 side on the optical axis.
  • the first wavelength plate 111 has all the light diameters of the plurality of stray lights generated in the plurality of other recording layers on the optical axis. You may make it arrange
  • FIG. 9 is a plan view schematically showing the light receiving surface of the first wave plate according to the present embodiment (FIG. 9 (a)).
  • the 0th order light is irradiated on the light receiving surface of the first wave plate.
  • Plane shown in It is a figure (Fig. 9 (c)).
  • the central axis of the first wave plate 111 may be substantially coincident with the axial direction of the focal line described above.
  • the central axis of the first wave plate 111 may be at a predetermined angle (for example, 45 degrees) with the cylinder direction of the cylindrical lens described above.
  • the light diameter irradiated with the signal light corresponding to the + first-order light on the light receiving surface of the first wave plate 111 is equal to that of the above-mentioned region “E Z2”.
  • the area “E Z2” is arranged so as to be positioned above.
  • the polarization direction of the signal light corresponding to the + 1st order light changes by 90 degrees.
  • the light diameter irradiated with the signal light corresponding to the primary light is also located on the above-described region Z2. Therefore, the polarization direction of the signal light corresponding to the first-order light also changes by 90 degrees.
  • the light diameter (light spot) irradiated with the signal light corresponding to the 0th-order light is located on the above-mentioned region “ ⁇ ”. Therefore, the polarization direction of the signal light corresponding to the 0th order light does not change. Similar to the signal light corresponding to the 0th order light, the polarization direction does not change.
  • the light diameter irradiated with the stray light corresponding to the 0th order light includes the above three light diameters. The stray light is defocused (blurred) and applied to the first wave plate 111.
  • the effect of stray light is effectively reduced, and the light intensity (or push-pull signal corresponding to the light intensity).
  • the signal light is received by the light-receiving unit PD under the condition that the level of (amplitude) is maintained higher, and high-precision tracking control can be realized.
  • FIG. 10 shows the diameter of the 0th-order light irradiated on the light-receiving surface of the first wavelength plate or the light-receiving unit when focused on the near-side or back-side recording layer according to this example.
  • FIG. 10 is a plan view (FIGS. 10 (a) to (d)) schematically showing the relative positional relationship with the light diameter irradiated with ⁇ primary light.
  • FIG. 11 shows the light diameter of the 0th order light and the light irradiated with the ⁇ 1st order light on the light receiving surface of the light receiving portion when the near-side recording layer is focused according to the present embodiment.
  • FIG. 3 is a plan view schematically showing a relative positional relationship with a diameter.
  • the angle between the central axis of the first wave plate 1 1 1 and the axial direction of the focal line is set to a predetermined value.
  • the shape of the light diameter (light spot) of the ⁇ 1st order light or the light diameter of the 0th order light irradiated on the light receiving surface of the first wave plate 1 1 1 can be changed. Is possible. Therefore, as shown in Fig. 10 (b), the shape and position of the light diameter (light spot) of the ⁇ 1st order light or the shape of the light diameter of the 0th order light that is irradiated on the light receiving surface of the light receiving unit PD. And the position can be changed.
  • the effect of light interference is effective in two regions located at the center of the light diameter among the four regions within the light diameter of the + first-order light.
  • the polarization direction changes by 90 degrees in the hatched area (see “ ⁇ + 90 degrees” in Figure 11) located at the center of the light diameter of the + first-order light.
  • + 1st-order signal light is changed in polarization direction, and is not combined with 0th-order stray light (see “Frequency” in Fig. 11) (that is, on the paper of Fig. 11)
  • the part with the polarization direction of “ ⁇ + 90 degrees” on the front side is received on the back of the paper in FIG.
  • the whiteness is located at the center of the primary light diameter.
  • the polarization direction has changed, and the signal light of the + first order light has changed the polarization direction by 90 degrees.
  • the stray light see “ ⁇ + 90 °” in FIG. 11
  • the portion where the polarization direction is “ ⁇ degree” on the front surface and the polarization direction on the back surface is “ ⁇ +90 degrees ” (in the image where the part is aligned).
  • the polarization direction is changed.
  • Signal light together with 0th-order stray light whose polarization direction has changed by 90 degrees see “ ⁇ + 90 degrees” in FIG. 11) (ie, on the front of the paper in FIG.
  • FIG. 12 is a plan view (FIG. 12 (a)) schematically showing the light-receiving surface of the second wavelength plate included in the optical pickup according to another embodiment, and the second wavelength plate.
  • FIG. 12 is a cross-sectional view (FIG. 12 (b)) schematically showing the arrangement.
  • the second wavelength plate 111a included in the optical pickup changes the polarization direction of the transmitted laser beam.
  • Two regions see region “Z2” in Fig. 12 (a)) and (ii) one region that does not change the polarization direction of the transmitted laser light (region “0 ⁇ ” in Fig. 12 (a)) For example).
  • the region “e / 2” can cause a predetermined amount of phase difference between the phase of the ordinary ray and the phase of the extraordinary ray, for example, based on the birefringence.
  • the polarization direction of the laser light that has passed through can be changed by 90 degrees.
  • the two regions “ ⁇ 2" are based on the tangential direction of the optical disk of the second wavelength plate 11 la, or the Tan direction, that is, the direction in which PDO, PDla, and PDlb are aligned. These are arranged in line symmetry. Further, these two regions “ ⁇ Z2” are based on the Rad direction (so-called push-pull direction) of the second wave plate 111a, that is, the radial direction of the optical disc and the direction orthogonal to the Tan direction. Are arranged in line symmetry. More specifically, the positional relationship between these two areas “ ⁇ Z2” is relatively large in the influence of the stray light described above. It may be defined based on the threshold region (the width of the dead zone described above).
  • the second wavelength plate 11 la included in the optical pickup according to another embodiment is provided between the cylindrical lens 110 and the condensing lens 109. Be placed.
  • FIG. 13 is a plan view schematically showing the light receiving surface of the second wavelength plate according to another embodiment (FIG. 13 (a)).
  • FIG. 13 (a) A plan view schematically showing the relative positional relationship between the irradiated light diameter and the light diameter irradiated with ⁇ 1st-order light ( ⁇ 1st-order diffracted light) (Fig. 13 (b)).
  • the relative positional relationship between the light diameter irradiated with the zero-order light, the light diameter irradiated with the ⁇ first-order light, and the light diameter irradiated with the stray light of the zero-order light is It is a schematic plan view (Fig. 13 (c)).
  • the Tan direction of the second wavelength plate 11la is made to substantially coincide with the direction in which PDO, PDla, and PDlb are aligned. Therefore, as shown in FIG. 13 (b), most of the light diameter irradiated with the signal light corresponding to the + first-order light on the light receiving surface of the second wave plate 11la is the above-mentioned region “E”. Located above “Z2”. Therefore, the polarization direction of most of the signal light corresponding to the + first-order light changes by 90 degrees. Further, most of the light diameter irradiated with the signal light corresponding to the primary light is also located on the above-mentioned region “E Z2”.
  • the polarization direction of most of the signal light corresponding to the primary light also changes by 90 degrees.
  • the light diameter (light spot) irradiated by the central portion of the signal light corresponding to the 0th-order light is two based on the center between the Rad direction and the Tan direction in the region “0 ⁇ ”. It is also located over the area “E / 2”. Therefore, the polarization direction of the central portion of the signal light corresponding to the 0th order light does not change.
  • the polarization direction is changed, and the signal light of the non-primary light (“ ⁇ degree” in FIG. 13 (c) is changed. But the polarization direction is only 90 degrees It is received together with the changed 0th-order stray light (see “ ⁇ + 90 degrees” in Fig. 13 (c) and the hatched diamond).
  • the polarization direction has changed, and there is no + first order signal light (see “ ⁇ degree” in FIG. 13 (c)) force.
  • the polarization direction has changed by 90 degrees.
  • the zero-order stray light (see “ ⁇ + 90 degrees” in Fig. 13 (c) and the shaded black circle) is received. Note that the two elongated rhombus regions in FIG. 13 (c) indicate the portions where the polarization direction has changed by 90 degrees in the 0th-order stray light.
  • the polarization direction is different depending on the second wavelength plate 11 la composed of a large region "E 2" (i) + 1st order signal light (or It is possible to effectively reduce the influence of light interference between the (primary signal light) and (ii) the zero-order stray light.
  • the second wave plate is designed with the region “E Z2” compared to the first wave plate, the need for minute parts and precise processing can be reduced. It is possible to simplify the plate manufacturing process.
  • FIG. 14 is a plan view schematically showing the light receiving surface of the third wavelength plate according to another embodiment (FIG. 14 (a)).
  • the zero-order light is A plan view (FIG. 14 (b)) schematically showing the relative positional relationship between the light diameter irradiated and the light diameter irradiated with the first-order light (first-order diffracted light).
  • FIG. 14 is a plan view (FIG. 14 (c)). Further, FIG. 15 shows the relative relationship between the light diameter irradiated with the 0th-order light, ⁇ 1st-order light, and 0th-order light on the light-receiving surface of the light-receiving unit according to another embodiment and the center of light interference.
  • FIG. 6 is a plan view schematically showing the positional relationship.
  • the third wave plate 11 lb has substantially the same basic configuration and arrangement as the second wave plate 11 la described above.
  • the shape of one of the two regions “ ⁇ Z2” in the third wave plate 11 lb may be designed to be shifted or lengthened toward one side in the Rad direction.
  • the two areas mentioned above The other shape of the region “ ⁇ 2” may be designed so as to be shifted or lengthened in the Rad direction on the other side. Therefore, as shown in Fig. 14 (c),
  • Fig. 14 (c) See the shaded black circles).
  • the two elongated rhombus regions in Fig. 14 (c) are located away from each other in the Rad direction, and indicate the portion of the 0th-order stray light whose polarization direction has changed by 90 degrees.
  • the portion with a relatively high level of light interference based on the light interference pattern is the polarization method in the light receiving unit PDla described above.
  • Direction change no + primary signal light (see “Frequency” in FIG. 15), but polarization direction changed by 90 degrees stray light in 0th order (“ ⁇ + 90” in FIG. 15) It can be included in the area that is received in combination with “degree” and the hatched diamond).
  • the polarization direction in the light receiving part PDlb is not changed in the part where the light interference level is relatively high based on the light interference pattern.
  • + First-order signal light is a 0th-order stray light whose polarization direction has changed by 90 degrees (“ ⁇ + 90 degrees” in FIG. It can be included in the area that is received together.
  • the polarization direction varies depending on the 11 lb third wave plate having the region “E Z2” whose position is defined. It is possible to effectively reduce the influence of light interference between the light (or the signal light of the first order light) and (ii) the stray light of the 0th order light.
  • the configuration of the third wave plate is defined by appropriately responding to the part where the level of light interference is relatively higher than that of the second wave plate. It is possible to reduce more effectively.
  • it may be configured to include, for example, a hologram element HOE or the like.
  • the present invention is not limited to the above-described embodiments, and the entire specification can be changed as appropriate without departing from the gist or concept of the invention which can be read, and an optical pickup with such a change.
  • information devices are also included in the technical scope of the present invention.
  • the optical pickup and the information device according to the present invention can be used for an optical pickup that irradiates a laser beam when an information signal is recorded or reproduced on an information recording medium such as a DVD. It can be used for information equipment equipped with an optical pickup.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

 光ピックアップ(100)は、(i)レーザ光を照射する光源(101)と、(ii)照射されたレーザ光を、照射された前記レーザ光を、0次光、及び回折光に回折させる回折手段(101)と、(iii)回折された、0次光及び回折光を、複数の記録層のうちの一の記録層に導く光学系(105等)と、(iv)一の記録層において発生する信号光の一部の偏光方向、及び、他の記録層において発生する迷光の一部の偏光方向を変化させる光学素子(111等)と、(v)信号光を少なくとも受光する受光手段(PD1a等)とを備える。

Description

光ピックアップ及び情報機器
技術分野
[0001] 本発明は、例えば DVD等の情報記録媒体に対して情報信号の記録又は再生を行 う際にレーザ光を照射する光ピックアップ、及び当該光ピックアップを備える情報機 器の技術分野に関する。
背景技術
[0002] 例えば 2層型の DVD等のように、レーザ光等を用いて光学的に情報信号 (データ) の記録又は再生を行う、多層型の光ディスク等の情報記録媒体が開発されている。こ のような多層型の光ディスクにおいては、記録層と、記録層との間隔が広いと、球面 収差の影響により選択された記録層力 の信号が劣化する可能性があるため、記録 層と記録層との間隔を狭くする傾向にある。し力しながら、記録層と記録層との間隔 が狭くなると、所謂、層間クロストークにより、多層型の光ディスクからの戻り光には、 選択された所望の記録層(以下、適宜「一の記録層」と称す)において発生する反射 光 (以下、適宜「信号光」と称す)の成分だけでなぐ一の記録層以外の他の記録層 において発生する反射光 (以下、適宜「迷光」と称す)の成分も、高いレベルで含まれ ている。よって、例えば再生信号等の信号成分の SZN比が低下し、トラッキング制御 等の各種の制御を適切に行うことが困難となってしまう可能性がある。詳細には、一 般的に、受光素子 (フォトディテクタ)に照射される信号光の光径 (即ち、光ピックアツ プ内の光路における安定性や、光ピックアップの制御動作における、信頼性)と、迷 光の成分がトレードオフの関係にあることが知られている。具体的には、光学倍率を 高め、規格ィ匕すべき受光素子の面積を小さくすれば、信号レベル「Signal」に対する、 迷光の影響「Noise」は、相対的に低減され、 SN比(Signal to Noise Ratio)を向上さ せることが可能である。しかしながら、受光素子に照射される信号光の光径は、必然 的に、小さくなり、受光素子を構成する各種の分割領域において、例えばトラッキング 誤差信号等の各種の信号を生成する場合、信号光の位置ずれが、信号光の光径が 小さくした分だけ、不必要に大きく検出されてしまう。そのため、光ピックアップ内の各 種のァクチユエータにおける、機械的、構造的、位置的な精度を、高く調整して、信 号光の照射位置を、高精度に制御することが必要となってしまう。即ち、光ピックアツ プ内の光路における、安定性や、光ピックアップの制御動作における、信頼性が低く なってしまうという技術的な問題点が生じてしまう。
[0003] そこで、例えば 2層型のブルーレイディスク(Blu-ray Disc)の記録又は再生の際のト ラッキング方式において、ホログラム素子によって、プッシュプル信号を信号光力 分 離させることで、迷光の受光素子への入射を回避するための技術にっ 、て提案され ている。或いは、特許文献 1においては、 2層型の光ディスクの各記録層からの戻り 光の光軸の角度の違いを利用して、各記録層からの反射光を高精度に分離する技 術について記載されている。
[0004] 特許文献 1:特開 2005— 228436号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、上述したことに対して受光素子の面積を大きくした場合、光ピックアツ プを大型化しなければならないという技術的な問題点が生じてしまう。或いは、上述し た、各種の手法においては、例えば BD (Blu-ray Disc)等の層間距離が従来より小さ な光ディスクに対応して、迷光の影響を適切に低減することが困難となってしまう t ヽ う技術的な問題点が生じてしまう。或いは、上述した、各種の手法においては、図 16 に示されるように、フォーカスエラー信号 (或いは、 RF信号)を受光するための受光 素子において、迷光(図 16中の「Stray light」と「Transmitted beam」との重なりを参照 )が入射してしまい、迷光の影響によって、所望の記録層からの戻り光の信号成分の SZN比が低下してしまうという技術的な問題点が生じてしまう。
[0006] 本発明は、例えば上述した従来の問題点に鑑みなされたものであり、例えば多層 型の光ディスク等の情報記録媒体において、迷光の影響を低減させつつ、情報信号 を、より高精度に再生又は記録することを可能ならしめる光ピックアップ、及びこのよう な光ピックアップを備える情報機器を提供することを課題とする。
課題を解決するための手段
[0007] (光ピックアップ) 上記課題を解決するために、本発明の光ピックアップは、情報信号が記録される情 報ピットが配列されてなる記録トラックを有する、複数の記録層を備える光ディスクか ら前記情報信号を記録又は再生する光ピックアップであって、レーザ光を照射する光 源と、照射された前記レーザ光を回折させる回折手段(回折格子)と、回折された前 記レーザ光を、前記複数の記録層のうちの一の記録層に導く光学系(ノ、一フミラー、 対物レンズ)と、導かれた前記レーザ光力 前記一の記録層に合焦点した場合、 (0 前記一の記録層にお!、て発生する信号光の少なくとも一部の偏光方向、及び (ii)前 記複数の記録層のうちの他の記録層において発生する迷光の少なくとも一部の偏光 方向を変化させる光学素子 (領域分割された波長板)と、前記信号光を、少なくとも受 光する一又は複数の受光手段 (PDlaZPDlbZPDO)とを備える。
[0008] 本発明の光ピックアップによれば、光源から照射されたレーザ光は、例えば回折格 子等の回折手段によって、例えば 0次光、及び回折光 (所謂、 + 1次回折光に、加え て又は代えて、 1次回折光)〖こ回折される。次に、例えば対物レンズ、ビームスプリ ッタ、又は、プリズム等の光学系により、複数の記録層のうちの一の記録層に導かれ 、集光される。と共に、一の記録層において発生する信号光は、受光手段によって受 光される。よって、一の記録層に導かれ、集光されたレーザ光は、一の記録層に形成 された情報ピットやマークを再生することが可能である。よって、光ディスクから所定の 情報を再生することが可能である。或いは、集光されたレーザ光は、一の記録層に情 報ピットやマークを形成することが可能である。よって、光ディスクに対して所定の情 報を記録することが可能である。
[0009] 特に、本発明によれば、光学素子によって、(i)一の記録層において発生する信号 光の少なくとも一部の偏光方向、又は (ii)複数の記録層のうちの他の記録層におい て発生する迷光の少なくとも一部の偏光方向が変化される。具体的には、光学素子 の一部を透過する、信号光の少なくとも一部の偏光方向は、例えば第 1方向に変化 される。と共に、迷光の少なくとも一部の偏光方向も、例えば第 1方向に変化される。 他方、光学素子の他部を透過する、信号光の他部の偏光方向は、例えば変化され ない。と共に、迷光の他部の偏光方向は、例えば変化されない。そして、受光手段に おいて、偏光方向が、例えば第 1方向に変化された、信号光の少なくとも一部と、例 えば偏光方向が変化されない、迷光の他部とが合わされて受光される。
[0010] 従って、偏光方向が異なる、(i)信号光の少なくとも一部と、(ii)例えば迷光の少なく とも一部を除いた、迷光の他部とにおける、光の干渉の影響を効果的に低減すること が可能である。特に、例えば ± 1次回折光等の信号光と、例えば 0次光等の迷光とは 、光強度のレベルが略等しいので、偏光方向を異ならせることによって、例えば ± 1 次回折光等の信号光を受光する受光手段における、迷光による光の干渉の影響を より顕著に、低減することが可能である。
[0011] 以上の結果、多層型の情報記録媒体における、例えば 3ビーム法に基づくトラツキ ング制御において、迷光の影響を効果的に低減させ、光強度 (又は、光強度に対応 されるプッシュプル信号の振幅)のレベルをより高く維持させた状態の下で、信号光 を、受光手段に受光させ、高精度なトラッキング制御を実現することが可能である。
[0012] 本発明の光ピックアップの一の態様では、前記光学素子の一部は、前記信号光の 一部及び前記迷光の一部における偏光方向を第 1方向( α +90度)にさせ (例えば波 長板における遅延軸の位相を第 1位相 ( β +180度)にさせ)、前記光学素子の他部は 、前記信号光の他部及び前記迷光の他部における偏光方向を第 2方向( a度)にさ せ (例えば波長板における遅延軸の位相を第 2位相 ( β度)にさせ)、前記受光手段 は、前記信号光の一部と、前記迷光の他部とを合わせて受光するように相対的に配 置される。
[0013] この態様によれば、光学素子の一部を透過する、信号光の一部、及び迷光の一部 の偏光方向は、例えば複屈折に基づく第 1位相差 (例えば j8 +180度)に対応される 第 1方向(例えば α +90度)に変化される。他方、光学素子の他部を透過する、信号 光の他部、及び迷光の他部の偏光方向は、例えば複屈折に基づく第 2位相差 (例え ば β度)に対応される第 2方向(例えば oc度)に変化される。そして、受光手段におい て、偏光方向が、第 1方向に変化された、信号光の一部と、偏光方向が第 2方向に変 化された、迷光の他部とが合わされて受光される。
[0014] 従って、偏光方向が異なる、信号光の一部と、迷光の他部とにおける、光の干渉の 影響を効果的に低減することが可能である。特に、 ± 1次回折光である信号光の一 部と、 0次光の迷光の他部とは、光強度のレベルが略等しいので、偏光方向を異なら せることによって、例えば士 1次回折光である信号光を受光する受光手段における、 0次光の迷光による光の干渉の影響をより顕著に、低減することが可能である。
[0015] 本発明の光ピックアップの他の態様では、前記光学素子の一部は、前記信号光の 一部及び前記迷光の一部における偏光方向を第 1方向( α +90度)にさせ、前記光学 素子の他部は、前記信号光の他部及び前記迷光の他部における偏光方向を第 2方 向( α度)にさせ、前記受光手段は、前記信号光の他部と、前記迷光の一部とを合わ せて、又は、前記信号光の一部と、前記迷光の他部とを合わせて、受光するように相 対的に配置される。
[0016] この態様によれば、光学素子の一部を透過する、信号光の一部、及び迷光の一部 の偏光方向は、例えば複屈折に基づく第 1位相差 (例えば j8 +180度)に対応される 第 1方向(例えば α +90度)に変化される。他方、光学素子の他部を透過する、信号 光の他部、及び迷光の他部の偏光方向は、例えば複屈折に基づく第 2位相差 (例え ば β度)に対応される第 2方向(例えば oc度)に変化される。そして、受光手段におい て、偏光方向が、第 2方向に変化された、信号光の他部と、偏光方向が第 1方向に変 化された、迷光の一部とが合わされて受光される。
[0017] 従って、偏光方向が異なる、信号光の他部と、迷光の一部とにおける、光の干渉の 影響を効果的に低減することが可能である。特に、 ± 1次回折光である信号光の他 部と、 0次光の迷光の一部とは、光強度のレベルが略等しいので、偏光方向を異なら せることによって、例えば士 1次回折光である信号光を受光する受光手段における、 0次光の迷光による光の干渉の影響をより顕著に、低減することが可能である。
[0018] 本発明の光ピックアップの他の態様では、前記信号光は、 0次光の信号光、又は、
± 1次回折光の信号光であると共に、前記迷光は、 0次光の迷光、又は、 ± 1次回折 光の迷光である。
[0019] この態様によれば、偏光方向が異なる、(i) 0次光に対応される、信号光の少なくと も一部と、(ii) ± 1次回折光に対応される、迷光の少なくとも一部を除いた、迷光の他 部とにおける、光の干渉の影響を効果的に低減することが可能である。或いは、 ± 1 次回折光に対応される、信号光の少なくとも一部と、 0次光に対応される、迷光の少 なくとも一部を除いた、迷光の他部とにおける、光の干渉の影響を効果的に低減する ことが可能である。
[0020] 上述した光学素子に係る態様では、前記第 1方向と、前記第 2方向とは、相対的に 偏光面が 90度だけ異なるように構成してもよ ヽ。
[0021] このように構成すれば、偏光方向が相対的に 90度だけ異なる、(i)信号光の少なく とも一部と、(ii)例えば迷光の少なくとも一部を除いた、迷光の他部とにおける、光の 干渉の影響を、より効果的に低減することが可能である。
[0022] 本発明の光ピックアップの他の態様では、前記光学素子の一部、及び、前記光学 素子の他部のうちいずれか一方は、 λ Ζ2波長板である。
[0023] この態様によれば、偏光方向が相対的に 90度だけ異なる、(i)信号光の少なくとも 一部と、(ii)例えば迷光の少なくとも一部を除いた、迷光の他部とにおける、光の干 渉の影響を、より効果的に低減することが可能である。
[0024] 本発明の光ピックアップの他の態様では、前記光学素子は、平行光束でな!、と共 に、前記複数の記録層において発生した戻り光が、前記受光手段へと導かれる光路 (復路)上にお!、て配置される。
[0025] この態様によれば、受光手段によって、偏光方向が異なる、信号光の少なくとも一 部と、迷光の他部とを、適切に合わせて受光することが可能である。具体的には、受 光手段によって、信号光の大部分又は全部が、迷光の他部に含まれて、受光される ようにしてもよい。従って、偏光方向が異なる、(i)信号光の少なくとも一部と、(ii)例え ば迷光の少なくとも一部を除いた、迷光の他部とにおける、光の干渉の影響を、より 効果的に低減することが可能である。
[0026] 本発明の光ピックアップの他の態様では、前記光学素子は、光学軸上において、 複数の前記他の記録層において発生する、複数の前記迷光の光径が、全て、略等 し!、位置にぉ 、て配置される。
[0027] この態様によれば、複数の迷光の光径が全て略等しい位置に配置された光学素子 を介して、受光手段によって、偏光方向が異なる、信号光の少なくとも一部と、迷光の 他部とを、適切に合わせて受光することが可能である。ここに、本願発明に係る「光径 」とは、レーザ光の光学軸に基づいて測定可能な直径 (若しくは半径)等の物理的な 長さを意味する。特に、この「光径」は、例えば集光レンズ等の他の光学系における 光学的な特性 (例えば光学倍率や、回折角度や、主点の位置や、焦点距離等)に基 づいて、一義的に決定されるようにしてもよい。
[0028] 具体的には、受光手段によって、信号光の大部分又は全部力 迷光の他部に含ま れて、受光されるようにしてもよい。従って、偏光方向が異なる、(i)信号光の少なくと も一部と、(ii)例えば迷光の少なくとも一部を除いた、迷光の他部とにおける、光の干 渉の影響を、より効果的に低減することが可能である。
[0029] 本発明の光ピックアップの他の態様では、前記光学素子は、光学軸上において、 前記信号光の 2つの、非点収差法に基づく焦線のうち、照射側(Coljens側)の位置 の近傍において配置される。
[0030] この態様によれば、受光手段によって、偏光方向が異なる、信号光の少なくとも一 部と、迷光の他部とを、適切に合わせて受光することが可能である。具体的には、受 光手段によって、信号光の大部分又は全部が、迷光の他部に含まれて、受光される ようにしてもよい。従って、偏光方向が異なる、(i)信号光の少なくとも一部と、(ii)例え ば迷光の少なくとも一部を除いた、迷光の他部とにおける、光の干渉の影響を、より 効果的に低減することが可能である。
[0031] 上述した光学素子に係る態様では、前記光学素子の一部及び他部の形状、並び に、前記一部と前記他部との相対的な位置関係は、(i-1)光学軸に垂直な平面にお ける、 0次光に対応される、前記信号光の光径若しくは光学倍率、並びに、(i-2)前 記迷光の光径若しくは光学倍率と、(ii-1)光学軸に垂直な平面における、 ± 1次回 折光に対応される、前記信号光の光径、光線位置、若しくは光学倍率、並びに、(ii- 2)前記迷光の光径、光線位置若しくは光学倍率と、に基づいて規定されるように構 成してちょい。
[0032] このように構成すれば、受光手段によって、偏光方向が異なる、信号光の少なくとも 一部と、迷光の他部とを、適切に合わせて受光することが可能である。具体的には、 受光手段によって、信号光の大部分又は全部が、迷光の他部に含まれて、受光され るようにしてもよい。従って、偏光方向が異なる、(i)信号光の少なくとも一部と、(ii)例 えば迷光の少なくとも一部を除いた、迷光の他部とにおける、光の干渉の影響を、よ り効果的に低減することが可能である。 [0033] 上述した光学素子に係る態様では、前記光学素子の一部及び他部の形状、並び に、前記一部と前記他部との相対的な位置関係は、前記信号光の光径における、前 記迷光との影響が相対的に大き 、領域の幅に基づ 、て規定されるように構成しても よい。
[0034] このように構成すれば、受光手段によって、偏光方向が異なる、信号光の少なくとも 一部と、迷光の他部とを、領域の幅に基づいて適切に合わせて受光することが可能 である。具体的には、受光手段によって、信号光の大部分又は全部が、迷光の他部 に含まれて、受光されるようにしてもよい。従って、偏光方向が異なる、(i)信号光の少 なくとも一部と、(ii)例えば迷光の少なくとも一部を除いた、迷光の他部とにおける、 光の干渉の影響を、より効果的に低減することが可能である。
[0035] 上述した光学素子に係る態様では、前記光学素子の一部及び他部の形状、並び に、前記一部と前記他部との相対的な位置関係は、前記信号光と、前記迷光との、 前記受光手段上の干渉パターンに基づ!、て規定されるように構成してもよ 、。
[0036] このように構成すれば、受光手段によって、偏光方向が異なる、信号光の少なくとも 一部と、迷光の他部とを、干渉パターンに基づいて、適切に合わせて受光することが 可能である。具体的には、受光手段によって、信号光の大部分又は全部が、迷光の 他部に含まれて、受光されるようにしてもよい。従って、偏光方向が異なる、(i)信号 光の少なくとも一部と、(ii)例えば迷光の少なくとも一部を除いた、迷光の他部とにお ける、光の干渉の影響を、より効果的に低減することが可能である。
[0037] 上述した光学素子に係る態様では、非点収差法を行うためのシリンドリカルレンズ( マルチレンズ)を更に備え、前記光学素子は、(i)前記信号光の + 1次光成分の回折 方向と、前記信号光の 1次光成分の回折方向と角度、及び (ii)前記シリンドリカル レンズのシリンダ方向によって特定可能な、前記受光手段上の干渉パターンに基づ Vヽて規定されるように構成してもよ!/、。
[0038] このように構成すれば、受光手段によって、偏光方向が異なる、信号光の少なくとも 一部と、迷光の他部とを、適切に合わせて受光することが可能である。具体的には、 受光手段によって、信号光の大部分又は全部が、迷光の他部に含まれて、受光され るようにしてもよい。従って、偏光方向が異なる、(i)信号光の少なくとも一部と、(ii)例 えば迷光の少なくとも一部を除いた、迷光の他部とにおける、光の干渉の影響を、よ り効果的に低減することが可能である。
[0039] 本発明の光ピックアップの他の態様では、非点収差法を行うためのシリンドリカルレ ンズ (マルチレンズ)を更に備え、前記シリンドリカルレンズは、当該シリンドリカルレン ズのシリンダ方向が、(i) + l次回折光に対応される前記信号光の回折方向と、 1 次回折光に対応される前記信号光の回折方向とによって形成される平面と略 45度 の角度をなし、(ii) O次光に対応される前記信号光を基準した前記 + 1次回折光のォ フセット方向、又は、前記— 1次回折光のオフセット方向に対して、反対方向に干渉 ノ《ターンが形成されるように、配置される。
[0040] この態様によれば、受光手段によって、偏光方向が異なる、信号光の少なくとも一 部と、迷光の他部とを、適切に合わせて受光することが可能である。具体的には、受 光手段によって、信号光の大部分又は全部が、迷光の他部に含まれて、受光される ようにしてもよい。従って、偏光方向が異なる、(i)信号光の少なくとも一部と、(ii)例え ば迷光の少なくとも一部を除いた、迷光の他部とにおける、光の干渉の影響を、より 効果的に低減することが可能である。
[0041] 上述した光学素子に係る態様では、前記光学素子は、 0次光に対応される焦線 (集 光レンズ側の焦線)の方向を基準にして、線対称の位置関係にある、少なくとも 2つの 前記一部、又は前記他部を有するように構成してもよ ヽ。
[0042] このように構成すれば、受光手段によって、偏光方向が異なる、信号光の少なくとも 一部と、迷光の他部とを、例えば集光レンズ側の焦線の位置関係に基づいて、適切 に合わせて受光することが可能である。具体的には、受光手段によって、信号光の 大部分又は全部が、迷光の他部に含まれて、受光されるようにしてもよい。従って、 偏光方向が異なる、(i)信号光の少なくとも一部と、(ii)例えば迷光の少なくとも一部 を除いた、迷光の他部とにおける、光の干渉の影響を、より効果的に低減することが 可能である。
[0043] 上述した光学素子に係る態様では、前記光学素子は、プッシュプル信号を受光す るための方向(Rad方向)を基準にして、線対称の位置関係にある、少なくとも 2つの 前記一部、又は前記他部を有するように構成してもよ ヽ。 [0044] このように構成すれば、受光手段によって、偏光方向が異なる、信号光の少なくとも 一部と、迷光の他部とを、プッシュプル信号を受光するための方向を基準にした位置 関係に基づいて、適切に合わせて受光することが可能である。具体的には、受光手 段によって、信号光の大部分又は全部が、迷光の他部に含まれて、受光されるように してもよい。従って、偏光方向が異なる、(i)信号光の少なくとも一部と、(ii)例えば迷 光の少なくとも一部を除いた、迷光の他部とにおける、光の干渉の影響を、より効果 的に低減することが可能である。
[0045] 上述した光ピックアップに係る態様では、前記信号光、又は前記迷光の焦点位置 を少なくとも変化させるホログラム素子を更に備え、前記ホログラム素子は、前記受光 手段によって、(i)前記信号光の一部と、前記迷光の他部、又は、(ii)前記信号光の 他部と、前記迷光の一部と、が合わされて受光するように前記焦点位置を変化させる ように構成してもよい。
[0046] このように構成すれば、受光手段によって、偏光方向が異なる、信号光の少なくとも 一部と、迷光の他部とを、適切に合わせて受光することが可能である。具体的には、 受光手段によって、信号光の大部分又は全部が、迷光の他部に含まれて、受光され るようにしてもよい。従って、偏光方向が異なる、(i)信号光の少なくとも一部と、(ii)例 えば迷光の少なくとも一部を除いた、迷光の他部とにおける、光の干渉の影響を、よ り効果的に低減することが可能である。
[0047] 本発明の光ピックアップの他の態様では、前記光学素子は、 ± 1次回折光に対応さ れる前記信号光の偏光方向と、 0次光に対応される前記迷光の偏光方向とを異なら せ、前記受光手段は、前記 0次光を受光する第 1受光部 (PD0)、 + 1次回折光を受 光する第 2受光部 (PDla)、及び 1次回折光を受光する第 3受光部 (PDlb)のうち、 少なくとも前記第 2受光部及び前記第 3受光部を含む。
[0048] この態様によれば、第 2受光部、及び第 3受光部を含む受光手段によって、偏光方 向が異なる、 ± 1次回折光に対応される信号光の少なくとも一部と、 0次光に対応さ れる迷光の他部とを、適切に合わせて受光することが可能である。
[0049] 本発明の光ピックアップの他の態様では、受光された前記信号光に基づ!、て、前 記レーザ光を前記一の記録層に有される記録トラックに導くように前記光学系を制御 する制御手段(トラッキング制御 Zフォーカス制御)を更に備える。
[0050] この態様によれば、例えばトラッキング制御、又はフォーカス制御を行う制御手段の 制御下で、多層型の情報記録媒体における、迷光の影響を効果的に低減させ、光 強度のレベルをより高く維持させた状態の下で、受光手段に受光させ、高精度な、フ オーカス制御、及び、トラッキング制御を実現することが可能である。
[0051] (情報機器)
上記課題を解決するために、本発明の情報機器は、上述した本発明の光ピックアツ プ (但し、その各種態様を含む)と、前記レーザ光を前記光ディスクに照射することで 、前記情報信号の記録又は再生を行う記録再生手段とを備える。
[0052] 本発明の情報機器によれば、上述した本発明の光ピックアップが有する各種利益 と同様の利益を享受しながら、光ディスクに対して情報信号を記録し、又は光ディスク に記録された情報信号を再生することができる。
[0053] 本発明のこのような作用及び他の利得は次に説明する実施例から更に明らかにさ れる。
[0054] 以上説明したように、本発明の光ピックアップによれば、光源、回折手段、光学系、 光学素子、及び受光手段を備える。この結果、多層型の情報記録媒体における、例 えば 3ビーム法に基づくトラッキング制御において、迷光の影響を効果的に低減させ 、光強度のレベルをより高く維持させた状態の下で、信号光を、受光手段に受光させ 、高精度なトラッキング制御を実現することが可能である。
[0055] 或いは、本発明の情報機器によれば、光源、回折手段、光学系、光学素子、受光 手段、及び、記録再生手段を備える。この結果、多層型の情報記録媒体における、 例えば 3ビーム法に基づくトラッキング制御にぉ 、て、迷光の影響を効果的に低減さ せ、光強度のレベルをより高く維持させた状態の下で、信号光を、受光手段に受光さ せ、高精度なトラッキング制御を実現することが可能である。
図面の簡単な説明
[0056] [図 1]本発明の情報記録装置の実施例に係る情報記録再生装置、及び、ホストコンビ ユータの基本構成を示したブロック図である。
[図 2]本実施例に係る情報記録再生装置 300に有される光ピックアップ 100のより詳 細な構成を概念的に示すブロック図である。
圆 3]—般的な光ピックアップ内での、信号光と迷光とにおける、光の干渉を概念的 に示す一の模式図である。
圆 4]一般的な光ピックアップ内での、信号光と迷光とにおける、光の干渉を概念的 に示す他の模式図である。
[図 5]—般的な光ピックアップ内での受光部に受光された光径において、光の干渉が 発生しない場合の光強度を、濃淡によって示した平面図(図 5 (a) )、及び、一般的な 光ピックアップ内での受光部に受光された光径において、光の干渉が発生した場合 の光強度を、濃淡によって示した平面図(図 5 (b) )である。
[図 6]本実施例に係る、光ピックアップに有される、第 1波長板の受光面を、図式的に 示す平面図(図 6 (a) )及び、第 1波長板の配置を図式的に示す断面図(図 6 (b) )で ある。
[図 7]本実施例に係る、光ピックアップ内での受光部に受光された光径において、光 の干渉が発生した場合の光強度を、濃淡によって示した平面図(図 7 (a) )、本実施 例に係る、光ピックアップ内での受光部に受光された光径と、不感帯の幅と、間係を 示した平面図(図 7 (b) )、本実施例に係る、不感帯の幅と、ノイズレベルとの間係を示 した表(図 7 (c) )である。
[図 8]本実施例に係る、第 1波長板が配置される、光学軸上での焦線の位置を図式 的に示す断面図である。
圆 9]本実施例に係る、第 1波長板の受光面を、図式的に示す平面図(図 9 (a) )、第 1波長板の受光面において、 0次光が照射される光径と、 ± 1次光が照射される光径 との相対的な位置関係を、図式的に示す平面図(図 9 (b) )、並びに、受光部の受光 面において、 0次光が照射される光径と、 ± 1次光が照射される光径と、 0次光の迷 光が照射される光径と、の相対的な位置関係を、図式的に示す平面図(図 9 (c) )で ある。
圆 10]本実施例に係る、手前側若しくは奥側の記録層に合焦点した場合の、第 1波 長板若しくは受光部の受光面において、 0次光が照射される光径と、 ± 1次光が照射 される光径との相対的な位置関係を、図式的に示す平面図(図 10 (a)力も (d) )であ る。
[図 11]本実施例に係る、手前側の記録層の合焦点した場合の、受光部の受光面に おいて、 0次光が照射される光径と、 ± 1次光が照射される光径との相対的な位置関 係を、図式的に示す平面図である。
[図 12]他の実施例に係る、光ピックアップに有される、第 2波長板の受光面を、図式 的に示す平面図(図 12 (a) )及び、第 2波長板の配置を図式的に示す断面図(図 12
(b) )である。
[図 13]他の実施例に係る、第 2波長板の受光面を、図式的に示す平面図(図 13 (a) ) 、第 2波長板の受光面において、 0次光が照射される光径と、 ± 1次光が照射される 光径との相対的な位置関係を、図式的に示す平面図(図 13 (b) )、並びに、受光部 の受光面において、 0次光が照射される光径と、 ± 1次光が照射される光径と、 0次 光の迷光が照射される光径と、の相対的な位置関係を、図式的に示す平面図(図 13
(c) )である。
[図 14]他の実施例に係る、第 3波長板の受光面を、図式的に示す平面図(図 14 (a) ) 、第 3波長板の受光面において、 0次光が照射される光径と、 ± 1次光が照射される 光径との相対的な位置関係を、図式的に示す平面図(図 14 (b) )、並びに、受光部 の受光面において、 0次光が照射される光径と、 ± 1次光が照射される光径と、 0次 光の迷光が照射される光径と、の相対的な位置関係を、図式的に示す平面図(図 14 (c) )である。
[図 15]他の実施例に係る、受光部の受光面において、 0次光、 ± 1次光、及び 0次光 が照射される光径と、光の干渉の中心との相対的な位置関係を、図式的に示す平面 図である。
[図 16]比較例に係る受光部と、光径との相対的な位置関係を示した平面図である。 符号の説明
10 光ディスク
100 光ピックアップ
101 半導体レーザ
102 回折格子 103等 集光レンズ
105 光路分岐素子
106 反射ミラー
107 1Z4波長板
110 シリンドリカノレレンズ
111等 第 1波長板
PDO等 受光部
300 情報記録再生装置
302 信号記録再生手段
発明を実施するための最良の形態
[0058] 以下、本発明を実施するための最良の形態について実施例毎に順に図面に基づ いて説明する。
[0059] (1)情報記録再生装置の実施例
先ず、図 1を参照して、本発明の情報記録装置の実施例の構成及び動作について 詳細に説明する。特に、本実施例は、本発明に係る情報記録装置を光ディスク用の 情報記録再生装置に適用した例である。
[0060] (1 1)基本構成
先ず、図 1を参照して、本発明の情報記録装置に係る実施例における情報記録再 生装置 300及び、ホストコンピュータ 400の基本構成について説明する。ここに、図 1 は、本発明の情報記録装置の実施例に係る情報記録再生装置、及び、ホストコンビ ユータの基本構成を示したブロック図である。尚、情報記録再生装置 300は、光ディ スク 10に記録データを記録する機能と、光ディスク 10に記録された記録データを再 生する機能とを備える。
[0061] 図 1を参照して情報記録再生装置 300の内部構成を説明する。情報記録再生装置 300は、ドライブ用の CPU (Central Processing Unit) 314の制御下で、光ディスク 10 に情報を記録すると共に、光ディスク 10に記録された情報を読み取る装置である。
[0062] 情報記録再生装置 300は、光ディスク 10、光ピックアップ 100、信号記録再生手段 302、アドレス検出部 303、 CPU (ドライブ制御手段) 314、スピンドルモータ 306、メ モリ 307、データ入出力制御手段 308、及びバス 309を備えて構成されている。
[0063] また、ホストコンピュータ 400は、 CPU (ホスト制御手段) 401、メモリ 402、操作制御 手段 403、操作ボタン 404、表示パネル 405、データ入出力制御手段 406、及びバ ス 407を備えて構成される。
[0064] 特に、情報記録再生装置 300は、例えばモデム等の通信手段を備えたホストコンビ ユータ 400を同一筐体内に収めることにより、外部ネットワークと通信可能となるように 構成してもよい。或いは、例えば i— link等の通信手段を備えたホストコンピュータ 40 0の CPU (ホスト制御手段) 401が、データ入出力制御手段 308、及びバス 309を介 して、直接的に、情報記録再生装置 300を制御することによって、外部ネットワークと 通信可能となるように構成してもよ 、。
[0065] 光ピックアップ 100は光ディスク 10への記録再生を行うもので、半導体レーザ装置 とレンズから構成される。より詳細には、光ピックアップ 100は、光ディスク 10に対して レーザービーム等の光ビームを、再生時には読み取り光として第 1のパワーで照射し 、記録時には書き込み光として第 2のパワーで且つ変調させながら照射する。
[0066] 信号記録再生手段 302は、光ピックアップ 100とスピンドルモータ 306とを制御する ことで光ディスク 10に対して記録又は再生を行う。より具体的には、信号記録再生手 段 302は、例えば、レーザダイオードドライバ (LDドライノく)及びヘッドアンプ等によつ て構成されている。レーザダイオードドライバは、光ピックアップ 100内に設けられた 図示しない半導体レーザを駆動する。ヘッドアンプは、光ピックアップ 100の出力信 号、即ち、光ビームの反射光を増幅し、該増幅した信号を出力する。より詳細には、 信号記録再生手段 302は、 OPC (Optimum Power Control)処理時には、 CPU314 の制御下で、図示しないタイミング生成器等と共に、 OPCパターンの記録及び再生 処理により最適なレーザパワーの決定が行えるように、光ピックアップ 100内に設けら れた図示しない半導体レーザを駆動する。特に、信号記録再生手段 302は、光ピッ クアップ 100と共に、本発明に係る「記録再生手段」の一例を構成する。
[0067] アドレス検出部 303は、信号記録再生手段 302によって出力される、例えばプリフ ォーマットアドレス信号等を含む再生信号力も光ディスク 10におけるアドレス (ァドレ ス情報)を検出する。 [0068] CPU (ドライブ制御手段) 314は、バス 309を介して、各種制御手段に指示を行うこ とで、情報記録再生装置 300全体の制御を行う。尚、 CPU314が動作するためのソ フトウェア又はファームウェアは、メモリ 307に格納されている。特に、 CPU314は、 本発明に係る「制御手段」の一例を構成する。
[0069] スピンドルモータ 306は光ディスク 10を回転及び停止させるもので、光ディスクへの アクセス時に動作する。より詳細には、スピンドルモータ 306は、図示しないサーボュ ニット等によりスピンドルサーボを受けつつ所定速度で光ディスク 10を回転及び停止 させるように構成されている。
[0070] メモリ 307は、記録再生データのバッファ領域や、信号記録再生手段 302で使用出 来るデータに変換する時の中間バッファとして使用される領域など情報記録再生装 置 300におけるデータ処理全般及び OPC処理において使用される。また、メモリ 30 7はこれらレコーダ機器としての動作を行うためのプログラム、即ちファームウェアが格 納される ROM領域と、記録再生データの一時格納用バッファや、ファームウェアプロ グラム等の動作に必要な変数が格納される RAM領域など力 構成される。
[0071] データ入出力制御手段 308は、情報記録再生装置 300に対する外部からのデー タ入出力を制御し、メモリ 307上のデータバッファへの格納及び取り出しを行う。情報 記録再生装置 300と、 SCSIや ATAPI等のインターフェースを介して接続されて!、る 外部のホストコンピュータ 400 (以下、適宜ホストと称す)から発行されるドライブ制御 命令は、当該データ入出力制御手段 308を介して CPU314に伝達される。また、記 録再生データも同様にして、当該データ入出力制御手段 308を介して、ホストコンビ ユータ 400に対して送受信される。
[0072] ホストコンピュータ 400における、 CPU (ホスト制御手段) 401、メモリ 402、データ入 出力制御手段 406、及びバス 407は、これらに対応される、情報記録再生装置 300 内の構成要素と、概ね同様である。
[0073] 操作制御手段 403は、ホストコンピュータ 400に対する動作指示受付と表示を行う もので、例えば記録又は再生と 、つた操作ボタン 404による指示を CPU401に伝え る。 CPU401は、操作制御手段 403からの指示情報を元に、データ入出力手段 406 を介して、情報記録再生装置 300に対して制御命令 (コマンド)を送信し、情報記録 再生装置 300全体を制御するように構成してもよい。同様に、 CPU401は、情報記 録再生装置 300に対して、動作状態をホストに送信するように要求するコマンドを送 信することができる。これにより、記録中や再生中といった情報記録再生装置 300の 動作状態が把握できるため CPU401は、操作制御手段 403を介して蛍光管や LCD などの表示パネル 405に情報記録再生装置 300の動作状態を出力することができる
[0074] 以上説明した、情報記録再生装置 300とホストコンピュータ 400を組み合わせて使 用する一具体例は、映像を記録再生するレコーダ機器等の家庭用機器である。この レコーダ機器は放送受信チューナや外部接続端子力ゝらの映像信号をディスクに記録 し、テレビなど外部表示機器にディスクから再生した映像信号を出力する機器である
。メモリ 402に格納されたプログラムを CPU401で実行させることでレコーダ機器とし ての動作を行っている。また、別の具体例では、情報記録再生装置 300はディスクド ライブ(以下、適宜ドライブと称す)であり、ホストコンピュータ 400はパーソナルコンビ ユータゃワークステーションである。パーソナルコンピュータ等のホストコンピュータと ドライブは SCSIや ATAPIと ヽつたデータ入出力制御手段 308 (406)を介して接続 されており、ホストコンピュータにインストールされているライティングソフトウェア等の アプリケーションが、ディスクドライブを制御する。
[0075] (2) 光ピックアップ
(2- 1) 光ピックアップの基本構成
次に、図 2を参照して、本実施例に係る情報記録再生装置 300が備える光ピックァ ップ 100のより詳細な構成について説明する。ここに、図 2は、本実施例に係る情報 記録再生装置 300に有される光ピックアップ 100のより詳細な構成を概念的に示す ブロック図である。
[0076] 図 2に示すように、光ピックアップ 100は、半導体レーザ 101 (即ち、本発明に係る 光源の一具体例)と、回折格子 102 (即ち、本発明に係る回折手段の一具体例)と、 集光レンズ (コリメータレンズ) 103と、光路分岐素子 (ハーフミラー) 105と、反射ミラ 一 106と、 1/4波長板 107と、集光レンズ 108と、集光レンズ 109と、シリンド、リカノレレ ンズ 110と、第 1波長板 111と、受光部 PD0と、受光部 PDlaと、受光部 PDlbと、を 備えて構成されている。従って、レーザ光 LBは、次の順番で、半導体レーザ 101か ら射出され、各素子を介して、受光部 PDO等に受光される。即ち、所謂、光路上の往 路として、光ディスクの一の記録層に導かれる際には、半導体レーザ 101から射出さ れたレーザ光 LBは、回折格子 102、集光レンズ 103と、光機能素子 104、光路分岐 素子 105、反射ミラー 106、 1Z4波長板 107、及び、集光レンズ 108を介して、一の 記録層に導かれる。他方、所謂、光路上の復路として、一の記録層に反射されたレ 一ザ光 LBは、集光レンズ 108、 1Z4波長板 107、反射ミラー 106、光路分岐素子 1 05、集光レンズ 109、シリンドリカルレンズ 110を介して、受光部 PD0に受光される。
[0077] 尚、集光レンズ 103、 108及び 109、光路分岐素子 105、反射ミラー 106、 1Z4波 長板 107、シリンドリカルレンズ 110によって、本発明に係る光学系の一具体例が構 成されている。また、受光部 PD0、 PDla,及び PDlbによって、本発明に係る受光 手段の一具体例が構成されて 、る。
[0078] 半導体レーザ 101は、例えば水平方向に比べて垂直方向に拡がった楕円形状の 発光パターンで、レーザ光 LBを射出する。
[0079] 回折格子 102は、半導体レーザ 101から射出されたレーザ光を、 0次光 (所謂、主 ビーム)と、 + 1次回折光及び— 1次回折光 (所謂、副ビーム)とに回折する。
[0080] 集光レンズ 103は、入射されたレーザ光 LBを略平行光にして、光機能素子 104へ と入射させる。
[0081] 光路分岐素子 105は、例えばビームスプリッタ(PBS: Polarized Beam Splitter)等の 、偏光方向に基づいて、光路を分岐させる光学素子である。具体的には、偏光方向 がーの方向であるレーザ光 LBを、光量の損失が殆ど又は完全にない状態で、透過 させ、光ディスクの側から入射される、偏光方向が他の方向であるレーザ光 LB (即ち 、レーザ光 LBの光ディスク 10からの反射光)を光量の損失が殆ど又は完全にない状 態で反射する。光路分岐素子 105において反射された反射光は、集光レンズ 109、 及び、シリンドリカルレンズ 110を介して受光部 PD0、 PDla及び PDlbに受光される
[0082] 反射ミラーは、レーザ光 LBを、光量の損失が殆ど又は完全にな 、状態で、反射さ せる。 [0083] 1Z4波長板 107は、レーザ光に、 90度の位相差を与えることによって、直線偏光 のレーザ光を円偏光に変換させると共に、円偏光のレーザ光を直線偏光に変換させ ることが可能である。
[0084] 集光レンズ 108は、入射するレーザ光 LBを集光して、光ディスク 10の記録面上に 照射する。詳細には、集光レンズ 108は、例えばァクチユエ一タ部を備えて構成され ており、集光レンズ 108の配置位置を変更するための駆動機構を有している。より具 体的には、ァクチユエータ部は、対物レンズ 108の位置をフォーカス方向に移動させ ることで、光ディスクにおける一の記録層(例えば L0層)と、他の記録層(例えば L1層 )とに合焦点することが可能である。
[0085] 集光レンズ 109は、光路分岐素子 105において反射された反射光を集光する。
[0086] シリンドリカルレンズ 110は、非点収差法に基づくフォーカス制御のために、非点収 差を受光部 PDにお 、て発生させる。
[0087] 受光部 PDは、受光部 PD0、 PDla及び PDlbを備えて構成されて 、る。受光部 P DOは、 0次光を受光し、受光部 PDlaは、 + 1次回折光を受光し、受光部 PDlbは、 1次回折光を受光する。
[0088] (2- 1) 信号光と、迷光とにおける、光の干渉
次に、図 3から図 5を参照して、一般的な光ピックアップ内での、信号光と迷光とに おける、光の干渉について説明する。ここに、図 3は、一般的な光ピックアップ内での 、信号光と迷光とにおける、光の干渉を概念的に示す一の模式図である。図 4は、一 般的な光ピックアップ内での、信号光と迷光とにおける、光の干渉を概念的に示す他 の模式図である。図 5は、一般的な光ピックアップ内での受光部に受光された光径に おいて、光の干渉が発生しない場合の光強度を、濃淡によって示した平面図(図 5 (a ) )、及び、一般的な光ピックアップ内での受光部に受光された光径において、光の 干渉が発生した場合の光強度を、濃淡によって示した平面図(図 5 (b) )である。尚、 図 5中において、光強度が相対的に高いレベルにあるほど、薄く(白く)なっており、 光強度が相対的に低いレベルにあるほど、濃く(黒く)なっている。
[0089] 図 3に示されるように、奥側の記録層(前述の図 2中の他の記録層)に対して、記録 又は再生処理を行った場合、 0次光を受光する受光部 PD0、 + 1次光を受光する受 光部 PDla、及び 1次光を受光する受光部 PDlbを含む領域において、 0次光の 迷光は、デフォーカスされて(ぼんやりと)照射される。特に、 0次光の迷光の焦点位 置は、光学軸上、レーザ光が照射される側から見て、受光部 PDの後ろ側にある。
[0090] 他方、図 4に示されるように、手前側の記録層(前述の図 2中の一の記録層)に対し て、記録又は再生処理を行った場合、 0次光を受光する受光部 PDO、 + 1次光を受 光する受光部 PDla、及び 1次光を受光する受光部 PDlbを含む領域において、 0次光の迷光は、デフォーカスされて(ぼんやりと)照射される。特に、 0次光の迷光の 焦点位置は、光学軸上、レーザ光が照射される側力 見て、受光部 PDの手前側に ある。
[0091] そのため、図 5に示される、受光部の受光面において、受光される、レーザ光の光 強度の分布は、迷光による光の干渉がない場合(図 5 (a)中の薄く(白く)部分を参照 )と比較して、迷光による光の干渉が存在する場合、干渉パターンによって、光強度 のレベルが、光束内で、微細に変動してしまう(図 5 (b)中の白黒の縞模様の部分を 参照)。本発明では、迷光の影響を低減させ、信号光の品位 (品質)を高いレベルに 維持させることを主な目的とする。
[0092] (3) 第 1波長板
次に、図 6から図 11を参照して、本実施例に係る、光ピックアップに有される第 1波 長板 (即ち、本発明に係る「光学素子」の一具体例)の基本構成、配置、及び、光学 的な原理について説明する。
[0093] (3- 1) 第 1波長板の基本構成
先ず、図 6及び図 7を参照して、本実施例に係る、光ピックアップに有される、第 1波 長板の基本構成について説明する。ここに、図 6は、本実施例に係る、光ピックアップ に有される、第 1波長板の受光面を、図式的に示す平面図(図 6 (a) )及び、第 1波長 板の配置を図式的に示す断面図(図 6 (b) )である。
[0094] 図 6 (a)に示されるように、本実施例に係る、光ピックアップに有される、第 1波長板 111は、(i)透過したレーザ光の偏光方向を変化させる、 2つの領域(図 6 (a)中の領 域「え Z2」を参照)と、(ii)透過したレーザ光の偏光方向を変化させない、 3つの領域 (図 6 (a)中の領域「0 λ」を参照)とを備えて構成されている。領域「え /2\は、複屈 折に基づいて、例えば常光線の位相と、異常光線の位相とに、所定の量の位相差( 即ち 180度の位相差)を生じさせることが可能である。よって、領域「え Z2」を透過し たレーザ光は、領域「え Z2」を透過しないレーザ光と比較して、偏光方向を 90度だ け変化させることが可能である。
[0095] 力!]えて、 2つの領域「λ Ζ2」は、当該第 1波長板 111の中心軸を基準にして、線対 称になって配置されている。詳細には、これら 2つの領域「え Ζ2」の位置関係は、不 感帯の幅に基づいて、規定されるようにしてもよい。ここに、本実施例に係る不感帯の 幅とは、受光部に照射された信号光の光径の直径を基準として、光の透過を遮断 (マ スキング)することによって、信号光と、迷光との光の干渉の影響を低減させ、所定の レベルの光強度 (又は、所定の光強度に対応されるプッシュプル信号の振幅)を取得 可能な、所定の幅を意味する。尚、この「不感帯」によって、本発明に係る「迷光との 影響が相対的に大き 、領域」の一具体例が構成されて 、る。
[0096] (3 - 1 - 1) 本願発明者による研究
詳細には、図 7によって、本願発明者による研究によって、干渉パターンの概ね中 央部において、迷光の影響が定量的に測定された。ここに、図 7は、本実施例に係る 、光ピックアップ内での受光部に受光された光径において、光の干渉が発生した場 合の光強度を、濃淡によって示した平面図(図 7 (a) )、本実施例に係る、光ピックアツ プ内での受光部に受光された光径と、不感帯の幅と、間係を示した平面図(図 7 (b) ) 、本実施例に係る、不感帯の幅と、ノイズレベルとの間係を示した表(図 7 (c) )である
[0097] 即ち、図 7 (a)に示された、受光部に照射された、光径に対して、図 7 (b)に示され たように不感帯の幅を設定する。よって、図 7 (c)に示されるように、不感帯の幅 (横軸 を参照)をパラメータとした、光強度のレベル (即ち、プッシュプル信号のレベル)、及 びノイズのレベルの変化を示すグラフを得ることが可能である。尚、図 7 (c)中、太い 実線は、例えば青色 LD (Laser Diode)のプッシュプル信号の振幅のレベルを示し、 点線は、 SUM (Summary:合計)出力ノイズの振幅のレベルを示し、一点鎖線は、 SP P (Signal Pre Pit :プリピット信号)出力ノイズの振幅のレベルを示す。即ち、図 7 (c)に 示されるように、不感帯の幅が「2. 0」から大きくなるに従って、ノイズレベルは、急激 に低下することが示されている。そして、不感帯の幅が「3. 0」においては、ノイズレべ ルを約 70%も低下させることが可能であることが示されている。
[0098] 以上の結果、迷光の影響を低減するために、偏光方向を直交させる、領域の最小 値 (即ち、後述の図 11における「信号光の光径の中心部」の幅)が、不感帯の幅に基 づいて、決定されることが判明した。
[0099] (3- 2) 第 1波長板の配置
次に、図 8に加えて、前述の図 6を適宜、参照して、本実施例に係る、第 1波長板の 配置について説明する。ここに、図 8は、本実施例に係る、第 1波長板が配置される、 光学軸上での焦線の位置を図式的に示す断面図である。
[0100] 図 6 (b)に示されるように、本実施例に係る、光ピックアップに有される、第 1波長板 111は、シリンドリカルレンズ 110と、受光部 PDとの間に配置される。詳細には、図 8 に示されるように、第 1波長板 111は、光学軸上での、シリンドリカルレンズ 110側の 焦線の位置に、配置されるようにしてもよい。或いは、第 1波長板 111は、光学軸上で 、前述した、図 4に示されるように、光学軸上において、複数の他の記録層において 発生する、複数の迷光の光径が、全て、略等しい位置において配置されるようにして もよい。具体的には、図 4によって示されるように、「n」番目の記録層に合焦点された 場合、「n— 1」番目の記録層にお 、て発生する迷光「n— 1」、及び「n+ 1」番目の記 録層にお 、て発生する迷光「n+ 1」を含む他の記録層にお!/、て発生する複数の迷 光の光径が、全て、略等しい位置に配置されるようにしてもよい(図 4中の「A点」と「B 点」との距離を参照)。
[0101] (3- 3) 信号光と迷光とにおいて、偏光方向が異なる光学原理
次に、図 9から図 11を参照して、本実施例に係る、受光部において受光される、信 号光と迷光とにおいて、偏光方向が異なる光学原理について説明する。ここに、図 9 は、本実施例に係る、第 1波長板の受光面を、図式的に示す平面図(図 9 (a) )、第 1 波長板の受光面において、 0次光が照射される光径と、 ± 1次光(± 1次回折光)が 照射される光径との相対的な位置関係を、図式的に示す平面図(図 9 (b) )、並びに 、受光部の受光面において、 0次光が照射される光径と、 ± 1次光が照射される光径 と、 0次光の迷光が照射される光径と、の相対的な位置関係を、図式的に示す平面 図(図 9 (c) )である。
[0102] 図 9 (a)及び図 9 (b)に示されるように、第 1波長板 111の中心軸を、前述した焦線 の軸方向と略一致させるようにしてもよい。或いは、第 1波長板 111の中心軸を、前述 したシリンドリカルレンズのシリンダ方向と、所定の角度 (例えば 45度)をなすようにし てもよい。この時、図 9 (b)に示されるように、第 1波長板 111の受光面において、 + 1 次光に対応される信号光が照射される光径は、前述した領域「え Z2」の上に位置す るように、当該領域「え Z2」が配置される。よって、 +1次光に対応される信号光の偏 光方向は 90度だけ変化する。また、 1次光に対応される信号光が照射される光径 も、前述した領域 Z2」の上に位置する。よって、—1次光に対応される信号光の 偏光方向も 90度だけ変化する。更に、また、 0次光に対応される信号光が照射される 光径 (光スポット)は、前述した領域「Ο λ」の上に位置する。よって、 0次光に対応され る信号光の偏光方向は変化しない。力 tlえて、 0次光に対応される信号光と同様に、偏 光方向が変化しない 0次光に対応される迷光が照射される光径は、上述した 3つの 光径を含む、相対的に大きな楕円形状をしており、迷光は、デフォーカスされて(ぼ んやりと)第 1波長板 111に照射されて 、る。
[0103] 従って、図 9 (c)に示されるように、受光部 PDlaにおいては、偏光方向が 90度だけ 変化した + 1次光の信号光(図 9 (c)中の「 α + 90度」と、斜線の黒丸内とを参照)が 、偏光方向が変化して 、な 、0次光の迷光(図 9 (c)中の「ひ度」を参照)と合わせて、 受光される。概ね同様にして、受光部 PDlbにおいては、偏光方向が 90度だけ変化 した + 1次光の信号光(図 9 (c)中の「 α + 90度」と、斜線の黒丸内とを参照)力 偏 光方向が変化して 、な 、0次光の迷光(図 9 (c)中の「 α度」を参照)と合わせて、受 光される。尚、図 9 (c)中の 2本の斜線の細長い斜めの長方形の領域は、 0次光の迷 光において、偏光方向が 90度だけ変化した部分を示す。
[0104] この結果、偏光方向が異なる、(0 + 1次光の信号光 (又は、 1次光の信号光)と、
(ii) 0次光の迷光とにおける、光の干渉の影響を効果的に低減することが可能である 。特に、 ± 1次光の信号光と、 0次光の迷光とは、光強度のレベルが略等しいので、 偏光方向を異ならせることによって、士 1次光等の信号光を受光する受光部 PDla ( PDlb)における、迷光による光の干渉の影響をより顕著に、低減することが可能であ る。
[0105] 以上の結果、多層型の情報記録媒体における、例えば 3ビーム法に基づくトラツキ ング制御において、迷光の影響を効果的に低減させ、光強度 (又は、光強度に対応 されるプッシュプル信号の振幅)のレベルをより高く維持させた状態の下で、信号光 を、受光部 PDに受光させ、高精度なトラッキング制御を実現することが可能である。
[0106] ここで、図 10及び図 1 1を参照して、手前側若しくは奥側の記録層に合焦点した場 合の、第 1波長板若しくは受光部の受光面において、 0次光が照射される光径と、士 1次光が照射される光径との相対的な位置関係について、より詳細に説明する。ここ に、図 10は、本実施例に係る、手前側若しくは奥側の記録層に合焦点した場合の、 第 1波長板若しくは受光部の受光面において、 0次光が照射される光径と、 ± 1次光 が照射される光径との相対的な位置関係を、図式的に示す平面図(図 10 (a)から (d ) )である。図 1 1は、本実施例に係る、手前側の記録層の合焦点した場合の、受光部 の受光面において、 0次光が照射される光径と、 ± 1次光が照射される光径との相対 的な位置関係を、図式的に示す平面図である。
[0107] 図 10 (a)に示されるように、手前側の記録層に合焦点した場合、第 1波長板 1 1 1の 中心軸と、焦線の軸方向との角度を、所定の値に設定することで、第 1波長板 1 1 1の 受光面に照射される、 ± 1次光の光径 (光スポット)の形状、又は、 0次光の光径の形 状を変形させることが可能である。従って、図 10 (b)に示されるように、受光部 PDの 受光面に照射される、 ± 1次光の光径 (光スポット)の形状及び位置、又は、 0次光の 光径の形状及び位置を変化させることが可能である。
[0108] その結果、図 1 1に示されるように、 + 1次光の光径内の 4つの領域のうち、光径の 中心部に位置する 2つの領域において、光の干渉の影響を効果的に低減することが 可能である。具体的には、 + 1次光の光径の中心部に位置する斜線でハッチングさ れた領域(図 1 1中の「α + 90度」を参照)においては、偏光方向が 90度だけ変化し た + 1次光の信号光が、偏光方向が変化して 、ない 0次光の迷光(図 1 1中の「ひ度」 を参照)と合わせて (即ち、図 1 1の紙面上では前面において偏光方向が「α + 90度 」の部分が、図 1 1の紙面上では背面にぉ 、て偏光方向が「 ex度」の部分が合わされ ているイメージで)、受光される。また、 + 1次光の光径の中心部に位置する白抜きさ れた領域(図 11中の「ひ度」を参照)にお 、ては、偏光方向が変化して 、な 、 + 1次 光の信号光が、偏光方向が 90度だけ変化した 0次光の迷光(図 11中の「α + 90度」 を参照)と合わせて (即ち、図 1 1の紙面上では、前面において偏光方向が「α度」の 部分が、背面において偏光方向が「α + 90度」の部分が合わされているイメージで) 、受光される。
[0109] 以上の結果、偏光方向が異なる、(i) + 1次光の信号光と、(ii) O次光の迷光とにお ける、光の干渉の影響を、より効果的に低減することが可能である。特に、光強度を 決定する際のもっとも大きな要素である、信号光の光径の中心部において、偏光方 向を異ならせることによって、信号光を受光する受光部 PD1における、迷光による光 の干渉の影響をより顕著に、低減することが可能である。尚、 + 1次光の光径の外周 部付近の領域にぉ 、ては、黒塗りされた領域(図 11中の「 α度」を参照)にお 、ては 、偏光方向が変化していない + 1次光の信号光が、偏光方向が変化していない 0次 光の迷光(図 11中の「 a度」を参照)と合わせて (即ち、図 1 1の紙面上では前面にお V、て偏光方向が「 a度」の部分力 図 11の紙面上では背面にぉ 、て偏光方向が「 a 度」の部分が合わされているイメージで)、受光され、光の干渉が大きくなる。しかしな がら、 + 1次光の光径の外周部付近は、光強度を決定する際には小さな要素である
[0110] 概ね同様にして、図 11に示されるように、 1次光の光径内の 3つの領域のうち、光 径の中心部と左上部に位置する 2つの領域において、光の干渉の影響を効果的に 低減することが可能である。具体的には、 1次光の光径の中心部に位置する斜線 でハッチングされた領域(図 11中の「ひ + 90度」を参照)においては、偏光方向が 90 度だけ変化した 1次光の信号光が、偏光方向が変化していない 0次光の迷光(図 1 1中の「ひ度」を参照)と合わせて (即ち、図 11の紙面上では、前面において偏光方 向が「 α + 90度」の部分力 背面にお!、て偏光方向が「 ex度」の部分が合わされて 、 るイメージで)、受光される。また、 1次光の光径の左上部に位置する白抜きされた 領域(図 11中の「ひ度」を参照)にお 、ては、偏光方向が変化して 、な 、 - 1次光の 信号光が、偏光方向が 90度だけ変化した 0次光の迷光(図 11中の「α + 90度」を参 照)と合わせて (即ち、図 11の紙面上では前面にぉ 、て偏光方向が「 α度」の部分が 、図 11の紙面上では背面において偏光方向が「 a + 90度」の部分が合わされてい るイメージで)、受光される。
[0111] 以上の結果、偏光方向が異なる、(i) 1次光の信号光と、(ii) O次光の迷光とにお ける、光の干渉の影響を、より効果的に低減することが可能である。
[0112] (4) 他の実施例
次に、図 12から図 16を参照して、他の実施例に係る、光ピックアップに有される他 の波長板 (即ち、本発明に係る「光学素子」の一具体例)の基本構成、配置、及び、 光学的な原理について説明する。尚、前述した実施例と概ね同様の構成には、同様 の符号番号を付し、それらの説明は適宜省略する。
[0113] (4- 1) 第 2波長板の基本構成
先ず、図 12を参照して、他の実施例に係る、光ピックアップに有される、第 2波長板 の基本構成について説明する。ここに、図 12は、他の実施例に係る、光ピックアップ に有される、第 2波長板の受光面を、図式的に示す平面図(図 12(a) )及び、第 2波 長板の配置を図式的に示す断面図(図 12(b) )である。
[0114] 図 12 (a)に示されるように、他の実施例に係る、光ピックアップに有される、第 2波長 板 111aは、(i)透過したレーザ光の偏光方向を変化させる、 2つの領域(図 12 (a)中 の領域「え Z2」を参照)と、(ii)透過したレーザ光の偏光方向を変化させない、 1つの 領域(図 12 (a)中の領域「0 λ」を参照)とを備えて構成されている。領域「え /2}は、 複屈折に基づいて、例えば常光線の位相と、異常光線の位相とに、所定の量の位相 差を生じさせることが可能である。よって、領域「え Ζ2」を透過したレーザ光は、領域 「 λ Ζ2」を透過しないレーザ光と比較して、偏光方向を 90度だけ変化させることが可 能である。
[0115] カロえて、 2つの領域「λ Ζ2」は、当該第 2波長板 11 laの光ディスクの接線方向、若 しくは、 Tan方向、即ち、 PDO、 PDla、及び PDlbが並ぶ方向を基準にして、線対 称になって配置されている。また、これら 2つの領域「λ Z2」は、当該第 2波長板 111 aの Rad方向(所謂、プッシュプル方向)、即ち、光ディスクの半径方向であり、且つ、 Tan方向と直交する方向を基準にして、線対称になって配置されている。また、詳細 には、これら 2つの領域「λ Z2」の位置関係は、前述した迷光の影響が相対的に大 きい領域 (前述した不感帯の幅)に基づいて、規定されるようにしてもよい。
[0116] (4- 2) 第 2波長板の配置
次に、図 12 (b)を参照して、他の実施例に係る、第 2波長板の配置について説明 する。
[0117] 図 12 (b)に示されるように、他の実施例に係る、光ピックアップに有される、第 2波 長板 11 laは、シリンドリカルレンズ 110と、集光レンズ 109との間に配置される。
[0118] (4- 3) 信号光と迷光とにおいて、偏光方向が異なる光学原理
次に、図 13を参照して、他の実施例に係る、受光部において受光される、信号光と 迷光とにおいて、偏光方向が異なる光学原理について説明する。ここに、図 13は、 他の実施例に係る、第 2波長板の受光面を、図式的に示す平面図(図 13 (a) )、第 2 波長板の受光面において、 0次光が照射される光径と、 ± 1次光(± 1次回折光)が 照射される光径との相対的な位置関係を、図式的に示す平面図(図 13 (b) )、並び に、受光部の受光面において、 0次光が照射される光径と、 ± 1次光が照射される光 径と、 0次光の迷光が照射される光径と、の相対的な位置関係を、図式的に示す平 面図(図 13 (c) )である。
[0119] 図 13 (a)及び図 13 (b)に示されるように、第 2波長板 11 laの Tan方向を、前述した PDO、 PDla、及び PDlbが並ぶ方向と略一致させる。従って、図 13 (b)に示される ように、第 2波長板 11 laの受光面において、 + 1次光に対応される信号光が照射さ れる光径の大部分は、前述した領域「え Z2」の上に位置する。よって、 + 1次光に対 応される信号光の大部分の偏光方向は 90度だけ変化する。また、 1次光に対応さ れる信号光が照射される光径の大部分も、前述した領域「え Z2」の上に位置する。 よって、 1次光に対応される信号光の大部分の偏光方向も 90度だけ変化する。更 に、また、 0次光に対応される信号光の中心部分が照射される光径 (光スポット)は、 領域「0 λ」における Rad方向と、 Tan方向との中心を基準として、 2つの領域「え /2 」の上にも覆われて位置する。よって、 0次光に対応される信号光の中心部分の偏光 方向は変化しない。
[0120] 従って、図 13 (c)に示されるように、受光部 PDlaにおいては、偏光方向が変化し て 、ない + 1次光の信号光(図 13 (c)中の「 α度」を参照)が、偏光方向が 90度だけ 変化した 0次光の迷光(図 13 (c)中の「α + 90度」、及び、斜線のひし形内とを参照) と合わせて、受光される。概ね同様にして、受光部 PDlbにおいては、偏光方向が変 化して 、ない + 1次光の信号光(図 13 (c)中の「 α度」を参照)力 偏光方向が 90度 だけ変化した 0次光の迷光(図 13 (c)中の「 α + 90度」と、斜線の黒丸内とを参照)と 合わせて、受光される。尚、図 13 (c)中の 2つの細長いひし形の領域は、 0次光の迷 光において、偏光方向が 90度だけ変化した部分を示す。
[0121] この結果、第 1波長板と比較して、大きな領域「え Ζ2」で構成される第 2波長板 11 laによって、偏光方向が異なる、(i) + l次光の信号光 (又は、 1次光の信号光)と 、(ii) 0次光の迷光とにおける、光の干渉の影響を効果的に低減することが可能であ る。特に、第 2波長板は、第 1波長板と比較して、領域「え Z2」を備えて設計するため に、微小な部品や、精密な加工の必要性を小さくすることができるので、波長板の製 造工程を簡略ィ匕することが可能である。
[0122] (4-4) 第 3波長板の基本構成
次に、図 14を参照して、他の実施例に係る、光ピックアップに有される、第 3波長板 の基本構成、受光部において受光される、信号光と迷光とにおいて、偏光方向が異 なる光学原理について説明する。ここに、図 14は、他の実施例に係る、第 3波長板の 受光面を、図式的に示す平面図(図 14 (a) )、第 3波長板の受光面において、 0次光 が照射される光径と、士 1次光(士 1次回折光)が照射される光径との相対的な位置 関係を、図式的に示す平面図(図 14 (b) )、並びに、受光部の受光面において、 0次 光が照射される光径と、 ± 1次光が照射される光径と、 0次光の迷光が照射される光 径と、の相対的な位置関係を、図式的に示す平面図(図 14 (c) )である。また、図 15 は、他の実施例に係る、受光部の受光面において、 0次光、 ± 1次光、及び 0次光が 照射される光径と、光の干渉の中心との相対的な位置関係を、図式的に示す平面図 である。
[0123] 図 14 (a)及び図 14 (b)に示されるように、第 3波長板 11 lbにおいては、前述した第 2波長板 11 laと、基本構成及び配置は、概ね同様である。特に、第 3波長板 11 lbに おける、前述した 2つの領域「λ Z2」のうち一方の形状は、 Rad方向の一方側に向 かって、ずれる又は長くなるように設計されていてもよい。加えて、前述した 2つの領 域「λ Ζ2」のうち他方の形状は、 Rad方向の他方側に向力つて、ずれる又は長くなる ように設計されていてもよい。従って、図 14 (c)に示されるように、受光部 PDlaにお
V、ては、偏光方向が変化して 、な 、 + 1次光の信号光(図 14 (c)中の「ひ度」を参照
)が、偏光方向が 90度だけ変化した 0次光の迷光(図 14 (c)中の「α + 90度」、及び
、斜線のひし形内を参照)と合わせて、受光される。概ね同様にして、受光部 PDlb にお 、ては、偏光方向が変化して 、ない + 1次光の信号光(図 14 (c)中の「 α度」を 参照)が、偏光方向が 90度だけ変化した 0次光の迷光(図 14 (c)中の「α + 90度」と
、斜線の黒丸内とを参照)と合わせて、受光される。特に、図 14 (c)中の 2つの細長い ひし形の領域は、 Rad方向に離れるように位置され、 0次光の迷光において、偏光方 向が 90度だけ変化した部分を示す。
[0124] 詳細には、図 15中の左側の黒丸に示されるように、光の干渉パターンに基づいて、 光の干渉のレベルが相対的に高い部分を、前述した受光部 PDlaにおける、偏光方 向が変化して 、ない + 1次光の信号光(図 15中の「ひ度」を参照)が、偏光方向が 90 度だけ変化した 0次光の迷光(図 15中の「α + 90度」、及び、斜線のひし形内とを参 照)と合わされて受光される領域に含めることが可能である。或いは、図 15中の右側 の黒丸に示されるように、光の干渉パターンに基づいて、光の干渉のレベルが相対 的に高い部分を、前述した受光部 PDlbにおける、偏光方向が変化していない + 1 次光の信号光(図 15中の「ひ度」を参照)が、偏光方向が 90度だけ変化した 0次光の 迷光(図 15中の「α + 90度」と、斜線の黒丸内とを参照)と合わされて受光される領 域に含めることが可能である。
[0125] この結果、 Rad方向、及び Tan方向に基づいて、位置が規定された領域「え Z2」を 有する第 3波長板 11 lbによって、偏光方向が異なる、(i) + 1次光の信号光 (又は、 1次光の信号光)と、(ii) 0次光の迷光とにおける、光の干渉の影響を効果的に低 減することが可能である。特に、第 3波長板は、第 2波長板と比較して、光の干渉のレ ベルが相対的に高い部分に、適切に対応して、構成が規定されるので、光の干渉の 影響を、より効果的に低減することが可能である。尚、前述した図 12に示されるように 、レーザ光の各種の特性 (例えば焦点距離等)を変化させるために、例えばホロダラ ム素子 HOE等を備えて構成されるようにしてもょ 、。 [0126] 本発明は、上述した実施例に限られるものではなぐ請求の範囲及び明細書全体 力 読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、その ような変更を伴う光ピックアップ及び情報機器もまた本発明の技術的範囲に含まれる ものである。
産業上の利用可能性
[0127] 本発明に係る光ピックアップ及び情報機器は、例えば DVD等の情報記録媒体に 対して情報信号の記録又は再生を行う際にレーザ光を照射する光ピックアップに利 用可能であり、更に当該光ピックアップを備える情報機器に利用可能である。

Claims

請求の範囲
[1] 情報信号が記録される情報ピットが配列されてなる記録トラックを有する、複数の記 録層を備える光ディスク力 前記情報信号を記録又は再生する光ピックアップであつ て、
レーザ光を照射する光源と、
照射された前記レーザ光を回折させる回折手段と、
回折された前記レーザ光を、前記複数の記録層のうちの一の記録層に導く光学系 と、
導かれた前記レーザ光力 前記一の記録層に合焦点した場合、(i)前記一の記録 層において発生する信号光の少なくとも一部の偏光方向、及び (ii)前記複数の記録 層のうちの他の記録層にお 、て発生する迷光の少なくとも一部の偏光方向を変化さ せる光学素子と、
前記信号光を、少なくとも受光する一又は複数の受光手段と
を備えることを特徴とする光ピックアップ。
[2] 前記光学素子の一部は、前記信号光の一部及び前記迷光の一部における偏光方 向を第 1方向にさせ、前記光学素子の他部は、前記信号光の他部及び前記迷光の 他部における偏光方向を第 2方向にさせ、
前記受光手段は、前記信号光の一部と、前記迷光の他部とを合わせて受光するよ うに相対的に配置されることを特徴とする請求の範囲第 1項に記載の光ピックアップ。
[3] 前記光学素子の一部は、前記信号光の一部及び前記迷光の一部における偏光方 向を第 1方向にさせ、前記光学素子の他部は、前記信号光の他部及び前記迷光の 他部における偏光方向を第 2方向にさせ、
前記受光手段は、前記信号光の他部と、前記迷光の一部とを合わせて、又は、前 記信号光の一部と、前記迷光の他部とを合わせて、受光するように相対的に配置さ れることを特徴とする請求の範囲第 1項に記載の光ピックアップ。
[4] 前記信号光は、 0次光の信号光、又は、 ± 1次回折光の信号光であると共に、前記 迷光は、 0次光の迷光、又は、 ± 1次回折光の迷光であることを特徴とする請求の範 囲第 1項に記載の光ピックアップ。
[5] 前記第 1方向と、前記第 2方向とは、相対的に偏光面が 90度だけ異なることを特徴 とする請求の範囲第 2項に記載の光ピックアップ。
[6] 前記光学素子の一部、及び、前記光学素子の他部のうち!、ずれか一方は、 λ /2 波長板であることを特徴とする請求の範囲第 1項に記載の光ピックアップ。
[7] 前記光学素子は、平行光束でな 、と共に、前記複数の記録層にお 、て発生した戻 り光が、前記受光手段へと導かれる光路上において配置されることを特徴とする請求 の範囲第 1項に記載の光ピックアップ。
[8] 前記光学素子は、光学軸上において、複数の前記他の記録層において発生する、 複数の前記迷光の光径が、全て、略等しい位置において配置されることを特徴とする 請求の範囲第 1項に記載の光ピックアップ。
[9] 前記光学素子は、光学軸上において、前記信号光の 2つの、非点収差法に基づく 焦線のうち、照射側の位置の近傍にぉ 、て配置されることを特徴とする請求の範囲 第 1項に記載の光ピックアップ。
[10] 前記光学素子の一部及び他部の形状、並びに、前記一部と前記他部との相対的 な位置関係は、(i-1)光学軸に垂直な平面における、 0次光に対応される、前記信号 光の光径若しくは光学倍率、並びに、(i-2)前記迷光の光径若しくは光学倍率と、 (ii
-1)光学軸に垂直な平面における、 ± 1次回折光に対応される、前記信号光の光径
、光線位置、若しくは光学倍率、並びに、(ii-2)前記迷光の光径、光線位置若しくは 光学倍率と、に基づ 、て規定されることを特徴とする請求の範囲第 2項に記載の光ピ ックアップ。
[11] 前記光学素子の一部及び他部の形状、並びに、前記一部と前記他部との相対的 な位置関係は、前記信号光の光径における、前記迷光との影響が相対的に大きい 領域の幅に基づいて規定されることを特徴とする請求の範囲第 2項に記載の光ピック アップ。
[12] 前記光学素子の一部及び他部の形状、並びに、前記一部と前記他部との相対的 な位置関係は、前記信号光と、前記迷光との、前記受光手段上の干渉パターンに基 づいて規定されることを特徴とする請求の範囲第 2項に記載の光ピックアップ。
[13] 非点収差法を行うためのシリンドリカルレンズを更に備え、 前記光学素子は、(i)前記信号光の + 1次光成分の回折方向と、前記信号光の 1次光成分の回折方向と角度、及び (ii)前記シリンドリカルレンズのシリンダ方向によ つて特定可能な、前記受光手段上の干渉パターンに基づ!、て規定されることを特徴 とする請求の範囲第 12項に記載の光ピックアップ。
[14] 非点収差法を行うためのシリンドリカルレンズを更に備え、
前記シリンドリカルレンズは、当該シリンドリカルレンズのシリンダ方向が、(i) + l次 回折光に対応される前記信号光の回折方向と、 1次回折光に対応される前記信号 光の回折方向とによって形成される平面と略 45度の角度をなし、(ii) O次光に対応さ れる前記信号光を基準した前記 + 1次回折光のオフセット方向、又は、前記 1次回 折光のオフセット方向に対して、反対方向に干渉パターンが形成されるように、配置 されることを特徴とする請求の範囲第 1項に記載の光ピックアップ。
[15] 前記光学素子は、 0次光に対応される焦線の方向を基準にして、線対称の位置関 係にある、少なくとも 2つの前記一部、又は前記他部を有することを特徴とする請求の 範囲第 2項に記載の光ピックアップ。
[16] 前記光学素子は、プッシュプル信号を受光するための方向を基準にして、線対称 の位置関係にある、少なくとも 2つの前記一部、又は前記他部を有することを特徴と する請求の範囲第 2項に記載の光ピックアップ。
[17] 前記信号光、又は前記迷光の焦点位置を少なくとも変化させるホログラム素子を更 に備え、
前記ホログラム素子は、前記受光手段によって、(i)前記信号光の一部と、前記迷 光の他部、又は、(ii)前記信号光の他部と、前記迷光の一部と、が合わされて受光す るように前記焦点位置を変化させることを特徴とする請求の範囲第 2項に記載の光ピ ックアップ。
[18] 前記光学素子は、 ± 1次回折光に対応される前記信号光の偏光方向と、 0次光に 対応される前記迷光の偏光方向とを異ならせ、
前記受光手段は、前記 0次光を受光する第 1受光部、 + 1次回折光を受光する第 2 受光部、及び 1次回折光を受光する第 3受光部のうち、少なくとも前記第 2受光部 及び前記第 3受光部を含むことを特徴とする請求の範囲第 1項に記載の光ピックアツ プ。
[19] 受光された前記信号光に基づ!、て、前記レーザ光を前記一の記録層に有される記 録トラックに導くように前記光学系を制御する制御手段を更に備えることを特徴とする 請求の範囲第 1項に記載の光ピックアップ。
[20] 請求の範囲第 1項に記載の光ピックアップと、
前記レーザ光を前記光ディスクに照射することで、前記情報信号の記録又は再生 を行う記録再生手段と
を備えることを特徴とする情報機器。
PCT/JP2007/056927 2006-03-30 2007-03-29 光ピックアップ及び情報機器 WO2007114280A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008508625A JP4726254B2 (ja) 2006-03-30 2007-03-29 光ピックアップ及び情報機器
EP07740365A EP2006850A4 (en) 2006-03-30 2007-03-29 OPTICAL READER AND INFORMATION DEVICE
US12/295,077 US8072868B2 (en) 2006-03-30 2007-03-29 Optical pickup and information device for reducing an influence of stray light in an information recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006095904 2006-03-30
JP2006-095904 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007114280A1 true WO2007114280A1 (ja) 2007-10-11

Family

ID=38563548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056927 WO2007114280A1 (ja) 2006-03-30 2007-03-29 光ピックアップ及び情報機器

Country Status (4)

Country Link
US (1) US8072868B2 (ja)
EP (1) EP2006850A4 (ja)
JP (1) JP4726254B2 (ja)
WO (1) WO2007114280A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132912A1 (ja) * 2007-04-23 2008-11-06 Nec Corporation 光ヘッド装置および光学式情報記録再生装置
JP2009009628A (ja) * 2007-06-27 2009-01-15 Hitachi Media Electoronics Co Ltd 光ピックアップ及び光学的情報再生装置
KR101045978B1 (ko) * 2008-03-14 2011-07-04 가부시키가이샤 리코 광 픽업기 및 이것을 이용하는 광 정보 처리 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7916618B2 (en) * 2006-03-30 2011-03-29 Pioneer Corporation Optical pickup and information device
JP2008130167A (ja) * 2006-11-21 2008-06-05 Sanyo Electric Co Ltd 光ピックアップ装置
KR101330201B1 (ko) * 2010-07-12 2013-11-15 도시바삼성스토리지테크놀러지코리아 주식회사 광 픽업 장치 및 이를 적용한 광 디스크 드라이브
JP2012048785A (ja) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd 光ピックアップ装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10124906A (ja) * 1996-10-16 1998-05-15 Sankyo Seiki Mfg Co Ltd 波長板およびそれを用いた光ピックアップ装置
JP2001216662A (ja) * 2000-02-01 2001-08-10 Pioneer Electronic Corp ピックアップ装置及び情報記録再生装置
JP2005044513A (ja) * 2004-10-01 2005-02-17 Hitachi Ltd 情報記録媒体、情報再生方法、および情報記録方法
JP2005063595A (ja) * 2003-08-18 2005-03-10 Sony Corp 光ピックアップ及びディスクドライブ装置
JP2005203090A (ja) * 2004-01-14 2005-07-28 Samsung Electronics Co Ltd 光ピックアップ
JP2005216430A (ja) * 2004-01-30 2005-08-11 Asahi Glass Co Ltd 光ヘッド装置
JP2005228436A (ja) 2004-02-16 2005-08-25 Ricoh Co Ltd 光ピックアップ装置及び光ディスク装置
JP2005339766A (ja) * 2004-04-23 2005-12-08 Matsushita Electric Ind Co Ltd 光ディスク装置
JP2005346882A (ja) * 2004-06-07 2005-12-15 Sony Corp 光ヘッド装置、再生装置、記録装置、トラッキングエラー信号生成方法
JP2006344344A (ja) * 2005-03-02 2006-12-21 Ricoh Co Ltd 抽出光学系、光ピックアップ装置及び光ディスク装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038771B2 (ja) * 1978-06-19 1985-09-03 パイオニア株式会社 光学式情報読取装置のサ−ボ装置
US5663940A (en) * 1993-11-19 1997-09-02 Sony Corporation Optical pickup apparatus including hologram element
CN1211788C (zh) * 1998-07-09 2005-07-20 索尼公司 集成光学元件、光学传感器及光盘装置
JP3805194B2 (ja) * 2000-12-07 2006-08-02 株式会社日立製作所 光学情報再生装置
US7796491B2 (en) * 2004-09-29 2010-09-14 Panasonic Corporation Wavelength plate, optical element, and optical pickup
TWI328811B (en) * 2005-03-02 2010-08-11 Ricoh Co Ltd Optical system, optical pickup apparatus, and optical disk apparatus
WO2007007274A2 (en) * 2005-07-13 2007-01-18 Arima Devices Corporation Method of reading out information from a multiple layer optical recording medium and optical readout device.
JP2007080480A (ja) * 2005-08-15 2007-03-29 Sony Corp 光分別方法、光分別構造体とこれを用いた光ピックアップ装置及び光記録再生装置
JP4618725B2 (ja) * 2005-11-08 2011-01-26 株式会社リコー 光ピックアップ装置及び光ディスク装置
JP2007257750A (ja) * 2006-03-24 2007-10-04 Hitachi Media Electoronics Co Ltd 光ピックアップおよび光ディスク装置
US7916618B2 (en) * 2006-03-30 2011-03-29 Pioneer Corporation Optical pickup and information device
JP4620631B2 (ja) * 2006-05-16 2011-01-26 株式会社日立メディアエレクトロニクス 光ディスクドライブ装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10124906A (ja) * 1996-10-16 1998-05-15 Sankyo Seiki Mfg Co Ltd 波長板およびそれを用いた光ピックアップ装置
JP2001216662A (ja) * 2000-02-01 2001-08-10 Pioneer Electronic Corp ピックアップ装置及び情報記録再生装置
JP2005063595A (ja) * 2003-08-18 2005-03-10 Sony Corp 光ピックアップ及びディスクドライブ装置
JP2005203090A (ja) * 2004-01-14 2005-07-28 Samsung Electronics Co Ltd 光ピックアップ
JP2005216430A (ja) * 2004-01-30 2005-08-11 Asahi Glass Co Ltd 光ヘッド装置
JP2005228436A (ja) 2004-02-16 2005-08-25 Ricoh Co Ltd 光ピックアップ装置及び光ディスク装置
JP2005339766A (ja) * 2004-04-23 2005-12-08 Matsushita Electric Ind Co Ltd 光ディスク装置
JP2005346882A (ja) * 2004-06-07 2005-12-15 Sony Corp 光ヘッド装置、再生装置、記録装置、トラッキングエラー信号生成方法
JP2005044513A (ja) * 2004-10-01 2005-02-17 Hitachi Ltd 情報記録媒体、情報再生方法、および情報記録方法
JP2006344344A (ja) * 2005-03-02 2006-12-21 Ricoh Co Ltd 抽出光学系、光ピックアップ装置及び光ディスク装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006850A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132912A1 (ja) * 2007-04-23 2008-11-06 Nec Corporation 光ヘッド装置および光学式情報記録再生装置
JP2009009628A (ja) * 2007-06-27 2009-01-15 Hitachi Media Electoronics Co Ltd 光ピックアップ及び光学的情報再生装置
KR101045978B1 (ko) * 2008-03-14 2011-07-04 가부시키가이샤 리코 광 픽업기 및 이것을 이용하는 광 정보 처리 장치

Also Published As

Publication number Publication date
JPWO2007114280A1 (ja) 2009-08-20
EP2006850A4 (en) 2009-05-06
US8072868B2 (en) 2011-12-06
EP2006850A9 (en) 2009-02-25
JP4726254B2 (ja) 2011-07-20
EP2006850A2 (en) 2008-12-24
US20090274031A1 (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP4389154B2 (ja) 光ピックアップ及びディスクドライブ装置
JP2005203090A (ja) 光ピックアップ
JP5069893B2 (ja) 光ピックアップ及び光ディスクドライブ
JP4726254B2 (ja) 光ピックアップ及び情報機器
KR101119689B1 (ko) 광디스크 장치, 광픽업의 제어 방법 및 광디스크 판별 방법
JP2008052888A (ja) 光ピックアップ
JP2008130219A (ja) 光ピックアップ装置
JP4876844B2 (ja) 光ピックアップ及びこれを用いた光ディスク装置
JP2007073173A (ja) 互換型光ピックアップ、及びこれを採用した光記録及び/または再生機器
JP2008021339A (ja) 光ピックアップ及び情報機器
JP4726253B2 (ja) 光ピックアップ及び情報機器
JP2004139709A (ja) 光ピックアップ及びディスクドライブ装置
JP4726255B2 (ja) 光ピックアップ及び情報機器
JP3772851B2 (ja) 光ピックアップ装置及び光ディスク装置
WO2011064992A1 (ja) 光ピックアップ装置および光ディスク装置
JP4726256B2 (ja) 光ピックアップ及び情報機器
KR101106646B1 (ko) 광 픽업과 이를 갖는 디스크장치
KR101365446B1 (ko) 광픽업 장치 및 광기록 및 재생장치
JP4501275B2 (ja) 光ヘッド、受発光素子、及び光記録媒体記録再生装置、ならびにトラック判別信号検出方法
US8488425B2 (en) Optical pickup device and optical disc apparatus
JP2011502325A (ja) 光ピックアップ及びこれを採用した光情報記録媒体システム
JP2010020812A (ja) 光ピックアップ装置及び光ディスク装置
JP2009099176A (ja) 光ピックアップ及びこれを用いた光ディスク装置
JP2008117455A (ja) 光ピックアップ及びこれを用いた光ディスク装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740365

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008508625

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007740365

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12295077

Country of ref document: US